14. Vorlesung

- irreduzible Polynome f(x) über einem Körper K
- Konstruktion endlicher K\u00f6rper GF(q)
 - Rechnen im Ring $(K[x]/f(x), \oplus, \otimes)$
 - Beispiel zur Konstruktion eines endlichen Körpers GF(p)[x]/f(x) mit einem irreduziblen Polynom f(x)
 - Berechnung des multiplikativen Inversen (mit dem erweiterten EUKLIDischen Algorithmus)
- primitive Polynome f(x) über einem Körper KAnwendung primitiver Polynome f(x) zur Konstruktion des Körpers GF(p)[x]/f(x)

Irreduzible Polynome

- Ein Polynom p(x) wird <u>irreduzibel</u> über einem Körper K genannt, wenn es keine Polynome a(x), b(x) in K[x] gibt, die $p(x) = a(x) \cdot b(x)$ und 0 < Grad(a(x)) < Grad(p(x)) sowie 0 < Grad(b(x)) < Grad(p(x)) erfüllen.
- Beispiele für Zerlegungen von Polynomen in Faktoren, die über \mathbb{Z}_2 irreduzibel sind:

$$x^{3} + 1 = (x + 1)(x^{2} + x + 1)$$

$$x^{4} + 1 = (x + 1)^{4}$$

$$x^{5} + 1 = (x + 1)(x^{4} + x^{3} + x^{2} + x + 1)$$

$$x^{7} + 1 = (x + 1)(x^{3} + x + 1)(x^{3} + x^{2} + 1)$$

$$x^{9} + 1 = (x + 1)(x^{2} + x + 1)(x^{6} + x^{3} + 1)$$

• Ist n ungerade, dann sind die über \mathbb{Z}_2 irreduziblen Faktoren von x^n-1 paarweise verschieden.

Endliche Körper GF(q)

Galois Field

- Ein endlicher Körper GF(q) mit q Elementen existiert genau dann, wenn q eine Primzahlpotenz ist.
- Gilt $q=p^k$ (p prim, $k\in\mathbb{N}, k\geq 1$), dann gibt es bis auf Isomorphie genau einen Körper mit q Elementen.

Evariste Galois (1811-1832)

Konstruktion endlicher Körper

Ring der ganzen Zahlen	Polynomring über einem Körper <i>K</i>
\mathbb{Z}	K[x]
↓ Rechnen modulo n	\downarrow Rechnen modulo $p(x)$
\mathbb{Z}_n	K[x]/p(x)
Restklassenring modulo <i>n</i>	Polynomring modulo $p(x)$
Untersuchung der Einheiten ergibt (*)	Untersuchung der Einheiten ergibt (**)
$(*) \mathbb{Z}_p \text{ ist K\"{o}rper} \iff p \text{ ist Primzahl}$	
$(**)$ $K[x]/p(x)$ ist Körper \Leftarrow	$\Rightarrow p(x) \text{ ist irreduzibles}$ $\Rightarrow Polynom in K[x]$

Polynom in K[x]

Rechnen im Ring $(K[x]/f(x); \oplus, \otimes)$

Sei K ein endlicher Körper und $f(x) \in K[x]$ mit Grad(f(x)) = n.

$$K[x]/f(x) := \{r(x) \in K[x] \mid r(x) = 0 \text{ oder } Grad(r(x)) < n\}$$
$$= \{r_0 + r_1 x + \dots + r_{n-1} x^{n-1} \mid r_i \in K \text{ für } i = 0, \dots, n-1\}$$

• Addition ⊕:

$$a(x) \oplus b(x) = (a_0 + a_1 x + \dots + a_{n-1} x^{n-1}) \oplus (b_0 + b_1 x + \dots + b_{n-1} x^{n-1})$$
$$= (a_0 + b_0) + (a_1 + b_1) x + \dots + (a_{n-1} + b_{n-1}) x^{n-1}$$

■ Multiplikation ⊗:

$$a(x) \otimes b(x) = a(x) \odot b(x) \pmod{f(x)}$$

= $\cdots + \left(\sum_{i=0}^{k} a_i \cdot b_{k-i}\right) x^k + \cdots \pmod{f(x)}$

Endliche Körper GF(p)[x]/f(x)

Es sei $q = p^k$ $(k \in \mathbb{N}, k \ge 1)$ für eine Primzahl p und $f(x) \in \mathsf{GF}(p)[x]$ ein irreduzibles Polynom vom Grad k über $\mathsf{GF}(p)$.

Dann gilt:

$$GF(p)[x]/f(x) = \{a(x) \in GF(p)[x] \mid a(x) = 0 \text{ oder } Grad(a(x)) < k\}$$

- $(GF(p)[x]/f(x); \oplus, \otimes)$ ist ein Körper.
- GF(p)[x]/f(x) hat genau p^k Elemente.

Beispiel: $GF(2^3)$

Konstruktion von GF(2³)

$$\mathsf{GF}(2)[x]/\underbrace{1+x+x^3}_{\mathsf{irreduzibel}} = \{0,1,x,1+x,x^2,1+x^2,x+x^2,1+x+x^2\}$$

Beispiel für das Rechnen in diesem Körper:

Für
$$a(x) = 1 + x$$
, $b(x) = 1 + x + x^2$ gilt:

- $a(x) \oplus b(x) = x^2$
- $a(x) \otimes b(x) = 1 + x^3 \pmod{1 + x + x^3} = x$
- $a(x)^{-1}$ kann mit dem erweiterten Euklidischen Algorithmus berechnet werden.

Es gilt
$$a(x)^{-1} = x + x^2$$
, denn
 $a(x) \otimes (x + x^2) = x + x^3 \pmod{1 + x + x^3} = 1$

Primitive Polynome

• Ein irreduzibles Polynom f(x) aus GF(p)[x] vom Grad k heißt primitiv, wenn

$$\min\{\ell\in\mathbb{N}\setminus\{0\}\mid f(x) ext{ teilt } x^\ell-1 ext{ in } \mathsf{GF}(p)[x]\}=p^k-1$$
 gilt.

- Jedes primitive Polynom aus GF(p)[x] ist irreduzibel über GF(p)[x].
- $f_1(x) = 1 + x + x^2 + x^3 + x^4$, $f_2(x) = 1 + x + x^4$, $f_3(x) = 1 + x^3 + x^4$ sind die einzigen irreduziblen Polynome vom Grad 4 über GF(2).
 - $f_1(x)$ ist nicht primitiv.
 - $f_2(x)$ und $f_3(x)$ sind primitive Polynome.

Primitive Polynome über GF(p)

 $p = 2 : x^2 + x + 1$

p-2.	x + x + 1
	$x^3 + x + 1$
	$x^4 + x + 1$
	$x^5 + x^2 + 1$
	$x^{6} + x + 1$
	$x^7 + x^3 + 1$
	~ ~ -
	$x^8 + x^4 + x^3 + x^2 + 1$
	$x^9 + x^4 + 1$
	$x^{10} + x^3 + 1$
	$x^{11} + x^2 + 1$
	$x^{12} + x^6 + x^4 + x + 1$
	$x^{13} + x^4 + x^3 + x + 1$
	$x^{14} + x^{10} + x^6 + x + 1$
	$x^{15} + x + 1$
	$x^{16} + x^{12} + x^3 + x + 1$
	$x^{17} + x^3 + 1$
	$x^{18} + x^7 + 1$
	$x^{19} + x^5 + x^2 + x + 1$
	$x^{20} + x^3 + 1$
	$x^{24} + x^7 + x^2 + x + 1$
	$x^{32} + x^{22} + x^2 + x + 1$

 $\frac{p=3:}{x^{2}+x+2}$ $x^{3}+2x+1$ $x^{4}+x+2$ $x^{5}+2x+1$ $x^{6}+x+2$ $x^{7}+x^{2}+2x+1$ $\frac{p=5:}{x^{3}+3x+2}$ $x^{4}+x^{2}+2x+2$

 $x^{5} + 4x + 2$ $p = 7: x^{2} + x + 3$ $x^{3} + 3x + 2$ $x^{5} + x^{2} + 3x + 5$