

Fakultät Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Algebra

Prof. U. Baumann, Dr. C. Zschalig

Algebra für Informationssystemtechniker (Modul ET - 01 04 04), Wintersemester 2014/15

5. Übungsblatt für die Übungen vom 15.12.2014-9.1.2015

Teilbarkeit, Euklidischer Algorithmus

- Ü25. (a) Berechnen Sie zu den angegebenen Paaren (a,b) den größten gemeinsamen Teiler und stellen Sie diesen als Linearkombination $ggT(a,b) = \alpha \cdot a + \beta \cdot b$ dar. Verifizieren Sie Ihre Ergebnisse!
 - (i) a = 24, b = 135, (ii) a = 21, b = 34 (iii) a = 94, b = 127, (iv) a = 511, b = 1001
 - (b) Berechnen Sie ggT(ggT(150, 105), 56) = $\alpha \cdot 150 + \beta \cdot 105 + \gamma \cdot 56$ ($\alpha, \beta, \gamma \in \mathbb{Z}$).
- Ü26. (a) Beweisen Sie, dass für beliebige natürliche Zahlen $a,b,c,d,s,t\in\mathbb{N}$ folgende Implikationen gelten:
 - (i) $a|b \wedge c|d \implies ac|bd$, (ii) $a|b \wedge a|c \implies a|(sb+tc)$.
 - (b) Beweisen Sie für beliebige Zahlen $a, b, c \in \mathbb{N}^+$ folgende Beziehungen:
 - (i) $ggT(ac, bc) = ggT(a, b) \cdot c$
 - (ii) $ggT(\frac{a}{ggT(a,b)}, \frac{b}{ggT(a,b)}) = 1$
 - (iii) $b|(a \cdot c) \wedge ggT(a, b) = 1 \implies b|c$
 - (iv) $a|c \wedge b|c \wedge ggT(a,b) = 1 \implies (a \cdot b)|c$
- Ü
27. (a) Beweisen Sie: Die Summe der Innenwinkel eines natürlichen n-Eck
s(n>2) beträgt $\pi(n-2).$
 - (b) Zeigen Sie: Hat das ganzzahlige Polynom $p(x) = x^2 + a_1x + a_0$ (d.h. es gilt $a_1, a_0 \in \mathbb{Z}$) die rationalen Nullstellen c_1 und c_2 , dann sind c_1 und c_2 ganze Zahlen. Wählen Sie dazu $c_1 = \frac{e}{f}$ mit ggT(e, f) = 1 (d.h. der Bruch ist gekürzt) und beweisen Sie f = 1. Hinweis: Das bedeutet, dass c_1 und c_2 entweder irrational oder Teiler von a_0 sind.
- A28. Hausaufgabe, bitte vor Beginn der nächsten Übung unter Angabe von Name, Matrikelnr. und Übungsgruppe abgeben.
 - (a) Beweisen Sie die folgenden beiden Aussagen für alle $a, b, c, d \in \mathbb{N}$:
 - (i) $d|a \implies d|a \cdot b$ und (ii) $d|c, c|b \implies d|b$
 - (b) Berechnen Sie mittels des euklidischen Algorithmus den größten gemeinsamen Teiler ggT(m,n) für die Zahlenpaare
 - (1) n = 87, m = 45 (2) n = 150, m = 1001.und finden Sie $a, b \in \mathbb{Z}$ mit $ggT(m, n) = a \cdot n + b \cdot m.$
- H29. (a) Bestimmen Sie den größten gemeinsamen Teiler ggT(m,n) und das kleinste gemeinsame Vielfache kgV(m,n) der beiden Zahlen $m=240=2^4\cdot 3\cdot 5$ und $n=396=2^2\cdot 3^2\cdot 11$. Bilden Sie die Produkte $m\cdot n$ und $ggT(m,n)\cdot kgV(m,n)$. Was stellen Sie fest?
 - (b) Beweisen Sie: Für je zwei natürliche Zahlen m, n gilt $m \cdot n = ggT(m, n) \cdot kgV(m, n)$.

H30. Die Folge der Fibonacci-Zahlen (f_n) ist rekursiv definiert durch

$$f_1 = f_2 = 1$$
 und $f_{n+2} = f_{n+1} + f_n$ für alle $n > 2$.

- (a) Berechnen Sie die Elemente der Folge bis f_{10} .
- (b) Stellen Sie den ggT von f_9 und f_{10} sowie von f_{10} und f_{11} als Linearkombination von f_9 und f_{10} bzw. von f_{10} und f_{11} dar.
- (c) Zeigen Sie (z.B. durch Induktion), dass zwei aufeinanderfolgende Fibonacci-Zahlen f_n und f_{n+1} teilerfremd sind und insbesondere die Beziehung $(-1)^n = f_{n-1} \cdot f_n f_{n-2} \cdot f_{n+1}$ (für alle n > 2) für ihre Linearkombination gilt.
- $(d)^*$ Zusatzaufgabe:

Zeigen Sie die *Identität von d'Ocagne*: $\forall m, n \in \mathbb{N}^+ : (-1)^n \cdot f_{m-n} = f_m \cdot f_{n+1} - f_n \cdot f_{m+1}$. Folgern Sie $\forall n, m \in \mathbb{N}^+ : \operatorname{ggT}(f_n, f_m) = f_{\operatorname{ggT}(n,m)}$.