

Fakultät Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Algebra

Jun.-Prof. M. Schneider, Dr. C. Zschalig

Lineare Algebra für Physiker, Wintersemester 2014/15

4. Übungsblatt für die Übungen vom 10.11.-14.11.2014

Gruppen, Körper

- Ü19. Die Quaternionengruppe Q_8 besteht aus den Elementen $\{1, -1, i, -i, j, -j, k, -k\}$; die Gruppenoperation o ist durch die folgenden Gleichungen eindeutig festgelegt:
 - (1) $\forall q \in Q_8 : 1 \circ q = q \circ 1 = q$
- $(2) \quad \forall q \in Q_8 : -1 \circ q = q \circ -1 = -q$
- $(3) \quad i\circ i=j\circ j=k\circ k=-1 \qquad \qquad (4) \quad i\circ j=j\circ -i=k$
- $(5) \quad j \circ k = k \circ -j = i$
- (6) $k \circ i = i \circ -k = j$
- $(7) \quad \forall q \in Q_8 : -(-q) = q$
- (a) Bestimmen Sie $i \circ k$ und $j \circ i$; begründen Sie dabei Ihre Umformungsschritte durch die obigen Gleichungen.
- (b) Stellen Sie die Gruppentafel auf.
- (c) Bestimmen Sie alle Untergruppen der Quaternionengruppe.
- Ü20. (a) Für $n \in \mathbb{N}_+$ und ganze Zahlen $x, y \in \mathbb{Z}$ wird durch die Festsetzung

$$x \equiv y \pmod{n} : \iff \exists \lambda \in \mathbb{Z} : x - y = \lambda n$$

eine Äquivalenzrelation (mod n) auf der Menge $\mathbb Z$ definiert. Bestätigen Sie das! (x,y)heißen dann kongruent modulo n.) Die Äquivalenzklassen [x] werden auch als Restklassen bezeichnet. Warum? Als besonders "guten" Repräsentanten einer Restklasse wird meist die kleinste nichtnegative ganze Zahl aus [x] gewählt und mit $(x \mod n)$ bezeichnet. Was ist die Anzahl der (paarweise verschiedenen) Restklassen modulo n, d.h. die Mächtigkeit von $\mathbb{Z}/_{(\text{mod }n)}$?

(b) Welche der folgenden Restklassen stimmen modulo 7 überein?

$$[0], [13], [-321], [91], [57], [-1], [\sqrt{2}].$$

- (c) In der Menge $\mathbb{Z}/_{(\text{mod }n)}$ wird durch "repräsentantenweises" Rechnen eine Addition + bzw. Multiplikation • erklärt. Rechtfertigen Sie diese Vorgehensweise durch den Nachweis, dass sie unabhängig von der Auswahl der Repräsentanten ist. (Was muss dabei gezeigt werden?)
- Ü21. Stellen Sie für $n \in \{2, 3, 4, 5\}$ die Tafeln für Addition $x + y := (x + y \mod n)$ und Multiplikation $x \cdot y := (x \cdot y \mod n)$ in $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$ auf. Begründen Sie (ohne detaillierten Beweis), dass $(\mathbb{Z}_n, +, \cdot)$ für $n \in \{2, 3, 5\}$ jeweils die Körpereigenschaften erfüllt. Warum trifft das für n = 4 nicht zu?
- A22. Hausaufgabe, bitte bis 19.11.2014 12.00 Uhr unter Angabe von Name, Matrikelnr. und Übungsgruppe im Briefkasten im Willers-Bau (C-Flügel) abgeben.
 - (a) Geben Sie die Operationstafeln der Gruppen $(\mathbb{Z}_6,+)$ und $(\mathbb{Z}_7 \setminus \{0\},\cdot)$ an. Geben Sie einen Isomorphismus zwischen beiden Gruppen an.

- (b) Sei $n \in \mathbb{N}_+$ und $E_n = \{w_0, \dots, w_{n-1}\}$ die Menge der n-ten Einheitswurzeln (vgl. Beispiel 2.13 aus der Vorlesung). Zeigen Sie, dass (E_n, \cdot) eine Gruppe ist. Hinweis: Vergessen Sie nicht zu zeigen, dass E_n abgeschlossen unter \cdot ist, d.h. dass \cdot zwei Elemente aus E_n tatsächlich wieder in E_n abbildet.
- H23*. In dieser Aufgabe soll der Satz von CAYLEY

"Jede Gruppe ist isomorph zu einer Permutationsgruppe."

(vgl. 3.27 aus der Vorlesung) in mehreren Schritten bewiesen werden. Sei dazu (G,*) eine Gruppe.

- (a) Zeigen Sie, dass $\lambda_a \colon G \to G \colon x \mapsto a * x$ für jedes $a \in G$ eine bijektive Abbildung ist. Dies bedeutet: $\forall a \in G \colon \lambda_a \in S_G$.
- (b) Wegen (a) ist die Abbildung $\varphi \colon G \to S_G \colon a \mapsto \lambda_a$ wohldefiniert. Zeigen Sie, dass φ ein Homomorphismus von (G,*) nach (S_G,\circ) ist.
- (c) Zeigen Sie, dass $(\varphi[G], \circ)$ eine Untergruppe von (S_G, \circ) ist.
- (d) Zeigen Sie, dass φ injektiv ist.
- (e) Schlussfolgern Sie, dass $\varphi \colon G \to \varphi[G]$ ein Isomorphismus von (G,*) nach $(\varphi[G], \circ)$ ist.
- H24. Sei $\underline{H} = (H, \cdot)$ eine Gruppe und sei $\operatorname{Aut}(\underline{H})$ die Menge der Automorphismen von \underline{H} . Dann ist $\underline{Aut}(\underline{H})$ eine Untergruppe von \underline{S}_H (der Gruppe aller Permutationen auf H).

Die mit einem * bezeichneten Aufgaben sind schwerer.