Klassische Algebra

Gesucht sind die Lösungsmengen der folgenden Gleichungen:

$$x^{n} + a_{n-1}x^{n-1} + \cdots + a_{1}x + a_{0} = 0 \quad (a_{0}, \dots, a_{n-1} \in \mathbb{Q})$$

- Formeln für $n \in \{1, 2, 3, 4\}$ sind bekannt.
- ABEL, GALOIS: Für $n \in \mathbb{N}$ mit $n \geq 5$ gibt es keine allgemeine Lösungsformel.

Die Methoden zum Nachweis begründen eine neue Betrachtungsweise in der Algebra.

Moderne Algebra

Theorie der algebraischen Strukturen

Gruppentheorie

Die Klassifikation der endlichen einfachen Gruppen ist gelungen (Beweis: ca. 5000 Seiten). Ziel ist die Charakterisierung aller Gruppen.

Ringtheorie

Untersuchung spezieller Ringe,

- z.B. Polynomringe; euklidische Ringe; Ringe, die Körper sind
- Körpertheorie

Es gibt weitere algebraische Strukturen,

z.B. Vektorräume, Schiefkörper, Fastkörper, Verbände, Gruppoide, Quasigruppen, Loops, Universelle Algebren.

9. Vorlesung

 $\mathsf{Halbgruppe} \ \to \ \mathsf{Monoid} \ \to \ \mathsf{Gruppe}$

- (2-stellige) Operationen
- assoziativ, kommutativ
- neutrale Elemente
- inverse Elemente
- Kürzungsregeln
- Lösbarkeit von Gleichungen

Methode: Folgerungen aus einem Axiomensystem herleiten

Auf Beispiele, die das Axiomensystem erfüllen, treffen auch alle Folgerungen zu.

Halbgruppen

Es sei H eine nichtleere Menge und ○ eine assoziative
 Operation auf H, d.h. es gilt:

$$\forall a, b, c \in H : a \circ (b \circ c) = (a \circ b) \circ c$$

Dann nennt man (H, \circ) eine Halbgruppe.

- |H| heißt Ordnung der Halbgruppe (H, \circ) .
- Eine Halbgruppe (H, \circ) wird kommutative Halbgruppe genannt, wenn gilt:

$$\forall a, b \in H : a \circ b = b \circ a$$

Monoide

• $e \in H$ heißt <u>neutrales Element</u> in einer Halbgruppe (H, \circ) , wenn gilt:

$$\forall a \in H : e \circ a = a \circ e = a$$

- Es sei (H, \circ) eine Halbgruppe mit einem neutralen Element. Dann nennt man (H, \circ) ein <u>Monoid</u>.
- Eine Halbgruppe enthält höchstens ein neutrales Element.
 Ein Monoid enthält genau ein neutrales Element.

Beispiele

- $(\mathbb{Z}, -)$ ist keine Halbgruppe.
- $(2\mathbb{Z}, \cdot)$ ist eine kommutative Halbgruppe.
- (\mathbb{Z}, \cdot) ist ein kommutatives Monoid mit e = 1.
- $(\mathbb{N}, +)$ ist eine kommutatives Monoid mit e = 0.
- $(\mathbb{R}^{n \times n}, \cdot)$ ist ein Monoid mit $e = E_n$.
- $(\mathbb{Z}_n, +)$ ist ein kommutatives Monoid mit e = 0.
- (\mathbb{Z}_n, \cdot) ist ein kommutatives Monoid mit e = 1.
- Freies Monoid über dem Alphabet Σ,
 ε bezeichnet das leere Wort:
 (Σ*, ∘) ist ein Monoid mit e = ε.

Unterhalbgruppen

Es sei (H, ∘) eine Halbgruppe und ∅ ≠ U ⊆ H.
 U heißt Unterhalbgruppe von H, wenn U mit der Verknüpfung ∘ von H eine Halbgruppe bildet,
 d.h. wenn gilt:

$$a, b \in U \Rightarrow a \circ b \in U$$

- H ist eine (triviale) Unterhalbgruppe von (H, \circ) .
- Der Durchschnitt von Unterhalbgruppen von (H, \circ) ist eine Unterhalbgruppe von (H, \circ) .

Invertierbare Elemente in Halbgruppen

• Es sei (H, \circ) ein Monoid mit dem neutralen Element e. Ein Element $a \in H$ heißt <u>invertierbar</u>, wenn ein $b \in H$ mit

$$a \circ b = b \circ a = e$$

existiert.

- Für jedes $a \in H$ existiert höchstens ein Element $b \in H$ mit $a \circ b = b \circ a = e$.
- Ist $a \in H$ invertierbar, dann existiert genau ein Element $b \in H$ mit $a \circ b = b \circ a = e$.

Dieses Element b wird auch mit a^{-1} bezeichnet und das Inverse von a genannt.

Gruppen

- Es sei (H, o) ein Monoid mit dem neutralen Element e.
 H* bezeichnet die Menge der invertierbaren Elemente von H.
 Es gilt:
 - (1) $e \in H^*$ und $e^{-1} = e$
 - (2) $a \in H^* \Rightarrow a^{-1} \in H^* \text{ und } (a^{-1})^{-1} = a$
 - (3) $a, b \in H^* \Rightarrow a \circ b \in H^* \text{ und } (a \circ b)^{-1} = b^{-1} \circ a^{-1}$
- Für jedes Monoid (H, ∘) ist die Menge H* eine Unterhalbgruppe von (H, ∘).
 (Diese Unterhalbgruppe ist sogar eine Gruppe.)
- Ein Monoid (H, \circ) heißt <u>Gruppe</u>, wenn $H^* = H$ gilt.
- Beispiele f
 ür abelsche Gruppen:

$$(\mathbb{Z},+)$$
, $(\mathbb{R},+)$, $(\mathbb{C},+)$, $(\mathbb{R}\setminus\{0\},\cdot)$, $(\mathbb{C}\setminus\{0\},\cdot)$, $(\mathbb{Z}_n,+)$, $(\mathbb{Z}_n\setminus\{0\},\cdot)$ (p prim)

Gruppen

- Eine Gruppe ist eine Algebra $(G; \circ, ^{-1}, e)$ vom Typ (2, 1, 0) mit:
 - (1) $a \circ (b \circ c) = (a \circ b) \circ c$ für alle $a, b, c \in G$
 - (2) $g \circ e = g = e \circ g$ für alle $g \in G$
 - (3) $g \circ g^{-1} = g^{-1} \circ g = e$ für alle $g \in G$
- *G* ist die Trägermenge der Gruppe.
 - o, $^{-1}$, e sind die Symbole für die fundamentalen Operationen.
 - Der $\underline{\mathsf{Typ}}$ (2, 1, 0) gibt an, dass \circ eine 2-stellige Operation, $^{-1}$ eine 1-stellige und e eine 0-stellige Operation bezeichnet.

Man nennt e das <u>neutrale Element</u> der Gruppe und g^{-1} das zu g <u>inverse Element</u>.

Untergruppen

• Eine Teilmenge U einer Gruppe $(G; \circ, ^{-1}, e)$, die das neutrale Element enthält $(d.h. \ e \in U)$ und die gegen die Operationen \circ und $^{-1}$ abgeschlossen ist $(d.h. \ a,b \in G \Rightarrow a \circ b \in G \text{ für alle } a,b \in G \text{ und } a \in G \Rightarrow a^{-1} \in G \text{ für alle } a \in G)$ nennt man eine $\underline{\text{Untergruppe}}$ der $\underline{\text{Gruppe}}(G; \circ, ^{-1}, e)$.

Schreibweise: $U \leq G$

- Jede Untergruppe ist mit den eingeschränkten Operationen selbst eine Gruppe.
- Jede Gruppe (G; \circ , $^{-1}$, e) mit |G|>1 hat mindestens zwei Untergruppen:

$$U = \{e\}$$
 und $U = G$

Diese Untergruppen nennt man auch triviale Untergruppen.

Eigenschaften von Gruppen

• In jeder Gruppe (G, \circ) gelten die Kürzungsregeln:

$$\forall a, x_1, x_2 \in G : a \circ x_1 = a \circ x_2 \Rightarrow x_1 = x_2$$

 $\forall a, y_1, y_2 \in G : y_1 \circ a = y_2 \circ a \Rightarrow y_1 = y_2$

- In jeder Gruppe (G, \circ) sind alle Gleichungen $a \circ x = b$ und $y \circ a = b$ mit $a, b \in G$ eindeutig lösbar.
- Jede endliche Halbgruppe, in der die Kürzungsregeln gelten, ist eine Gruppe.