

Fakultät Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Algebra

Jun.-Prof. M. Schneider, Dr. C. Zschalig

Lineare Algebra für Physiker, Wintersemester 2014/15

11. Übungsblatt für die Übungen vom 12.1.-16.1.2015

Diagonalisierung von Matrizen

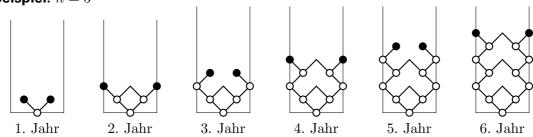
- Ü
61. (a) Es sei $f: \mathbb{R}^2 \to \mathbb{R}^2$ die Spiegelung an der Geraden $g = \mathbb{R}v$ mit $v = \binom{2}{1} \in \mathbb{R}^2$.
 - (i) Veranschaulichen Sie sich diese Abbildung geometrisch und überlegen Sie damit, welche Eigenwerte f hat und was die dazugehörigen Eigenräume sind. Geben Sie eine Basis $B' = (u_1, u_2)$ von \mathbb{R}^2 aus Eigenvektoren von f an.
 - (ii) Bestimmen Sie die Darstellungsmatrix $A := M_B^B(f)$ bzgl. der Standardbasis $B = (e_1, e_2)$.
 - (iii) Bestimmen Sie die Darstellungsmatrix $D := M_{B'}^{B'}(f)$ bzgl. der Basis $B' = (u_1, u_2)$.
 - (iv) Berechnen Sie eine reguläre Matrix S, so dass $D = S^{-1}AS$ gilt. Ist S eindeutig bestimmt?
 - (b) Bestimmen Sie alle Matrizen $A \in \mathbb{K}^{n \times n}$, die zur Einheitsmatrix $E \in \mathbb{K}^{n \times n}$ ähnlich sind (vgl. Vorlesung 6.25).

Nach Vorlesung 9.13 haben ähnliche Matrizen die selben Eigenwerte. Zeigen Sie, dass die Umkehrung nicht gilt, d.h. finden Sie eine zu E nicht-ähnliche Matrix B mit $\det(B - \lambda E) = \det(E - \lambda E)$.

Ü62. Eine "Hecke" wachse in der Ebene \mathbb{R}^2 nach folgenden Regeln:

- (1) Die Knospen der Hecke liegen auf Gitterpunkten $(x,y) \in \mathbb{N}^2$.
- (2) Von einer Knospe im Punkt (x, y) wachsen im Laufe eines Jahres falls möglich zwei Zweige diagonal nach oben (zu den Punkten (x 1, y + 1) und (x + 1, y + 1)).
- (3) Endet in einem Gitterpunkt genau ein Zweig, so entsteht dort eine Knospe. Falls zwei Zweige zusammenstoßen, entsteht keine Knospe.
- (4) Das Heckenwachstum ist seitlich durch (unendlich hohe) Wände begrenzt, o.B.d.A. sollen die Wände an den Punkten (1,0) und (n,0) beginnen.

Beispiel: n=5



Wir beschreiben das Wachstum der Hecke durch die Folge $b_k \in \mathbf{GF}(2)^n$, für k = 1, 2, ..., wobei $b_k := (a_{k1}, ..., a_{kn})$ durch die oberste Knospenlage im k-ten Jahr gegeben ist: $a_{ki} = 1$ falls im Punkt (i, k) eine Knospe ist (sonst $a_{ki} = 0$). Im angegebenen Beispiel etwa ist $b_0 = (0, 0, 1, 0, 0), b_2 = b_4 = (1, 0, 0, 0, 1), b_3 = b_5 = (0, 1, 0, 1, 0)$.

- (a) Untersuchen Sie das Heckenwachstum für verschiedene Werte von n (speziell n = 3, 4, 7) und verschiedene Anfangsknospungen b_0 unter folgendem Gesichtspunkt: Wie hoch kann die Hecke wachsen?
- (b) Finden Sie eine Matrix $A_n \in \mathbb{K}^{n \times n}$ über dem Körper $\mathbb{K} = \mathsf{GF}(2)$, so dass $b_{k+1} = A_n b_k$. Beschreiben Sie b_k durch eine Formel mit A_n und b_0 . Hinweis: Beachten Sie die Rechenregeln für Addition und Multiplikation in $\mathsf{GF}(2)$.
- (c) Beweisen Sie: Für $n=2^m-1$ ist das charakteristische Polynom von A_n gerade $\chi_A=\lambda^n.$

Hinweis: Für $k \geq 2$ zeigt man durch Entwicklung nach der mittleren Spalte $\det(A_{2k+1} - \lambda E) = \lambda \cdot \det(A_k - \lambda E)^2$ und macht dann eine vollständige Induktion über m.

(d) Zeigen Sie unter Benutzung des Satzes von Cayley-Hamilton (Vorlesung 9.33), dass eine Hecke der Breite $n = 2^m - 1$ spätestens im n-ten Jahr nicht mehr weiter wächst.

Ü63. Beweisen Sie folgende Aussagen:

- (a) Ist λ Eigenwert einer Matrix $A \in \mathbb{R}^{n \times n}$, dann ist λ auch Eigenwert von A^{\top} . Sind auch die zugehörigen Eigenräume von A und A^{\top} gleich?
- (b) Besitzt die Matrix $A \in \mathbb{K}^{n \times n}$ die Eigenwerte $\lambda_1, \dots, \lambda_n$, dann gilt $\det(A) = \prod_{i=1}^n \lambda_i$.
- A64. Hausaufgabe, bitte bis 21.1.2015 12.00 Uhr unter Angabe von Name, Matrikelnr. und Übungsgruppe im Briefkasten im Willers-Bau (C-Flügel) abgeben. Begründen Sie, jeweils für die Fälle $\mathbb{K} = \mathbb{Z}_5$, $\mathbb{K} = \mathbb{R}$ und $\mathbb{K} = \mathbb{C}$, ob die Matrizen $A, B, C \in \mathbb{K}^{2\times 2}$ diagonalisierbar sind.

$$A = \begin{pmatrix} 0 & 3 \\ -1 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \qquad C = \begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}.$$

H65. (a) Sogenannte "Räuber-Beute-Systeme" können vereinfacht als diskretes dynamisches System dargestellt werden. Ein Beispiel dafür ist die gut untersuchte Beziehung zwischen Fleckenkauz und Buschratte. Seien E_k und R_k die Eulen- und die Rattenpopulation (in Tausend) zum Zeitpunkt k, dann berechnen sich die Populationen zum Zeitpunkt k+1 als:

$$E_{k+1} = a \cdot E_k + b \cdot R_k,$$

$$R_{k+1} = c \cdot E_k + d \cdot R_k.$$

Berechnen Sie für die Startwerte $s_1 = (E_0, R_0)^T = (10, 10)^T$, $s_2 = (30, 10)^T$ und $s_3 = (10, 20)^T$ die Populationen zum Zeitpunkt k = 100 für folgende Parameter (Hinweis: verwenden Sie Vorlesung 10.10):

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 0, 3 & 0, 6 \\ -0, 4 & 1, 7 \end{pmatrix} =: A \quad \text{und} \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 0, 5 & 0, 5 \\ -0.5 & 1, 5 \end{pmatrix} =: B$$

Hinweis: Modelle solcher "Räuber-Beute-Systeme" sind i.A. viel komplexer, die hier beschriebene lineare Abhängigkeit kann zumindest als Basis dieser Prozesse angesehen werden.

(b) Berechnen Sie Eigenwerte und deren Eigenräume der Schachbrettmatrix $S_n = (s_{ij}) \in \mathbb{R}^{n \times n}$ (mit $n \in \mathbb{N}$), definiert durch

$$s_{ij} = \left\{ \begin{array}{ll} 1, & \text{falls } (i+j) \text{ ist gerade} \\ 0, & \text{falls } (i+j) \text{ ist ungerade} \end{array} \right..$$

Für welche $n \in \mathbb{N}$ ist S_n diagonalisierbar?

Untersuchen Sie die Diagonalisierbarkeit nochmals für den Fall, dass der zugrundeliegende Körper $\mathsf{GF}(2)$ ist.

H66. Wir wollen für $A=\begin{pmatrix} 0&2&1\\4&-3&1\\2&2&3 \end{pmatrix}\in\mathbb{R}^{3,3}$ möglichst effektiv

$$2A^6 - 41A^4 + 12A^3 - 21A^2 + 8A$$

berechnen. D.h., wir wollen für das Polynom $\varphi:=2x^6-41x^4+12x^3-21x^2+8x\in\mathbb{R}[x]$ die Matrix $\varphi(A)$ berechnen.

- (a) Bestimmen Sie das charakteristische Polynom $\chi_A \in \mathbb{R}[x]$.
- (b) Berechnen Sie mit Polynomdivision zwei Polynome $\psi, r \in \mathbb{R}[x]$ mit möglichst kleinem Grad, so dass $\varphi = \chi_A \cdot \psi + r$.
- (c) Warum gilt $\varphi(A) = r(A)$?
- (d) Bestimmen Sie $\varphi(A)$ durch Berechnung von r(A).