

Fakultät Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Algebra

Jun.-Prof. M. Schneider, Dr. C. Zschalig

Lineare Algebra für Physiker, Wintersemester 2014/15

14. Übungsblatt für die Übungen vom 2.2.-6.2.2015

Gramsche Matrix, Jordansche Normalform

Ü
79. (a) Berechnen Sie das charakteristische Polynom $\chi_A \in \mathbb{R}[\lambda]$ der Matrix

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$

und zerlegen Sie χ_A in ein Produkt von Linearfaktoren. Was sind die Eigenwerte von A und ihre algebraische Vielfachheit?

- (b) Berechnen Sie $\operatorname{rg}(A-\lambda E)$ für jeden Eigenwert λ und leiten Sie daraus die geometrische Vielfachheit von λ ab. Ist A diagonalisierbar?
- (c) Geben Sie die Jordansche Normalform J von A an (ohne Rechnung, nur aus den Ergebnissen von (a) und (b)).
- (d) Finden Sie eine reguläre Matrix S, so dass $S^{-1}AS$ die *Jordan*sche Normalform von A ist.

Hinweis: Die erste und dritte Spalte von S bestehen aus den in (b) gefundenen Eigenvektoren (analog zum Verfahren zur Diagonalisierung von Matrizen). Die zweite Spalte ergibt sich durch Auswertung der Gleichung AS = SJ.

Ü80. Beweisen Sie: Es sei $A=\begin{pmatrix} a & b \\ b & c \end{pmatrix} \in \mathbb{R}^{2\times 2}$ eine symmetrische Matrix. Dann ist A genau dann positiv definit, wenn a>0 und $\det(A)>0$ gilt.

Hinweis: Eine Matrix $A \in \mathbb{R}^{n \times n}$ heißt positiv definit, wenn für alle $x \in \mathbb{R}^n \setminus \{o\}$ gilt: $x^T A x > 0$.

Hinweis zum Beweis: Betrachten Sie eine Bilinearform $\langle \cdot , \cdot \rangle$, so dass A die Gramsche Matrix bezüglich einer Basis (v_1, v_2) ist. Was ist dann $\langle v_i, v_j \rangle$?

- "\equive": Zeigen Sie, dass $\langle v, v \rangle > \frac{1}{a}(\alpha a + \beta b)^2 \ge 0$ für jeden Vektor $v = \alpha v_1 + \beta v_2 \ne o$ gilt. Beweisen Sie dazu die Beziehung $c > \frac{b^2}{a}$.
- " \Rightarrow ": Betrachten Sie die Vektoren $v = v_1$ sowie $v = bv_1 av_2$, berechnen Sie jeweils $\langle v, v \rangle$ und leiten Sie daraus die Behauptung ab.

Ü81. Sei V ein 3-dimensionaler \mathbb{R} -Vektorraum und $B=(v_1,v_2,v_3)$ eine Basis von V. Es sei

$$A := \left(\begin{array}{ccc} 2 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{array}\right)$$

die Gramsche Matrix (bezüglich der Basis B) einer Bilinearform $\langle \cdot, \cdot \rangle$.

- (a) Ist $\langle \cdot, \cdot \rangle$ ausgeartet? Ist $\langle \cdot, \cdot \rangle$ ein Skalarprodukt?
- (b) Zeigen Sie, dass $C = (v_1 + v_2, v_2 + v_3, v_2)$ eine Basis von V ist und berechnen Sie die Gramsche Matrix von $\langle \cdot, \cdot \rangle$ bezüglich der Basis C.

- H82. Geben Sie zu jeder Matrix über jedem der gegebenen Körper aus Aufgabe A64 eine Jordansche Normalform an, falls möglich.
- H83. Es sei V der Vektorraum aller stetigen Funktionen $f: [-\pi, \pi] \to \mathbb{R}$ (auf dem Intervall $[-\pi, \pi] = \{x \in \mathbb{R} \mid -\pi \leq x \leq \pi\}$) mit der Abbildung (vgl. Vorlesung 16.9(b))

$$\langle f, g \rangle := \frac{1}{\pi} \int_{-\pi}^{\pi} f(t)g(t) dt.$$

- (a) Zeigen Sie, dass $\langle \cdot, \cdot \rangle$ ein Skalarprodukt ist.
- (b) (nur für interessierte Studenten) Berechnen Sie von von den folgenden Funktionen aus V die Norm und die Skalarprodukte:

$$k: t \mapsto \frac{1}{\sqrt{2}}, \quad c_n: t \mapsto \cos(nt), \quad s_n: t \mapsto \sin(nt).$$

H84. (a) Bestimmen Sie eine positive reelle Zahl r, so dass die Matrix

$$A = rac{1}{2} \left(egin{array}{ccc} 1 + r & -1 & r \ 1 & r & -1 - r \ r & 1 + r & 1 \end{array}
ight).$$

orthogonal ist. Zeigen Sie, dass A dann eine Drehung beschreibt.

- (b) Berechnen Sie für diese Drehmatrix einen Eigenvektor zum Eigenwert 1.
- (c) Berechnen Sie Drehachse und Drehwinkel (es reicht, $\cos \alpha$ anzugeben).

Bemerkung: Wen es interessiert, wie sich die Abbildung $x \mapsto Ax$ geometrisch als Abbildung des Dodekaeders interpretieren lässt, der suche in dem Buch "Lineare Algebra" von B. ARTMANN.