

Fakultät Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Algebra

Dr. A. Noack, Dr. C. Zschalig

Mathematik für Informatiker (Modul INF-B110), Teil Lineare Algebra, Wintersemester 2013/14

14. Übungsblatt für die Übungen vom 27.1.-31.1.2014

dynamische Systeme, Orthogonalität

Ü79. Sogenannte "Räuber-Beute-Systeme" können vereinfacht als diskretes dynamisches System dargestellt werden. Ein Beispiel dafür ist die gut untersuchte Beziehung zwischen Fleckenkauz und Buschratte. Seien E_k und R_k die Eulen- und die Rattenpopulation (in Tausend) zum Zeitpunkt k, dann berechnen sich die Populationen zum Zeitpunkt k+1 als:

$$E_{k+1} = a \cdot E_k + b \cdot R_k,$$

$$R_{k+1} = c \cdot E_k + d \cdot R_k.$$

Berechnen Sie für die Startwerte $s_1 = (E_0, R_0)^T = (10, 10)^T$, $s_2 = (30, 10)^T$ und $s_3 = (10, 20)^T$ die Populationen zum Zeitpunkt k = 100 für folgende Parameter:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 0, 3 & 0, 6 \\ -0, 4 & 1, 7 \end{pmatrix} =: A \quad \text{und} \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 0, 5 & 0, 5 \\ -0.5 & 1, 5 \end{pmatrix} =: B$$

Hinweis: Modelle solcher "Räuber-Beute-Systeme" sind i.A. viel komplexer, die hier beschriebene lineare Abhängigkeit kann zumindest als Basis dieser Prozesse angesehen werden.

- Ü80. (a) Zeigen Sie, dass die Eigenräume der Matrix B aus Ü68(b) orthogonal sind.
 - (b) Bestimmen Sie Eigenwerte und Eigenvektoren von B^3 .
 - (c) Zeigen Sie: Ist n eine natürliche Zahl und hat die Matrix M den Eigenvektor v zum Eigenwert k, dann hat M^n den Eigenvektor v zum Eigenwert k^n .
- Ü81. (a) Für welche $k \in \mathbb{R}$ sind die Vektoren $(k, k, 1)^T$ und $(k, 5, 6)^T$ zueinander orthogonal?
 - (b) Für welche $k \in \mathbb{R}$ gilt für die Vektoren $u = (1, 1, 0, -2)^T$ und $v = (3, -1, 1, k)^T$ die Beziehung dist(u, v) = 5?
 - (c) Bilden die Vektoren $v_1 := (1,0,1)^T$, $v_2 := (-1,4,1)^T$, $v_3 := (2,1,-2)^T$ eine Orthonormalbasis von $U := \text{Span}(\{v_1,v_2,v_3\})$? Geben Sie eine Orthonormalbasis von U an
 - (d) Es seien $u=(u_1,u_2)^T$ und $v=(v_1,v_2)^T$ Vektoren aus dem \mathbb{R}^2 . Zeigen Sie, dass die durch

$$u \bullet v := 2u_1v_1 - u_1v_2 - u_2v_1 + 2u_2v_2$$

definierte Verknüpfung die Eigenschaften eines Skalarproduktes erfüllt.

H82.* Eine Hefezellenkolonie benötigt in der k-ten Generation ($k \in \mathbb{N}$) eine Fläche von t_k cm². Das Wachstum der Kolonie sei gegeben durch die Gleichung

$$t_{k+3} = \frac{3}{2}t_{k+2} - \frac{11}{16}t_{k+1} + \frac{3}{32}t_k + 1, \qquad k \in \mathbb{N}.$$

(a) Geben Sie eine Matrix $A \in \mathbb{R}^{3\times 3}$ und einen Vektor $b \in \mathbb{R}^3$ an, so dass für alle $k \in \mathbb{N}$ gilt:

$$\begin{pmatrix} t_{k+3} \\ t_{k+2} \\ t_{k+1} \end{pmatrix} = A \begin{pmatrix} t_{k+2} \\ t_{k+1} \\ t_k \end{pmatrix} + b.$$

Ist die Matrix A diagonalisierbar? Wenn ja, so geben Sie eine Matrix S an, so dass $S^{-1}AS$ Diagonalform hat.

Hinweis für Bestimmung der Eigenwerte: "raten" Sie, dass $\frac{1}{2}$ ein Eigenwert von A ist.

- (b) Berechnen Sie den Flächenbedarf t_k für $k \in \mathbb{N}$ falls $t_0 = t_1 = t_2 = 0$ ist.
- (c) Gegen welchen Wert konvergiert die Folge t_k (für $k \to \infty$)? Bemerkung: In Teil (c) setzen wir nicht voraus, dass $t_0 = t_1 = t_2 = 0$ gilt.
- H83. (a) Zeigen Sie, dass der "Satz des Pythagoras": $||u+v||^2 = ||u||^2 + ||v||^2$ für orthogonale Vektoren u, v auch im \mathbb{R}^n gilt.
 - (b) Zeigen Sie, dass für Vektoren u, v aus dem $\mathbb{R}^n \|u + v\| = \|u v\|$ gilt, wenn u und v orthogonal sind.
- H84. Geben Sie zwei Vektoren aus dem \mathbb{R}^4 an, die die Norm 1 haben und zu den Vektoren $v_1 := (2, 1, -4, 0)^T$, $v_2 := (-1, -1, 2, 2)^T$, $v_3 := (3, 2, 5, 4)^T$ orthogonal sind.

Berechnen Sie das orthogonale Komplement U^{\perp} zum Untervektorraum $U := \text{Span}(\{v_1, v_2, v_3\})$ im Vektorraum \mathbb{R}^4 .