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Executive Summary 

The objective of WP2 of ISES is to (1) set up the overall cloud-based ISES platform architecture, 

including data preparation via local CAD and FM systems as well as distributed and local databases for 

climate data, user profiles and product catalogues, (2) specify the component services and their 

interrelations to prepare for the needed harmonized APIs that will be developed in WPs 3-7, (3) define 

the prerequisites for multiple parallel simulation runs on the cloud, thereby setting the basis for the 

RTD work in WP7, specifically dedicated to the cloud environment, (4) develop the overall stochastic 

approach for the Virtual Energy Lab platform in alignment with the objectives of the project and the 

technical platform architecture. The platform will take into account both remote web services, 

especially the services for life cycle energy, CO2 and cost simulations executed on a cloud, and the local 

CAD, FM and product catalogue systems that will be used in ISES. 

This deliverable covers the overall work performed in WP2 within task T2.2development and 

specification of the overall stochastic approach.During this task the baseline for the detailed 

stochastic approach in WPs 4, 5 and 6 is set up. The stochastic processes involved in the envisaged 

energy, emissions and cost simulations are analyzed from systemic point of view in order to develop a 

pragmatic, manageable treatment of the stochasticity of the product life-cycle. The developed 

stochastic approaches are described in concise form, highlighting its innate features. Special attention 

is put on the use of material properties, climate models and energy consumption profiles. 

The involved partners are: 

 TUD‐CIB – lead, development of the overall stochastic approach for the Virtual Energy Lab, 

structure and editing of the deliverable report 

 OG – usage / occupancy profiles 

 SOF – stochastic input 

 NMI - overall stochastic approach with regard to the coordination and interoperability with WP4 

(information framework) 
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1. Introduction 

Regarding the ISES outlook to evaluate, simulate and optimize the energy efficiency of facilities and 

building energy performance, considering the stochastic approach in a realistic assessment through 

the product life-cycle becomes necessary. Due to the largely random nature of the material 

properties, climate/weather data and the usage profile over the lifecycle, standard worst case 

evaluations of life cycle cost not only for the component product but for the interaction with the host 

systems has to be carried out during design. The stochastic nature of the overall life-cycle has to be 

approximated by a stochastic discrete process of possible sequences of characteristic energy 

patterns and profiles. This can be achieved during simulation of a large number of combinations of 

possible stochastic energy patterns and profiles. Such simulation tasks may require hundreds of 

individual simulations run in parallel in a cloud environment, with target-oriented feedbacks 

between evaluated and further simulations that cannot be anymore configured by hand but have to 

be managed highly automatically, with only general control interaction by the user. 

The stochastic simulation process and its fundamental components as well as sampling methods are 

discussed in the following chapter. In chapter three, several stochastic variable types, the stochastic 

variables which are considered in stochastic simulation as well as providing the proper samples size 

and treatment with the simulation outcomes will be elaborated.  
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2. Stochastic Simulation 

2.1 Uncertainties Encountered in Buildings Energy during Life-Cycle 

Forecasting the building energy demand is a complicated task. In addition to primary models, which 
characterize building systems and components, detailed information about the building material, 
HVAC systems, weather and user behavior must be taken into consideration. The interaction 
between the weather conditions and building operations on the one side, and the impact of multiple 
building characteristics on the other side call for the use of sophisticated simulations – to facilitate 
design and operation for better building performance. Moreover, significant deviations in terms of 
building energy consumption between measured performance and model-predicted results at design 
stage are reported for low-energy buildings [Turner and Frankel 2008]. The current practice for 
energy load calculations have traditionally focused on determining energy consumption of buildings 
by a prescriptive approach as detailed in national standards and regulations and thereby complying 
with set requirements. Similarly, design tools for calculation of energy consumption of buildings have 
been more focused on calculating energy loads for dimensioning of heating, cooling and air 
conditioning systems [Hopfe 2009]. Usually these tools are based on static (deterministic) calculation 
methods, applied at the later design stages of the building and leaving little opportunity for design 
optimisation in the energy efficiency of the design.  

Despite these efforts, simulation results are obtained based on a number of basic assumptions about 
the simulation model and the influencing factors e.g. climate, building properties and occupant 
behaviour that cannot be realistically replicated and the associated uncertainties quantified. Many of 
the input parameters are depended on discreetness, non-linearity, uncertainty or variability [Hopfe 
2009] and depend on many varying factors both dependent and independent of one another. In such 
cases average values can only give a reasonable estimation of the actual values especially given the 
complexity of the context in which the object is being simulated. Uncertainty, inaccuracy and errors 
in input parameters have raised concerns in the literature as these propagate through the simulation 
model resulting in inaccuracy and uncertainty in the simulation output [Fabiet al.2011] which is a 
well known fact in computational engineering, namely “rubbish in-rubbish out” and means numerical 
approach must not be more sophisticated than the input knowledge about the input parameters and 
hence the input model is. In practice, the uncertainty analysis has also the benefit that by changing 
the input of the parameters and showing the effect on the outcome of a model, it provides a “what-if 
analysis”. It is for instance used in multiple decision support tools [Gokhale2009]. 

An estimate of the degree of uncertainties contributed from each factor is of importance to improve 
the robustness of simulation models and help the modeler and customer have a better 
understanding of building simulation results. Several important research efforts focused on the 
investigation of uncertainties in input parameters for building design support. However, a review of 
the literature shows there are limited data available describing uncertainties for design parameters 
in building simulation. [Wang et al. 2012] have categorized the major uncertainties in building energy 
in two fundamental groups: 

 Uncertainties in annual energy use due to weather variation 

 Uncertainties in annual energy use due to building operations 

Besides the two major uncertainty sources in building energy simulation,  

 Uncertainties in material should also be considered.  

[MacDonald and Strachan2001] applied a Monte Carlo uncertainty analysis for thermal properties of 
construction materials, weather, internal heat gains, and infiltration rate to evaluate the variation of 
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energy consumption using assumed uncertainty distribution patterns.[Holm and Kuenzel2002] 
evaluated the impacts of materials properties and surface coefficients on hydrothermal building 
simulation using a Monte Carlo analysis.  

As it was previously elaborated during D1.2 [Manspergeret al. 2012], the solutions provided by ISES 
are focused on all possible scenarios in the life-cycle of buildings and facilities: 

(1) Development of new building components and products 

(2) Design and engineering of new buildings and facilities 

(3) Refurbishment and retrofitting of existing buildings and facilities 

The simulation outputs resulting from the different scenarios in the life-cycle of buildings and facilities 
are the probabilistic components. In building component product development and design of facilities, 
almost all design parameters are subject to uncertainty. The stochastic approach addresses all the 
categories of the parameters space, climate profiles, solar gain, usage profiles, and energy related 
building material properties. 

Combining building operations scenarios can yield significantly different building energy 
consumption results should any of these scenarios change. In fact, there is not a unique or exact 
answer; we are faced with a wide range of possible performance outcomes. Applying the stochastic 
modelling of several uncertain input components involved in energy consumption, will lead to a wide 
range of results, from which the favour statistical indices can be extracted. 

2.2 Stochastic Simulation Process 

Stochastic simulation has been studied in numerous researches, recognizing the necessity of applying 
stochastic methods in Building Performance Simulation (BPS) [MacDonald 2002, De Wit 2001, Hopfe 
2009, Jacobs 2011]. General findings are in agreement that stochastic methods generate different 
results from traditional deterministic analyses methods and deliver more valuable design information 
and support a more robust decision-making process in design.   

ISES provides a platform in which different existing simulation software can be integrated to run in a 
grid-based (cloud based) environment. In this case, classical deterministic simulation models are 
used, but treating the input parameter space as a separate stochastic model defining the building 
physical properties, system solutions as well as the initial and boundary conditions of the buildings 
context. Monte Carlo techniques have successfully and widely been deployed in the area of BPS [Kim 
2011]. Although Monte Carlo is refer to a specific sampling method, it always be used as a 
generalization of stochastic simulation (In this deliverable, we will also use the term “Monte Carlo” 
generally as stochastic analysis approach, except where it is called as specific sampling method).  The 
technique has proven suitable for integrating both uncertainty and sensitivity analyses with current 
deterministic simulation tools such as EnergyPlus, DOE 2x, ESP-r etc. However, the efficiency and 
robustness of the stochastic simulation can be improved by applying the reduced variance sampling 
approaches like Latin Hypercube Sampling. 

The Monte Carlo simulation is generally described as systematically "inverts" simulation, treating 
deterministic problems by first finding a probabilistic analogy. Common methods of simulation and 
statistical sampling generally did the opposite: using simulation to test a previously understood 
deterministic problem. Though examples of an "inverted" approach do exist historically, they were 
not considered a general method until the popularity of the Monte Carlo method spread. 

Monte Carlo Simulation is a technique used to determine the probabilistic distribution of an outcome 
that relies on all probable scenarios and it produces not only one answer, but rather a series of 
answers or a range over which the results vary as a function of probability of occurrence and also a 
most expected result. The answer may fall anywhere within the range of the results produced. 
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In classic Monte Carlo analysis it is assumed that all inputs are independent of each other. Thus, 
when the variables are correlated a correction to the Monte Carlo Simulation is required. To account 
the correlation, a correlation matrix in the Monte Carlo Simulation is used. The correlation value for 
each set of variables is entered in the matrix, and when the simulation is run, correlation among the 
variables is accounted for. 

This process is repeated many times so as to provide enough information to construct a probability 
distribution of the model output. The stochastic simulation process can be divided into the (1) Pre-
processing, (2) Simulation and (3) Post-processing (Figure 1). Following, the simulation steps are 
discussed briefly. 

 

Figure 1: Illustration of the stochastic simulation process divided into the three steps pre-processing, 
simulation, and post-processing 

Pre-Simulation 

Identifying the critical aspects of the design and design alternatives and decision on performance 
metrics and design objectives are performed during pre-processing step. The first step of uncertainty 
analysis is to determine the uncertainty in estimates of design variables of importance. This entails 
two major steps; 

(1) Identification of stochastic variables, their ranges and scope, appropriate probability distribution 
function (PDF) (mean and standard deviation) are selected for each stochastic variable. These can 
include variables with missing or incomplete design information or specification, uncertainty 
relating to accuracy of parameter values, parameters subject to discrete random events etc. The 
stochastic model types and stochastic variables which will be considered in ISES are mentioned 
and discussed in chapter 3. 

(2) Identification appropriate sampling methods. The purpose is to get an unbiased estimate for the 
design variable from the PDF representing the variable population mean. The most popular 
sampling approaches which are commonly used in stochastic simulation process are described in 
detail in section 2.3. 

Since the correlation or dependency of the variables on each other may influence the reliability of 
the simulation results, the dependency of stochastic input variables should also be studied. 

Typically simulation software uses several input files to collect and combine related relevant input 
values representing the simulation model. These need to be constructed from the samples obtained 
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during the uncertainty analyses step. For each sample vector X=[xi1, xi2…xik] (i= 1,..,N, N is sample size 
and k is number of independent variables) one set of input files are generated e.g. if design variables 
where sampled for sample size of 100 elements. 100 sets of input files need to be generated and 
simulated. 

Simulation 

To perform simulation with the defined uncertainties, the creation of a multiple stochastic simulation 
controller has required, which affects the necessary changes in the data model for each parametric 
variation and initiates the simulations. Simulation in Energy Enhanced Building (eeB) usually is 
performed with hourly time steps extending over a period of one year for each simulation. The 
simulation algorithm is therefore executed 8760 times (24 times365). In Monte Carlo simulation the 
number of executions of the algorithm increases in direct proportional to the number of samples 
selected for variables i.e. variable sample size times 8760. Given a sample size of 100 each simulation 
will require 876000 executions. If we want to investigate extreme values and/or correlation, we will 
fastly reach or exceed 1000 samples. Minimizing the sample size and number of stochastic 
parameters to be analysed is therefore a priority to save computer effort. 

[Macdonald and Strachan 2001] suggest that the controller should read the input data model into 
memory and all subsequent changes to the model are made there. In order to avoid the corruption 
of the input data model this can be referenced between each simulation, prior to data manipulation. 
Before the simulations are commissioned, the total number required is calculated. This is 
straightforward after the analysis method has been chosen. After running the simulation the 
simulation controller references the model uncertainty file and, using information held there, 
changes one or more parameters in the model (depending on the analysis method chosen). 

Post-Simulation 

Once the model evaluations have been performed a post-simulation step collects all the results from 
the multiple simulations and therefore requested uncertainty and sensitivity analysis can be 
performed. In this context, the uncertainty analyses typically come before Sensitivity Analyses. 
Uncertainty Analyses determine the uncertainty in simulation outputs derived from uncertainties of 
the input variables. The results are collected for each measured output variable and summaries are 
usually presented in the form of means, variances and probability distribution functions. Based on 
the results, if uncertainties lie outside acceptable tolerances or some variables are seen to have 
greater influences on the model outputs. The stochastic simulation has to be partially repeated with 
accordingly adjusted values. Further on a sensitivity analyses can be performed. Sensitivity analyses 
will determine how sensitive model outcome is to changes in the model inputs, by analysing the 
mappings between every output variable and input variables. It can be concluded that the 
uncertainty arising from different sources are propagated through the model for uncertainty analysis 
and their relative importance is quantified via sensitivity analysis. 

Uncertainty Analyses 

In Energy simulation we generally assume that the composition of the model being analysed is 
usually well known and understood in a deterministic way, i.e. the same input data will produce the 
same outcome for any consecutive runs of the simulation model. For example we assume that the 
geometry of the building has been verified during the design process using appropriate design tools 
and that building component types, their composition and properties are known for a particular 
design solution. However many of the building systems are numerical and algorithmic 
approximations when employed in the simulation models that can have significant variation and 
uncertainties embedded compared to the real system.  
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With the uncertainty analyses the objective is to assess and quantify the uncertainty in the model 
outcomes that derives from uncertainty in the input parameters whereby the method gives 
information on how reliable and confident the simulation outcome is [Hopfe 2009, Eisenhower et 
al.2010, Fabiet al.2011]. Uncertainty analyses explores the mapping between uncertain output 
results Y(X) = [y1(X), y2(X), ... ,Yn(X)] as a function of uncertain input parameters X=[x1, x2, ... , Xn] 
exploring what is the uncertainty in Y(X) given the uncertainty in X [Helton 2006]. The uncertainty of 
input parameters X is expressed in terms of probability distribution functions ( e.g. Normal, lnNormal 
and etc.), but can also be specified by samples of measured values, i.e. empirical probability 
distributions (Figure 2).  

 

a) convergence of the mean and standard deviation within confidence interval 

 

 b) time series resulting from 
successive Monte-Carlo simulations 

 c) histogram of one simulation 
corresponding the one time step 

 

Figure 2: Stochastic simulation, In (a) the convergence of the mean and standard deviation is checked 
by plotting the statistics obtain after each simulation (b) the confidence interval around the time-

series of an output Y(t)  is estimating using Monte Carlo technique, to each time step corresponds a 
set of results which can be analysed with histogram (c)[from Roulet, 1999] 

With many input parameters generating the probability distributions can present a major effort and 
costs. As part of the analyses strategy is to do initial exploratory analyses using fairly basic definitions 
of probability distributions and identify the most important input parameters. Further definition on 
the identified input parameters distribution can then be done with a second analyses step using 
refined probability distribution. 

In simple Monte Carlo analyses generally it is assumed that input parameters are not related and 
independent of one another that is, there exist no correlation between them. Since this is not the 
case for many input parameters e.g. moisture and temperature, outdoor and indoor temperature.  
There may be a need to induce a desired correlation structure onto the samples being generated 
[Ekström 2005]. Specifically correlated variables should have correlation closed to their specified 
value and uncorrelated variables should have correlation close to zero [Helton 2006]. The Rank Order 
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correlation method by Iman and Conover [Ekström 2005, Helton 2006] is available in many statistical 
software applications to impose rank correlation on samples. The Rank order correlation method is a 
non-parametric statistic for quantifying the correlation between two variables where the correlation 
statistics is not affected by the type of mathematical relationship between the variables.  
Furthermore the method is applicable where complex correlation structures and where multiple 
input parameters are involved in the analyses and the method is independent of sample distributions 
and works well with different sampling methods. 

Sensitivity Analysis  

By systematically changing the input variables, sensitivity analysis is used to investigate the relationship 
between input variables and output variables and address which input variable has larger contribution 
on output variables. Thus, the sensitivity analysis can determine the following questions [Rackwitz and 
Fiessler 1978)]: which input variable is more critical compared to others and need additional knowledge 
on them? With this answer prior to modelling the precise of the significant variables can be improved 
to reduce the output uncertainty; which input variable has little contribution to the model? With this 
answer the insignificant variable can be fixed in the nominal value to simplify the model. Is the model 
performed in the proper way? If the model is sensitive to some non-influential variables judged by 
expert experience the chosen range of the variable or the model structure need to be further 
examined. The application of sensitivity analyses depends on the context and nature of the 
investigation. Sensitivity analyses can provide a general evaluation of the model precision when used 
for evaluating model performance indicators in alternative simulation scenarios or for detailed study in 
the significance and interaction of individual input parameters. 

There are several approaches available to perform the sensitivity analysis. Each approach has its own 
capability and applicability. To facilitate the decision-maker to select the most appropriate method, the 
sensitivity analysis approaches are broadly classified into three categories: (1) mathematical methods, 
(2) statistical (or probabilistic) methods and (3) graphical methods [Frey and Patil 2002]. 

(1) Mathematical methods evaluate the impact of the range of variation of input variable on the output 
variable [Morgan and Henrion 1990; Frey and Patil 2002]. Mathematical methods include nominal 
range sensitivity, differential sensitivity analysis, etc. The method typically assesses the sensitivity of the 
output to a few values of the input variable and mostly valid for the linear model [Frey and Patil 2002]. 
When applied to the non-linear model the result of the evaluation could be misleading. 

Differential Sensitivity Analysis (DSA) is one type of mathematical methods, which only varies one input 
variable in each simulation while keeping others fixed in their expected values. Therefore, it is also 
known as a local sensitivity analysis method. The method is structured on the behaviour of the model 
for a base-case scenario, which is resulted from the set of input variables in their expected values 
[Hamby 1994]. The sensitivity coefficient can be computed from first-order partial derivative of the 
output variable with respect to the input variable in the Taylor series approximation of the model 
[Saltelli et al. 2008]. In case nonlinearities are neglected the first-order partial derivative can be 
approximated as the ratio of the corresponding variation in the output to the variation in the input 
[Hamby 1994]. 

(2) Statistical methods incorporate the influence of both the range and distribution of the input 
variables by repeatedly implementing the model. This method evaluates the sensitivity of individual 
input with varying the other input variables in the same time. Therefore, it considers the interaction 
effect among the multiple input variables [Frey and Patil 2002]. Statistical method includes regression 
based sensitivity analysis, partial correlation, Fourier Amplitude Sensitivity Test (FAST), Sobol’s method, 
etc. 

In the statistical sensitivity analysis, one of the important steps which should not be ignored is the 
definition of the distribution of the input variable. The choice of the distribution of input variable 
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determines the uncertainty of the output variable, as well as the relative importance of input variable 
in the model. The inappropriate distribution of input could lead to large influence on the output 
variable, even draw the wrong conclusion. The reasonable choice on the range and distribution of input 
variables might come from the measurement, experienced expert opinion and rational estimation. 

(3) Graphical methods detect the relation between input variable and output variable by the graphs 
and charts. The graphical methods provide a more intuitive way for the analyst to explore the model 
behaviour. It provides a complement to the mathematical and statistical methods [Frey and Patil 2002]. 
The common used graphical methods include scatter plots, histograms and cobweb plots. 

2.3 Sampling Approaches 

Sampling is the process by which values are randomly drawn from input probability distributions. 
Sampling in a simulation is done, repetitively, with one sample drawn every iteration from each input 
probability distribution. With enough iterations, the sampled values for a probability distribution 
become distributed in a manner which approximates the known input probability distribution. The 
statistics of the sampled distribution (mean, standard deviation and higher moments) approximate 
the true statistics input for the distribution. Samples can be obtained by various sampling methods, 
Simple random sampling, stratified sampling, Latin Hypercube sampling and Sobol sequences for 
example. These methods vary in computational cost and consequently in number of elements 
required to obtain convergence to the population mean. Generating stochastic samples for building 
stochastic simulations will always be a compromise between precision of the estimate of the 
population mean and cost of doing simulation runs. Precision increases as the number of elements in 
the sample grows, but at the same way, the cost of simulation increases with the sample size 
(adjusting the sample size will be discussed in 3.3). 

In this section the most popular sampling method, Monte Carlo will be represented and its 
advantages and shortages will be denoted. In addition the variance reduction paradigm, which is 
applied to reduce the calculation effort during stochastic simulation, will be discussed briefly. The 
overall aim is to determine, appropriate sample sizes with as few elements as possible and an 
estimated sample mean with variance of insignificant value as it converges to the actual population 
mean. One of the improved sampling methods, namely Latin Hypercube Sampling method is also 
presented in this section. The Latin Hypercube sampling, forces the samples drawn to correspond 
more closely with the input distribution, and thus converges faster on the true statistics of the input 
distribution. 

Monte Carlo Sampling Method (MCS) 

Monte Carlo sampling refers to the traditional technique for using random or pseudo-random 
numbers to sample from a probability distribution. A wide variety of algorithms are available for 
generating random samples from different types of probability distributions. Monte Carlo sampling 
techniques are entirely random — that is, any given sample may fall anywhere within the range of 
the input distribution. Samples, of course, are more likely to be drawn in areas of the distribution 
which have higher probabilities of occurrence. In the cumulative distribution shown earlier, each 
Monte Carlo sample uses a new random number between 0 and 1. With enough iterations, Monte 
Carlo sampling “recreates” the input distributions through sampling. A problem of clustering, 
however, arises when a small number of iterations are performed. In the Figure 3 shown here each 
of the 5 samples drawn falls in the middle of the distribution. The values in the outer ranges of the 
distribution are not represented in the samples, and thus their impact on your results is not included 
in the simulation output. 

Clustering becomes especially pronounced when a distribution includes low probability outcomes, 
which could have a major impact on your results. It is important to include the effects of these low 
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probability outcomes. To do this, these outcomes must be sampled, but if their probability is low 
enough, a small number of Monte Carlo iterations may not sample sufficient quantities of these 
outcomes to accurately represent their probability [Guide to Using @RISK, 2010].In stochastic 
building simulation which is an evaluation of a multi-dimensional parameter space, that normally 
involves a very large number of stochastic variables, can require hundreds of thousands of simulation 
runs with large sample sizes. For most parts, sample sizes determine the computational cost of the 
simulation since that number of sample elements equals the required number of simulation runs. 

 

Figure 3: Five iteration of Monte Carlo Sampling[modified from Guide to Using @RISK, 2010] 

In mathematics, more specifically in the Monte Carlo methods, variance reduction is a procedure used 
to increase the precision of the estimators that can be obtained for a given number of simulations. The 
possibility of variance reduction is what separates Monte Carlo from direct simulation. Simple variance 
reduction methods often are remarkably effective and easy to implement. It is good to think about 
them as ways to reduce the burden of the Monte Carlo simulation. 

Several sampling techniques, also called variance reduction techniques, have been developed in 
order to improve the computational efficiency of the method by reducing the statistical error that is 
inherent in Monte Carlo simulation and keeping the sample size to the minimum possible. 
Furthermore, advanced solution methods and parallel processing have been recently implemented 
having a beneficial effect on the efficiency of Monte Carlo simulation [Papadrakakis and Lagaros 
2002].Importance sampling (IS) is generally recognized as one of the efficient reduction technique 
[Schüller 1981, Frangopol 1984, Bucher 1988 and Hurtado and Barbat 1997]. The most popular 
alternative for Monte Carlo simulation is the stratified sampling techniques such as the Latin 
Hypercube sampling which is represented in the following section.  

Important Sampling Method (IS) 

To estimate extreme or rare probabilities, the tails of the distribution are more important than the 
average values. Rare or extreme events can be associated with dramatic costs, like in finance or 
because of reasons of safety in environment. Importance sampling (IS) tunes Monte Carlo to the area in 
parameter space from where the rare events are generated. IS is based on the idea to make the 
occurrence of rare events more frequent, or in other words, to speed up the simulation. Technically, IS 
aims to select a probability distribution that minimizes the variance of the IS estimate. A suitable 
distribution would be one that has higher probabilities in its tails than a Gaussian distribution. Figure 4 
represents the general idea of IS. Suppose the target of the inference is the mean of a statistic m(X), 
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i.e. E(m(X)), where m(x) only depends on the sample values x greater than a constant c. Then a 
proper choice of a new density h(x) of X will make the sample mean of m(X)f(X)/h(X) an unbiased 
estimator of the target with smaller variance. The role of the new density h(x) is to produce more 
samples on the area (greater than c) that affects the values of m(x) [Lu et al. 2010]. 

 

Figure 4: Illustration of Importance Sampling [Lu et al. 2010] 

The most difficult aspect to importance sampling (IS) is in choosing a good sampling density, g. In 
general, one needs to be very careful for it is possible to choose h(x) according to some good 
heuristic such as the maximum principle, but to then end that h(x) results in a variance increase.  

Latin Hypercube Sampling Method (LHS) 

Latin Hypercube sampling is one of the most recently developed sampling approach, designed to 
accurately recreate the input distribution through sampling in fewer iterations when compared with 
the Monte Carlo method. Stratification of the input probability distributions is the key to Latin 
Hypercube sampling. It is performed by dividing the cumulative curve into equal intervals on the 
cumulative probability scale. A sample is then randomly taken from each interval or “stratification” 
of the input distribution. Sampling is forced to represent values in each interval, and thus, is forced to 
recreate the input probability distribution. 

 

Figure 5: Five iteration of Latin Hypercube Sampling[Guide to Using @RISK, 2010] 
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In the illustration above (Figure 5), the cumulative curve has been divided into 5intervals. During 
sampling, a sample is drawn from each interval, whereas comparing to the Monte Carlo method, the 
5 samples can be distributed randomly over the whole range and even clustered as shown in Figure 
3. With Latin Hypercube, the samples more accurately reflect the distribution of values in the input 
probability distribution. Already for a few samples, if the sample size is large enough, there is no 
difference between MCS and LHS. The values sampled, for one variable, need to be independent of 
those sampled for another. This independence is maintained by randomly selecting the interval to 
draw a sample from for each variable. In a given iteration, Variable #1 may be sampled from 
stratification #4, Variable#2 may be sampled from stratification #22, and so on. This preserves 
randomness and independence, and avoids unwanted correlation between variables.[Guide to Using 
@RISK, 2010] 

As a more efficient sampling method, Latin Hypercube offers great benefits in terms of increased 
sampling efficiency and faster runtimes (due to fewer iterations). Latin Hypercube also aids the 
analysis of situations, where low probability outcomes are represented in input probability 
distributions. By forcing the sampling of the simulation, to include the outlying events, Latin 
Hypercube sampling assures they are accurately represented in the simulation outputs. 

Several researchers have compared the performance of different sampling methods and their 
efficiency pertaining to building simulation. [Matala 2008] compared simple random sampling and 
Latin Hypercube sampling in order to finding optimized sample sizes for Monte Carlo simulation for 
fire problems using complex non-linear models for fire, [MacDonald 2009] examined the 
performance of several sampling methods; simple random (SRS), stratified (SS) and Latin Hypercube 
sampling (LHS) in application an integrated natural ventilation problem. It was concluded that for the 
same number of simulations the LHS method produces a more robust result compared to the 
stratified method, which in turn produces a more robust result compared to the simple method. 

Screening Methods 
In such cases in which the number of parameters is very large, applying the screening methods can be 
very beneficial. Screening methods simplify the models and reduce the number of uncertain input 
parameters propagating through the model [de Wit, 1997]. Screening methods consider the global 
sensitivity meaning the input parameters are varied over the whole range of their possible values. A 
well-established representative is the Morris analysis. For assessing global sensitivity measure, a design 
composed of individual randomized one factor at a time is built in order to determine, for each factor 
Xj, the elementary effects dj(y) 
 

   
 (                         )      

  
 

where Δj is a value in {1/(p−1),…, 1−1/(p−1)}, with p as the number of levels. 

Considering L different trajectories, a statistical analysis of these elementary effects provides the mean 
μj(y) which assesses the global influence of the factor Xj 
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The standard deviation σj (y) which indicates the presence of higher order effects and measures the 
non-linearities or the interactions of the jth factor with others factors is 
 

      √
 

 
∑   

           
 

 

   

 

In Morris analysis, the uncertainty of the output is characterized by a value called “effect”. By varying 
the input parameter set, the “effect” is calculated several times [Zador et al., 2006]. It allows the 
selection of important input parameters, by evaluating the model with different inputs. The results of 
the Morris analysis consist of one graph where the averaging coefficient for each parameter μj is 
compared against the dispersion σj from this coefficient per parameter (Figure 6). According to the 
values of μj and σj, Morris shows that studied factors can be classed into three groups as follows: factors 
having (1) negligible effects, (2) linear and additive effects or (3) nonlinear or interaction 
effects[Santiago et al., 2010].  

A drawback of the Morris analysis is that it does not allow uncertainty analysis due to the fact that it 
does not take the shape of the probability density function of the parameters into account [De Wit et 
al., 2001]. 
 

 

Figure 6: Theoretical disposition of means μj(y) and standard deviations σj(y)  
of the effects distribution [Santiago et al., 2010] 
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3. Stochastic Model Types 

3.1 Stochastic Model Data Types 

The ISES Virtual Energy Laboratory will support product manufacturers, architects, HVAC designers 
and energy experts in component development (ISES simulation cycle 1, see Deliverable D1.2), new 
building design (ISES simulation cycle 2a, 2b) and retrofitting/refurbishment of existing buildings 
(ISES simulation cycle 3a, 3b) by enabling comprehensive simulation of energy efficiency and 
evaluation of performance and comfort, taking into account probabilistic input values and semi-
stochastic computational methods (see table 1). Regarding the simulation intent several data types 
(domain) have to be applied to the simulation engine. In building component product development and 
design of facilities, almost all design parameters subject to uncertainty. The stochastic approach 
addresses all the categories of the parameters space, climate profiles, usage profiles, and energy 
related building material properties.  

Table 1: Data requirements and model data types involving several simulation cycles (from ISES D1.2) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Simulation Cycle 
Data Requirements Data Domain 

Component 
Development 

Simulation Cycle 1 

 Properties of 
Materials 

Stochastic Parameter 

 Climate 

 Usage Profile 
(Occupancy) 

Stochastic Process 

Early Design 
Simulation Cycle 2a 

 Definition of 
Material 

Stochastic Parameter 

 Cubature 

 Number of Stories 

 Windows size and 
orientation… 

Deterministic Parameter 
 

 Solar Gains Stochastic Process 

 Space Division Uncertain Parameter 
(Fuzzy or bandwidth) 

Early Design 
Simulation Cycle 2b 

 Definition of 
Material 

Stochastic Parameter 

 Space division 

 Cubature 

 number of Stories 

Deterministic Parameters 

 Climate 

 Usage Profile 
(Occupancy) 

Stochastic Process 
 

 HVAC Type(s) Uncertain Parameter 
(Fuzzy or bandwidth) 
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Table 1 (continued): Data requirements and model data types involving several simulation cycles 
(from ISES D1.2) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Regarding the Simulation Cycles in ISES the stochastic model data can be categorized into the six 
parameter types; (1) deterministic parameter, (2) stochastic parameter, (3) time-invariant stochastic 
processes, (4) time-variant stochastic processes, (5) time-invariant stochastic field, (6) time-variant 
stochastic field. 

(1) Deterministic parameter 

The deterministic parameters are the physical parameters which are not allowed to variate during 
simulation. One characteristic of the simulation cycles are their different the deterministic 
parameters. For instance, during the simulation cycle 2a the parameters cubature, number of stories 
and the windows size and orientation are considered as deterministic parameters.  

(2) Stochastic parameter  

In order to consider the uncertainty in input parameter characteristics, the stochastic parameters are 
assigned. The stochastic parameter is defined via a probability distribution function (PDF), which 
shows the relative likelihood for this random variable to take a given value. The thermal properties of 
material, for examples, are candidates of stochastic parameters. 

(3) Time-invariant and (4) Time-variant stochastic processes 

The stochastic process is characterized as a family of random variables which can be discrete or 
continuous in time. The time-invariant or stationary stochastic processes exhibit statistical properties 
concerning the invariant time. Thus, for example, second-order stationarity implies that the statistical 
properties of the pairs {X(t1) , X(t2) } and {X(t1+c) , X(t2+c)} are the same for any c. The solar radiation 
and weather temperature are the data which are modeled by using the stochastic processes.  

Simulation Cycle Data Requirements Data Domain 

Retrofitting 
&Refurbishment 

Simulation Cycle 3a 

 Current HVAC Type 
current Façade 

… 

Deterministic Parameters 
 

 Climate 

 Solar Gains 

Stochastic Process 
 

 Usage Profile 
(Occupancy)Window
s size & Orientation 

Uncertain Parameter 
(Fuzzy or bandwidth) 

 

 Floor Material Stochastic Parameter 

Retrofitting & 
Refurbishment 

Simulation Cycle 3b 

 Floor  Material 

 Windows size & 
Orientation 

Deterministic Parameters 
 

 Climate 

 Usage Profile 
(Occupancy) 

 Solar Gains 

Stochastic Process 
 

 Current HVAC Type 

 Current Façade 

Uncertain Parameter 
(Fuzzy or bandwidth) 
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(5) Time-invariant and (6) Time-variant stochastic field 

A random field is a generalization of a stochastic process such that the underlying parameter need no 
longer be a simple real or integer valued "time", but can instead take values that are 
multidimensional vectors, or points on a topological space. At its most basic, discrete case, a random 
field is a list of random variables whose indices are mapped onto a space (of n dimensions). Values in 
a random field are usually spatially correlated in one way or another. For instance, the occupancy 
should be modeled as a stochastic filed.   

3.2 Stochastic Variables 

Material Properties 

The uncertainty in material properties is caused by (1) material inherent inhomogeneity and 
manipulation during the production: the natural variability of the physical properties for a specific 
material, being an intrinsic property of natural materials(2) measurement: errors caused by 
experimental setup, evaluation and interpretation of experiments1and (3) modeling methodology: 
errors due to the fact that the material functions (e.g., liquid water conductivity) are generated by 
using simplified models which could not represent the real properties perfectly. 

During the stochastic simulation the uncertainty in material properties is considered by modeling the 
thermal conduction (λ), density (ρ), specific heat capacity (c) and thickness (t). The material modeling 
requires a series of experiments to acquire either the basic parameters or the data for further 
functionalization. Some of the experiments have a long test period, which may extend the analysis 
process or affect the precision of the results, i.e. when taking the stochastic values from similar 
material. Some statistical methodologies, which can group the similar parameters (cluster analysis) 
and reveal the relations between in-group parameters, further predict unmeasured variables 
(regression analysis), can be used to simplify the test procedure. [Zhao, 2012] 

Finally, the uncertainty in material properties may be represented in random distribution form. 
Applying the Normal Distribution or a ln-Normal Distribution the mean (µ) and standard deviation (µ) 
are sufficient to describe the uncertainty relies in material properties. (Figure 7) 

 

 

Figure 7: Representing the uncertainty relies in material properties by applying random distribution 

                                                           
 
1
 Measurement uncertainty is to be modeled with Fuzzy methods. However, for simplification in our concern it is  as well 

modeled as stochastic uncertainty. 
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Climate/Weather 

The stochastic simulation of building energy demand requires climate/weather data to calculate 
energy balance of buildings and HVAC systems. Future weather prediction is critical for the success in 
predicting energy requirements for building heating and cooling. Climatologists and building 
scientists have been working together actively to improve methodologies for future weather data 
preparation [Crawley 2007 and Guan 2009]. The values of climate elements are based on time-series 
of measurements/predictions which are modelled by applying time-variant (non-stationary) 
stochastic process. Development of stochastic weather data provides an opportunity to produce 
synthetic data representative of future climatic conditions that may influence more comprehensive 
lifecycle energy consumption analyses [de Wilde & Coley 2012]. [Aguiar et al. 2002] adopted a 
stochastic method which constructs future meteorological test reference years by matching historical 
records of the same location with predicted mean monthly air temperature. 

Predictions published by the Intergovernmental Panel on Climate Change (IPCC) indicate an increase 
in global average surface temperature in different scenario ranges of 1.1–2.9 °C to 2.4–6.4 °C from a 
1990s baseline towards the end of the 21st century [IPCC, Climate Change 2007]. The main cause of 
the climate change trend is the emissions from buildings, business, agriculture and transport 
[Pachauri 2005]. There are several methods to construct climate change weather data for building 
simulation from results of global or regional circulation models. One of them is adjustment of 
present-day weather data with regional climate change model predictions, generally termed 
“morphing” [Belcher et al. 2005]. Based on a probabilistic modelling [Schölzel and Hense 2011] have 
developed a method to assess the regional climate change in Germany and performed the estimation 
of its uncertainty during the first 3–4 decades of the twenty-first century. Their statistical model 
extracts information from an ensemble of regional climate simulations to estimate probability 
distributions of future temperature change in Southwest Germany (figure 8). The method was used is 
related to kernel dressing which has been extended to a multivariate approach in order to estimate the 
temporal auto covariance in the ensemble system. 

 

Figure 8: Illustration of different kernel dressing methods: Bayesian model averaging (left) and affine 
kernel dressing (right) based on an example of three ensemble members (plus symbol). The lines 
indicate ensemble mean and spread, the gray hatching the (weighted) kernel functions, and the 
green hatching the resulting probability density [Schölzel and Hense 2011] 
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So far, there is still no standard methodology available. As it was briefly reviewed several approaches 
have been used by various research groups. The required climate elements can be characterized as 
the outdoor air temperature, the relative outdoor air humidity, the overall solar radiation on a 
horizontal plane, the direct/diffuse solar radiation on a horizontal plane, the wind direction and wind 
velocity, the precipitation and cloudiness etc. 

Occupancy 

Various studies have observed the impact of consumer behavior on energy demand [e.g. Santin 
2011, Sardianou 2008]. These studies highlight various factors related to occupants behaviors that 
influence building energy use but they present some difficulties of assessing the specific contribution 
of each factor. Because of the direct influence of occupancy (or activity) patterns on the energy 
consumption profile, it is preferred to develop the occupancy profile which is used to model the 
usage profile. In the domestic sector, it depends not only on the number of people who live at a 
property but also on whether they are at home and active (i.e. not asleep). From Occupancy the 
heating schedule, ventilation rate, shading, cooling schedule, equipment scheduler, etc. Are dependent 
(figure 9). Among several occupancy modeling studies, applying the Markov chain to model the 
occupant presence was used most frequently. [Page et al. 2008] have modeled the occupancy by 
considering occupant presence as an inhomogeneous Markov chain interrupted by occasional periods 
of long absence. The model generates a time series of the state of presence (absent or present) of each 
occupant of a zone, for each zone of any number of buildings. In the following, the occupancy pattern 
modeling in residential building will be illustrated in detail. Since the occupancy modeling of residential 
building is more complicated than the office or commercial buildings, the following approach can be 
used in a simplified manner for the office or commercial buildings. 

 

Figure 9: Outputs of the occupancy model and their later use by stochastic models of occupants behaviour 
[Page et. Al. 2008] 

The occupancy pattern in residential building itself depends on several social and demographic 
parameters. An extensive study performed in Germany [Daily Life in Germany, analysis of the time use, 
2004] show that the families with and without poverty risk follows different time consumption 
patterns. The sexuality and the age of children can also affect the occupancy pattern. For instance, the 
14-18 years old girls spend 67% more their time in household works comparing the boys in the same 
age, while the ratio for the 10-14 years old children limited to 33%.The investigations of [Wan and Yik 
2004] shows that the correlation between the occupancy profile and energy consumption might be 
extremely different for several family types and several separated zones in a building unit. In figure 10 
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the power energy consumption versus occupancy is illustrated for two separated zones for two family 
types; namely a family in which all four members are working full time and a family in which only two 
persons have a fulltime activity and two are unemployed. As it is expected during the evening the 
lighting power consumption in living and dining room follow the occupancy pattern while during the 
daylight the small power consumption shows the better correlation with the occupancy profile. 

 
living and dining room, family type F1 

(All 4 family members working fulltime) 

living and dining room, family type F2 

(2 family members working fulltime and 2 are unemployed) 

 
Bedroom, family type F1 

(All 4 family members working fulltime) 

Bedroom, family type F2 

(2 family members working fulltime and 2 are unemployed) 

Figure 10: Daily occupation-patterns and lighting and appliances power-profiles for a living and bedroom 
for two family types[from Wan and Yik 2004] 

Another study from [Meesteret al. 2012] shows the following picture. Considering an active couple 
works outside the house during the day while their three children go to school. The family lives in a two 
stories house with 182 m2 living area (Figure 11). The building is divided to six separated zones; namely 
living, kitchen, office, couples’ room, 3 children’s’ room and bathroom. 

 

Figure 11: Plans of the ground floor and the first floor of the studied house [from Meester et al. 2012] 
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The occupancy profiles and their schedules based on surveys realized in Belgium about Dwellings, 

Households and families, and education and employment [Meesteret al. 2012] are illustrated in figure 

12.To normalize occupancy with the surface area, the occupancy density which is defined as the 

number of occupants in area unit (e.g. cubic meter) can be used (in this case, the occupancy density for 

every resident is 1/182=0.0055). The total occupancy density profile for the building in a working day is 

got by summing up the occupancy density profiles for several buildings zones.  
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Figure 12: Occupancy profiles per building zone 

Modeling the stochastic occupancy profile is performed by dividing the occupancyprofile in its 

dominant segments. According to the clustered statistical data regarding several building and family 

types, the probability distribution for every occupancy profile segment is driven and the probability 

distribution relevant parameters are extracted (in the case normal and ln-normal distribution, mean 

and standard deviation). Mean values dedicatedtheboundary of occupancy segmentsare represented 

on figure 13 as t1, t2, t3 and t4. Correspondingto the occupancy profile segments, the value of occupancy 

density is represented inprobability form as well, where the O1, O2, O3 and O4 are the mean values 

regarding the occupancy density of every occupancy segment (figure 12). 

Occupancy segment OS1 OS2 OS3 OS4 OS1 
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Figure 13: Propability distribution of the stochastic occupancy profile segmentats  

In fact, the occupancy profiles of separated building zones are not independent from each other. 

Presence of a specified resident(s) in a specified zone during the specified time instant,means the 

absence of the specified resident(s) in the rest zones of the building. Spatial Correlation between the 

different zones in a building unit can be modeled by applying the random field paradigm. The 

random field is constrained by the sum of the occupancies (Figure 14). A random field is also called a 

random (or stochastic) process, although the term “field” indicates that the parameter space is 

multidimensional. A random field X(t) is a collection of random variables at point with coordinates 

t=(t1, …, tn) in an n-dimensional “parameter space”. Second-order information about point-to-point 

variation is contained in the covariance function B(t,t’), the covariance between values of the random 

filed at two location t and t’[Vanmarcke 1983]. The variation of n-dimensional random field x(t) at 

two location t and t’ is characterized by the covariance function 

 
     ́        ́     [        ́ ]   [       ́ ]         ́  

 
Or by the correlation function 

     ́        ́  
     ́ 

       ́ 
 

 
Where m(t) and m(t’) are the means and σ2(t) and σ2(t’) the variances of X(t) and X(t’), respectively. 
 

 

Figure 14: Modeling the spatial correlation between several zones in a buildingunit.The empty zones are 
represented by the red squers while the occupated zones are marked by the blue cuboid 

 

Plan of the Building 
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3.3 Sample Size 

A common question asked during Monte Carlo sampling (or the other sampling approaches like LHS) 
is, “What sample size is enough for the stochastic simulation?” The sample size required for a 
particular analysisdepends on various factors such as type of model, the random number generator 
used, type of distributions, and the output probabilistic measure and cannotbe universally defined. 
The sample size is also strongly depended on the precision which is expected [Schüller, 1981]. The 
required number of sample (N) can be calculated by 

  
 

  

  

  
 

Where σ is the standard deviation, µ is the mean and relative error is represented by ɛ.The general 
tendency is to reducethe samples as much as possible without realizingthe effect on decisions. For 
example, the mean of theoutput requires a number of samples that is an order ofmagnitude less 
compared to the variance. Therefore, itis desirable to use a sampling technique that can predictthe 
output probabilistic measure accurately withthe minimum number of samples. Over the years, 
several rules of thumb have been proposed such as 5-10 observations perparameter, no less than 
100, and so on. At least one thing is clear, the larger the sampling size is, the better coverage of the 
designed distribution of the input can be obtained. However, due to the computational cost, the 
numbers of the sampling should be controlled in a reasonable limit. In reality there is norule of 
thumb that applies to all situations. The sample size needed for a study dependson many factors 
including the size of the model, distribution of the variables, amount ofmissing data, reliability of the 
variables, and strength of the relationships among thevariables[Muthén and Muthén 2002].  

 

(a) 

 

(b) 

Figure 15: (a) Small and large fractiles in probability distribution, (b) The effect of sample size in 
regenerating a random distribution (mean=0.5, standard deviation=0.1667 ) 
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Considering the normal distribution in figure 15 (a).A numerical descriptor for the span of frequency 

distributions is the fractile. A p-fractile is defined as the x-value of the distribution which includes 

p*N observations, with 0<p<1 and N being the number of observations. An example may clarify this: 

the 2.1 % fractile of the distribution shown below is almost -2.4σ, as it includes 2.1 % of all 

observations (starting from the left). Accordingly, the median (µ) is the 50% fractile and the large 

fractile 99.9 % is 3.4σ. 

It means to reach the occurrence probability of 99.99 %, 10000 samples are required (Figure 15, b), 

that means at least one sample lies above the 99.99 % fractile. [Lomas and Eppel 1992] applied 

Monte Carlo analysis on building thermal modeling filed and found after 60-80 simulations the 

accuracy of confidence interval on standard deviation of outputs marginally increase regardless of 

the number of input parameters. Nevertheless, having a relatively small sample size (N<100 

independent of the number of variables) it is possible to determine the means and standard 

deviations of the output parameters with 10% accuracy [Roulet 1999].  

3.4 Stochastic Model Approach 

The stochastic simulation in ISES will be done for the whole life-cycle of buildings and facilities. The 

simulation task may require hundreds of individual simulation runs, performed in parallel, which 

should be managed and configured applying highly automated approach, with only general control 

interaction by the user.The virtual energy lab is structured havingtwo feedback cycles, one for 

handling the stochastic life-cycle nature of climatic, usage conditions, material properties and one for 

the optimization of the design. ISES covers a wide spectrum comprising the selection the most 

energy efficient product, designing and retrofitting scenarios. Since the stochastic variables involved 

in the simulation approach vary for every ISES use case scenario (simulation cycle 1-3), the 

preliminary principle stochastic model approach for every use case scenario will be developed 

separately in this section. Afterward, a method to generate the random sample dataset regarding 

stochastic model data types is presented and obtaining the energy demand for the building life-cycle 

will be characterized.  

Simulation cycle 1; Component Development 

The efficient design of energy related building components and their optimal control in operation 

need several feedback cycles to reach an optimal design and operation control process. As it was 

represented in table 1 the major stochastic variables involving in component development are the 

climatic and usage profiles.  While the climate strongly depends on the location, the user 

requirements depends on the end use of a building which is only partially influenced by the climate. 

Regarding the important role of façadeelements in energy efficiency and energy saving design, the 

main focus of this simulation cycle is dedicated to designing the optimal façade element for each 

location and end user type.  

The model approach for the simulation cycle 1 is represented in figure 16. The stochastic simulation 

is feed with the stochastic values generate by applying several stochastic parameter and process 

models types can be given in Figure 16. The obtained probabilistic results of uncertainty analysis will 

be used to estimate the energy demand in the building life-cycle. The feedback of the sensitivity 

analysis may be used to estimate the role of every engaging stochastic parameter and every 

stochastic process in the stochastic modelling.  
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Figure 16: Illustration of the stochastic simulation approach regarding the simulation cycle 1; 
components development 

Simulation cycle 2; Early Design 

The main and principle behaviour and layout of the building will be determined during early design. 
In the early phase the architectural alternatives are designed concentrating on the spatial layouts 
and functions with attention paid to both energy efficiency and life cycle costs. In this phase the 
results from the life-cycle analysis and the information from different spatial layout alternatives the 
actual energy consumption is calculated to determine the operational costs. During ISES the 
simulation cycle 2 is divided into two stages (detailed information can be found in ISES D1.2).  

The stochastic simulation regarding Cycle 2b is shown in figure 17.During this stage the early design 
of building energy with already defined heating, ventilation and air-conditioning (HVAC) types will be 
performed. The required input parameters/variables are stochastic process, deterministic 
parameters, stochastic (and uncertain) parameters. The obtained uncertainty analysis results will be 
represented in probabilistic manner and applied into the decision making process. 

 

Figure 17: Illustration of the stochastic simulation approach regarding the simulation cycle 2b; early 
design 
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Simulation cycle 3; Refurbishment/Retrofitting 

If building components or technical installations of existing buildings do not longer meet sufficiently 

current technical, economical, ecological or regulatory requirements, the client or facility manager 

can choose between different alternatives of retrofitting or refurbishment measures on the basis of 

the results from energy simulations. Two probabilistic simulations cycles can be applied within the 

developed retrofitting/refurbishment process; namely 3a and 3b (see ISES D1.2 for more 

information). 

 

Figure 18: Illustration of the stochastic simulation approach regarding the simulation cycle 3b; 
Refurbishment/Retrofitting 

During Simulation Cycle 3b the impact of different alternative building elements on the overall 

building energy performance will be studied (see Figure 18). The required input parameters/variables 

are again categorized under deterministic parameters, stochastic processes and stochastic (and 

uncertain) parameters. The obtained results of the uncertainty analysis will be represented in 

probabilistic manner and applied into the cost estimation regarding several demand scenarios. 

Generation of Sample Datasets 

Regarding the stochastic model data types, which will be applied in stochastic simulation, samples 

dataset can be generated. The process of generating sample datasets for the data type stochastic 

parameters is illustrated in figure 19 a. In this case the parameter of a normal probability distribution 

function (PDF), mean and standard deviation have to be given. Applying the PDF parameters and 

selecting the sampling approach as well as number of samples, the sample datasets can be generated 

in a sample file, i.e in a Excel spreadsheets in a specified format directed applying Excel built-in 

random generator engines and Excel-VBA (Figure 19 c), in order to be readable by the Grid-based 

simulation engine. 
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a) Generating random sample dataset procedure 

 

 

b) Configuration of the sample 
datasets regarding several 

stochastic parameters 

c) Generated sample datasets in excel spread sheet 

Figure 19: Generating sample datasets 

The highly non-stationary stochastic process concerning usage and climate models have to be 
approximated e.g. evolutionary stochastic process or by a stochastic process of partly stationary 
processes. We will use the approximation of the partially stationary processes to model the non-
stationary stochastic process as a macro discrete stochastic process where the discrete events are 
the micro stationary stochastic process modules. A further approximation will be introduced as 
described below, because the stochastic nature in the modules is of minor importance and the 
design objective is either the average values of the life-cycle or the extreme values or the extreme 
change values over a short time (e.g. hours). 

Energy Demand Estimation 

The stochastic approach of ISES is focused on lifecycle energy performance. Envisaged energy, CO2 
emissions and costs are the parameters which will be derived from the stochastic simulations.These 
design objectives are set in order to obtain  

(1) Overall mean energy demand and CO2 emissions  

(2) The worst-cases of changes in heating and cooling to design the energy providing systems (99% 
fractile of energy demand) 

Extreme values and extreme change values are the result of the respective worst-case sequences of 
the patterns. This means the task of non-stationary stochastic processes can be reduced and 
approximated by many discrete deterministic sequence processes of the sequence of deterministic 
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characteristic patterns.Once the stochastic simulations were performed, to examine the obtained 
results and derive from that the resulting stochastic distribution outputs presentation, the stochastic 
process analysing models are deployed. 

In order to estimate the building energy demand over the building life-cycle (e.g. 30 years), the 
annual energy demand is integrated over the time. Since the observations X(u) are made 
continuously, the purely random process becomes an „ideal white noise “ and integral is known as 
the Wiener Process : 

 

 

 

Figure 20: Mean (m) and standard deviation (σ) of the energy demand  

If m is the mean of X(u), the mean of  the Wiener process I(t) is 

 

Its variance is also proportional to t  
 

where, w measures the intensity of white-noise         . Therefore, the mean of the integral of 
the stochastic energy demand over the time is calculated by multiplying the mean of the stochastic 
process to the time span. The standard deviation of the integral is calculated by rooting the 
multiplication of the intensity of white noise (w) to the time span (Figure 20). 

Several studies show growing in energy consumption demand over the time. During the only last fifty 
years, the demand was approximately doubled [Eddy and Marton, 2011] and it seems the trend will 
continue in the future as well (Figure 21).The gradually increasement should also be considered 
during calculation of the building life-cycle energy demand. The trend pattern can be applied as a 
linear function over the time.It should be remembered that the slope of the trend is strongly 
depends on the region, for which the study is performed. 

 

Figure 21: Energy demand by end use sector, 1950-2009 (left) and 2009-2035 (right)[from Eddy and 
Marton, 2011] 
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Presentation of the Simulation Results 

One of the most challenging aspects in stochastic simulation of energy demand is the presentation of 

the simulation results in a transparent and meaningful way. Visualization of the building energy data 

allows for the comparison of the measured data with simple rule models and therefore the finding of 

dominant trends as well as detection of possible faults.Numerous graphical presentations have been 

presented in the literature. However, for designers to be able to make informed decisions based on 

multi-variant simulation results and to evaluate different design alternatives results need to be 

presented in terms of clear performance metrics which have meaning for the designers involved in 

the design process and not just the simulation expert.  The overall idea is to use scatter, carpet and 

box plots for the analysis of the data as they provide clear characteristic patterns. When unusual 

behavior is identified, time series plots are then used to explore in more detail single data streams 

for a given period of time. 
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4. Conclusions 

In this deliverable, the three phases of the stochastic simulation for ISES are described, namely the 

pre-processing, simulation and post-processing phases. Identification of the stochastic variables, 

their ranges and scope and identifying the appropriate sampling methods are conducted. Once the 

model evaluations have been performed, during the post-simulation step all results from the 

multiple simulations are collected and uncertainty and sensitivity analysis are performed. In order to 

minimize the number of stochastic variables, before the uncertainty analysis the sensitivity analysis is 

carried out. Since the simulation itself is an expensive computing process, finding a proper sampling 

approach (reducing the variance) and the optimal sample numbers are of enormous importance for 

the stochastic simulation. 

During this deliverable a special attention was put on defining the stochastic variables: (1) Material 

properties, (2) Climate/Weather and (3) Energy consumption pattern in form of occupancy. A model 

based on statistical analysis was suggested to establish the stochastic occupancy density profile. In 

this regard, the stochastic occupancy profile is formed through several separated profile segments 

which are characterized by probability density functions. In fact, the occupancy profiles of separated 

building zones are not independent from each other. We have suggested applying the random field 

paradigm to model the Spatial Correlation between different zones in a building unit.  

The stochastic simulation in ISES will be done for the whole life-cycle of buildings and facilities. Since 

the stochastic variables involved in the simulation approach vary for every ISES use-case scenario 

(simulation cycle 1, 2 and 3), the preliminary principle stochastic model approach for every use case 

scenario was developed separately. Furthermore, a method to generate random sample dataset 

regarding stochastic model data types is presented in this deliverable. Using Excel-VBA and Excel 

built-in functions, generation of random values for stochastic parameters on Excel Spreadsheets was 

illustrated.  

Envisaged energy, CO2 emissions and costs are the parameters which will be derived from the 

stochastic simulations. Overall mean energy demand and the worst-cases demand (99% fractile of 

energy demand) are described as the indicators which will represent the energy demand for the 

building life-cycle in ISES. Along these lines, the Deliverable 2.1 achieves three goals:  

(1) The vital features of the stochastic simulation have been described concisely  

(2) The stochastic model data types and the stochastic variable types have been characterized 

(3) The stochastic model approaches for several simulation cycles in building life-cycle are 

developed. 
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Appendix I:  Acronyms 

BIM Building Information Modelling 

BPS Building Performance Simulation 

CAD Computer Aided Design 

DSA Differential Sensitivity Analysis 

eeB Energy Enhanced Building 

FAST Fourier Amplitude Sensitivity Test 

FM Facilities Management  

HESMOS EU Project No 260088 "ICT Platform for Holistic Energy Efficiency Simulation 
and Lifecycle Management Of Public Use FacilitieS" 

HVAC Heating, Ventilation, Air Conditioning 

ICT Information and Communication Technology 

IS Importance Sampling 

LHS Latin Hypercube Sampling  

MCS Monte Carlo Sampling 

PDF Probability Distribution Function 

RTD Research and Technology Development 

VBA Visual Basic Application 

 


