12. Vorlesung

 $\mathsf{Ring} \longrightarrow \mathsf{kommutativer} \ \mathsf{Ring} \longrightarrow \mathsf{Integrit\"{a}tsring} \longrightarrow \mathsf{K\"{o}rper}$

- (kommutative) Ringe
- Nullelement und Einselement in Ringen
 Nullteiler in Ringen
- Integritätsringe und Körper
 - Jeder Körper ist ein Integritätsring.
 - Jeder endliche Integritätsring ist ein Körper.

Seien +, · Operationen auf einer nichtleeren Menge R. Es gelte:

- (1) a + (b + c) = (a + b) + c für alle $a, b, c \in R$
- (2) Es gibt ein $0 \in R$ (Nullement) mit a + 0 = 0 + a = a für alle $a \in R$.
- (3) Zu jedem $a \in R$ gibt es ein $b \in R$ mit a + b = b + a = 0.
- (4) a+b=b+a für alle $a,b\in R$
- (5) $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ für alle $a, b, c \in R$
- (6) $a \cdot (b+c) = a \cdot b + a \cdot c$ und $(b+c) \cdot a = b \cdot a + c \cdot a$ für alle $a, b, c \in R$

Dann nennt man $(R, +, \cdot)$ einen Ring.

Gilt zusätzlich $a \cdot b = b \cdot a$ für alle $a, b \in R$, dann nennt man $(R; +, \cdot)$ einen kommutativen Ring.

Unterring, Unterringkriterium

Definition:

Sei $(R; +, \cdot)$ ein Ring und $\emptyset \neq S \subseteq R$. $(S; +, \cdot)$ wird ein Unterring von $(R; +, \cdot)$ genannt, wenn S mit + und \cdot (eingeschränkt auf S) einen Ring bildet.

• Unterring-Kriterium:

 $\overline{\text{Sei }(R;+,\cdot)\text{ ein Ring}} \text{ und } \emptyset \neq S \subseteq R.$

 $(S; +, \cdot)$ ist ein Unterring von R genau dann, wenn die folgenden Bedingungen (1) und (2) erfüllt sind:

- (1) Für alle $a, b \in S$ gilt $a + b \in S$ und $a \cdot b \in S$.
- (2) Für jedes $a \in S$ existiert $-a \in S$.
- Für endliche Ringe genügt es, Bedingung (1) zu prüfen.

Einselement, Nullteiler

- Sei $(R; +, \cdot)$ ein Ring mit Nullelement 0. Ein Element $1 \in R$ mit $1 \neq 0$ und $a \cdot 1 = 1 \cdot a = a$ für alle $a \in R$ heißt <u>Einselement</u> im Ring $(R, +, \cdot)$. Ringe, die ein Einselement enthalten, werden Ringe mit Einselement genannt.
- Sei $(R; +, \cdot)$ ein kommutativer Ring mit Nullelement 0. Für $a, b \in R \setminus \{0\}$ gelte $a \cdot b = 0$. Dann werden a, b Nullteiler genannt.

Ein kommutativer Ring heißt nullteilerfrei, wenn er keine Nullteiler besitzt.

Integritätsring, Körper

- Sei $(R, +, \cdot)$ ein kommutativer Ring mit Einselement. R heißt Integritätsring, wenn R keine Nullteiler enthält.
- Sei $(R, +, \cdot)$ ein Ring mit Einselement 1 und $a \in R$. Existiert ein $b \in R$ mit $a \cdot b = b \cdot a = 1$, dann wird a eine <u>Einheit</u> in R genannt.
- Ein kommutativer Ring mit Einselement wird Körper genannt, wenn jedes vom Nullelement verschiedene Element eine Einheit ist.
- Jeder Körper ist ein Integritätsring.
- Jeder endliche Integritätsring ist ein Körper.