
 

 

Faculty of Civil Engineering Institute for Construction Informatics  

 

 

 

 

 

 

DIPLOMA THESIS 
 

 

 

Implementing the Principles of Circular Economy in the 

AEC Sector: 

About the identification of reusable components using 360° Scans 

and Machine Learning 

 

 

 

 

Submitted by  

cand. ing. Ana Bendiek Laranjo 

born 19.11.1996 in Berlin 

matriculation no.: 4612984 

Supervisors: 

• Prof. Dr.-Ing. habil. Karsten Menzel 

• Prof. Dr.-Ing. Raimar Scherer 

• Dr. MD Zubair Sheikh 

• Dipl.-Ing. Jiesheng Yang 

Dresden, 31 May 2023



 

 

 



 

 

DECLARATION OF AUTHORSHIP 

I hereby certify that I have written the present thesis entitled “Implementing the Principles 

of Circular Economy in the AEC Sector: About the Identification of reusable components 

using 360° Scans and Machine Learning” independently and that the work contained 

herein is my own. All formulations and concepts taken verbatim or in substance from 

printed or unprinted material or the Internet have been cited according to the rules of 

good scientific practice and indicated by exact references to the original source. The same 

applies to all illustrations.  

The present thesis has not been submitted to another university for the award of an aca-

demic degree in this form. I understand that the provision of incorrect information may 

have legal consequences. 

Surname: Bendiek Laranjo 

Name: Ana 

Matriculation no.: 4612984 

 

 

 

 

 

 

 

Dresden, 05 April 2023 

X
Ana Bendiek Laranjo

 
  



 

 

 



 

 

ACKNOWLEDGMENTS 

I want to express my sincere gratitude to Prof. Menzel and Prof. Scherer for their open-

ness to exploring new study fields and for their invaluable support and guidance through-

out this academic endeavor. Granting me the freedom to select the theme of my thesis 

has been instrumental in shaping the direction of my research.  

I want to extend my heartfelt thanks to Mr. Yang and Dr. Sheikh for their continuous sup-

port and for providing me with insightful and constructive feedback at every stage of my 

thesis. Their expertise and encouragement have been instrumental in refining my ideas 

and improving the quality of my work. I am truly grateful for their dedication and commit-

ment to fostering academic growth. 

I would also like to thank Prof. Menzel for their keen interest in my research. Their en-

gagement and thoughtful discussions have provided me with valuable perspectives and 

have helped me broaden my understanding of the subject matter. 

I would also like to express my deep appreciation to my parents and sister for their un-

conditional support throughout my study. They have been there to uplift me during chal-

lenging times and believed in my abilities. Their continuous encouragement and invalua-

ble feedback have been instrumental in keeping me motivated and resilient. ne it without 

you. 

Furthermore, I would like to thank Franz for his belief in me, steadfast support, and will-

ingness to provide a reality check when needed.  

And to Linda and Max: Without your hospitality, incredible support, and trust, this work 

would not have been possible. I am deeply grateful for your presence and contributions. 

 

  



 

 

 



 

I 

I ABSTRACT 

The construction industry is a major contributor to waste generation and greenhouse gas 

emissions. Shifting the predominant linear mode of action to a circular model is crucial to 

reduce environmental impacts. Reuse has been identified as the most effective strategy 

in this regard. The lack of sufficient information about material composition and as-built 

data poses a significant challenge to reusing and recycling building resources. The devel-

opment of appropriate tools and digital logistics systems can support the full implemen-

tation of the circular model in the built environment. 

The sector's level of digitalization is still unsatisfactory and heavily reliant on analog work. 

Embracing accessible sensing and scanning tools and digital technologies can enhance 

the industry's digitalization efforts and promote more efficient and sustainable resource 

management. On-site digitization using cutting-edge technologies such as mobile photog-

raphy, smartphone-based Light Detection and Ranging (LiDAR) devices, and 360° cameras 

with omnidirectional vision can help address this challenge. These technologies enable 

improved data collection and provide opportunities for more accurate and comprehen-

sive information about building materials. 

In this thesis, an object detection model is trained to identify reusable components in 360° 

images of a building indoors. The model “You Only Look Once”, version 8s (YOLOv8s), is 

used to identify windows, doors, lights, heating, and sanitary in the newly generated 360° 

imagery dataset TUDataset. The data was captured in five selected buildings on the Tech-

nical University of Dresden Campus, Dresden, Germany, and comprises 136 object classes 

and approximately 2.400 images. The model serves as a proof-of-concept of the aptitude 

of 360° images for assessing the reuse potential of buildings. It achieved a satisfactory 

63.4% mean Average Precision at Intersection over Union (IoU) of 0.5 (mAP50) and 37.1% 

mAP50 at IoU 0.5 to 0.95 (mAP50-95) on the TUDataset.  

This thesis also explores state-of-the-art research and projects implementing CE strate-

gies in practice. It identifies potentially reusable building components in a field search in 

component exchange platforms. In conclusion, the thesis proposes a solution that can 

capture the urban mining potential of existing buildings without incurring additional costs 

and serve as a planning foundation, thereby contributing to the transition towards a cir-

cular economy. The model detects all relevant building components and reduces time- 

and cost in the inventory process. 

Keywords 

Circular Economy, built environment, artificial intelligence, machine learning, object detection, 360° images, 

panorama images, component reuse 
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1 

1 INTRODUCTION 

1.1. MOTIVATION 

The sustainable use of natural resources and the mitigation of climate change effects are 

currently the most significant challenges across science, business, society, and politics. 

(Braun et al., 2021) The construction industry, being the most resource-intensive sector in 

industrialized countries, contributes significantly to waste generation and greenhouse gas 

emissions (Ajayabi et al., 2019; Eberhardt et al., 2022; Gordon et al., 2023). It uses 50% of 

all materials consumed in Europe, accounting for 37% of the total waste in the European 

Union in 2020 (EUROSTAT, 2022). Additionally, it is responsible for 39% of the global en-

ergy-related greenhouse gas emissions. These impacts result from the industry's linear 

model of extraction, use, and disposal (Çetin et al., 2021, p. 1). To address these issues 

and reduce environmental impacts, a shift towards a circular model of the built environ-

ment is urgently needed (Çetin et al., 2021, p. 1).  

This transition is especially crucial considering that the construction industry accounts for 

approximately 5.6% of the Gross Domestic Product (GDP) of the European Union (EU) in 

2021. (United Nations Economic Commission for Europe, 2023). The built environment 

not only provides society with essential services, such as "housing, food, healthcare, edu-

cation, mobility, energy, water, communication, culture, and recreation [...]" (Rios et al., 

2022, p. 18). But it also represents “the largest material stock” (Hopkinson et al., 2019, p. 7) 

with an estimated 90% of all materials ever extracted residing in buildings and infrastruc-

ture (Kibert, 2022, p. 45). However, the end-of-life is the most impactful phase in terms of 

waste generation (Osobajo et al., 2022, p. 41), accounting for “[…] up to 50 percent of na-

tional waste streams" (Kibert, 2022, p. 260). The feasibility conditions of the circular model 

are linked to the economic efficiency of the processes (Ajayabi et al., 2019; Mangialardo 

and Micelli, 2018, p. 336). Direct recovery and cost-effective reuse of building products 

yield both cost savings and multiple resource and environmental benefits (Hopkinson et 

al., 2019, p. 3). However, one of the biggest challenges to reusing and recycling resources 

in buildings is the lack of sufficient information about material and substance composition 

and as-built data at the end-of-use phase (Çetin et al., 2021, p. 20; Honic et al., 2019; Raghu 

et al., 2022; Uotila et al., 2021; Xiong et al., 2022). Cutting-edge technologies are required 

for on-site digitization (Rahla et al., 2021), which is contrasted by the lack of appropriate 

tools and digital logistics systems (Charef et al., 2021; Osei-Tutu et al., 2022; Tirado et al., 

2022) and the sector’s unsatisfactory digitalization level (Charef, 2022, p. 1), which largely 

relies on analog work. In contrast, "accessible sensing and scanning tools, such as mobile 

photography and smartphone-based consumer grade Lidar devices" (Gordon et al., 2023, 
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p. 1), as well as 360° cameras with omnidirectional vision are being increasingly used for 

on-site digitization. Additionally, digital technologies and the wider field of Industry 4.0 

have been suggested as having the potential to play a leading role in enabling and scaling 

the CE (Lacy and Rutqvist, 2015 as cited in; Okorie et al., 2018, p. 6)) and Artificial intelli-

gence (AI) is having a key role within it (Darko et al., 2020, p. 1). 

In this work, the potential of artificial intelligence (AI) and 360° images are synergistically 

combined to advance the implementation of the circular economy in the built environ-

ment. It couples 360° images and object detection to identify the reuse potential of build-

ing components within buildings. The work is based on the belief that by creating “quick, 

cost-effective, and straightforward methods for collecting data on the reusable building 

components at an urban scale” (Raghu et al., 2022, p. 579), reuse will prevail over conven-

tional building practices. 
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1.2. SCOPE OF THE THESIS 

This thesis aims to contribute to advancing circular economy practices in the built envi-

ronment by developing a prototype digital solution that enables efficient detection and 

description of reusable components in the existing building stock. The investigation seeks 

to determine the extent to which machine learning algorithms can evaluate building com-

ponent properties and facilitate the transition toward a more sustainable and circular 

construction industry. Therefore, the scope of this work encompasses several essential 

components. Firstly, it involves a literature review of successfully implemented circular 

economy projects in construction, both in research and practice. This review aims at iden-

tifying promising methods and areas that require further research, placing this thesis 

within the existing research field.  

Additionally, this work focuses on a technical solution for identifying reusable compo-

nents in an existing building. An approach is being pursued in which reusable components 

are recognized in images with machine learning. For this, an understanding of the reuse 

of components must first be created. Therefore, this thesis compiles and categorizes the 

component properties necessary to evaluate the reusability of selected components and 

building materials, classifying them into geometric and alphanumerical categories.  

Furthermore, the analysis and evaluation of machine learning techniques for component 

identification, specifically assessing recyclability, are performed. An algorithm for compo-

nent identification is implemented and trained on suitable datasets. The performance and 

effectiveness of these machine learning algorithms are evaluated in a demonstration sce-

nario, utilizing 360° scans or raw data of component images from a chosen TU Dresden 

building, such as the Beyer-Bau or the Nürnberger Ei in Dresden, Germany. It is important 

to note that this work focuses on identifying building components and providing infor-

mation for decision-making rather than making final determinations about their reusabil-

ity. Hence, a predefined set of components with assumed general reuse potential is uti-

lized.  

The scope of this study is limited to the identification of reusable potential within the 

building construction sector of the AEC (Architecture, Engineering, and Construction) in-

dustry. Furthermore, the study does not encompass the full range of strategies within the 

Circular Economy principles that are applicable throughout the entire life cycle of a build-

ing project. It specifically focuses on the strategy of reuse and, to a lesser extent, recycling, 

within the end-of-life or next-use phase of the building. 
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1.3. RELEVANCE OF THEME 

In a preliminary study (see Annex I), 35 relevant papers were found at the intersection of 

machine learning and circular economy. At the intersection of machine learning and 360° 

images, 118 papers were identified. This aligns with the findings of Guerrero-Viu et al. 

(2020), who state that research exists on the use of panoramic images for outdoor object 

recognition due to the increasing research on autonomous driving. However, there is a 

lack of comprehensive research on object recognition in indoor panoramic images (Guer-

rero-Viu et al., 2020, p. 568). No results were found at the intersection of CE and 360° 

images. The present study aims at adding value to construction practice by combining 

existing interdisciplinary approaches. To the authors' best knowing, this study is the first 

to utilize object detection in 360° images with the aim of identifying reuse potential of 

non-structural components in buildings. 

1.4. ORGANIZATION OF THESIS 

This first chapter introduces the motivation, relevance, and definition of concepts. The 

remainder of the thesis is structured as follows: 

Section 2 explains the underlying concepts, including the theory of circular economy as 

well as the technical foundations for the practical part of this work, namely artificial intel-

ligence, machine learning, object vision, and 360 scan methods. 

Section 3 discusses the state of research and technology. Existing research trends are 

identified and explained through a literature review, and their implementation in practice 

is examined. Additionally, existing approaches to the use of machine learning in the con-

text of circular economy are considered to determine if they can be further developed 

within the scope of this work.  

Section 4 establishes the practical approach, with the first part identifying reusable com-

ponents and their reuse parameters through a field study (4.1), and the second part criti-

cally evaluating suitable machine learning algorithms for component identification (4.2). 

The chapter concludes with the selection of a suitable machine learning model.  

Section 5 presents the practical implementation of the algorithm, following the estab-

lished machine learning pipeline. It starts with creating an annotated dataset to establish 

the data foundation (5.1 Data), followed by model training, validation, and final testing. 

The practical part concludes with an evaluation of the test results, critical assessment, and 

proposed improvements. 

Finally, Section 6 elaborates on the discussion of results, the research contributions, im-

plications for practice, and limitations. Lastly, an outlook is provided on research ques-

tions derived from this work and the concepts included. 
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2 DEFINITION OF CONCEPTS 

This chapter provides a comprehensive definition of the key concepts that are central to 

this study. Specifically, this chapter covers Circular Economy principles within the Archi-

tecture, Engineering and Construction (AEC) sector (2.1), Artificial Intelligence (2.2), Ma-

chine Learning (2.3), Neural Networks (2.4), Computer Vision (2.5), and 360° Scans/Imag-

ing (2.6). The purpose is to establish an understanding that supports the discussion and 

analysis in subsequent chapters. 

2.1. CIRCULAR ECONOMY (CE) 

The underlying concepts or “schools of thought” of the circular economy model date back 

to the 1970s, including the Club of Rome’s "Limits to Growth" theory, Braungart and 

McDonough’s ‘cradle to cradle’ concept, Stahel’s ‘performance economy’, and Lyle’s ‘re-

generative design’ model, among others (ARUP, 2016, p. 16). 

Yet, there is not one agreed unequivocal definition of the “Circular Economy” (Anastasi-

ades et al., 2020; Kirchherr et al., 2016) In their analysis, Kirchherr et al. (2017) gathered 

and analyzed not less than 114 circular economy definitions, of which the majority de-

picted a combination of reduce, reuse and recycling activities. Key differences derive from 

the employment of the CE concept by different stakeholders (Okorie et al., 2018) and in-

dustry branches. For the purpose of this thesis, the definition developed by (Prieto-Sand-

oval et al., 2018, p. 613) will be adopted. It defines the circular economy as  

“an economic system that represents a change of paradigm in the way that human 

society is interrelated with nature and aims to prevent the depletion of resources, 

close energy and materials loops, and facilitate sustainable development through 

its implementation at the micro (enterprises and consumers), meso (economic 

agents integrated in symbiosis) and macro (city, regions and governments) levels.” 

(Prieto-Sandoval et al., 2018, p. 613) 

In contrast with the prevalent linear economic model (Figure 1), which can be described 

as a unidirectional model or as an incomplete circle, that starts at the point of extraction 

and ends in disposal (Okorie et al., 2018), the circular economy is often described with 

resource loops. Drawing on the earlier works of the different schools of thought, the Ellen 

MacArthur Foundation developed the system or ‘butterfly’ diagram (Figure 2) founded on 

the notion that in a circular economy, materials continuously flow in two cycles: the tech-

nical and the biological cycle. (ARUP, 2016, p. 16) The natural cycle provides the ground-

work for the technical cycle, and everything we use from the Earth comes from natural 
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cycles. In a closed system like the Earth, technical materials can only be considered “lost” 

if they are irreversibly altered or made unusable without significant efforts, such as 

through chemical changes, pollution, or conversion to a gaseous state and release into 

the atmosphere.” (Rosen, 2020, p. 21) 

 

Figure 1: Linear Economy. In a linear economy or take-make-use-dispose model, materials are sourced, 

used, and finally disposed of as waste producing negative externalities that include rising carbon emissions, 

increased pressures on landfill, and unsustainable levels (ARUP, 2016, p. 10) 

 

Figure 2: Circular economy butterfly diagram as developed by EMF (Ellen MacArthur Foundation, 2019) 
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From the systems perspective, the transition to a circular economy needs to happen at 

three levels: the macro level, which focuses on adjusting the industrial composition and 

structure of the entire economy; the meso level, which often focuses on eco-industrial 

parks and is also sometimes referred to as the regional level; and the micro level, which 

looks at individual products, enterprises, and consumers and how to increase their circu-

larity. (Kirchherr et al., 2017, p. 224).  

2.1.1. CE PRINCIPLES IN THE AEC SECTOR 

Based on the abovementioned general definition, Benachio et al. (2020), defined the Cir-

cular Economy focused on the Construction Industry as  

“The use of practices, in all stages of the life cycle of a building, to keep the materials 

as long as possible in a closed loop, to reduce the use of new natural resources in a 

construction project.” (Benachio et al., 2020, p. 5) 

It is necessary to contemplate how these practices can be implemented in the AEC sector 

to enable the transition to a circular economy. Although “an implementation into the case-

specific building full-scale evaluation is yet to be conducted” and a universal “comprehen-

sive CE integration and methodology framework has yet to be developed” (Hossain et al., 

2020b, p. 1), according to Prieto-Sandoval et al. (2018), a large number of principles that 

lay the foundation for the transition to the CE are described in academia. These principles 

can be grouped into three categories (Prieto-Sandoval et al., 2018, p. 610): principles re-

lating to the R frameworks and sustainable design strategies, and Loop-strategies (Bocken 

et al. 2016). 

Kirchherr et al. (2017) found that R frameworks are widely considered as the ‘how-to’ of 

CE. These frameworks express CE strategies hierarchically, considering the first R to be a 

priority. Several frameworks have evolved, originating from the 3R framework proposed 

by the Japanese Government in 2004: reduce with minimum use of raw materials, reuse 

with maximum reuse of products and components, and recycle with high-quality reuse of 

raw materials. (Mrad and Frölén Ribeiro, 2022, p. 3) The EU Construction and Demolition 

Waste Management Protocol (2008) introduced the fourth “R” – recovery and research has 

proposed alternative R frameworks that go beyond thereafter. Examples of such frame-

works include the 6Rs proposed by Sihvonen and Ritola (2015) and the 9Rs suggested by 

van Buren et al. (2016) and Potting et al. (2017), with the latter being the most detailed, as 

illustrated in Figure 1. (Kirchherr et al., 2017, p. 223) However, the 4R strategies are chosen 

as a reference in this thesis as it is widely used in academia and comprises the underlying 

concept of EU regulations, such as the EU Taxonomy Regulation. The definition and an 

example for each 4R-core principle are presented in Table 1 (p.8). 
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Table 1 Definition of 4R-framework strategies according to Directive 2008/98/EC of the European Parliament 

and Council of 19 November 2008 

 Definition  Building practice example 

R
e

d
u

c
e

 

Comprises “measures taken before a substance, material or  

product has become waste, that reduce: 

a) the quantity of waste, including through the re-use of 

products or the extension of the life span of products; 

b) the adverse impacts of the generated waste on the en-

vironment and human health; or 

c) the content of harmful substances in materials and 

products” (European Council and European Parlia-

ment, 2008, p. 8). 

Increased efficiency in product 

manufacture and reduction of 

material consumption through re-

design of packaging  

R
e

-u
se

 

“‘re-use’ means any operation by which products or compo-

nents that are not waste are used again for the same pur-

pose for which they were conceived” (European Council and 

European Parliament, 2008, p. 8). 

Depending on whether it is possible to reuse a component with the 

same function, a distinction is made between ReUse and Further-

Use. 

Re-Use Reuse or “re-purposing” is the reuse of a product with-

out loss of value according to its original purpose. (Hil-

lebrandt et al., 2018, p. 59 translated by author) 

Further 

Use 

“Further use is the reuse of a construction product, but 

not for its original purpose, since its quality can no 

longer be guaranteed for its original suitability. Due to 

the resulting loss of quality, further use means a loss 

of resources and is thus considered downcycling” (Hil-

lebrandt et al., 2018, p. 60 translated by author). 

 

Reuse of a reclaimed and cleaned 

high-fired clinker brick as a ma-

sonry block. (Hillebrandt et al., 

2018, p. 59 translated by author) 

 

Reclaimed facade bricks can be 

further-used as landscape archi-

tecture element, e.g. as path sur-

facing. (Hillebrandt et al., 2018, 

p. 60 translated by author) 

R
e

c
y

c
le

 

“‘recycling’ means any recovery operation by which waste 

materials are reprocessed into products, materials or sub-

stances whether for the original or other purposes. It in-

cludes the reprocessing of organic material but does not in-

clude energy recovery and the reprocessing into materials 

that are to be used as fuels or for backfilling operations” (Eu-

ropean Council and European Parliament, 2008, p. 8). 

A distinction is made between recycle and downcycle, depending on 

whether there is a loss of value in the design-dissolving process. 

A steel beam is melted down and 

recycled into a new steel beam of 

a different profile type, but with-

out any loss of material quality. 

(Hillebrandt et al., 2018, p. 60 

translated by author) 

 

Flat glass is downcycled into glass 

blocks or profiled glass. (Hille-

brandt et al., 2018, p. 60 trans-

lated by author) 

R
e

c
o

v
e

ry
 

“‘recovery’ means any operation the principal result of which 

is waste serving a useful purpose by replacing other materi-

als which would otherwise have been used to fulfil a particu-

lar function, or waste being prepared to fulfil that function, 

in the plant or in the wider economy” (European Council and 

European Parliament, 2008, p. 8). 

According to Annex II the incineration or usage as fuel or other 

means to generate energy are considered recovery operations (Eu-

ropean Council and European Parliament, 2008, p. 22). 

High-quality plastics can undergo 

several recycling processes at the 

same quality level before being in-

cinerated for energy recovery. 

(Hillebrandt et al., 2018, p. 62 

translated by author) 
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The second school of thought is based on loop strategies introduced by Bocken et al. 

(2016), that operationalize CE in practice (Yu, Junjan et al., 2022, p. 2): slowing the loop, 

closing the loop and narrowing the loop. An overview of the loop-strategies is summarized 

in Table 2. 

Table 2 Loop strategies as CE principles in the AEC sector 

Loop-strategy Definition 

Slowing the loop  “Through the design of long-life goods and product-life extension (i.e. service 

loops to extend a product’s life, for instance through repair, remanufacturing), 

the utilization period of products is extended and/or intensified, resulting in a 

slowdown of the flow of resources” (Bocken et al., 2016, p. 309). 

Closing the loop “Through recycling, the loop between post-use and production is closed, result-

ing in a circular flow of resources.” (Bocken et al., 2016, p. 309) 

Based on this definition recycling practices can be categorized according to their 

capability to replace virgin materials into: 

• “Closed-loop recycling, in which the recovered material can re-

place virgin material indefinitely without losing its properties. 

• Semi-closed-loop recycling, where the recovered material can 

only replace the original virgin material to a certain extent, which 

is why raw materials must be added to meet quality require-

ments. 

• Open-loop recycling, a recycling process in which part of the ma-

terial is recovered and usually used for a new purpose” (Sáez-de-

Guinoa et al., 2022, p. 10). 

Keeping materials and components in a closed loop translates into the reuse of 

building materials and deconstruction of their parts and components acting as 

material banks for new buildings (Benachio et al., 2020, p. 2). Furthermore, clos-

ing the material loop can be enhanced through strategies as “reuse of materials, 

the C2C, eco-efficiency, zero emission, reverse logistics, regenerative design and 

IE” (Ogunmakinde et al., 2021, p. 911).  

Narrowing the loop “Resource efficiency or narrowing resource flows, aimed at using fewer re-

sources per product.” (Bocken et al., 2016, p. 309) 

Lastly, the sustainable design strategies (SDS) are considered the principles of the circular 

economy academia and by institutions such as the Ellen MacArthur Foundation (Prieto-

Sandoval et al., 2018, p. 610). Accordingly, the CE is based on three design-driven ap-

proaches: eliminate waste and pollution, circulate products and materials (at their highest 

value) and regenerate nature. (Ellen MacArthur Foundation, 2023c). The first principle is 

based on the notion that "waste is a design problem". This can be addressed in the design 

to ensure materials are reintroduced into the economy. The reintroduction can be 

achieved through maintenance, sharing, reuse, and repair, refurbishment, remanufactur-

ing, and recycling. Biological materials and food can be safely returned to the environment 

to fuel the production of new materials and food (Ellen MacArthur Foundation, 2023a). 

The second principle of the circular economy is to circulate products and materials at their 

highest value (Ellen MacArthur Foundation, 2023d). Designing products with the circular 

economy in mind is crucial for their successful circulation in either the biological or tech-
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nical cycle. Products that blend technical and biological materials cannot be easily circu-

lated, leading to waste. By designing products for easy repair, maintenance, modularity, 

and recyclable or biodegradable materials, they can be made with their onward path in 

mind (Ellen MacArthur Foundation, 2023d) Lastly, the regeneration principle aims at shift-

ing the focus from extraction to regeneration by rebuilding the natural capital. (Ellen Mac-

Arthur Foundation, 2023b) 

It is noted that the three groups have, at their core, coinciding or similar approaches. In 

this thesis the focus will be solely on the strategy of re-use, as it is the most prioritized in 

the waste hierarchy, yet less studied in research (Ginga et al., 2020, p. 16) and less imple-

mented in building practice. Furthermore, the general term of reuse as defined in Table 1 

without a distinction between re-use and further-use will be adopted. 

2.1.2. LIFE CYCLE STAGES 

Construction should be viewed as a cyclical process that can begin at any point in the 

building's life cycle (Rosen, 2020, p. 12translated by author). A common approach is to 

consider the life cycle stages as the four main phase production stage, construction pro-

cess, the use stage and te end-of-life-stage". However, this disregards the “design pro-

cess”, which is considered a fundamental phase for developing circular buildings where 

digital tools (DTs) play a critical role. (Çetin et al., 2021, p. 6) Therefore, in this thesis the 

life-cycle-stages are defined as proposed by (Çetin et al., 2021; Rosen, 2020).  

Table 3 Life cycle stages in the Circular Economy 

Phase Definition 

Pre-Use  “The pre-use phase concerns activities that take place before buildings are occupied by users. 

These activities include mining raw materials or reclaiming resources from existing buildings, 

manufacturing building components, design, transportation, and construction or assembly.“ 

(Çetin et al., 2021, p. 6) 

Use "The use phase often constitutes the longest period of a building’s life cycle, when a signifi-

cant environmental impact is created. […] In addition, the use phase is critical to extending 

the lifetime of buildings and building products by activities such as repair and maintenance.” 

(Çetin et al., 2021, p. 6) 

Next-Use or 

Post-Use 

Finally, the next-use phase refers to reintroducing buildings and associated resources when 

they reach their end-of-use stage (Çetin et al., 2021, p. 6) 

Throughout this thesis the term “end-of-life” is frequently used for the next-use-phase as 

it pertains to the common terms in construction and demolition planning. However, in the 

envisioned CE resources are repeatedly reintroduced through reuse or recycling, without 

any end of life and with minimal resource input. (Çetin et al., 2021).  
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2.2. ARTIFICIAL INTELLIGENCE 

Over the past few decades, numerous definitions of artificial intelligence (AI) have 

emerged. (Russell and Norvig, 2022, p. 19) In this work the definition of McCarthy (2007) 

is used:  

“It is the science and engineering of making intelligent machines, especially intelli-

gent computer programs. It is related to the similar task of using computers to un-

derstand human intelligence, but AI does not have to confine itself to methods that 

are biologically observable.[...] Intelligence is the computational part of the ability to 

achieve goals in the world. Varying kinds and degrees of intelligence occur in people, 

many animals and some machines.“ (McCarthy, 2007) 

Before the aforementioned definition, the beginning of the discourse on artificial intelli-

gence was marked by Alan Turing's, also known as the "father of computer science", in-

fluential publication, "Computing Machinery and Intelligence" in 1950, where he posed 

the inquiry, "Can machines think?" (IBM, 2023b) . 

AI’s overall concept encompasses several subfields, including machine learning and deep 

learning (IBM, 2023b), computer vision, robotics and sensors (Gonzalez Viejo et al., 2019), 

natural language processing (NLP), autonomous vehicle operating systems (UCB-UMT, 

2020), etc.  

 

Figure 3 Overview of the different Artificial Intelligence subfields based on (Koitz-Hristov, 2020) (image by 

author) 

The focus of this thesis is on machine learning and computer vision.  

  



 

12 

2.3. MACHINE LEARNING 

Machine learning (ML) is a subfield of artificial intelligence (AI) (Kavlakoglu, 2022; Mellouk 

and Chebira, 2009; UCB-UMT, 2020) and was first proposed by Arthur Samuel in 1959, 

predicting that the programming of computers to learn from experience would eventually 

eliminate the need of detailed specification of problem-solving methods (Samuel, 1959, 

p. 535). Mitchell (1997) later defined that,  

“a computer program is said to learn from experience 𝐸 with respect to some class 

of tasks 𝑇 and performance measure 𝑃, if its performance at tasks in 𝑇, as measured 

by P, improves with experience E.” (Mitchell, 1997, p. 2) 

In other words, machine learning is “systematic study of algorithms and systems that im-

prove their knowledge or performance with experience.” (Flach, 2012, p. 3). The mathe-

matical concepts of the learning process is explained in 0 using a deep feedforward neural 

network. 

The key distinction between conventional programming and machine learning is that pro-

gramming is rule-based, i.e. it utilizes a predetermined set of rules or logic to solve prob-

lems, in contrast machine learning constructs a model or logic based on input data and 

responses and learns the rules autonomously. Machine learning therefore is used for 

problems that either are too complex for traditional approaches or have no known algo-

rithm (Géron, 2023, p. 4). Machine learning proves advantageous in fluctuating environ-

ments. Machine learning systems can be swiftly retrained on novel data, thus maintaining 

up-to-date functionality. Lastly, machine learning enables the acquisition of profound in-

sights pertaining to intricate problems and copious amounts of data. (Géron, 2023, p. 5) 

 

Figure 4: Traditional programming approach 

 (Géron, 2023, p. 17) 

 

Figure 5: Machine learning approach (Géron, 2023, 

p. 4) 

The following sections explain the experience 𝐸 (2.3.1) the tasks 𝑇 (2.3.2) to be performed, 

and the performance P (2.3.3). 
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2.3.1. THE EXPERIENCE 𝐸: TRAINING SUPERVISION 

The learning experience of ML models is defined by the level and type of supervision re-

ceived during training, i.e. the presence or absence of human influence on raw data. The 

main categories include supervised learning, unsupervised learning (including semi-su-

pervised learning, self-supervised learning), and reinforcement learning (UCB-UMT, 2020). 

Supervised learning is the most common form of machine learning, deep or not (LeCun 

et al., 2015, p. 436). In supervised learning models “the algorithm learns on a (fully) labeled 

dataset, providing an answer key that the algorithm can use to evaluate its accuracy on 

training data” (Salian, 2018). “Fully labeled means that each example in the training da-

taset is tagged with the answer the algorithm should come up with on its own” (Salian, 

2018). As the target variable is known, the algorithm learns to map inputs to outputs 

based on the patterns observed in the training data. Supervised learning tasks include 

classification and regression. It is noted that some regression models can be used for 

classification and vice versa, e.g. logistic regression is also used for classification as it out-

puts a value that relates to the probability of belonging to a certain class. (Géron, 2023, 

p. 8) 

In contrast, an unsupervised model presents unlabeled data which the algorithm tries to 

comprehend by extracting features and patterns on its own (Salian, 2018). Unsupervised 

learning tasks include clustering, visualization algorithms, dimensionality reduction, 

anomaly detection and novelty detection, and association rule learning. (Géron, 2023, 

p. 10) Clustering is the most common unsupervised task and involves identifying poten-

tially meaningful clusters or groups within a set of input examples. For example, when 

presented with a vast collection of images sourced from the Internet, a computer vision 

system can detect a sizable cluster of similar images that a human observer would classify 

as "cats." (Russell and Norvig, 2022, p. 671) Semi-supervised learning uses a partially la-

beled data, in which a small amount of labeled data bolsters a larger set of unlabeled data 

(Salian, 2018). These algorithms combine unsupervised and supervised approaches, such 

as clustering instances and assigning them the most common label within their cluster, 

followed by employing supervised learning algorithms (Géron, 2023, p. 13). For example, 

photo-hosting services like Google Photos use unsupervised algorithms to automatically 

recognize individuals in photos. Once clustered, the system requires labels to identify in-

dividuals, allowing for easier searching of photos. (Géron, 2023, p. 13) Self-supervised 

learning generates a fully labeled dataset from a fully unlabeled one. For instance, by 

masking a small portion of each image from a large dataset of unlabeled images and 

training a model to recover the original image, the dataset can be labeled, enabling the 

use of any supervised learning algorithm. This approach is valuable for tasks like image 

restoration or object removal. Unlike unsupervised learning, self-supervised learning uses 

generated labels during training and focuses on tasks similar to supervised learning, such 

as classification and regression. (Géron, 2023, p. 13)  

Finally, in reinforcement learning the algorithm learns by interacting with an environment 

and receiving feedback in the form of rewards or penalties. The agent learns to develop 



 

14 

the best strategy or policy to maximize rewards over time. Notable examples include ro-

bots learning to walk and DeepMind's AlphaGo program, which analyzed millions of 

games and played against itself to learn its winning policy. This process is called offline 

learning. (Géron, 2023, p. 14) 

2.3.2. THE TASK 𝑇 

The machine learning task T typically refers to how a machine learning system should 

handle an example. An example is defined as a set of features that have been quantita-

tively measured from an object or event that the machine learning system is intended to 

process. (Goodfellow et al., 2016, p. 97) Formally, the task of supervised learning is this:  

Given a training set consisting of 𝑁 input-output pairs 

(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑁 , 𝑦𝑁), 

where each pair is generated by an unknown function 𝑦 =  𝑓(𝑥), the objective is to find a 

function ℎ that approximates the true function 𝑓. (Russell and Norvig, 2022, p. 671) 

A non-exhaustive list of most common tasks that can be solved with machine learning 

includes: classification, classification with missing inputs, regression, transcription, ma-

chine translation, structured output, anomaly detection, synthesis and sampling, imputa-

tion of missing values, denoising, fate estimation or probability mass function estimation 

(Goodfellow et al., 2016, pp. 98–101), clustering, visualization algorithms, dimensionality 

reduction, association rule learning (Géron, 2023, p. 10). However, for the purpose of this 

paper, only classification and regression, as well as object detection and segmentation in 

the context of computer vision (see 2.5 Computer vision) will be addressed. 

Classification 

Classification is the task of assigning a class or category to a given pattern (Dreyfus, 2005, 

p. 33) and it “is the most common task in machine learning” (Flach, 2012, p. 52). In classi-

fication, the learning algorithm is typically trained to generate a function 

𝑓: 𝑅𝑛 →  {1, . . . , 𝑘}, where 𝑦 =  𝑓(𝑥) assigns an input represented by vector 𝑥 to a specific 

category indicated by numeric code 𝑦. Alternatively, in multi-class classification the task 

may involve the output of a probability distribution over classes by function 𝑓. (Goodfel-

low et al., 2016, p. 98)  

Regression 

In this type of task, the learning algorithm aims to predict a numerical value given a spe-

cific input. The program is trained to output a function 𝑓: 𝑅𝑛  →  𝑅. While similar to classi-

fication tasks, regression tasks differ in their output formats (Goodfellow et al., 2016, 

p. 99). An example of regression is the prediction of the price of a house based on prop-

erties like number of bedrooms, the base area, the location, and the age of the house. 
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2.3.3. THE PERFORMANCE 𝑃 

The abilities of a machine learning algorithm are evaluated by a quantitative measure of 

its performance. The performance metric P is generally tailored to the specific task being 

performed by the system. (Goodfellow et al., 2016, p. 101) 

In classification it is common to evaluate the model’s performance using accuracy, which 

represents the “proportion of examples for which the model produces the correct output” 

(Goodfellow et al., 2016, pp. 101–102). Equivalent information is obtained from the error 

rate, which represents "the proportion of examples for which the model produces an in-

correct output" (Goodfellow et al., 2016, p. 102). 

The performance of the machine learning algorithm on unseen data is of primary interest 

as it reflects its real-world effectiveness. To assess this, performance measures are eval-

uated using a separate test dataset that differs from the training data. While selecting a 

performance measure may appear clear-cut and objective, it can be challenging to choose 

one that aligns closely with the desired behavior of the system. (Goodfellow et al., 2016, 

p. 102) The performance measures used in this thesis include precision P, recall R and the 

mean average precision (mAP), and are explained in 5.2Training and Validation. 

2.4. NEURAL NETWORKS (NNS) 

This chapter discusses neural networks and, in the context of deep learning, particularly 

convolutional neural networks. These concepts underlie the practical part of the thesis 

and are necessary to understand the training, validation, and testing of the object detec-

tion model. 

2.4.1. FROM BIOLOGICAL TO ARTIFICIAL NEURONS 

The history of neural networks dates back to 1943 when McCulloch and Pitts published 

the landmark paper “A Logical Calculus of Ideas Immanent in Nervous Activity”1 on neu-

rons and Boolean logic. In 1958, Frank Rosenblatt developed the perceptron which intro-

duced weights to the equation. (IBM, 2023c) Key events that led to the evolution of neural 

networks include Paul Werbos' 1974 observation of backpropagation's application in neu-

ral networks and Yann LeCun's 1989 paper that demonstrated the use of constraints in 

backpropagation to train algorithms, successfully recognizing hand-written zip code dig-

its. (IBM, 2023c) 

 
1 Warren S. McCulloch and Walter Pitts, “A Logical Calculus of the Ideas Immanent in Nervous Ac-

tivity”, The Bulletin of Mathematical Biology 5, no. 4 (1943): 115–113. 
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The idea of artificial neural networks (ANNs) has been influenced by the recognition that 

biological learning systems are constructed from highly intricate networks of intercon-

nected neurons. Biological neurons behave simply but are organized in a vast network. 

With each neuron connected to thousands of others, they can perform complex compu-

tations, often organized in consecutive layers. (Géron, 2023, p. 280) 

Similarly, a neuron „is a nonlinear, parameterized, bounded function” (Dreyfus, 2005, 

p. 18) and a neural network “is the composition of the nonlinear functions of two or more 

neurons” (Dreyfus, 2005, p. 19). Neuronal networks (NNs) are typically represented by a 

network diagram  (Goodfellow et al., 2016; Hastie et al., 2009, p. 390) as seen in Figure 6. 

 
Figure 6 Network diagram of (A) a single input neuron and (B) a neural network with n inputs, a layer of 

hidden neurons, and Nc output neurons. 

The network consists of layers of neurons (nodes or units), which include an input layer, one or more hidden 

layers, and an output layer. The neurons are connected to each other and have an assigned weight and 

threshold. When the output of a particular node exceeds the specified threshold value, it becomes activated 

and sends information to the next layer in the network. However, if the output is below the threshold, no 

data is transmitted to the subsequent layer of the network (IBM, 2023a). Illustration adapted from (Dreyfus, 

2005, p. 18), image by author. 

There are two main classes of NNs: feedforward and recurrent networks (or feedback 

networks). (Dreyfus, 2005, p. 19) Feedforward networks are NNs where information flows 

in one direction, from the input layer through intermediate layers to the output layer, 

without any feedback connections. On the other hand, recurrent networks, include feed-

back connections where outputs are fed back into the network, allowing information to 

be propagated in a loop-like manner. (Goodfellow et al., 2016, p. 164) In the context of 

this thesis, however, only feedforward NNs are relevant. 
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2.4.2. FEEDFORWARD NETWORKS 

Feedforward neural networks (FNNs) are composed of multiple functions. The composi-

tion of the functions varies, with chain structures being the most common structures in 

FNNs. For example, three functions 𝑓(1), 𝑓(2), and 𝑓(3) connected in a chain form  

𝑓(𝑥) =  𝑓(3) (𝑓(2) (𝑓(1)(𝑥))) 

In these structures, each function 𝑓 represents a layer in the network. The depth of the 

model is determined by the length of this chain. The first layer is the input layer, while the 

final layer is the output layer. The behavior of the intermediate layers, known as hidden 

layers, do not directly correspond to the training data. Instead, the learning algorithm de-

termines how to use these hidden layers to approximate the desired output. (Goodfellow 

et al., 2016, pp. 164–165). The mathematical representation of feedforward networks can 

best be described using the perceptron. 

Perceptron: Learning Mathematics 

The perceptron is one of the simplest NN architectures and can be considered a feedfor-

ward neural network with zero hidden layers. It was invented in 1957 by Frank Rosenblatt 

and is based on an artificial neuron called threshold logic unit (TLU) or linear threshold 

unit (LTU) (Géron, 2023, p. 284).  

The inputs of a neuron are commonly referred to as its variables, while its output corre-

sponds to its value. In the perceptron architecture TLUs operate on numerical inputs and 

produce weighted sums 𝑧 of these inputs: 

 𝑧 =  𝑤1𝑥1  +  𝑤2𝑥2 + ⋯ + 𝑤𝑛𝑥𝑛 =  𝑥⊺ 𝑤 

This sum is then passed through the activation function, which in the perceptron is a step 

function step(z), to generate an output (Géron, 2023, p. 284): 

 
ℎ𝑤(𝑥)  =  𝑠𝑡𝑒𝑝(𝑧) Equation 2-1 

Perceptrons commonly utilize the Heaviside step function as the primary step function 

𝑠𝑡𝑒𝑝(𝑧) or alternatively, the sign function (Géron, 2023, p. 285).  

 
ℎ𝑒𝑎𝑣𝑖𝑠𝑖𝑑𝑒(𝑧) =  {

0 𝑖𝑓 𝑧 < 0
1 𝑖𝑓 𝑧 ≥ 0

; Equation 2-2 

 

 
𝑠𝑔𝑛(𝑧) =  {

−1 𝑖𝑓 𝑧 < 0

0 𝑖𝑓 𝑧 = 0
+1 𝑖𝑓 𝑧 > 0

 Equation 2-3 

A single TLU performs linear binary classification by computing a weighted sum of the 

inputs (see). If the sum exceeds a threshold, it outputs the positive class; otherwise, it 

outputs the negative type. 

A perceptron consists of a single layer of TLUs, where each TLU is fully connected to all 

inputs known as a fully connected or dense layer. Input neurons in the perceptron pass 
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the inputs as they are and form the input layer (see Figure 7). An additional bias feature 

(𝑥0 =  1 ) is typically included and represented by a bias neuron that constantly outputs 

1. (Géron, 2023, p. 285)  

 

Figure 7 (A) Architecture of a Threshold Logic Unit (TLU) and (B) Architecture of a Perceptron with two input 

neurons, one bias neuron and three output neurons, illustration adapted from (Géron, 2023, p. 284), image 

by author. 

The output of a layer of artificial neurons for multiple instances is simultaneously com-

puted using Equation 2-4 (Géron, 2023, p. 286): 

ℎ𝑊,𝑏(𝑋) =  Φ(𝑋𝑊 + 𝑏) Equation 2-4 

Where 

𝑋 represents the input feature matrix, with rows representing instances and col-

umns representing features. 

𝑊 is the weight matrix, that contains the connection weights, excluding those from 

the bias neuron. It has rows for each input neuron and columns for each artificial 

neuron in the layer 

𝑏 is the bias vector containing the connection weights between the bias neuron and 

the artificial neurons, with each bias term corresponding to an artificial neuron. 

𝜙 is the activation function that determines the output of artificial neurons. For TLUs 

its usually a step function (Géron, 2023, p. 286) 

The training of a perceptron involves a training algorithm that implements a variant of 

Hebb's2 by considering the prediction error made by the network. This learning rule 

strengthens the connections that aid in reducing error. During training, the perceptron 

 
2 The Hebb’s rule or Hebbian theory was formulated in 1949 by neuropsychologist Donald Hebb in 

his publication “The Organization of Behaviour” (Hebb (2005) according to which frequent trigger-

ing of one biological neuron by another leads to a strengthening of the connection between them.  
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processes one training instance at a time and makes predictions. If an output neuron pro-

duces an incorrect prediction, the connection weights from the inputs that would have 

contributed to the correct prediction are reinforced. The rule is expressed in Equation 2-5 

(Géron, 2023, pp. 286–287): 

𝑤𝑖,𝑗
(𝑛𝑒𝑥𝑡 𝑠𝑡𝑒𝑝)

= 𝑤𝑖,𝑗 +  𝜂(𝑦𝑗 − �̂�𝑗)𝑥𝑖 
Equation 2-5 

 

The variables in this equation are as follows: 

𝑤𝑖,𝑗 represents the connection weight between the 𝑖-th input neuron and the jth out-

put neuron. 

𝑥𝑖 denotes the ith input value of the current training instance. 

𝑦�̂� is the output of the 𝑗-th output neuron for the current training instance. 

𝑦𝑗 represents the target output of the 𝑗-th output neuron for the current training 

instance. 

𝜂 represents the learning rate. (Géron, 2023, p. 287) 

As the decision boundary of each output neuron is linear, the perceptron cannot learn 

complex patterns. Furthermore, unlike logistic regression classifiers, perceptrons do not 

provide class probabilities but make predictions based on a hard threshold. Hence, per-

ceptrons are unable to solve certain simple problems, such as the Exclusive OR (XOR) clas-

sification problem. These limitations are overcome by using multiple perceptrons stacked 

together generating a multilayered perceptron (MLP) (Géron, 2023, p. 288). 

Deep Feedforward Networks 

A MLP consists of an input layer, one or more hidden layers of TLUs, and an output layer 

of TLUs (Géron, 2023, p. 289). Due to the architecture of “multiple layers of simple, adjust-

able computing elements” (Russell and Norvig, 2022, p. 44), MLPs are also known as deep 

feedforward networks or feedforward neural networks and are considered fundamental 

models in deep learning (Goodfellow et al., 2016, p. 164). 

The limitation of linear models in representing nonlinear functions of 𝑥 is addressed by 

applying the linear model to a transformed input 𝜑(𝑥) instead of 𝑥 itself. The nonlinear 

function φ provides “a set of features that describe x”, or offers “a new representation for 

x" (Goodfellow et al., 2016, pp. 165–166). In deep learning, the nonlinear function 𝜑 is 

learned. In this approach, the model is: 

𝑦 =  𝑓(𝑥;  𝜃, 𝑤, )  =  𝜑(𝑥;  𝜃)⊺𝑤 Equation 2-6 

with 𝜑 defining a hidden layer (Goodfellow et al., 2016, p. 166). At each hidden layer, a 

non-linear transformation is performed on the weighted sum of the outputs from the 

units in the layer below (LeCun et al., 2015, p. 437). The parameters 𝜃 are used to learn φ 
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from a broad class of functions and the parameters 𝑤 map from 𝜑(𝑥) to the desired out-

put (Goodfellow et al., 2016, p. 166). Currently, "the most popular non-linear function is 

the rectified linear unit (ReLU), which is simply the half-wave rectifier f(z) = max(z, 0)" 

(LeCun et al., 2015, p. 438). 

In deep neural networks, the cost function (also loss function, objective function, or crite-

rion) quantifies the error or discrepancy between the predicted output of the model and 

the actual target output. The goal of training these networks is to minimize the prediction 

error, addressed by optimization algorithms that search for the optimal set of parameter 

values 𝜃 or weights that minimize the cost function (Goodfellow et al., 2016, p. 166). Math-

ematically, a local minimum in a function is determined by analyzing the derivative of the 

loss function (Goodfellow et al., 2016, p. 81). For functions with multiple inputs, the gradi-

ent is calculated. The gradient is the derivative for a function 𝑔(𝑥) with the input vector 𝑥 

expressed as a vector 𝛻𝑥 𝑔(𝑥) containing all the partial derivatives of 𝑔 with respect to 

each component of 𝑥. (Goodfellow et al., 2016, p. 82) In deep learning the gradient is com-

puted using back-propagation, while learning is performed using other algorithms, such 

as stochastic gradient descent (Goodfellow et al., 2016, p. 200). These two concepts are 

briefly discussed below. 

Backpropagation 

Backpropagation is a specific algorithm that efficiently computes the gradients in a deep 

feedforward network, such as the object detection model used in 5 Machine Learning 

Pipeline. It calculates the gradients of the loss function with respect to the weights of each 

layer in the network by recursively applying the chain rule for derivatives (LeCun et al., 

2015, p. 438).The process involves two main steps: forward propagation and backward 

propagation.  

During forward propagation, the input data is fed into the network, and the activations of 

each layer are computed by applying the non-linear transformation function to the 

weighted sum of inputs resulting in the output layer providing the predicted output of the 

model according to Equation 2-6. 

Next, during backward propagation, the error or loss between the predicted output and 

the target output is calculated. The core concept is to compute the gradient (or derivative) 

of the cost function with respect to the input of a module by working backwards from the 

gradient with respect to the output of that layer (or the input of the subsequent layer) 

using the chain rule (LeCun et al., 2015, p. 438) By iteratively applying the backpropagation 

equation, gradients can be propagated through all the modules in a deep network. Start-

ing from the top output layer, where the network generates predictions, moving down-

wards to the bottom where the external input is received. Once these gradients have been 

calculated, it becomes straightforward to compute the gradients with respect to the 

weights of each individual module (LeCun et al., 2015, p. 438).  
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Figure 8: Multi-layer neural networks: c) forward and d) back-propagation (LeCun et al., 2015, p. 437) 

Stochastic Gradient Descent 

The majority of deep learning algorithms rely on an optimization algorithm called the Sto-

chastic Gradient Descent (Goodfellow et al., 2016, pp. 96–97), which is an extension of the 

Gradient Descent (Goodfellow et al., 2016, p. 149).  

The Gradient Descent is an optimization algorithm that iteratively adjusts parameters to 

minimize a cost function by following the direction of the steepest slope. It measures the 

local gradient of the error function to the parameter vector 𝜃, moves in the direction of 

descending gradient in learning steps, and iteratively adjusts 𝜃 to minimize the cost func-

tion until convergence (Géron, 2023, p. 118). The learning rate (LR) in Gradient Descent 

determines the size of each step taken during parameter updates, influencing the conver-

gence speed towards a minimum. The LR is one of the most important hyperparameters 

in the training and fine-tuning of machine learning models (see 5.2.2 Training Configura-

tion). 

 

Figure 9: Gradient Descent (Géron, 2023, p. 118) 
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One challenge in machine learning is the trade-off between the need for large training 

sets to achieve good generalization and the computational expense associated with pro-

cessing them (Goodfellow et al., 2016, p. 149). However, (Batch) Gradient Descent uses 

the whole training set (in one Batch) to compute the gradients at every step, making it 

very slow (Géron, 2023, p. 124). In stochastic gradient descent (SGD), on the other hand, 

the input vector is shown for a few examples, the outputs and errors are computed, the 

average gradient is calculated, and the weights are adjusted accordingly. This process is 

repeated with small sets of examples (mini batches) until the average of the loss function 

no longer decreases. Despite being a simple procedure, SGD often achieves good weight 

values quickly compared to more complex optimization techniques. The system's perfor-

mance is then evaluated on a separate set of examples called a test set to assess its ability 

to generalize and produce meaningful outputs for unseen inputs (LeCun et al., 2015, 

p. 437).  

2.4.3. CONVOLUTIONAL NEURAL NETWORKS 

A Convolutional Neuronal Network (CNN or ConvNets) is a class of multilayered feedfor-

ward neural networks designed to detect complex features in data (QuinnRadich, 2023) 

"that come in the form of multiple arrays, for example a colour image composed of three 

2D arrays containing pixel intensities in the three colour channels" (LeCun et al., 2015, 

p. 439). The need for manual extraction is replaced by automatic feature extraction/iden-

tification, which renders CNN models highly accurate and efficient for many tasks in com-

puter vision, e.g., object recognition and classification (see 2.5 Computer vision) (Darko et 

al., 2020, p. 8). ConvNets leverage the properties of natural signals with four key ideas: 

local connections, shared weights, pooling, and the utilization of multiple layers (LeCun et 

al., 2015, p. 439).  

The typical ConvNet architecture consists in sequential stages, with the initial stages com-

prising convolutional and pooling layers. The output of convolutional layers in a neural 

network consists of feature maps, which are 2D representations obtained either from the 

previous layer or by applying specific filters to an input image (Géron, 2023, p. 448). Each 

unit (or neuron) in a convolutional layer corresponds to a specific location in the feature 

map and is connected to local patches in the previous layer through a filter bank, a set of 

weights (LeCun et al., 2015, p. 439). In the convolutional layer, each unit applies a convo-

lution operation to its local input patch using the corresponding filter bank. It involves 

applying a non-linear function, such as ReLU, to the weighted sum and passing the output 

to the next layer. Each feature map shares the same filter bank, while different feature 

maps in a layer use different filter banks. (LeCun et al., 2015, p. 439) 
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Figure 10: Convolutional layers with receptive fields of a ConvNet (Géron, 2023, p. 448) 

The local patches of two neurons in an input layer may overlap. The amount of overlap 

between patches is determined by the stride parameter used during the convolution op-

eration. If the stride is set to a value less than the patch size, such as stride=1, the patches 

will overlap. This means that neighboring patches will share some common elements, al-

lowing the network to capture more fine-grained spatial information and potentially im-

prove the network's ability to detect smaller features. On the other hand, if the stride is 

set to a value greater than the patch size, such as stride=2, the patches will have a gap 

between them, resulting in less overlap. This can reduce the computational cost and 

memory requirements of the network but may lead to a coarser representation of the 

input data. (Géron, 2023) 

 

Figure 11: Stride of local patches (Géron, 2023, p. 450) 

This architecture is motivated by the high correlation of local groups of values that form 

distinctive and easily detectable local motifs in array data like images. These local motifs 

are invariant to location, meaning that "if a motif can appear in one part of the image, it 

could appear anywhere" (LeCun et al., 2015, p. 439). This allows units at different locations 

to share weights and detect patterns across the array. The filtering operation performed 

by a feature map is a discrete convolution (LeCun et al., 2015, p. 439). Convolutional op-

erations on learned features with input data simultaneously learn and extract optimal, 

effective, and highly intricate features for directly recognizing visual patterns from raw 

data (Darko et al., 2020, p. 13).  



 

24 

While a convolutional layer detects local conjunctions of features from the previous layer, 

the pooling layer merges semantically similar features by coarse graining their positions. 

Common pooling units compute the maximum local patch of units in one or few feature 

maps (see Figure 11). Neighboring pooling units reduce the dimension of the representa-

tion and create an invariance to small shifts and distortions by taking input from patches 

that are shifted by more than one row or column.  

 

Figure 12: Pooling Layer in a ConvNet (Géron, 2023, p. 457) 

In common ConvNet architectures, multiple stages of convolution, non-linearity, and pool-

ing are stacked, followed by additional convolutional and fully connected layers. Back-

propagation through a ConvNet is straightforward, enabling the training of all weights in 

the filter banks (LeCun et al., 2015, p. 439). Deep neural networks leverage natural signals' 

compositional hierarchy property, where lower-level features are formed by combining 

lower-level ones. This applies to images, where local edge combinations form motifs, mo-

tifs combine to create parts, and parts assemble into objects. Pooling ensures that repre-

sentations remain consistent even when elements in the previous layer vary in position 

and appearance (LeCun et al., 2015, p. 439).  

 

Figure 13: Typical ConvNet architecture (Géron, 2023, p. 461) 

In conclusion, the theoretical concepts explored in this chapter lay the groundwork for 

training, validating, and testing the object detection model in Chapter 5, Machine Learning 

Pipeline. The chosen object detection model, YOLO (You Only Look Once), utilizes a Conv-

Net as its backbone architecture, and during training, the hyperparameters presented 

here are fine-tuned. 
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2.5. COMPUTER VISION 

Computer vision is a subfield of artificial intelligence that uses deep learning models and 

other methods to enable computers to recognize and understand visual information, in-

cluding objects, scenes, and actions in images or videos. Computer vision encompasses a 

wide range of subfields, each focusing on specific tasks and techniques that range from 

reproducing human visual abilities, such as recognizing faces, to creating entirely new cat-

egories of visual abilities. 

 

Figure 14 Computer vision tasks (image by author) 

For the scope of this work, which includes the detection of reusable components in 360° 

images, only object detection is relevant. The concept of segmentation will only briefly be 

discussed here for completeness, as it plays only a minor role in the rest of the thesis. 

2.5.1. OBJECT DETECTION 

Object detection is a problem in the field of computer vision. It is considered one of the 

most fundamental and challenging problems in computer vision, as it requires the algo-

rithm to accurately detect objects within an image, even when they appear in different 

orientations, scales, and lighting conditions (Liu et al., 2018b). 

Object detection involves two tasks: object categorization and object localization. (Zhang 

et al., 2013, p. 4). Object localization includes localizing objects accurately in the image to 

separate them from the background and determining the “extents of all the objects that 

are found present” (Zhang et al., 2013, p. 4). Object categorization refers to recognizing 

objects and determining whether any instances of defined categories are present (Zhang 

et al., 2013, pp. 2–3).  

Generally, there are two types of object detection: detection of specific instances and de-

tection of broad categories (Liu et al., 2018a, p. 1).Object instance detection can be con-

sidered a matching problem, as it aims to detect instances of a particular object (Liu et al., 

2018a), such as Konrad Zuse, the family’s dog or the Brandenburg Gate. On the other 

hand, object class detection focuses on detecting previously unseen instances of pre-de-

fined categories. Object class detection is also known as category-level or generic object 

detection. This second task is more challenging due to the large number of categories and 
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intra-category appearance variations caused by differences in color, texture, shape, and 

imaging conditions. Additionally, objects in real-world scenes are often partially occluded 

and accompanied by similar-looking background structures, making accurate location 

and separation from the background critical. 

 

Figure 15 Examples of specific and generic object detection. 

Specific object detection includes localizing instances of a particular object (upper row), as well as generaliz-

ing to generic object categories (lower row). Images by author or used under Creative Commons Licence. 

Object recognition has evolved from geometric representations to statistical classifiers 

(such as Neural Networks, SVM, etc.) based on appearance features. In 2012 Krizhevsky 

et al. proposed a Deep Convolutional Neural Network (DCNN) called AlexNet which 

achieved record-breaking image classification accuracy in the ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC). CNNs have been used for object detection and 

localization since the 1990s. However, deeper CNNs (DCNNs) have led to significant 

improvements in detecting general object categories. This shift occurred when successful 

DCNN applications in image classification were applied to object detection, resulting in 

the milestone Region-based CNN (RCNN) detector by Girshick et al. in 2014. DCNNs heav-

ily rely on vast training data and large networks with millions or billions of parameters. 

The goal now is to build general-purpose object detection systems that approach human-

level performance on thousands of categories, still needs to be solved (Liu et al., 2018a, 

pp. 5–6).  
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Before deep learning, traditional object detection models followed a three-staged ap-

proach: informative region selection, feature extraction, and classification (Zhao, Z. Q. et 

al., 2019, p. 3212). In the information region selection stage, the sliding-window-method 

was commonly used: Here, a fixed-size rectangular window slid across the image, applying 

a classifier or detector on each window (Felzenszwalb et al., 2010, p. 1628) to determine 

if it contains the target object or class. Feature extraction algorithms were then used to 

generate semantic and robust image representations, followed by classification algo-

rithms serving as the classifier (Li et al., 2023, p. 509). However, the sliding-window 

method often leads to multiple detections of the same object at slightly different positions 

necessitating post-processing techniques like Non-Maximum-Suppression (NMS) to elim-

inate redundant or overlapping bounding boxes3 (Géron, 2023, p. 486) Despite its effec-

tiveness, the sliding-window method is computationally expensive (Géron, 2023; Liu et al., 

2018a; Zhao, Z. Q. et al., 2019), leading to the development of more efficient object detec-

tion frameworks such as the region based (two staged) and unified (one stage) frame-

works. 

In a two-stage framework, in the first stage, a deep fully convolutional network is respon-

sible for generating category-independent region proposals from an image, and features 

are extracted from these regions using a CNN. In the second stage, a region-based CNN 

(R-CNN) detector uses proposed regions and the feature map as inputs (Chou et al., 2020, 

p. 838). It classifies proposals and refines their bounding boxes using category-specific 

classifiers to determine the category labels of the proposals. (Liu et al., 2018a, p. 10)  

Conversely, one-stage or unified object detection pipelines are a type of architecture that 

utilize a single CNN to directly predict both class probabilities and bounding box offsets 

from full images, without the need for region proposal generation or post-classification 

feature resampling (Zhao, Z. Q. et al., 2019, p. 3214). The model divides the image feature 

into grids and predicts B bounding boxes with confidence scores for each grid cell. It also 

predicts C conditional class probabilities based on the presence of an object. During test-

ing, class-specific confidence scores are obtained by combining the conditional class prob-

abilities and individual box confidence predictions. These scores represent the likelihood 

of a class appearing in the box and the accuracy of the predicted box (Chou et al., 2020, 

p. 838). This monolithic approach "regards object detection as a regression or classifica-

tion problem" (Chou et al., 2020; Zhao, Z. Q. et al., 2019, p. 3214) and encapsulates all 

necessary computations within a single network (Liu et al., 2018a, p. 13). The one-stage 

object detection is the underlying approach of this thesis’ YOLO model and therefore par-

ticularly relevant.  

 
3 Bounding boxes refer to axis-aligned rectangles that tightly bound the object, that coarsely defines the spa-

tial location and extent of that object Liu et al. (2018a). 
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2.5.2. SEGMENTATION 

“Image segmentation is a commonly used technique in digital image processing and anal-

ysis,” and computer vision “to partition an image into multiple parts or regions, often 

based on the characteristics of the pixels in the image“ (MathWorks, 2023). In segmenta-

tion, several related problems are distinguished, "namely semantic segmentation (per-

pixel class labeling), instance segmentation (accurately delineating each separate object), 

(and) panoptic segmentation (labeling both objects and stuff)" (Szeliski, 2022, p. 307). Se-

mantic segmentation is a detection approach "in which each pixel is labeled with the class 

of its enclosing object or region" (Long et al., 2014, p. 1). On the other hand, instance seg-

mentation is the task of finding all of the relevant objects in an image and producing pixel-

accurate masks for their visible regions (Szeliski, 2022, p. 311). Instance segmentation can 

therefore be considered a combination of both object detection and segmentation. (Yi et 

al., 2019, p. 230) Simplified, semantic segmentation classifies pixels into semantic catego-

ries (e.g., “stuff”), while instance segmentation associates pixels with individual object in-

stances. Combining both results in panoptic segmentation where all objects are seg-

mented and "stuff" is labeled. (Szeliski, 2022, pp. 312–313)  

 

Figure 16 Example of semantic segmentation (Géron, 2023, p. 492) 

 

Figure 17: Panoptic Segmentation results, adapted from (Kirillov et al., 2019, p. 2) 

The remainder of this thesis focuses on generic object detection techniques that use CNN 

backbone structures, which are further explored in Chapter 4.2.2, Analysis of techniques 

for identifying components.  
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2.6. 360° IMAGING 

The technique of 360° images, also known as panoramic, omnidirectional or 360° images 

involves capturing omnidirectional views of the surrounding environment to create a vir-

tual space that replicates the viewpoints surrounding the user (Eiris and Gheisari, 2019). 

These images are generated using specialized devices (360 cameras) that use multiple 

lenses or a single wide-angle lens along with advanced stitching algorithms to seamlessly 

merge the captured images or videos into a spherical or panoramic view. This involves 

constructing an equirectangular projection in a two-dimensional plane. Similar to map 

projections, the algorithms are used to systematically transform the 2D plane into a 

spherical, cylindrical, or cubic representation, and vice versa. (Eiris and Gheisari, 2019, 

p. 438) 

 

Figure 18: 360° Panoramic Development Process. 

Adapted from (Eiris and Gheisari, 2019, p. 438), image by author. 

In recent years, 360 cameras have become more popular (Chou et al., 2020; Eiris and 

Gheisari, 2019; Li et al., 2023; Su and Grauman, 2017; Zhao, P. et al., 2019) for several 

reasons. First, they are “part of the rising trend of virtual reality (VR) and augmented reality 

(AR) technologies” and are thought to be”increasingly influential for wearable cameras, 

autonomous mobile robots, and video-based security applications” (Su and Grauman, 

2017, p. 1). Furthermore, they are particularly interesting for computer vision because of 

the rich contextual information provided by their large field-of-view (FOV) (Li et al., 2023, 

p. 508). And lastly, the availability of 360° cameras on the commercial market contributes 

to their popularity (Barazzetti et al., 2018, p. 69). Table 4 shows some of the sensors with 

their average price in May 2023.  

In the context of construction, 360° images have been used for "accurate metric recon-

structions" (Barazzetti et al., 2018, p. 69), for safety-training applications to enhance train-

ees’ hazard-identification (Eiris et al., 2018) and, together with Building Information Mod-

eling (BIM) and photogrammetry aided by an Unmanned Aerial System (UAS) "for outdoor 

and indoor visual monitoring of construction progress" (Barbosa et al., 2022). This aligns 
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with Eiris and Gheisari (2019), who discovered that in the Construction field, researchers 

have utilized 360° panoramas to depict real-world job sites that are remote, inaccessible, 

or unsafe, and identified three categories of applications: Interactive Learning, Reality 

Backdrop to Augmented Information, and Visualize Safe and Unsafe Situations (Eiris and 

Gheisari, 2019, p. 436). Recently, they are gaining popularity in the as-built documenta-

tion, so that construction-specific hardware, such as the 360 helmet camera from Open-

experience used in this work or Matterport360, are being developed. 

Table 4 Selection of commercial 360° cameras (as of May 2023) 

Producer Name Product type Price Source 

Rollei CMOS 2 Portable Camera 109,99 € https://www.mediamarkt.de/ 

Samsung Gear 360 (2. Generation) Portable Camera 112,99 € https://www.360gradkamera.de/ 

Insta360  Nano Portable Camera 223,55 € https://www.360gradkamera.de/ 

Ricoh Theta S Portable Camera 224,75 € https://www.360gradkamera.de/ 

Insta360  One X Portable Camera 459,00 € https://www.360gradkamera.de/ 

GoPro Gopro Max 360 Portable Camera 499,99 € https://www.mediamarkt.de/ 

Insta360  ONE X2  Portable Camera 529,99 € https://www.mediamarkt.de/ 

DJI Mini 2 SE 

Fly More Combo 

Quadrocopter 559,00 € https://www.conrad.de/ 

Garmin VIRB360 Portable Camera 699,00 € https://www.garmin.com/de-DE/ 

Spherical images were, in some cases, found to be a better choice than traditional or 

fisheye images. For example, Brazzetti et al. (2028) found 360° cameras outperforming 

conventional approaches in the survey of long and narrow spaces, as well as interior areas 

like small rooms. Furthermore, the generation time also gives 360° cameras increased 

competitiveness: In the Barazzetti et al. (2018) practice example, data collection took only 

a few minutes with the 360 camera against several hours required by a laser scanner 

(Barazzetti et al., 2018, pp. 72–74). This aligns with Gheisari and Subramanian, who addi-

tionally found photogrammetry based on 360° images would "be an appropriate tech-

nique in applications where less level of accuracy would be sufficient" (Gheisari and Subra-

manian, 2019) such as in deconstruction planning. 
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3 STATE OF THE ART 

In this chapter the status quo in research and practice is presented. First, the state-of-the-

art research on the implementation of CE in the BE is analyzed and a review on successful 

circular building projects is conducted. Second, successfully implemented projects and 

case studies are considered. Furthermore, CE-enabling digital technologies, focusing on 

machine learning and artificial intelligence are researched. 

3.1. METHODOLOGY 

The chosen method is the systematic literature review (SLR)(Briner and Denyer, 2012, 

p. 112). Here, the protocol for conducting a systematic review as devised by Briner and 

Dreyer (2012) adapting from Higgins and Green (2008) was followed. 

Table 5 Steps of the systematic review adapted from Briner and Denyer, 2012) 

Step Description 

Background to review: Definition of the problem and preliminary research; dis-

tinction from other research 

Objectives: Definition of the objectives and formulation of review 

questions 

Criteria for considering studies for this review: Outline of included research 

Search strategy for identification of studies: Determination of Data bases 

Eligibility: Elimination of studies that do not meet the pre-estab-

lished criteria 

Data collection: Mode of data extraction and processing 

Assessment of methodological quality: Quality evaluation 

Synthesis Analysis of results 

The scope of this review is to show the current state of knowledge regarding the circular 

economy in the AEC sector. By looking for successful projects in science and practice, con-

clusions can be drawn about the importance of the topic and its dissemination. Based on 

the hypothesis that science often precedes implementation in practice, a high dissemina-

tion in science and in practice suggests a high dynamic and an establishment of the topic 

in practice. Conversely, high relevance of the topic in research coupled with low dissemi-

nation in practice indicates the presence of challenges in implementation. The aim of the 

literature study is not only to present the state of the art in science and technology, but 

also to identify the barriers to implementation. 
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The leading review question is: 

RQ1. What is the state-of-the-art research and practice of circular economy implemen-

tation in the construction industry? 

It was found adequate to separate the question into two sub-questions regarding re-

search and practice. Therefore, in section 3.2 successfully implemented projects in re-

search will be addressed, while in section 3.3 the object is successfully implemented pro-

jects in practice. Furthermore, the individual selection criteria are refined according to the 

research question and presented in the respective section.  

The target papers were selected following previous studies using theme-based specific 

and pertinent keywords in this research area, such as “circular economy,” “construction,” 

“construction industry,” “building,” “urban mining”, etc. The keywords utilized were de-

rived from a preliminary literature survey on this subject. (Çetin et al., 2021; Hossain et 

al., 2020b, p. 2) The complete list of search strings are listed in Table 51 in Annex II. The 

search was conducted in the online databanks Scopus, an “abstract and citation database 

of peer-reviewed literature including scientific journals, books, and conference proceed-

ings” (Elsevier, 2023a), and Web-of-Science (WoS). The WoS primarily focuses on the cita-

tion impact of journals, while Scopus coverage is more comprehensive, including all WoS 

journals in the science fields, similar to the coverage of large literature databases. (López-

Illescas et al., 2008, p. 314) To include both peer-reviewed and non-reviewed proceedings, 

Google Scholar was selected as a third database. 

3.2. SUCCESSFUL IMPLEMENTED PROJECTS OF CIRCULAR ECONOMY 

IN THE BUILT ENVIRONMENT IN RESEARCH 

The aim of the literature study is to find successfully implemented projects in research on 

CE in the BE. As projects are often interpreted as “case studies”, which limits the research 

scope, the research problem was translated to:  

RQ1. What is the state-of-the-art in research of circular economy implementation in the 

built environment? 

Considering the state-of-the-art will surface current research achievements and therefore 

better fit the scope. Further research questions (RQ), which add to conciseness and should 

therefore be addressed, are: 

RQ2. What are current research trends? 

RQ3. What is the current knowledge regarding the implementation of CE in the BE? 

RQ4. Which limitations and barriers are identified? 

RQ5. What should future research focus on? 

No limits were set for publication years in this SLR. Due to time and resource limitations 

for translations, only English publications were included. The initial query in Scopus, 



3 State of the Art 

33 

Google Scholar and Web of Science resulted in respectively 366, 916 and 281 articles and 

conference proceedings as of January 2023 (no limits for publication years). 

The premise of a systematic literature search is to describe the state of research on a 

problem and to contribute to the body of knowledge by adding new findings. However, 

the preliminary search and consecutive statistical analysis (see 3.2.1) revealed that review-

type publications constitute a large proportion of the body of knowledge and have a sim-

ilar or identical research scope. This leads to the conclusion that the current state of re-

search in this field is likely to be accurately represented, given the recent publication dates 

of the papers (the latest being January 2023, see section 3.2.1, Description of the research 

FieldAnnex III), the number of publications, and the similarities in research objectives. 

Hence, the document type was added to the selection criteria, delimiting the literature 

studies to open-access “reviews”. This type of literature review which only includes review-

type publications are denominated rapid overview of systematic reviews (or “umbrella 

overview”), a short form of SLR. While rapid reviews are undertaken in a shorter time-

frame than SLRs, and limit the scope (e.g., use of grey literature) (Khangura et al., 2012, 

p. 6), they yield comparable results (Watt et al., 2008, p. 1039). Moreover, articles contain-

ing terms and expressions which were semantically different but homonyms (e.g., “con-

struction” is used as “model construction”) were eliminated, and articles focusing on a 

particular material (e.g., concrete or polymers), component, stakeholder (e.g., private 

economy) or branch (e.g. MEP) were eliminated. Furthermore, articles reviewing a single 

country’s performance were not considered, as they do not give a general overview of 

developments in the circular economy in the built environment. This led to 28 relevant 

articles, which were then analyzed. The included publications are found in Table 54 in 

Annex II. The review is conducted according to the research protocol proposed in Table 6. 

Table 6 Research protocol for the SLR "Successfully implemented projects of CE in the AEC in literature" 

Steps Research 

Initial Review Overview of current research of circular economy in the built environment: 

Statistical analysis: scientometric analysis of research panorama 

Objective Find recent review papers on the implementation of CE in BE 

Criteria for considering studies Review papers in English that studied CE implementation trends, BE, trends 

and barriers in academia 

Strategy to obtain studies  Research in three databases (Scopus, Web of Science and Google Scholar) ap-

plying no timeframe; restricting the document types to reviews and the sub-

ject area to Engineering and Environmental studies 

Eligibility Peer reviewed and proceedings 

Data collection Exclusion of repeated articles and articles with no full-text available; articles 

focusing on particular material, component, stakeholder (e.g., private econ-

omy (or branch (e.g., MEP); exclusion of homonyms; 

read of title, read of abstracts; read of full articles; 

addition of relevant articles that were not included in this process 

Quality assessment Articles analyzed by the author according to  

Synthesis of results Scientometric analysis to identify trends, future research trends;  

Content analysis: Summary and results of all analyzed papers:  



 

34 

To generally describe and identify current research trends a statistical analysis based on 

this preliminary search was conducted. The statistical analysis is used to describe a broad 

research field based on the preliminary, i.e., unfiltered, search. It comprises a general de-

scription of the body of knowledge (publishers, geographic distribution, and publication 

years) and the science mapping. To efficiently conduct the statistical analysis the software 

SciVal and VOSViewer were used. SciVal is a visualization, benchmarking and analysis tool 

based on the Scopus database that provides access to the research performance of thou-

sands of research institutions and their associated researchers (Elsevier, 2023b). 

VOSviewer, on the other hand, is a bibliometric visualization software that offers distance-

based visualizations of bibliometric networks (van Eck and Waltman, 2014). This software 

delimits the use of only one database for each network and requires PubMed, Scopus, 

Web-of-Science, Dimensions or Led file-types for a bibliographic analysis. Since Google 

Scholar (916 results) does not export bibliometric data appropriately, Scopus was selected 

as reference database as the one with the second most results (366 results). 

3.2.1. DESCRIPTION OF THE RESEARCH FIELD  

The state of research can best be described using a descriptive overview of the research 

field and its development. For the general description the literature data was retrieved 

directly from SciVal. In total, the preliminary selection of 360 papers (no selection criteria 

applied) was analyzed following the perspectives proposed by Okorie et al., 2018): 

(1) Circular economy papers across years; 

(2) publications across journals and conference papers; and 

(3) publications by geographical distribution. 

Circular Economy Papers across Years 

In the preliminary search, no limits were set for the publication year. However, according 

to the distribution over time, there were no identified relevant papers on Scopus before 

2007 which focused on CE in the BE. Specifically, papers on this subject only emerged in 

2007 with Man and Wenhu’s article “Construction of circular economy industrial system” 

(Man and Wenhu, 2007) and have increased exponentially from 18 publications in 2017 

to 111 in 2022. It can be inferred, that „this topic of research is starting to gain traction in 

the built environment and will likely continue to grow in terms of number of publications“ 

(Benachio et al., 2020, p. 4). However, the total number of publications compared with 

other research focus in the AEC sector (e.g. BIM with 15.357 results, virtual reality 14.731 

results etc.) confirm the observation, that research on the implementation of the circular 

economy in the built environment is still in its infancy (Adams et al., 2017; Akhimien et al., 

2021; Benachio et al., 2020; Çimen, 2021; Ghisellini et al., 2016; Hossain et al., 2020a; 

Mhlanga et al., 2022; Munaro, 2019; Munaro et al., 2020; Osobajo et al., 2022; Yu, Junjan 

et al., 2022).  
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Publications across Journals and Conference Papers 

The types of publications reviewed were selected by the identified subject areas, includ-

ing: “Engineering”, “Environmental Science”, “Energy”, “Business, Management and Ac-

counting”, “Social Science” and “Computer Science” (see Figure 20). The diverse range of 

subject areas covered in research indicates the multidisciplinary nature of the field. The 

most output is found in the fields of engineering, environmental sciences, and energy. 

Furthermore, across the types of publications and papers series, the results of the pre-

liminary search appear in a great variety of journal and proceeding series (see Figure 22) 

(Andersen et al., 2022, p. 12). However, a few stand out as dominant publishers being 

Journal of Cleaner Production (n = 34), the IOP Conference Series: Earth and Environmen-

tal Science (n = 32), Sustainability Switzerland (n = 27), and Resources Conservation and 

Recycling (n = 20). 

Papers by Geographical Distribution 

Finally, an analysis of the geographic distribution found that publications were drawn 

from 60 countries (see Figure 24). The country with the greatest number of papers in this 

review was the United Kingdom (n = 49), tightly followed by China (n = 44), Italy (n = 34) 

and Spain (n = 28). Also, Europe was by far the continent with the most publications in this 

area, with 260 of the papers included in this review. The next continent was Asia with 112 

publications. 

 

 

Figure 19 Number of Publications per Year of Publications for circular economy and BE (image by author) 
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Figure 20 Publications by subject area (image by author) 

 

Figure 21 Publications per document type (image by author) 

 

Figure 22 Publications by source (image by author) 
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Figure 23 Publications by year by source (illustration from Scopus) 

 

 

 

Figure 24 Publications by country (image by author) 
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3.2.2. RQ2. WHAT ARE CURRENT RESEARCH TRENDS? 

The research trends, future research directions and thematic clusters within the thematic 

field of CE in the AEC sector were first identified using science-mapping techniques and 

then analyzed in a content analysis.  

Science mapping 

„Science mapping is a generic process of domain analysis and visualization“ (Chen, 2017), 

that „aims at detecting the intellectual structure of a scientific domain” (Darko et al., 2020, 

p. 2). The science-mapping included co-citation and co-word analysis, and bibliographic 

coupling and was conducted using the metadata exported as a tab delimited file (.csv) 

from Scopus. It is a valuable approach for identifying potentially significant patterns in 

extensive bibliographic data, and it can lead to insights that are not feasible with other 

methods (Darko et al., 2020, p. 2). Interrelated papers are grouped in clusters in which all 

papers share at least one reference with all the other members (Kessler, 1963, p. 10). 

Clustered papers have a high degree of logical correlation and therefore a similar content 

(Kessler, 1963, p. 10).  

Bibliographic coupling 

Bibliographic coupling is a grouping method for technical and scientific papers based on 

shared references. Two publications are coupled if they have at least one common refer-

ence or source (Kessler, 1963, p. 10). This technique is useful for the identifying current 

trends, as the publications’ data (author name, title, journals, DOI and references) is used 

to "analyze the relationships among citing publications to understand the periodical or 

present development of themes in a research field“ (Donthu et al., 2021, p. 289). For the 

bibliographic coupling using VOSViewer the counting method was set as full-counting and 

the threshold of minimum numbers of citations was set at 10. This resulted in 131 papers, 

with the largest set of 125 clustered items. The resulting network is visualized in Figure 

25. 

The clusters show a high density with only a few publications (such as Rakhshan (2021a) 

or Deutz (2017)) outside. In general, the closer two nodes are located to each other, the 

stronger their relatedness (van Eck and Waltman, 2023, p. 9) Therefore, from the visuali-

zation it can be inferred that the publications reference sources with a similar thematic 

focus. This could also be an indicator that the body of knowledge is not very diverse yet, 

with a small number of landmark papers. In total seven thematic clusters were identified, 

that also have thematic overlaps among them. The clusters and their main topics are sum-

marized in Table 7 (p.40). The central research trends can be summarized to: principles 

and strategies/enablers, current challenges of CE in the BE; construction and demolition 

waste, reuse, design strategies; stock and flow analysis (including LCA and LCC); and tools 

and technologies. This is consistent with the classification of various publications (Bena-

chio et al., 2020; Ginga et al., 2020; Hossain et al., 2020b). 
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Figure 25 Literature clusters resulting from Bibliographic Coupling using VosViewer (image by author). 

In the visualization each publication that shares at least two sources with other publications is represented 

by a node. In bibliometric coupling the strength of a link between two nodes indicates the number of cited 

references two publications have in common (van Eck and Waltman, 2023, p. 5). The link thickness indicates 

the frequency of co-occurrence. Nodes and links of a particular color represent a thematic cluster and can 

explain the coverage of topics and relationships between topics within that cluster. 

An important research trend is the Reuse of Materials and CDW management (Mhatre et 

al., 2021; Munaro et al., 2020; Osobajo et al., 2022, p. 52), in fact in Munaro et al. (2020) 

the category Recycled/Reusable materials comprised almost 40% of the studied volume. 

But, it is noticed that the amount of research done on recycling greatly outnumbers the 

research done on reuse. (Charef et al., 2021; Ghisellini et al., 2016; Ginga et al., 2020) To 

date, the applications of CE in construction practice had been largely limited to end-of-life 

considerations and recycling (Adams et al., 2017; Akhimien et al., 2021, p. 33; Mhatre et 

al., 2021), despite being the least preferred option on the R-frameworks (Charef et al., 

2021). This could be explained by the CE’s strong focus on technological innovation 

through cleaner technologies and recycling, rather than reuse. 

 

  



 

40 

Table 7 Thematic clusters resulting from bibliographic coupling 

Cluster Most cited papers Main topics 

Cluster1 

(red) 

(Adams et al., 2017) 

(Bilal et al., 2020) 

(Foster, 2020) 

(Hart et al., 2019) 

(Leising et al., 2018) 

Current challenges, enablers/strategies and frameworks for CE imple-

mentation in the AEC sector 

Cluster 2 

(green) 

(Akanbi et al., 2018) 

(Akanbi, L. et al., 2019) 

(Bao et al., 2019) 

(Esa et al., 2017) 

(Ghisellini et al., 2018) 

(Smol et al., 2015) 

Construction and demolition waste reduction (management) and pre-

vention (reuse); management tools;  

Cluster 3 

(dark 

blue)  

(Akhimien et al., 2021) 

(Benachio et al., 2020) 

(Çimen, 2021) 

(Mhatre et al., 2021) 

(Oluleye et al., 2023) 

Literature reviews on CE implementation in the construction industry; 

case-studies and stakeholder awareness; 

Cluster 4 

(yellow) 

(Anastasiades et al., 

2020) 

(Charef and Emmitt, 

2021) 

(Gallego-Schmid et al., 

2020) 

(Ginga et al., 2020) 

(Eberhardt et al., 2020) 

(López Ruiz et al., 2020) 

Life cycle assessment (LCA) and environmental assessment; tools  

Cluster 5 

(orange) 

(Hossain et al., 2020b) 

(Joensuu et al., 2020) 

(Munaro et al., 2020; Yu 

et al., 2021) 

(Yu et al., 2021) 

Literature reviews, Circular economy practices/strategies; gaps and 

challenges; 

Cluster 6 

(cyan) 

(Eberhardt et al., 2022) 

(Hossain and Ng, 2018) 

(Mahpour, 2018) 

Design and construction strategies; Building LCA; 

Cluster 7 

(purple) 

(Charef and Lu, 2021) 

(Minunno et al., 2020) 

(O'Grady, T. et al., 2021) 

Stock and flow analysis, reusability evaluation; benefits/environmental 

impact analysis; disassembly  

Co-word analysis or Keyword co-occurrence 

While bibliographic coupling can provide an overview of the present research field, co-

word analysis is used to preview the future of the research field (Donthu et al., 2021, 

pp. 289–290) and potential gaps. This mapping method gives an overview of the keywords 

used in the literature sample and elaborates on the content of thematic clusters. 

For the co-word analysis all keywords with a minimum of five occurrences (at least five 

documents have that keyword) were considered. A thesaurus file was used in VOSviewer 

to merge different synonyms of keywords before creating a map based on bibliographic 

data, allowing for data cleaning and the correct weighting of the keyword or topic. (van 
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Eck and Waltman, 2023, p. 31). Keywords contained in the initial search query such as 

“circular economy” or “construction” and methodological keywords such as “literature re-

view” were excluded. Of 2297 keywords, a total of 60 met the threshold (see Figure 26). 

Table 8 displays the top ten keywords produced by the software, ranked in descending 

order of their links, and frequency of occurrence.  

 

Figure 26 Cluster of keyword occurrence in review paper selection, VOSViewer (image by author). 

In this visualization each keyword is represented by a node where the node size indicates its occurrence, 

and the color denotes the distinct cluster. The node size indicates the number of documents a keyword ap-

pears in. (van Eck and Waltman, 2023) The link between two nodes determines the number of times a key-

word was used together with another keyword. Additionally, the thickness of each arc signifies the strength 

of its respective relationship. (Wang et al., 2019, pp. 42–43) 

Keyword co-occurrence clusters reveal thematic relationships and patterns within the 

text. Figure 26 identified six clusters of frequently occurring keywords that indicate com-

mon themes or concepts. For example, in design, the focus is on end-of-life considerations 

that translate into the Design for Disassembly (DfA) or Design for Deconstruction (DfD) 

strategies, and digital tools such as BIM are used to optimize these designs (Akhimien et 

al., 2021; Eberhardt et al., 2020). Another important topic is quantifying material flows and 

analyzing market-based potentials (Çimen, 2021; Munaro et al., 2020). Furthermore, the 

move away from recycling in favor of reuse plays a major role in construction demolition 

waste management (Ginga et al., 2020; Joensuu et al., 2020; Tirado et al., 2022). Overall, 



 

42 

keyword co-occurrence clusters visually represent the text structure and facilitate the in-

terpretation of the research topics. 

Table 8 Most cited keywords analyzed by VOSViewer software. 

Keyword Cluster Occurrences Total link strength 

sustainability red 122 675 

economics green 117 676 

life cycle assessment blue 91 580 

waste yellow 89 552 

recycling yellow 74 516 

environment red 71 510 

construction and demolition yellow 49 353 

design purple 46 281 

construction material cyan 43 313 

reuse yellow 33 184 

Co-citation 

This analysis was done to provide an insight into understanding the intellectual structure 

of the research field and the various publication powerhouses which have been empow-

ering research in CE in the CI (Antwi-Afari et al., 2021, pp. 5–6). In co-citation the link 

strength between two nodes indicates the number of times in which these two items were 

both cited by the same document (van Eck and Waltman, 2023, p. 27). For the analysis of 

co-citation in VOSViewer, the cited references were used as the unit of analysis, setting a 

minimum threshold of five citations per author. Of 18307 cited references a total of 56 

references met the threshold, resulting in the diagram displayed in Figure 27.  

 

Figure 27 Visualization of the co-citation cluster, VOSViewer (image by author) 
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Figure 27 shows that all publications within a citation cluster are very close to each other. 

This indicates a high degree of interconnectivity and mutual influence among the cited 

papers. A high degree of agreement can be assumed with respect to the basic concepts, 

theories, methods, and results on the topic. This indicates that the research topic is well 

established and highly focused, with strong consensus and agreement among research-

ers in the field. However, it may be difficult to find breakthrough or novel ideas within the 

cluster in such a scenario, as most publications are likely to build on existing knowledge 

and reinforce established theories and methods. 

3.2.3. RQ3. WHAT IS THE CURRENT KNOWLEDGE REGARDING THE IMPLEMEN-

TATION OF CE IN BE? 

Policymaking 

A significant part of the studies on CBECE discuss the role of politics and policies in achiev-

ing a sustainable and circular economy (CE) within the construction industry. In research 

regulations and policies are being created and the main obstacles and motivators are out-

lined (Munaro et al., 2020, p. 13). According to Yu, Junjan et al. (2022) CE policies in con-

struction currently have three functions: they aim to provide long-term financial support, 

use economic instruments to regulate secondary material market, and propose assess-

ment standards for recovered material quality (Rios et al., 2022; Yu, Junjan et al., 2022, 

p. 9). However, among all policies and measures to promote CE transformation, both at 

the corporate and individual levels, financial subsidies are considered to be the most im-

portant (Çimen, 2021, p. 23; Munaro et al., 2020). But, CE policy-making will only be ac-

complished with the active participation of both public and private actors (Yu, Junjan et 

al., 2022, p. 10). 

The EU has the highest concentration of CE policy initiatives compared to other regions. 

This is likely due to EU member states adopting CE guidelines from the European Com-

mission and adapting their own strategies, while other countries need to develop CE in-

novations independently. (Yu, Junjan et al., 2022, p. 6) However, China has early developed 

its own CE policies that have an top-down approach and take into account the three im-

plementation levels of micro, meso and macro (Bleischwitz et al., 2022, p. 2). Munaro et 

al. (2020, p. 15) suggest that the centralization of work in European countries and China 

demonstrates the result of the implementation of public policies and underlines that the 

expansion of research requires political and governmental support. 

Tirado et al. (2022, p. 1) adds to it that local authorities play a crucial role in promoting 

circular economy (CE) strategies and economic dynamics in the built environment primar-

ily because they possess the necessary skills and resources to implement large-scale CE 

initiatives. Their involvement in urban planning and their relationships with economic ac-

tors enable them to comprehend and master urban metabolism, which is a critical aspect 

of CE implementation (Tirado et al., 2022, p. 1).  
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Business Models 

Circular business models adopted in the construction value chain are subject to research 

on the transition towards CE in BE (Çimen, 2021; Mhlanga et al., 2022; Munaro et al., 2020, 

p. 13). For example, research has been done on product life extension and take-back mod-

els, and industrial symbiosis. The on the lack of a market mechanism for the reuse of 

construction material, one of the barriers to waste valorization, was addressed in aca-

demia (Osei-Tutu et al., 2022, p. 16). Migliore (2019) proposed a virtual marketplace to 

facilitate inter-sectorial waste recycling. Gan et al. (2020) utilized a multidisciplinary ap-

proach to study the balance between human wellbeing and environmental sustainability 

through socio-technical solutions. (Çimen, 2021, p. 15) 

Current research (Stahel, 2016) identified two groups of circular-economy business mod-

els, those that extend the service life of goods by reusing and those that create new re-

sources through recycling (Charef, 2022, p. 2). In the former group, Adams et al. (2017, 

p. 22) identified viable take-back programs and high-value markets, assurance programs 

for reused materials, best-practice example case studies, and awareness-raising cam-

paigns as biggest enablers. Furthermore, Çimen (2021, p. 23) proposed that financial or-

ganizations, such as banks and public entities, could be involved in a national resource 

bank to enable material leasing to developers, which could be encouraged over property 

ownership by communicating its benefits. Thus, the creation of circular business models 

requires a holistic approach including businesses, society, and government (Mhatre et al., 

2021, p. 14). Frameworks have been developed that focus on supply chain collaboration, 

stakeholder networking, and capital planning for CE, providing a socio-technical frame-

work for the implementation of CE in construction firms. Other studies stress the usage 

of interface management systems among stakeholders for adaptive reuse of buildings. 

However, none of the business models or frameworks have been validated, presenting a 

future opportunity for the development of a comprehensive circular business model 

(Mhatre et al., 2021, p. 18). According to Wuni (2022, p. 17), the most frequently cited crit-

ical success factors for circular construction projects are the following: the top manage-

ment's awareness, commitment, support, and leadership; strong coordination, collabora-

tion, and vertical integration among supply chain partners; sustained collaboration, com-

munication, and information sharing among stakeholders and project team members; 

availability of supportive infrastructure and technological resources; and adequate finan-

cial resources and funding. Yu, Junjan et al. (2022, p. 12) noticed that Information and 

Communication technologies (ICT) solutions are gaining attention in the public sector as 

they improve business performance, streamline activities, and reduce principal-agent 

problems and transaction costs. 
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Reuse, Recycling and Construction and Demolition Waste (CDW) 

Publications focusing on end-of-life interventions agreed in that material looping at the 

end of life (EoL) to a great extent increases resource efficiency and reduce waste (Akhi-

mien et al., 2021, p. 33). The investigated EoL management methods in the CI include re-

source recovery practices such as sequential disassembly, deconstruction analytics, waste 

management best practices, and frameworks for construction and demolition waste man-

agement (CDWM) (Mhatre et al., 2021, p. 23).  

Selective demolition should be performed for hazardous materials, with efficient handling 

to prevent contamination of recyclable materials. On-site sorting should be implemented 

to avoid waste mixing. The waste should be categorized based on its nature and potential 

economic benefits. Robust quality control systems should be put in place with proper 

checks and balances on material recovery methods, waste acceptance criteria, material 

properties, and the advantages and disadvantages of using materials in construction ac-

tivities. (Purchase et al., 2021, p. 21) Furthermore, the site's culture and environment 

should be taken into account. Cutting waste can also benefit from a thorough waste audit 

and the establishment of a waste index (Purchase et al., 2021, p. 7). Ultimately, it is possi-

ble to transform a conventional project-product-delivery-cycle into a closed-loop project-

product-delivery-cycle in line with CE, which would focus on reusing or recycling the ma-

terial after the service life ends (Çimen, 2021, p. 23). 

The recycling of waste materials in construction has been shown to have positive impacts 

on the environmental, economic, and durability aspects of construction activities (Akhi-

mien et al., 2021; Purchase et al., 2021, p. 21). While recycling is inherently energy-con-

suming, it is often more advantageous to recycle construction and demolition (C&D) ma-

terials rather than dispose of them in landfills, due to the social and environmental ben-

efits (Purchase et al., 2021, p. 20). Ginga et al. (2020, p. 16) not only concluded that it is 

possible to use ≥40% recycled construction and demolition waste in new construction ap-

plications based on the current physical and mechanical property studies, the study also 

found that a 100% replacement of recycled materials is viable in nonstructural applica-

tions. The research, tests, and results on recycling materials indicate that construction 

materials with recycled components possess physical and mechanical properties that are 

nearly the same as those of their original counterparts. Construction materials with 

slightly lower mechanical properties can be compensated for by adding additional mate-

rials. This slight decrease is minimal compared to the environmental and sustainability 

benefits of recycling CDW. (Ginga et al., 2020, p. 16) 

However, the main focus on recycling is using C&D waste in concrete manufacturing and 

reducing the use of natural aggregates (Munaro et al., 2020, p. 13). Studies gathered spe-

cific construction suggestions that can improve the recyclability of building materials in-

cluding the usage of bolt and nut joints instead of nails and gluing, along with using pre-

fabricated assemblies and layering building components according to their anticipated 

lifespan. Minimizing the variety of building components and standardizing them is also 



 

46 

necessary for increased recyclability and exchange within the circular economy. (Akhimien 

et al., 2021, p. 28) 

Moreover, research focused on the reuse of waste considered waste from various sources 

and on their reuse in the construction value chain. This includes using the waste as an 

additive or replacement in materials, and creating new products that have the same or 

improved performance. The research also examines the quality of secondary materials, 

and best practices for reducing environmental impacts. (Munaro et al., 2020, p. 13) 

Sáez-de-Guinoa et al. (2022, p. 13), argued that despite a known feasibility and the result-

ing benefits, for some building components and materials, the reuse is limited by a lack 

of specialized recycling facilities, the low value of (new) material and common practice, 

which prefers landfilling or incineration.  

Finally, studies propose frameworks and strategies for CE implementation for CDW re-

duction. Ginga et al. (2020, p. 1) propose a CE framework, with an emphasis on the recov-

ery and production of materials, particularly the reuse and recycling of CDW into new 

construction applications. Hossain et al., (2020b, p. 2), summarized these implications in 

literature to: “(1) improving the use of sustainable materials which is achievable by inte-

grating the collaborative benefits among all parties involved in the construction project, 

(2) promoting material efficiency by recycling/reusing the construction wastes, and (3) 

avoiding the production of unnecessary wastes and consequently disseizing them to land-

fill” (Hossain et al., 2020b, p. 2) and “(4) development of recovery schemes “(Purchase et 

al., 2021, p. 3). Additionally, Purchase et al. (2021, p. 3) also suggested the use of technol-

ogies such as BIM to overcome challenges in managing waste in large-scale BE.  

Although these notable studies have developed frameworks, models, and methodologies 

to measure the recycling potential of CDW materials accurately, they fail to provide a 

unique definition for the potential of the circular economy (Akhimien et al., 2021; Papas-

tamoulis et al., 2021). In contrast, Akhimien et al. (2021, p. 33) found that both designing 

out of waste (or design for waste prevention) and the use of buildings as material banks 

were considered as best solutions for reducing waste generation. 

Design 

Substantial research has been done on the identification of design strategies that enable 

circularity in construction projects. Despite their increasing development and implemen-

tation, the building industry currently lacks a coherent and widely accepted direction, re-

sulting in an unorganized process (Eberhardt et al., 2022, p. 2). That is why in research a 

wide range of design strategies and categorizations is found: Charef et al. (2021, p. 2) cre-

ated a classification of the current design into five categories approaches in response to 

the lack of consensus: prefabrication, design for change, design for deconstruction, re-

verse logistics, and closed-loop systems. On the other hand, Sáez-de-Guinoa et al. (2022, 

pp. 7–9) analyzed the strategies present in the market and identified two mayor design 

considerations (Designing out Waste and Resource Efficiency and Design for Energy), that 
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enable a transition a CE when implemented during the design phase. Akhimien et al. 

(2021, p. 19) identified the design strategies Design for Disassembly (DfD) and Design for 

Recycling. In the DfA field, most studies investigated the adaptability of materials to recy-

cling, while others focused on the reduction of material consumption through reusable 

components.  

However, the two most cited design strategies for the implementation of CE in the BE 

were Design for Disassembly (DfD) (Akhimien et al., 2021; Anastasiades et al., 2020; 

Charef, 2022; Hossain and Ng, 2018) and Design for Adaptabiliy (DfA) (Anastasiades et al., 

2020; Charef, 2022; Eberhardt et al., 2022; Hossain and Ng, 2018). 

Akhimien et al. (2021, pp. 23–25) found publications on DfD comprising the concept de-

velopment, the technical requirements and its connection to prefabrication. There are 

quantitative studies on the benefits and challenges of using prefabrication in construc-

tion, and an extensive review has proposed a map to show the trend of prefabrication in 

the CE (Charef, 2022, p. 1). In contrast, Eberhardt et al. (2022, p. 101) found that assem-

bly/disassembly is the most commonly cited strategy in the literature, suggesting that the 

approach had become established in the building industry over the past decade.  

Studies agree in that CE should be adopted during the early stages of design to select the 

best strategies and tools, as this phase is decisive in the overall performance of buildings 

(Benachio et al., 2020; Mhlanga et al., 2022; Munaro et al., 2020, p. 15). By considering CE 

practices earlier in the project design stage, it is also possible to incorporate them into the 

life-cycle assessment of the project, which can show the benefits of reusing materials and 

reducing resources taken from nature in terms of reducing emissions, embodied carbon, 

and energy (Benachio et al., 2020, p. 10). Furthermore, the nature of waste products is 

determined in the design stage (Mhlanga et al., 2022, p. 19). Following the 3Rs (reduce, 

reuse, and recycle) hierarchy of the circular economy, building components that are not 

reusable or adaptable should be designed with preference to their recyclability potential 

(Akhimien et al., 2021, p. 26) 

Urban mining: Stock and flow analysis 

A major challenge is the "understanding the spatial and temporal composition and organ-

ization of stocks and flows" (Tirado et al., 2022, p. 6). Research focuses on the develop-

ment of material or urban stock models to predict the potential for resource recovery or 

urban mining. To achieve this, tools such as material passports and material flow analysis 

have been widely employed (Mhatre et al., 2021). Tracking material stock and flow along 

with the information to be stored in an internationally standardized resource bank is an 

important challenge, as with the emerging understanding in CE, raw material and waste 

are now considered equally important resources for both new construction and renova-

tion (Çimen, 2021, pp. 23–24). 

Articles on material stock focused on the creation of models to estimate the existing or 

future quantity of materials that can be reused on buildings in their end of life (Benachio 
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et al., 2020, p. 9) and to quantify associated environmental impacts, including solid waste 

pollution and air emissions (Yu, Junjan et al., 2022, pp. 10–11). "Deploying the circular 

economy at the stock level is essential because it will provide a better understanding of 

the flows of materials, energy, water, and goods" (Tirado et al., 2022, p. 13). Several arti-

cles found that it is possible to create material stocks in a large scale, such as a whole city, 

by the means of existing data (Benachio et al., 2020, p. 9).  

Two papers are particularly noteworthy (Benachio et al., 2020, p. 12): Oezdemir et al. 

(2017) developed a framework to assessing the material stock available in residential 

buildings in an urban region of Germany, by extracting the data from GIS and reviewing 

this data with previous studies about the material values, creating a cadaster of secondary 

resource that will be available to reuse in the future. Furthermore, Heinrich and Lang 

(2019) used geometric data from a city 3D model to calculate the material stocks in the 

district of Munich, as well as material data from the literature to determinate the potential 

date for several material self-sufficiency. Similarly, Kleemann et al. (2017) analyzed the 

building structure (buildings differentiated by construction period and utilization) of Vi-

enna combining the geographical information systems (GIS) data from different municipal 

authorities (2017, p. 368).  

The integration of BIM and GIS for inventory at the regional level is also considered in 

some publications: In their study, Wang et al. (2019) conducted a comprehensive review 

on the integration of Building Information Modelling (BIM) and Geographical Information 

Systems (GIS) in sustainable built environments (2019, p. 41), while Rua et al. (2013) pre-

sent an urban application utilizing the ESRI City Engine Software (CE), which integrates 

Geographic Information Systems (GIS) and Building Information Modelling (BIM) con-

cepts, and demonstrates its potential through spatial analyses (2013, p. 265). 

Circularity Assessment 

Research has been done on the assessment of CE based on circularity indicators (Yu, Jun-

jan et al., 2022, p. 8).  

The implementation of CE lacks a suitable and usable measuring methodology (Andersen 

et al., 2022). Even established certification systems such as BREEAM and LEED that pro-

mote sustainability in construction through life cycle assessment, do not yet evaluate cir-

cularity yet (Anastasiades et al., 2020), which leads to the creation of new approaches, 

frequently derived from the European standard for construction or another Life Cycle As-

sessment methodology (Andersen et al., 2022).  

Furthermore, it is objected that the LCA used for assessing CE in BE has a similar focus as 

research in the linear economy. While there are some studies that challenge the methods 

used, most studies focus on determining the benefits of a proposed CE action through a 

static analysis, either by considering the upfront reuse or recycling, or by calculating the 

potential reduction in materials usage during the next service life. (Andersen et al., 2022). 

Moreover, the conclusion on the benefits of CE is typically based on a single indicator, 
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such as climate change, and neglects other important environmental parameters and 

challenges (Andersen et al., 2022). Therefore, Bleischwitz et al. (2022, p. 10) recommend 

developing new core indicators for the circular economy and decarbonization, consider-

ing any synergies and trade-offs with socio-economic developments. This could be done 

by utilizing existing data on material and carbon footprints and implementing a common 

accounting framework for publicly listed companies. Collaborative research is encour-

aged to develop joint core indicators and learn from existing data sets. The goal is to im-

prove research with societal impacts and support international collaborations of decar-

bonization and the CE. (Bleischwitz et al., 2022, p. 10)  

Bilal et al. (2020) developed a circular economy assessment scale for the building sector 

in developing countries, consisting in 7 CE dimensions (Energy indicators, General circular 

economy indicators, Water indicators, Material indicators, Emission indicators, 3Rs (Re-

duce, Recycle and Reuse) indicators and Waste indicators) and 24 CE indicators (Bilal et 

al., 2020, pp. 1–12). Furthermore, several CE indicators to quantify the circularity of prod-

ucts and companies, which are focused on the micro-scale, and to measure circularity at 

the city level, the macro-scale, have been developed (the latter mostly in China). It's im-

portant to note that the micro-scale indicators cannot be used to measure circularity at 

the macro-scale, and vice versa (Anastasiades et al., 2020, pp. 13–14). However, there is a 

lack in research of circularity indicators that evaluate the meso-scale, specifically the con-

struction and the building (Anastasiades et al., 2020, p. 14). Rosen (2020) tackled this issue 

by introducing and developing the Urban Mining Index (UMI), a methodology to evaluate 

and quantify the circularity potential of building structures in new construction design. 

This approach considers factors like material quality, economic feasibility, and the practi-

cality of selective dismantling (Rosen, 2020, p. 10).  

Tools to support CE: BIM, Building Material Passports (BMP)  

According to Munaro and Tavares (2020), research in the area of tools and assessment to 

support circular buildings includes deconstruction process simulation, circularity index 

systems, BIM compliance, tools to support buildings as a material bank, and life cycle as-

sessment (LCA) and life cycle costing (LCC) for comparing the environmental performance 

of different constructive systems. However, only a small percentage of publications in-

clude digital tools (Hossain et al., 2020b, p. 3). In their review, Hossain et al. (2020b) found 

that only a small percentage of the studies used LCA software (9%), BIM (9%), or fuzzy 

analysis (3%) while GIS was among the most commonly used tools. (Hossain et al., 2020b, 

p. 3) However, the most comprehensive review of CE enabling technologies was con-

ducted by Cetin et al. (2020), who identified a total of ten digital technologies: additive/ro-

botic manufacturing (AM/RM), artificial intelligence (AI), big data and analytics (BDA), 

blockchain technology (BCT), building information modelling (BIM), digital platforms/mar-

ketplaces (DP), digital twins (DT), the geographical information system (GIS), material pass-

ports/databanks (MP), and the internet of things (IoT). (Çetin et al., 2021, p. 1) 
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In the construction industry, the prevalent Information and Communication Technologies 

(ICT)-based decision-making tools include BIM and GIS, Radio Frequency Identification 

(RFID) and Modelling Simulation (MS).  

Table 9 Identified CE enabling digital technologies (DT) 

Identified Digital Technology   References 

Additive and Robotic Manufactur-

ing 

AM/RM (Çetin et al., 2021) 

Artificial Intelligence AI (Çetin et al., 2021), (Platten et al., 2020),  

Big Data, and Analytics  BDA (Çetin et al., 2021), (Yu, Yazan et al., 2022) 

Blockchain Technology BCT (Çetin et al., 2021), (Yu, Yazan et al., 2022),  

Building Information Modelling 

(BIM) 

BIM (Akanbi et al., 2018), (Çetin et al., 2021), (Yu, Yazan et al., 

2022) 

Digital Platforms DP (Çetin et al., 2021),  

Digital Twins DT (Çetin et al., 2021) 

Disassembly and Deconstruction 

Analytics System 

D-DAS (Akanbi, L. A. et al., 2019) 

Geographical Information System  GIS (Çetin et al., 2021), (Rua et al., 2013), (Wang et al., 2019), (Yu, 

Yazan et al., 2022),  

Internet of Things IoT (Çetin et al., 2021), (Yu, Yazan et al., 2022) 

Life Cycle Assessment LCA (Xue et al., 2021) 

Material Passports and Databanks MP (Sauter, 2018), (Benachio et al., 2020), (Munaro, 2019), 

(Çetin et al., 2021), (Honic et al., 2019), (Ogunmakinde et al., 

2021) 

Radio Frequency Identification  RFID (Yu, Yazan et al., 2022) 

In construction, AM/RM is used for concrete printing, building component fabrication, as-

sembly of timber or metal elements, digital casting, and precise milling or drilling. Its ap-

plications include resource optimization, waste reduction, material recycling, tailored con-

nections for reuse, modular design, safer working environments, and advancements in 

bio-based 3D printing (Çetin et al., 2021, p. 14). BDA refers to the analysis of large and 

diverse data sets using techniques like statistics and machine learning. In the construction 

sector, BDA offers opportunities for resource optimization, generative design, perfor-

mance prediction, personalized services, energy management, and smart buildings and 

cities when combined with IoT (Çetin et al., 2021, pp. 15–16). Furthermore, it offers oppor-

tunities for data-driven solutions to minimize waste, enables the investigation of numer-

ous projects over time, facilitates seamless integration with Building Information Model-

ing (BIM), and supports CDW management (Yu, Yazan et al., 2022, pp. 5–6).  

Blockchain technology offers secure and transparent information management in the 

construction industry, with potential applications in notarization, transaction manage-

ment, and provenance tracking. Integrating blockchain with BIM improves information 

traceability, scheduling control, and waste management optimization (Yu, Yazan et al., 

2022, p. 6). Furthermore, it is applied for timestamping BIM model changes, recording 

asset ownership, maintaining material passports, automating building maintenance, en-

abling complex information networks in supply chain management, facilitating material 

passports, and enabling secure peer-to-peer trading networks (Çetin et al., 2021, pp. 16–
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17). The use of BIM to facilitate the transition towards CE has been explored in several 

studies: studies have been published that demonstrate BIMs potential for reducing con-

struction and demolition waste, its use to support the implementation of CE in BE, and its 

use for the optimization of deconstruction activities, (Charef, 2022, p. 2) In the context of 

waste minimization and management, Yu, Yazan (2022) identified three key functions of 

BIM: First, it is crucial to quantitatively predict waste in advance for the analytics of con-

struction and demolition waste (CDW) management because there is limited time allowed 

for material recovery at the end-of-life (EoL) phase (Akanbi et al., 2018; Yu, Yazan et al., 

2022, p. 4). Second, BIM can contribute to waste minimization through design. Moreover, 

BIM plays a role in evaluating environmental and economic performance (Yu, Yazan et al., 

2022, p. 5). Akanbi et al. (2019) propose a "Disassembly and Deconstruction Analytics Sys-

tem" (D-DAS) to assess the end-of-life performance of buildings from the design stage. It 

extends the capabilities of BIM software to evaluate building designs in line with the cir-

cular economy principle and Design for Disassembly and Deconstruction. The system con-

sists of four layers and provides three key functionalities: Building Whole Life Perfor-

mance Analytics, Building Element Deconstruction Analytics, and Design for Deconstruc-

tion Advisor. It serves as a decision support platform for assessing compliance with circu-

lar economy and sustainability requirements. (Akanbi, L. A. et al., 2019, p. 386) Finally, BIM 

enables high-quality collaboration to achieve efficient CDW management (Yu, Yazan et al., 

2022, p. 4). 

In conclusion, BIM has a key role in the technological advancements for implementing the 

CE in the CI as it optimizes design to reduce resource consumption and waste generation 

through (1) storing, sharing, and monitoring life-cycle information of materials, (2) provid-

ing a collaborative virtual environment for different stakeholders to communicate, visual-

ize, and validate project details across the entire life-cycle, and (3) serving as an infor-

mation repository that can be integrated with various techniques, thus enabling flexible 

CE-oriented functionalities. (Yu, Yazan et al., 2022, p. 5)  

Finally, research focuses on the creation of Building Material Passports (BMP) “that can be 

used to store important data of these building components for their use in their end of 

life, helping incorporate the materials in the circular loop, instead of disposing them” (Be-

nachio et al., 2020, p. 9). Material passport are considered a valuable tool for facilitating 

the knowledge transfer about building components and materials (Anastasiades et al., 

2020), and are frequently employed in connection with the development of material or 

urban stock models to predict the potential for resource recovery or urban mining (Mha-

tre et al., 2021). In this context, the BAMB (Buildings as Material Banks) project, an EU-

funded initiative, investigated and sought circular solutions to preserve the value and 

functionality of building materials and systems. The research developed a software plat-

form that generates three types of Material Passports: "one for products, one for build-

ings and one for instances" (Buildings As Material Banks, 2019, p. 14) 
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3.2.4. RQ4. WHICH BARRIERS TO THE SUCCESSFUL IMPLEMENTATION OF CE IN 

BE ARE IDENTIFIED? 

The barriers in the successful implementation of CE practices have been object to exten-

sive research and can be grouped into five main categories (Purchase et al., 2021, p. 1): 

legal, technical, social, behavioral, and economic.  

Despite the known importance of the construction industry in the implementation of the 

CE, existing policies are insufficient to address complex CE challenges (Yu, Junjan et al., 

2022, p. 6). Policymakers face difficulties in finding efficient and tangible methods to sup-

port the construction industry due to the industry’s distinctive features, while industrial 

actors await policy support in order to advance the implementation of the CE. (Yu, Junjan 

et al., 2022, p. 2) One of the legal barriers is the scope of the policies. Currently, govern-

ments establish ambitious recovery rates for construction and demolition waste (CDW) as 

part of their national policy visions, and high-level managers develop various action plans 

for achieving a circular economy (CE). However, the policies fail to address the root causes 

of waste generation or are formulated too broadly (Ghisellini et al., 2016, p. 27). As an 

example, EU policies concentrate on end-of-pipe solutions, i.e. solutions that focus on 

dealing with waste and pollution after it has been produced, rather than addressing the 

root causes of these issues (Charef et al., 2021). Another legal barrier is the insufficient 

guidance for implementation in practice. Existing policies lack effective frameworks to 

manage and supervise construction projects compliant with established CE principles 

(Charef et al., 2021; Yu, Junjan et al., 2022, p. 6). Limited information is given on how local 

industrial actors should implement these visions on a practical level (Yu, Junjan et al., 2022, 

p. 10). These policies lack clarity on how to effectively obtain and sort construction and 

demolition waste and do not set standards in the recycling and reuse of such waste. (Akhi-

mien et al., 2021), which further exacerbated by limited design codes that focus on the 

use of reclaimed materials (Osei-Tutu et al., 2022, p. 20).  

Technical barriers include procedural and technological challenges resulting from the im-

plementation of CE principles in the construction project. From the contractors’ perspec-

tive, the main procedural challenges for small-scale companies include the dismantling, 

segregation, and on-site sorting of C&D waste, transportation, and local recovery pro-

cesses. (Akhimien et al., 2021; Purchase et al., 2021, p. 1) The materials resulting from the 

mining process need to be allocated for treatment or storage across different geographic 

locations (e.g., construction sites, material banks, resource centres, and landfills) through-

out their lifespan (Papastamoulis et al., 2021) and inadequate monitoring of waste man-

agement remains a significant issue in the industry. (Osobajo et al., 2022, p. 46). The lack 

of knowledge and metrics about the potential for product reuse at the end of life is a 

significant issue in the construction industry. Reuse of secondary materials faces chal-

lenges related to insurance, guarantee, quality, and performance, particularly structural 

capacity .(Munaro et al., 2020, p. 14)  
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Among the technological critical issues, the following are the most important: availability 

of supportive infrastructure and technological resources, integration of digital technolo-

gies, adequate expertise and knowledge of the project team members in circular con-

struction projects, staff education and training, and process integration technology for 

cleaner production (Osei-Tutu et al., 2022; Wuni, 2022, p. 5). To keep up with the rapidly 

growing number of available circular economy (CE) solutions for the built environment, 

an interconnected database of best practices and appropriate evaluation methods is re-

quired (Joensuu et al., 2020, p. 16).  

Market dynamics and the economy are primary deciding factors for the acceptance of 

reused (structural and non-structural) elements in the construction industry (Çimen, 2021, 

p. 24). Thus, one of the most important economic barriers is that the required market 

mechanisms to support material circularity and manage the construction industry’s com-

plexity and interaction with other sectors, have yet to be developed (Çimen, 2021, p. 23). 

Business models and supply chain integration provide the basis for CE practices in the 

construction industry (Adams et al., 2017; Charef et al., 2022; Mhlanga et al., 2022, p. 6) A 

compelling business case with commercial feasibility is critical for enabling a shift in cur-

rent practices (Adams et al., 2017, p. 22), so that the insufficient market value for re-

claimed materials is a crucial economic barrier. Other obstacles impeding competitivity 

are: "strict quality assurance systems, market uncertainty about availability of waste ma-

terials, knowledge and negative perceptions, high cost of material recovery related tech-

nologies, etc." (Purchase et al., 2021, p. 21). 

In the social and behavioral category, the risk perception among users is a major factor in 

the utilization of reused materials in new construction (Çimen, 2021, p. 24). Reused and 

recycled products are perceived as environmentally friendly but of lower quality (Ginga et 

al., 2020; Osei-Tutu et al., 2022) The prevalent mindset of actors in the construction and 

demolition industry is to regard C&D materials as waste rather than a potential resource 

and fail to fully tap into their value (Purchase et al., 2021, p. 16). To overcome this barrier, 

the promotion of circular economy in the built environment can be initiated through pub-

lic projects, but there must also be bottom-up motivation from all industry decision-mak-

ers in order to successfully implement circular economy principles. (Çimen, 2021, p. 24) 
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3.2.5. RQ5. WHAT SHOULD FUTURE RESEARCH FOCUS ON? 

Yu, Junjan et al. (2022) identified an important research gap in the understanding of how 

policies can support CE transition in the built environment. Current studies on policy ini-

tiatives are based on conventional supply chains for the building industry without fully 

incorporating CE. Furthermore, while most research examines the overall factors that fa-

cilitate or hinder the implementation of circular economy (CE) and emphasizes the im-

portance of policy support in enabling the transition to a CE, there is a lack of guidance in 

the literature on how the suggested policy alternatives can be effectively implemented 

throughout the policy cycle.(Yu, Junjan et al., 2022, p. 10) Also, further investigation of pol-

icies that promote CE in CBE through financial incentives and regulations is the interaction 

of cross-sectoral waste policies is needed (Çimen, 2021, p. 23).  

Furthermore, research gaps in the development of new business areas that do not sup-

port the linear model and the adaptation of current business models in the construction 

industry to new services emerging from CE are highlighted (Benachio et al., 2020, p. 10). 

For example, empirical evidence on the effects of sharing economy practices (Joensuu et 

al., 2020, p. 16) and research focusing on how new business models can enable materials 

to increase their residual values (Munaro et al., 2020, p. 1) are needed. On one hand, re-

search should be conducted on extended producer responsibility (EPR) in the building 

industry to establish a virtual building material bank that could serve as a new market-

place for reusable building components. (Joensuu et al., 2020, p. 16) On the other hand, 

research to identify influences of supply chain integration and risk management frame-

works is needed to enable existing supply chain organizations to re-evaluate their pro-

cesses (Osobajo et al., 2022, p. 52). 

Future research in the construction industry should explore the utility of whole life cycle 

costing (LCC) in designing circular economy models for construction operations. LCC con-

siders social, environmental, and governance aspects and has the potential to reduce con-

struction costs. (Osobajo et al., 2022, p. 51) Cost modeling through material reuse and 

feedback loops using Kaizen costing may be a potential research area in construction 

management (Osobajo et al., 2022, p. 51)  

Regarding circular design and construction strategies, research has not adequately ad-

dressed key areas, such as circular product design, end-of-life considerations (including 

quality and economics), and modular integrated construction. (Antwi-Afari et al., 2021, 

p. 1) The choice of design and construction strategies in the literature is often based on 

intuition, due to a lack of knowledge about the environmental performance and benefits 

of these strategies (Eberhardt et al., 2022). This knowledge gap potentially hinders more 

focused efforts and greater uptake of circular economy practices in the building industry 

(Adams et al., 2017, p. 15; Munaro et al., 2020) Furthermore, research is needed to identify 

overlooked strategies from pre-existing concepts, to explore parallel developments in sci-
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ence, policy, and practice and to establish a common understanding of identified strate-

gies and their technical aspects (Eberhardt et al., 2022, p. 108), making research into 

standardization necessary (Anastasiades et al., 2020) Moreover, the interactions between 

different design and construction strategies, effective strategy combinations and condi-

tions for their success should be explored (Eberhardt et al., 2022, p. 108). To address this 

issue, the development of a new design typology or framework that structures and prior-

itizes the circular economy strategies based on their potential to minimize building-re-

lated environmental impacts is needed (Eberhardt et al., 2022, p. 108). Lastly, there is a 

limited number of published studies that focus on creating or discussing CE indicators 

(Ghisellini et al., 2016, p. 14), which are needed to determine the circularity of a project.  

The application of reuse into new construction functions is yet to be explored and the lack 

of quantitative information on quality requirements restricts its potential usage in prac-

tice (Ginga et al., 2020, p. 15). Further experimentation is needed on the optimal propor-

tioning of recycled, natural, and other materials to maximize recycled CDW use (Ginga et 

al., 2020, p. 16) and increased research efforts should be made into standardization of 

material sizes and types (Akhimien et al., 2021). Although attempts have been made in 

many cases, there is still limited investigation on practicality of incorporating CE in the 

modern built environment at a large-scale. Unlike small- and medium-scale construction 

projects, there are more challenges associated with adapting CE to large-scale applica-

tions. (Purchase et al., 2021, p. 3)  

Lastly, research into easily adoptable tools to achieve CE in construction is required. 

(Charef, 2022, p. 2). There is a lack in information and technology (ICT)-based tools to sup-

port decision-making that consider the entire life-cycle as existing tools (BIM, GIS, RFID, 

MS, etc.) mostly focus on one life-cycle stage, mainly the EoL-phase (Yu, Yazan et al., 2022, 

p. 14). Future research should therefore focus on improving data management support 

to enhance regional data sources for CDW and enable accurate data-driven decision-mak-

ing. Technology integration should also be improved by using BIM as a central information 

hub to integrate data collection and analytic technologies. An integrated decision support 

system is needed to articulate the interrelationships among technologies, stakeholders, 

and applications. In addition, there is a need to propose an approach to form a closed-

loop supply chain by integrating 3R principles into circular business models. Coordination 

strategies for secondary material markets and ICT-based solutions to enhance public-pri-

vate collaborations and improve the efficiency of CE policy-making should also be devel-

oped. (Yu, Yazan et al., 2022, pp. 14–15) 
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3.3. SUCCESSFUL IMPLEMENTED PROJECTS OF CIRCULAR ECONOMY 

IN THE BUILT ENVIRONMENT IN PRACTICE 

This section examines successfully implemented projects of circular economy in building 

construction in practice. Therefore, the identified research question is:  

RQ1. “How have circular economy principles been implemented in construction 

industry practice?”  

Further research questions (RQs) that add a focus on reuse practices (the scope of this 

thesis) are: 

RQ2. What practices are already established that implement CE in the BE? 

RQ3. On which level do these practices actuate? 

RQ4. Which limitations and barriers are identified? 

Following the protocol presented in 3.1Methodology the search was refined to identify 

publications that were related to implementations in practice. To this end, the keywords 

“case stud*” or “project” or “practice” were added to the keywords of the initial search to 

refine the publications’ selection. The search was conducted in Scopus, WoS and Google 

Scholar resulting in 17, 3 and 7 relevant papers after applying the selection criteria. Addi-

tionally, case studies were retrieved by using Search Engines (Google, Ecosia), specialized 

platforms such as Baunetz, organizations such as Team Zirkular and magazines, i.e. DE-

TAIL Zeitschrift für Architektur + Baudetail. In the systematic literature research, no limit 

was set to the publication year. Due to time and resource limitations for translations, only 

English and German publications were included. The included publications and the re-

search protocol are found in Table 56 and Table 55 in Annex II. The implemented projects 

are classified into micro, meso and macro depending on the implementation level. 

The current method used for demolition and core removal does not enable the damage-

free recovery of functional components and elements. Consequently, in most cases the 

economic viability of reusing extension components is limited during the entire process 

chain of dismantling, reworking, storage, and sale. (Dechantsreiter et al., 2015, p. 31) 

3.3.1. MICRO-LEVEL 

The Micro Level includes all projects that operate at the material or component level. At 

the micro level, therefore, components and materials are to be named that successfully 

implemented CE strategies. Due to the focus of this work on component reuse, the selec-

tion presented here will be limited to this accordingly. 

Successfully reused components 

The research project focused on reusing concrete elements from modular "Plattenbau" 

(prefabricated panel) buildings from the 1960s-190s in the construction of single-family 
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and multi-family houses (Heyn et al., 2018, p. 1). In their project, they exploited the stand-

ardization of concrete elements, including walls, floors, and ceilings. These elements were 

designed to be easily assembled and disassembled, making them suitable for reuse. The 

specific construction techniques, such as the use of ring anchors and welded connections, 

allowed for the efficient dismantling and reutilization of the concrete components. (Heyn 

et al., 2018, pp. 78–79) The concrete elements were cleaned and repurposed, and pilot 

projects were planned in Eastern European countries such as the Czech Republic, Roma-

nia, Russia and Poland (Heyn et al., 2018, p. 1). 

Romnée et al. (2019) salvaged materials such as formwork wood and reclaimed glass were 

used to create greenhouses. The outcome was a circularly designed greenhouse that 

could be easily repaired, extended, and disassembled. It had a high recycled content and 

was found to be significantly more environmentally friendly than an aluminum green-

house, as shown by a comparative life cycle assessment (Romnée et al., 2019, 1).  

Brütting et al. (2019) proposed a methodology for designing truss structures using re-

claimed structural components, aiming to reduce environmental impact by avoiding new 

material sourcing and minimizing waste. The approach involves iterative element assign-

ment, topology optimization, and geometry optimization to best utilize the available stock 

elements (Brütting et al., 2019, p. 128). In their case study, the main train station roof in 

Lausanne was designed using elements reclaimed from power transmission pylons (see 

Figure 28). The use of reclaimed elements and custom connection plates allowed for the 

reuse of elements at their full length, reducing labor and potential cutting. The study 

demonstrated significant reductions in embodied carbon and energy compared to 

weight-optimized structures using new elements. (Brütting et al., 2019, pp. 133–134) 

Similarly, O'Grady, T. et al. (2021) reused steel frames salvaged from a third-party builder 

in their case study Legacy Living Lab (L3). In L3, the researchers investigated the intercon-

nection methods used in designing a circular economy building to create a modular build-

ing designed for disassembly and relocation that aligns with the principles of the circular 

economy (O’Grady, T. M. et al., 2021, p. 1). Initially intended for recycling, the steel frames 

were eventually incorporated into the building with minimal redesign work. Eighteen 

tonnes of existing structural steel were reused in the construction. The connections of the 

steel frames were bolted together behind internal finishes to ensure no visible connec-

tions. This method allows for disassembly without creating waste from chemically bonded 

or welded connections commonly found in concrete or traditional steel structures. 

(O’Grady, T. M. et al., 2021, p. 7) 

It is noted that only exterior components are considered here. Indoor components are 

the subject of the 4.1.3 What to reuse chapter. 
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Figure 28: Schematic view of the intended roof truss design, using elements from electric pylons (Brütting et 

al., 2019, p. 134) 

Succesfully reused materials 

The most commonly tested materials for reuse in practice are bricks, glass, steel, wood, 

and soil (Christensen et al., 2022; Nußholz et al., 2023) This section will explore some pro-

ject examples that focus on these materials. 

Brick 

An outstanding brick reuse project is Resource Rows, a circular housing project located in 

Copenhagen, Denmark, and developed and designed by the Lendager Group in 2017. This 

project exemplifies the concept of urban mining by utilizing various previously used build-

ing materials sourced locally. Abandoned brick facades were repurposed by cutting them 

into square brick modules (see Figure 29), which were then assembled as a patchwork 

facade for the new row houses (see Figure 30). (TU Delft) 
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Figure 29: Cutting process of existing 

brick facades (Lendager) 

Figure 30: New "Resource Row" buildings with patchwork facade 

composed of reused bricks (Lendager) 

Lozano-Miralles et al. (2018), on the other hand, incorporated organic waste in baked clay 

bricks and explored the environmental impacts. The study found that the incorporation 

of organic waste in bricks resulted in a 15-20% decrease in all studied impact categories. 

This indicated that the inclusion of organic waste in clay bricks is a favorable and promis-

ing approach in terms of environmental impacts, confirming the suitability of using or-

ganic additives to improve the efficiency and sustainability of bricks while reducing their 

environmental impact. (Lozano-Miralles et al., 2018, p. 1) 

Lastly, the REBRICK project in Denmark automates the cleaning and reuse of clay bricks 

to handle demolition waste more efficiently. Gamle Mursten developed an innovative 

technology for handling demolition waste and cleaning old bricks that uses vibration to 

remove concrete and cement without the need for water or chemicals, making it environ-

mentally friendly. (Gamle Mursten) By reusing bricks instead of producing new ones, it 

saves 0.5 kg of CO2 per brick. Through technology development and market exploration, 

it seeks to establish a European market for reusable bricks. (Gamle Mursten) 

Soil 

In the Wallasea Island Wild Coast Project in Essex, UK, the excavated material from the 

Crossrail project in London was recycled and reused to transform a large area of farmland 

back into coastal marshland. The aim was to raise land levels and create Europe's largest 

wetland nature reserve. (Cross, 2017, p. 3) In 2015, over 96% of the generated construc-

tion and demolition material was either reused or recycled, with around to 1.5 million 

tonnes of soil transported to Wallasea Island (Cross, 2017, pp. 6–8). The project exempli-

fies the circular economy in the built environment, where construction materials were 

reused in a conservation project, providing benefits for both people and wildlife (Cross, 

2017, p. 3).  
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Timber 

Timber is often reused in non-structural applications. One example of the successful re-

use is the Welpeloo Villa, a private residential house, in which both steel and timber were 

reused. The load-bearing steel structure was reclaimed from a paternoster and textile 

machine, while the wooden façade cladding was made of redundant cable reels from a 

nearby cable factory. (Superuse) 

3.3.2. MESO-LEVEL 

On the meso level a differentiation is made according to the lifecyclephase in which the 

CE implementation takes place. Currently, applications concentrate especially on the pri-

vate sector or on the renovation of historic buildings. In the commercial sector, there is 

still untapped potential for the reuse of building components. (Redaktionskreis Baufachli-

che Richtlinien Recycling, 2018, p. 58) 

CE consideration in Pre-Use 

Hillebrand et al. (2021) presents 21 circular new-built projects grouped according to their 

main circularity strategy: six case studies put an emphasis on the technical cicle in their 

decisions on materiality and assembly; five case studies focused on the use of biotic ma-

terials; three case studies were planned considering both the technical and the biotic cy-

cle; three case studies used exclusively local materials, while the last four case studies put 

an emphasis on recycled materials.  

The case studies focusing on the technical cycle, i.e. circularity strategies in architectural 

design, include the Musée Soulages in France (RCR Arquitectes, 2014) (see Figure 32), the 

Kraftwerk Lausward power plant in Germany (kadawittfeldarchitektur, 2015), the Gordola 

Training Center in Switzerland (Durisch + Nolli, 2011), the Dokumentationszentrum Hin-

zert in Germany (Wandel Hoefer Lorch + Hirsch, 2006) (see Figure 31) the extension build-

ing of The Nelson-Atkins Museum of Art in the US (Steven Holl Architects, 2007), and the 

Fensterfabrik Hagedorn extension in Switzerland (Graber & Steiger, 2006). Their strategies 

include the use of recyclable materials, such as steel and wood, modular and demounta-

ble designs, and green roofs that support local plant species and act as retention areas. 

The designs also prioritize flexibility and adaptability. (Hillebrandt et al., 2018, 179–190). 

Furthermore, circularity strategies with a focus on the biotic cycle are employed in various 

construction projects. Examples of this strategy are the community center in Vorarlberg, 

which is constructed using locally sourced and processed wood, with no use of glued 

wood materials and the Wood Innovation and Design Centre in Canada, which is the coun-

try’s first high-rise building constructed entirely from wood. The latter uses regional solid 

wood products, and composite structures are avoided to facilitate easy disassembly and 

recycling. A third example is a housing project in Winnenden, which employs highly pre-

fabricated timber modules, allowing for customization and flexibility. The system reduces 
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resource consumption and is affordable, and the modules can be reconfigured for chang-

ing needs. In all three examples, the use of wood is maximized to minimize the impact on 

the environment, and circularity is achieved through the reuse and recycling of materials. 

Finally, a private one-story house in Voralberg uses straw as both insulation and load-

bearing structure, with a pre-fabricated roof module resting on stacked untreated straw 

bales (Hillebrandt et al., 2018, pp. 190–196). 

  
 

Figure 31 Example of technical cycle considera-

tions in architecture: Hinzert Concentration 

Camp Documentation Center, corten steel geo-

metrical facade (Lange, 2006), CC BY-NC-SA 2.0 

Figure 32 Example of technical cycle considerations in 

architecture: Musée Soulages, Rodez, France (Pierre), 

CC BY-NC-SA 2.0 

Among the projects that considered both the technical and the biotic cycle, the first ex-

ample is an office building in Austria (architekturwerkstatt Bruno Moser, 2015) a wood-

based construction designed with a modular system, allowing for the efficient production 

of large quantities of identical elements. The second example is a temporary extension of 

a school building in Frankfurt, Germany (NKBAK, 2015), constructed using prefabricated 

room cells made of high-strength, sustainable materials, which can be easily disassem-

bled and reused. The third example involves the refurbishment of a traditional farm build-

ing into a Wadden Sea Centre in Denmark (Dorte Mandrup, 2017) using a mix of closed-

loop materials such as steel and wood. The reed roof is combined with a façade of grey-

lacquered Robinia wood panels. (Hillebrandt et al., 2018, pp. 198–202) 

Lastly, two building projects are constructed using materials that are either recycled or 

locally sourced to reduce the environmental impact of the projects. The first project is a 

residential and studio house “Rauch” made mostly from excavated clay and natural ma-

terials such as reed and bamboo canes, while the second project “Villa Welpeloo” (see 

section “Timber”) from recycled and reused materials from the nearby textile industry site 

in Enschede, Netherlands, such as wood, metal, and EPS insulation. The steel beams in 

the building’s structure are from an old textile machine, and the façade is made from 

wood boards from large cable drums. Additionally, the architects created an online plat-

form called “Harvestmap” to map out and facilitate the regional exchange of used building 
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materials. The use of existing materials and the short transportation distances resulted in 

significant resource conservation and CO2 reduction compared to conventional construc-

tion. (Hillebrandt et al., 2018, pp. 204–208). 

Finally, the “Upcycle House” in Denmark explores the reuse of materials that have already 

had a previous life cycle, resulting in 86% less CO2 emissions during construction. The 

“Museum Folkwang” in Germany uses a glimmering pavilion made from recycled glass 

shards sintered to form a material known as “glass-ceramic” for its façade. The “Kul-

turinstitut” in Germany repurposes bricks from the nearby environment for its exterior 

and utilizes a roof structure that can be easily disassembled and reused. (Hillebrandt et 

al., 2018, pp. 210–213)  

To conclude, the K.118 project reused existing building components from demolition 

sites. The project aimed to minimize waste and maximize resource efficiency by collecting 

and cataloging various reclaimed materials, including steel beams from the former Coop 

distribution center in Basel, granite facade plates repurposed as balcony flooring, alumi-

num-insulated windows, and red facade sheets from Winterthur and Zurich. Natural ma-

terials such as wood, straw, and clay were also consciously incorporated into the design. 

The K.118 project achieved a 60% reduction in the environmental footprint compared to 

a conventional new construction. (baubüro in situ ag, 2021) 

  

Figure 33 Example of technical and biotic considerations in architec-

ture. Wadden Sea Centre, Ribe, Denmark; (CC BY-SA 4.0) (Dahlstrøm 

Nielsen, 2017) 

Figure 34 Example of a new con-

struction reusing components. 

Kopfbau Halle K.118, Winterthur, 

Switzerland (image by author) 
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CE consideration in post-Use-phase 

Christensen et al. (2022) carried out a case study on the island of Bornholm, Denmark to 

study the potential creation of a closed-loop production and consumption value chain for 

construction and demolition waste. The procedure of these cases comprised a pre-dem-

olition audit, selective demolition activities, a market analysis and calculation and cost cal-

culation, and the calculation of the CO2 reduction potential. The pre-demolition audit con-

ducted by the municipality before each demolition included a resource mapping of mate-

rials for reuse and an environmental screening for hazardous materials. The pre-demoli-

tion audit is furthermore compared to the actually allocated materials for recycling after 

the demolition. (Christensen et al., 2022, p. 4) The case studies indicate that selective dem-

olition can be economically viable if local markets for reused construction materials are 

established at the same time, and that certain materials, such as bricks, are more likely to 

form the basis of viable business models due to their uniformity, while other materials 

are more challenging to develop functional business cases for. (Christensen et al., 2022, 

p. 8) 

Another example of CE interventions in the end-of-life phase is the "Areal Wolf" project in 

Basel, Switzerland, commissioned by the Swiss Federal Railways (SBB). It demonstrates 

the planning process of an urban mining project, to showcase the material and financial 

potential of repurposing unused infrastructure objects on a 16-hectare site. In this pro-

cess, an as-built BIM model was created using 3D laser scans and a component catalog 

was developed in parallel to meet the requirements of deconstruction companies and 

architects, with building elements classified according to the Swiss element-based con-

struction cost plan for building construction (e-BKPH) and the OEKOBAUDAT platform de-

fined as the data source for material parameters. The component catalog only includes 

reusable components with circularity properties of dismantlability and modularity, which 

are classified based on the deconstruction effort and detachability of connections, accord-

ing to the C2C categories of the Building Circularity passport.4 The urban mining potential 

was expressed as a weighted percentage of reusable building components, which were 

determined using the BIM model. 

  

 
4 The Building Circularity Passport® is a planning and documentation tool that facilitates the circulation of a 

building by collaborating with architects, planning disciplines, and construction firms, providing information 

on material separation, chemical composition, and monetary value, offering added value for financing, risk 

assessment, value determination, and building operation. EPEA Netherland BV . 
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3.3.1. MACRO-LEVEL 

It is noted that at the macro level the fewest projects were implemented. This is mainly 

due to the deficits in laws and regulations described in the previous section (3.2.4). Na-

tional or international regulations for advancing CE and BE have been adopted at the pol-

icy level. In this context, the European Circular Economy Action Plan and the Circular Econ-

omy Promotion Law in China are worth mentioning. However, these regulations are not 

established in the construction practice yet. 

At the macro level, nationally and supraregional operating companies and building 

material exchanges can also be considered. In Germany and Europe, there are already 

many business models that specialize in the selling of building components. In Germany, 

notable online platforms for component reuse include Concular, Restado, and 

Bauteilnetz. Additionally, the Kleinanzeigen second-hand platform offers a wide selection 

of reclaimed components. In Switzerland, SALZA and useagain are established reuse 

platforms. Furthermore, the platforms Opalis (Belgium), Environmate (UK) and Excess Ma-

terial Exchange and Oogskart (Netherlands) also focus on the collection and mediation of 

components are carried out for both private consumers and with a focus on planners and 

architects. Some of the component exchanges mentioned will be used as a basis for 

investigation in the next chapter.  
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3.4. MACHINE LEARNING AS ENABLER FOR A CIRCULAR BUILT ENVI-

RONMENT 

In this chapter the state-of-the-art regarding Machine Learning as enabling technology for 

the CE implementation in the CI is presented. 

3.4.1. METHODOLOGY 

The aim is to answer the research question:  

RQ1. How can ML enable the transition towards BE? 

In addition to the research regarding ML for CE in BE gathered by Çetin et al. (2021) and 

ML in the AEC sector gathered by Darko et al. (2020), this thesis focuses on ML techniques 

that specifically enable the component reuse and thereby also considers ML applications 

that have been implemented in the AEC sector and that are potentially useful for compo-

nent reuse. Therefore, these research questions need to be addressed: 

RQ2. How has ML been used in the AEC sector? 

RQ3. How has ML been used for CE implementation? 

RQ4. Has ML already been used for component reuse? 

Based on the contribution of previous publications it is examined which results can be 

taken up and further developed. Furthermore, a literature research is conducted to detect 

potential intersections between research on artificial intelligence and strategies of circular 

economy in the construction industry. 

The research protocol and the included publications can be found in Table 57 and Table 

58 respectively in Annex II. 

3.4.2. RQ1. HOW HAS ML BEEN USED IN THE AEC SECTOR? 

Darko et al. (2020) conducted a comprehensive scientometric study that analyzed 41,827 

bibliographic records to provide a systematic and quantitative analysis of the state-of-the-

art research on AI-in-AECI (independently of their usefulness for CE). The study found a 

growing interest in research applying AI techniques/algorithms/concepts to AEC problems 

during the last decades since its emerging in the 1970s. (Darko et al., 2020, p. 12) Based 

on the results, it can be concluded that the most often used AI techniques in the AEC 

community have been genetic algorithm (GA), neural networks (NNs), fuzzy logic (FL), fuzzy 

sets (FSs), and ML; while the most widely addressed topics/issues using AI techniques/con-

cepts include optimization, simulation, uncertainty, project management, and bridges. 

(Darko et al., 2020, p. 4) The scientometric analysis showed that topics such as robotics, 

energy, thermal comfort, life cycle cost and LCA did not receive much attention. (Darko et 

al., 2020, p. 12) Overall, according to Darko, Chan et al. (2020) the deployment of GA for 
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optimization problems (e.g., schedule optimization or cost optimization) has been the 

most common AI application in the AEC industry. (Darko et al., 2020, p. 4). Despite being 

a prominent topic in the literature, only a few of the many techniques available in machine 

learning, such as neural networks (NNs) and support vector machines (SVMs) are em-

ployed in AEC, while others like naive Bayes, Gaussian mixture, and reinforcement learn-

ing, are not. (Darko et al., 2020, p. 5) Furthermore, CNNs have only recently been catego-

rized and utilized as vision and learning-based techniques in the AEC field to address 

problems such as damage detection, facility operations and management, monitoring 

safety on construction sites, estimating concrete compressive strength, performing struc-

tural health monitoring (SHM), making decisions based on maximum gradient (MG) 

among others. (Darko et al., 2020, p. 13) In damage detection, the detection of cracks in 

concrete has been a focus area. Darko et al. (2020) suggests research and development 

(R&D) efforts to be directed toward how to integrate robotics and other AI methods with 

the topics of energy, thermal comfort, life cycle cost, and LCA; leaving circularity topics 

such as reuse, and disassembly disregarded.  

Machine learning is used in building design and optimization to formulate design prob-

lems and analyze the optimality of the building design. It is also used to identify complex 

design parameters according to specific criteria such as minimum embodied energy and 

carbon (EEC) and cost. In addition, generative adversarial networks (GAN) have been used 

to generate new architectural solutions, including floor plans and entire buildings, to ben-

efit the design of energy-efficient buildings. However, there are still some limitations, such 

as the need for massive amounts of training data that need to be addressed to extend 

the applicability of these methods in building performance optimization. (Gan et al., 2020, 

pp. 13–14) In the literature study it is noticeable that the usage of machine learning in the 

AEC sector is fragmented, with a huge research focus on assessment and prediction of 

environmental impact and the management of construction demolition waste, as well as 

the progress monitoring. 

3.4.3. RQ2. HOW HAS ML BEEN USED FOR CE IMPLEMENTATION? 

Cetin et al. (2021) analyze of the intersection of the three fields— circular economy (CE), 

the built environment (BE) and digital technologies (DTs) by offering an integrative review 

of these domains. The paper identified artificial intelligence (AI) as one of ten enabling DTs 

and examined its potential role in a circular BE across the buildings’ life cycle stages. The 

publication proposes a Circular Digital Built environment (CDB) framework that links the 

identified DTs to circular building strategies. (Çetin et al., 2021) It is therefore a valuable 

starting point for the research on artificial intelligence and machine learning, the focus of 

this thesis. Aligning with research trends according to Darko et al. (2020), the enabling 

functions of AI were grouped into their use in design optimization, in prediction of defects 

in systems and determination of resource needs in buildings in combination with other 

technologies, and in end-use phase activities (Çetin et al., 2021). Furthermore, papers in 
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the field of building stock analysis were identified. Some of the research topics will be 

further discussed below. 

Design optimization 

Duan et al. (2022) developed a set of AI technologies to promote sustainable reuse of 

urban ruins. The technologies used in the study include sentiment analysis and Genera-

tive Adversarial Networks (GAN) technology. The sentiment analysis technique was used 

to pre-evaluate public willingness around urban ruins and guide the reuse of ruins, while 

GAN technology was utilized in the schematic design phase to identify site information 

and evaluate building performance and value for sustainable reuse. The study also pro-

poses the use of intelligent building and landscape design, services, and management to 

make the reuse of urban ruins more energy-efficient, environmentally friendly, and intel-

ligent. (Duan et al., 2022) Ploszaj-Mazurek et al. (2020) developed regenerative design 

guidelines and trained a ML model to predict the optimal building features. This model 

was used as prototype for an application, which was later updated with a new algorithm 

to predict the Total Carbon Footprint of a building design based on basic building features 

and the urban layout. The study demonstrated the potential for introducing Carbon Foot-

print estimation and building optimization in the initial design phase. (Płoszaj-Mazurek et 

al., 2020) Huang et al. (2021) present a review and comparison of algorithmic formulations 

for reuse-driven design in computational approaches. They introduce a new Grasshopper 

tool that implements these formulations and utilizes the Hungarian Algorithm in a nested 

loop workflow to achieve flexible design space exploration and efficient optimization. The 

tool allows real-time computation of material reuse efficiency for small problems and pro-

vides results within seconds for larger problems. (Huang et al., 2021, p. 10) 

Prediction and detection of defects 

First, Cha al. (2017) propose a vision-based method using convolutional neural networks 

(CNNs) for detecting concrete cracks in civil infrastructure without relying on traditional 

image processing techniques. The trained CNN, combined with a sliding window tech-

nique, demonstrates high accuracy and robustness in detecting cracks in images of vary-

ing resolutions and challenging conditions. (Cha et al., 2017, p. 361) Similarly, Alipour et 

al. (2019) developed a deep fully convolutional neural network called CrackPix for pixel-

level defect detection in concrete infrastructure. The model is trained on a carefully an-

notated dataset and achieves high accuracy in detecting crack pixels. CrackPix outper-

forms patchwise models and traditional methods enabling the quantification of crack 

characteristics (e.g., width and length) in concrete structures, and showing its potential for 

automated inspection and quality assurance in smart cities. (Alipour et al., 2019, p. 1) 

End-of-use-activities: Waste 

Akanbi et al. (2020) developed deep learning models to predict the amount of salvage and 

waste materials obtainable from buildings at the end-of-life prior to demolition. The mod-

els achieved high accuracy in predicting material recovery based on basic building fea-
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tures, providing decision support for demolition engineers and waste management plan-

ners (Akanbi et al., 2020, p. 1). Lau Hiu Hoong et al. (2021) developed a faster and auto-

mated method for determining the composition of recycled aggregates (RA) using deep 

learning and achieving a 97% accuracy in identifying the nature of the RAs. Additionally, 

the study proposed a method for estimating the mass of grains and explored the auto-

matic extraction of grains from RA images using Mask R-CNN. (Lau Hiu Hoong et al., 2021, 

p. 1) Similarly, Davis et al. (2021) used deep learning models to automatically classify 

waste into four categories (organic waste, glass, metal, and plastic) using the self-gener-

ated OrgalidWaste dataset. This automated waste classification method has potential ap-

plications in the waste management sector to improve efficiency and reduce manual la-

bor. (Davis et al., 2021, p. 1) 

Building stocktaking 

Platten et al. (2020) used machine learning methods to enhance the Swedish database of 

Energy Performance Certificates by adding building characteristics necessary for as-

sessing the feasibility of energy retrofitting packages. The study focused on multifamily 

buildings constructed between 1945 and 1975. Ocular observations in Google Street View 

were conducted to gather data on building type and suitability for additional façade insu-

lation. The results demonstrated that these characteristics could be predicted with high 

accuracy. The study concludes that machine learning has the potential to enhance build-

ing databases for energy retrofitting assessments, leading to improved estimations of na-

tional energy savings potential (Platten et al., 2020, p. 1) 

3.4.4. RQ3. HAS ML ALREADY BEEN USED FOR COMPONENT REUSE? 

In this chapter RQ3. Has ML already been used for component recognition? is answered: 

In the rapid review a selection of nine papers explicitly focusing on the application of ma-

chine learning for the reuse of components were identified, while two papers were added 

manually. The included publications are found in Table 59 in Annex II. 

In the field of urban stock analysis, Raghu et al (2022) conducted ocular observations using 

Google Street View to analyze two building-specific characteristics: (1) façade material and 

(2) reusable components (window, doors, and shutters) found on building facades in two 

cities: Barcelona and Zurich. The scheme explores the use of the state-of-art neural net-

work Mask R-CNN for window detection but does not analyze further characteristics. The 

data collected is used to create classification maps that can help define protocols and for 

urban planning. This research can upscale limited information in countries where availa-

ble data about the existing building stock is insufficient. (Raghu et al., 2022, p. 577) 

Gordon et al. (2023) conducted a case study that showcases the use of accessible technol-

ogy (Lidar and 360° images) for capturing site data to support the digitization of steel 

structural building stocks for circularity purposes. The study focuses on adapting Scan-to-

BIM processes to create digital models of demolition sites, enabling better planning for 
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deconstruction works and maximizing the value of recovered materials. Specifically, the 

reconstruction of steel column and beam systems is emphasized, addressing the chal-

lenges of accurate capture and inter-element relationships. Low-cost 360° cameras are 

identified as the most viable technology for capturing reliable information, while mobile 

Lidar systems require further development. The development of these technologies is 

considered crucial for integrating digital solutions into existing workflows. The Scan-to-

BIM tools are considered a logistical foundation for conducting complex reuse analysis 

and facilitating connections between actors in the circular economy ecosystem. (Gordon 

et al., 2023, pp. 13–14) 

While the aforementioned publications enable the component reuse by identifying the 

components, none of the machine learning applications decides upon the reusability it-

self. In this context, publications of a series of studies authored by Rakhshan et al. (2021a, 

2021b) are noted, that aim to provide a set of interdisciplinary predictive tools to assess 

the technical, economic, and social reusability of a building's structural components 

(Yeung et al., 2015). Firstly, Rakhshan et al. (2021a) developed a probabilistic predictive 

model using advanced supervised machine learning methods to evaluate the economic 

reusability of load-bearing building elements. The study used a systematic literature re-

view to create an online questionnaire survey to identify factors that determine the reus-

ability of load-bearing components. The survey results are then converted into a binary 

response, with zero indicating non-reusability and one indicating reusability. Finally, 

based on the feature selection to identify relevant variables for the classification problem 

of predicting economic reusability, 13 different prediction models were developed and 

evaluated. (Rakhshan et al., 2021a, pp. 5–9) The study concludes that the approach devel-

oped could reliably estimate the economic reusability of these elements based on affect-

ing variables (Rakhshan et al., 2021a, p. 2). 

Using the same methodological approach as in (2021a)(Rakhshan et al., 2021a), a second 

study intends to develop a predictive model to estimate the technical reusability of the 

structural elements at the end-of-life of a building (Rakhshan et al., 2021b, p. 5). The study 

identifies and ranks the main reusability factors based on stakeholders' experiences and 

develops an easy-to-use learner for practitioners to assess the technical reusability of 

load-bearing components. The most crucial factors affecting the reuse of building struc-

tural components are design-related, such as matching the design of the new building 

with the strength of the recovered element, and the presence of hazardous or contami-

nating coatings. Another identified barrier is a potential problem with collateral warran-

ties, which requires further research to overcome. (Rakhshan et al., 2021b, p. 10) 

  



 

70 

3.5. STUDY LIMITATIONS 

The literature study and consequently its content analysis are objected to certain meth-

odological and representative limitations. 

Firstly, the keyword search used to identify relevant articles may have limited the results 

to the author’s selection and specific combinations of keywords: The study only includes 

articles with the term CE and BE in their title, abstract, or keywords, which may not en-

compass all relevant literature. The keywords search may ignore important synonyms and 

could have been expanded to include additional terms such as “civil engineering”, “recy-

cling”, “further use” or “repair”.  

Secondly, the search was limited to the digital databases and to English publications, po-

tentially missing relevant materials published in other languages or available in other data 

collections.  

Third, the literature review has a narrow scope and restricting inclusion criteria, because 

of time and resource limitations within the diploma thesis. As a consequence of these 

limitations, this thesis concentrated on review papers. The presented literature study lar-

gly depends on the selected reviews’ quality and scope. In addition, the literature synthe-

sis is based on the author’s interpretation and, thus, includes the possibility of a re-

searcher’s bias in the selection of articles despite the established inclusion criteria. On the 

other hand, the selected reviews represent broad and current areas of knowledge due to 

the author´s publication experience and the recent date of publication of the selected 

reviews. 

Additionally, the selection of papers from academic journals in the construction industry 

may not have captured the latest industry. 

Finally, it is important to note that the list of included practice examples and the studies 

of machine learning application for component reuse presented in this research are not 

exhaustive. The findings and conclusions drawn from these studies may not encompass 

all possible scenarios and developments within the field. 
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4 METHODOLOGY 

In this chapter the methodology for the machine learning algorithm is established. There-

fore, in the first section the necessity of component reuse is highlighted and the proper-

ties upon which the reusability is dependent are presented as “reuse criteria”. Further-

more, the process of component reuse is presented and established practice frameworks 

are reflected on. Drawing on these processes and the importance of the reuse process 

optimization, in the second section the scope of the machine learning algorithm is de-

fined, and appropriate techniques are considered. Finally, specific machine learning algo-

rithms are selected for the implementation. 

4.1. ESTABLISHMENT OF REUSE CRITERIA 

4.1.1. WHY TO REUSE 

There is an urgent need to transition towards a circular economy in the AEC sector as 

outlined in previous chapters. Reuse is considered the most important among the end-

of-life-strategies (see 2.1.1 CE Principles in the AEC sector) in the waste hierarchy (Euro-

pean Council and European Parliament, 2008, p. 8), which constitutes one of the underly-

ing core concepts of the CE (Purchase et al., 2021, p. 6). 

 

Figure 35 Waste hierarchy acc. to the Directive 2008/98/EC (image by author) 
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One of the main opportunities is to prevent outgoing materials during building renovation 

or deconstruction from becoming waste by increasing the reuse rate (Tirado et al., 2022, 

p. 13) Currently, building materials and components are considered as waste when they 

are no longer needed for the planned function, which accelerates the devastation of eco-

systems, increases environmental costs and entail risks of resource scarcity (Munaro et 

al., 2020, p. 3). Therefore, reusing materials is an important closing-the-loop strategy as it 

allows for the recirculation of recovered resources in the life cycle, which can be used in 

new construction applications instead of relying on virgin raw materials. Material reuse is 

a way to extend the life cycle of building materials, promoting sustainability in the con-

struction industry (Ginga et al., 2020, p. 5). Also, by reusing materials, the amount of waste 

generated can be reduced, and the environmental impact of producing new materials can 

be minimized (Charef et al., 2021; Ginga et al., 2020, p. 5).  

According to Addis (2007, p. 5) next to the environmental reasons the generation of ad-

vantages for building initiatives (such as obtaining planning authorization or lowering ex-

penditures), and the credibility enhancement of individuals involved in building construc-

tion are reasons for the recovery and reuse of products and materials. Accordingly, recla-

mation, reuse, and recycling can benefit building projects by adding value, but it may not 

apply to every project. Some common reasons include avoiding demolition costs, reduc-

ing landfill expenses, gaining planning permission by matching the new construction to 

materials and methods in adjacent buildings, using cheaper reconditioned equipment, 

gaining environmental impact credits, and showing a commitment to reducing the envi-

ronmental impact of construction. (Addis, 2007, p. 7) Furthermore, organizations are com-

peting to appear more environmentally conscious, and their reputation in environmental 

matters can affect various aspects of business. In the construction industry, a good envi-

ronmental record can affect the ability to get work or sell goods/services, and using recy-

cled materials can demonstrate a commitment to the environment. (Addis, 2007, p. 9) 

Furthermore, it is becoming apparent that legislation will provide for stricter regulations 

and interpretations of the circular economy in the future to meet common goals, such as 

the Sustainable Development Goals. Companies that incorporate CE strategies such as 

reuse early are deemed to have a prospective competitive advantage. 

4.1.2. HOW TO REUSE 

The lack of standardization is one of the major barriers in the implementation of CE strat-

egies in the AEC sector (see previous chapters). The circular economy (CE) in construction 

is missing a comprehensive framework for evaluating the degree of circularity in projects, 

which hinders the industry's ability to restructure and fully transition to a circular econ-

omy. (Abadi et al., 2022, p. 4) In literature several frameworks for the implementation of 

CE are proposed (Antwi-Afari et al., 2021; Çetin et al., 2022; Ginga et al., 2020; Hossain et 

al., 2020b), however on the meso (building) and micro (components and materials) level 

reusability assessment methods are exceptional. In a previous work, the author reviewed 
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various sustainability certification systems in terms of their informative value about the 

circularity of buildings and their components. The results align with Anastasiades et al. 

(2020) and Rosen (2020) in that these certification schemes so far only consider circularity 

to a limited extend and are yet inappropriate for a full-scale circularity evaluation. Fur-

thermore, they do not include frameworks for assessing the reusability of building com-

ponents. Hence, the conduction of the reuse process is not uniform, resulting in differing 

project dependent approaches.  

However, the planning process in the considered case studies (see 3.3) and the literature 

(Angst, 2021; John and Stark, 2021; Raghu et al., 2022) coincide in their base structure. 

Therefore, drawing on a previous work of the author (Bendiek Laranjo, 2022) and the re-

sults of the literature studies an optimized planning process is proposed in Figure 36. 

 

Figure 36 Cross functional diagram of the reuse process (image by author)  
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According to Figure 36 the reuse process comprises the following steps: 

(1) Setting projects reuse target. 

In general, two approaches are observed in practice: the maximization of reuse (exploita-

tion of the urban mining potential) and the pre-selection of reusable components. The 

first approach is often based on the client's wish to demonstrate through the project what 

economic and ecological potential urban mining offers for their own company. Often, 

these are pilot projects based on an exemplary building from a homogeneous portfolio, 

so that results can be extrapolated to the other assets. This approach therefore identifies 

the maximum number of components for reuse, regardless of whether their reuse is al-

ready firmly planned in a project or even whether a potential customer exists. An example 

of the first approach is the Areal Wolf in Basel, Switzerland, in which the SBB sought to 

uncover their Urban Mining Potential. In the second approach, the target projects for the 

reusable components are usually determined, i.e., that designs for circular projects are 

available for which specific components have to be found. An example for this type of 

project is the Kopfbau Halle K118 in Winterthur, Switzerland. 

 

(2) Information gathering 

The gathering of building information is the key process of the preliminary work, as the 

information constitutes the basis for both the toxicology report as well as the reusability 

assessment. Since a large number of existing buildings were neither designed circularly 

nor backed up by digital material information (in form of material passports or BIM mod-

els), the rebuilt of EoL datasets of these buildings can be time-consuming, incomplete, 

and even inconsistent (Yu, Yazan et al., 2022, p. 11). A good reference for evaluating and 

describing building fabric is provided in the Building Code Recycling in the form of check-

lists, data sheets, and technical specifications (Redaktionskreis Baufachliche Richtlinien 

Recycling, 2018, p. 89). Accordingly, the targeted information sources include building per-

mits, operating manuals, site plans, floor plans and section views, archives of the 

owner/building authority/user, heritage protection etc. (Redaktionskreis Baufachliche 

Richtlinien Recycling, 2018, pp. 90–91), and as-built documents such as static and building 

physics calculations, maintenance and utilization records, documents on (de-)construc-

tion measures, existing expert reports/technical investigations/rehabilitation documenta-

tion, information on exceptional incidents such as fire damage, accidents, etc. (Dechants-

reiter et al., 2015, pp. 45–46) and invoices. However, public building registries typically 

gather data on overall building features such as size, height, and number of floors, yet 

crucial information on building components remains absent (Raghu et al., 2022, p. 578). 

In addition, a risk to be considered is the deficiency of the as-built data of the existing 

buildings including incorrect measurements and deficient structural details (Uotila et al., 

2021, p. 250). To obtain sufficient data on the building stock for the deconstruction plan-

ning, laser scanning (LS) and 360 imaging technology are popular tools, which enable the 
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creation of BIM models and the identification of component characteristics within already 

constructed buildings (Raghu et al., 2022, p. 578).  

(3) Toxicology report 

The third step is the preparation of the toxicology report, a prerequisite for any decon-

struction project. Pollutants must always be removed from the existing structure first and 

disposed of separately before any demolition can begin - the same applies in the case of 

re-use (Hillebrandt et al., 2018, p. 11). In simple terms, it can be said that components 

contaminated with pollutants are not eligible for reuse (Rosen, 2020, p. 90).  

(4) Onsite assessment: 

The onsite assessment, also referred to as pre-demolition audit, comprises the actual 

building inspection and the reusability assessment, and results in a component catalogue. 

 

Figure 37 Process diagram of the onsite assessment (image by author) 

A. Component catalogue concept 

The component catalog defines the properties that are necessary for subsequent reuse. 

The properties must sufficiently precisely describe the component for its potential reuse 

or further use. The field research in section 4.1.3, What to reuse, provides architecturally 

relevant properties based exclusively on real RMMs and case studies. These properties 

serve as a planning foundation and can be categorized as necessary and optional compo-

nent properties. 

Table 10 General building component properties for reuse planning. 

Mandatory properties 

Property Data format 

component name alphanumeric 

component type alphanumerical 

height numeric 

depth numeric 

width numeric  

material core alphanumeric 

material surface Alphanumeric 

quantity numeric 

unit alphanumeric 

condition alphanumeric 

Optional properties  

Fabrication year numeric 
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For a uniform categorization of building components, reference to standards is sug-

gested. For example, in Germany, the components should be named in accordance with 

the DIN276 Building costs, and in Switzerland according to the eBKP-H (element-based 

building costing plan).  

Despite their growing importance, there are currently no reliable, practical, and user-

friendly methods available for calculating the service life of components. One reason for 

this is the insufficient availability of data on the service life of components. (Bahr and Len-

nerts, 2010, p. 6) In Germany the durability or the technical service life is determined ac-

cording to the "Service life of components" table of the Federal Institute for Research on 

Building, Urban Affairs and Spatial Development (BBSR) (BBSR, 2017).  

However, some building components have additional type-specific properties that are 

necessary for the determination of their reuse (but not for further-use, as further-use im-

plies a change in function). Component specific properties are shown in Table 11 and Ta-

ble 12 using the example of Doors and Windows.  

Table 11 Type-specific properties: Doors 

Mandatory properties 

Property Data format Example 

Location  alphanumeric Indoor, outdoor 

Frametype alphanumeric surround frame, corner frame, 

block frame 

Opening type alphanumeric DIN left, DIN right, sliding door, 

folding door, segment door, revolv-

ing door, pivot door 

Locking Alphanumerical Details of locks or locking and ac-

cess mechanisms and required 

keys, electronic cards, and their 

number 

Fire protection boolean True/false 

Smoke protection class alphanumeric  

Thermal protection Alphanumeric  

Sound protection Alphanumeric  

Burglary protection Alphanumeric  

Motorized, electronic opening Boolean  

Optional properties 

Property Data format Example 

Fitting types alphanumerical hinges, handles, lever handles 

Sensors Boolean True/false 

Spies Boolean True/false 
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Table 12 Type-specific properties: Windows 

Mandatory properties 

Property Data format Example 

Location  alphanumeric Indoor, outdoor 

Frame material alphanumeric Wood, aluminum, plastic, steel 

Glazing type alphanumeric Single, double, multi glazing 

Isolation Boolean True/false 

U-value Numerical Ug-value > 1,3-1,1 (W/m2K) to com-

ply with legal energy saving re-

quirements (Dechantsreiter et al., 

2015, p. 54) 

Sash type alphanumeric DIN left, DIN right, sliding door, 

folding door, segment door, revolv-

ing door, pivot door 

Locking Alphanumerical Details of locks or locking and ac-

cess mechanisms and required 

keys 

shading Boolean True/false 

Shading type alphanumerical Inter-pane space; external, internal 

Fire protection Boolean True/false 

Smoke protection class alphanumeric  

Thermal protection Alphanumeric  

Sound protection Alphanumeric  

Burglary protection Alphanumeric  

Motorized, electronic opening Boolean  

Optional properties   

Property Data format Example 

Fitting types alphanumerical hinges, handles, lever handles 

Sensors alphanumeric  

Furthermore, in practice the component catalogue is mostly created analogously or in 

Microsoft Excel, which can be explained by the non-existence of corresponding tools. 

B. Identification of reusable components:  

The identification of reusability is the most complex part of the urban mining process and 

depends on a series of component properties. Most case studies and publications, includ-

ing the present thesis, narrow the scope to a component selection whose reusability has 

been experimentally or experientially validated, and do not examine the reusability itself. 

This can be explained by the current lack of a widely accepted method or standard for 

systematically evaluating the reusability of building elements and structures (Carvalho 

Machado et al., 2018; Hopkinson et al., 2019; Hradil et al., 2017, p. 4512; Rakhshan et al., 

2020). Still, in research assessment methods for specific components can be found: Hradil 

et al. (2017) introduce an approach based on indicators to assess the reusability of com-

ponents and structures of steel-framed buildings (Hradil et al., 2017, p. 4512).  
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In literature, to the author’s best knowing, two general, component-independent reusa-

bility assessment methods exist: the systematized questionnaire proposed by Carvalho 

Machado et al. (2018) and the Urban Mining Index proposed by Rosen (2020). 

In their paper, Carvalho Machado et al. (2018) equate the potential for deconstruction 

with the potential of reutilization of construction materials. The possibility of recovering 

building materials depends on how a building was designed and constructed, and on the 

deconstruction technique that is applied at the building’s EoL. Therefore, researchers de-

veloped guidelines to enable and facilitate the deconstruction summarized as “Design for 

Deconstruction” (DfD) or “Design for Disassembly”.  

In their paper, Carvalho Machado et al. (2018) equate the potential for deconstruction 

with the potential of reutilization of construction materials. However, as the possibility of 

recovering building materials depends on how a building was designed and constructed, 

and on the deconstruction technique that is applied at the building’s EoL, researchers de-

veloped guidelines to enable and facilitate the deconstruction. These guidelines are for-

mulated as “Design for deconstruction” (DfD), which is also known as “Design for disas-

sembly”. In their paper, Carvalho Machado et al. (2018) present an analysis of DfD guide-

lines for the identification of characteristics that are influencing the reutilization process 

of components from a building at the end of its lifecycle. Carvalho Machado et al. (2018, 

pp. 1–2) analyze these DfD guidelines for the identification of characteristics that are in-

fluencing the reutilization process of components from a building at the end of its lifecy-

cle. The influencing parameters were categorized into the groups “direct influence”; “im-

pact on the ease of the process” and “influence in terms of extending the lifecycle” as seen 

in Annex III (Carvalho Machado et al., 2018, p. 6).  

Furthermore, Carvalho Machado et al. (2018) provide a tool in the form of a questionnaire 

for each of the three groups to assess the reusability of building components. These ques-

tionnaires determine which criteria lead to the exclusion of degradability and which have 

a positive or negative effect on it, and thus, enable the evaluation of the reusability of 

building components. However, according to the author of this thesis, the tool has the 

following limitations: Firstly, it does not explain the order of the questions, although it is 

recommended to prioritize characteristics that lead to direct exclusion for efficiency rea-

sons. Secondly, the tool uses Boolean questions, which are easy to handle, but due to the 

qualitative nature of the questions, require a certain level of expertise. Therefore, the au-

thors recommend providing example constructions to facilitate decision-making. How-

ever, the most significant limitation is the lack of sufficient differentiation between further 

use and reuse: as defined in 2.1.1 CE Principles in the AEC sector the separation of a build-

ing component into different layers with the purpose of reusing them separately, as it is 

considered in “Construction material separation”, is considered “further-use”. 
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Table 13 Characteristics Influencing Deconstruction Potential according to Carvalho Machado et al. (2018) 

Direct influence Impact on the ease of the 

process 

Influence in terms of  

extending the lifecycle 

Expected durability Standardization and Pre-Fabrica-

tion 

Standardization/pre-fabrication of 

construction materials 

Toxicity and construction material 

hazardousness 

Standardizing and Simplifying 

Connections 

Standardization of connections 

Possibility of reutilizing (or prefer-

ably reusing) construction materi-

als 

Modulation Modulation 

Damage caused to connected 

parts during construction 

Technology, Machinery and Tools Accessibility of parts and connec-

tions 

Damage to connections during the 

process 

Accessibility to Parts and Connec-

tions 

Separation from other construc-

tion materials 

Construction material separation Number of Connections Disassembly type 

Space for equipment and maneu-

vering 

Ease of Removal of Connections Space for equipment and maneu-

vering 

Space for correct storage of con-

struction materials 

Expected Durability of Connec-

tions 

Built environment flexibility and 

adaptability 

Risk assessment and adoption of 

security measures 

Disassembly Type 
 

Disassembly procedure Disassembly Method 
 

As-built drawings Construction Material Identifica-

tion System 

 

DfD strategies adopted at the de-

sign stage 

Information System for Construc-

tion Materials Used 

 

The second methodology is the Urban Mining Index (UMI), as proposed by Rosen (2020). 

The UMI proposes is used to measure and assess the circuit consistency of building struc-

tures in new construction design, which takes into account the circularity potential of ma-

terials by incorporating parameters such as material quality, and the economic and con-

structive viability of selective dismantling (Rosen, 2020, p. 10). The parameters must be 

based on the life cycle approach, consider both the material and constructive level, and 

include economic aspects. Both qualitative and quantitative parameters are needed for a 

differentiated evaluation (Rosen, 2020, p. 89). It is noted that the parameters assess the 

circularity of components including not only the reuse but also the other “R”-potentials 

(recycle, recovery). In Table 14 (see p. 80) only the selected qualitative and quantitative 

reuse parameters on the material and constructive level that are relevant in the post-use-

phase (after building decommission) are presented. 
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Table 14 Reuse parameters on the material and constructive level according to the UMI (Rosen, 2020) 

Material Level  

Parameter Explanation 

Absence of pollutants 
Pollutants that are dangerous to humans and the environment should not ac-

cumulate in either the natural or technical cycle, and even small additions of 

hazardous substances can restrict recyclability, making pollutant-free building 

materials a prerequisite for consistent cycles. The absence of pollutants is an 

exclusion criterion in the UMI, meaning that if a building product contains a 

substance that does not meet the legal limits, the material has no circular po-

tential. (Rosen, 2020, p. 90) 

Constructive Level 

Non-destructive  

Detachability 

The constructive level crucially determines the reuse of building materials. Dis-

solvable connection techniques and homogeneous separability are prerequi-

sites for the high-quality recovery of materials. (Rosen, 2020, p. 96)  

Rosen (2020) proposes the quantified expression of the circularity of buildings using the 

Urban Mining Index. The calculation of this index also considers the percentage of recy-

clable and non-recyclable materials and is therefore beyond the scope of this thesis.  

Finally, based on Carvalho Machado et al. (2018)and Rosen (2020) a selection of necessary 

and optional properties for the identification of reuse components was compiled in Table 

15. 

Table 15 Identified component properties for reusability determination. 

Mandatory properties Optional properties 

Property Data format Property Data format 

Toxicity Boolean Modularity Boolean 

Type of assembly alphanumeric   

Durability numerical   

In conclusion, drawing on the aforementioned systems a simplified decision tree to iden-

tify reusable components during the onsite assessment is proposed in Figure 38. 
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Figure 38: Process diagram for reusability evaluation of building components, image by author 

It is noted that the individual responsible for conducting the diagnostic evaluation must 

receive adequate training to accurately recognize all materials and technical details. With 

their expertise, they can enhance the recovery of materials and products during the de-

construction process (Tirado et al., 2022, p. 13).  

C. Documentation of components 

During the assessment the properties are documented according to the component cat-

alogue. The selected case studies have a similar approach of documentation: In general, 

the documentation includes taking pictures and measurements, and extracting material 

probes. In this thesis the case study “House of 1000 faces” in Konstanz, Germany is pre-

sented as reference: 

In this case study the documentation took place once the component selection was deliv-

ered to the interim storage. In total, there were five documentation elements that were 

constantly updated with the progress of the design and the storage of building materials: 

1. Excel table “component management” ("Bauteile Management"): contains a collec-

tion of materials with information on dimensions, location, and inventory for the 

current project, as well as a list of needed materials. 

2. Component catalogue (“Bauteilkatalog”), sorted by the five building components 

with photos of materials used in the current project. 
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3. Component Fact Sheet (“Bauteilsteckbriefe”): contains information on important 

materials with images and dimensions for communication with the demolition 

contractor. 

4. Component image: a collection of images of materials categorized by type and la-

beled with an index. 

5. Overview list of stored components: a PDF summary of all stored materials with 

images and descriptions. (John and Stark, 2021, pp. 44–45) 

It should be noted that in the examples the digital implementation is limited to drawing 

sketches in CAD programs and creating the catalog using Excel. A completely digital im-

plementation, for example in BIM, is not yet known. The author strongly suggests a work-

flow that stores all the required information, both geometrical and descriptive, in a digital 

model to ensure data integrity and accessibility.  

D. Completion of component catalogue. 

E. Generation of material passports and coding 

Material passports are well considered in research (Anastasiades et al., 2020; Benachio et 

al., 2020) and are deemed to store and provide information of components and materials 

for the new lifecycle. "A material passport (also known as a resource passport or an object 

passport) is a term used to refer to digitally registered data sets of an object describing its 

characteristics, location, and history and ownership status, in a varying level of detail 

based on the scope in which the material passport is used. Material passports are devel-

oped at the urban, building, product and material levels, and are operated on BIM or a 

platform environment" (Çetin et al., 2021). MPs are considered an important optimization 

instrument during the early design stages and as material inventory of existing buildings 

(Honic et al., 2019, pp. 788–789). The creation of material passports for the re-use com-

ponents can therefore be considered a closed-loop-strategy as it enables their seamless 

introduction in prospective further cycles. 

Examples of different digital MPs the MPs generated in the BAMB project, an EU-project 

for enabling a systemic shift in the building sector by creating circular solutions (BAMB, 

2019) and the platforms Madaster and Concular. While both Madaster and Concular pro-

vide digital solutions for generating material passports, Concular focusses less on new 

buildings and instead works more at the component level. Material passports are created 

for buildings approximately one year prior to their dismantling, meaning the inventory 

and materials of the building are digitally recorded, and in case of Concular, traced using 

Blockchain Technology (John and Stark, 2021, p. 36). 

(5) Component selection 

The Onsite Assessment results in a final selection of reusable components. 
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(6) Deconstruction planning 

The deconstruction planning is usually conducted by the demolition company and should 

consider the different deconstruction methods. In the future, it is suggested to integrate 

lean construction methods into demolition planning. 

(7) Selective deconstruction 

While the conventional demolition process is not effective in recovering valuable materi-

als and separating different types of recoverable materials, selective deconstruction in-

volves reversing the building assembly process and is more targeted in recovering specific 

materials (Sáez-de-Guinoa et al., 2022, p. 17). The term "selective deconstruction" origi-

nally comes from pollutant removal but is now generally used for a high level of selection. 

In selective deconstruction, the various materials are returned or removed with a high 

degree of sorting prior to demolition of the supporting structure. In addition to disman-

tling, manual removal offers the best conditions for optimal recycling of demolition waste. 

(Rosen, 2020, p. 51)  

(8) Conventional deconstruction, 

(9) Recovery 

(10) Recycling  

Once the selective deconstruction is completed, the components that are not considered 

appropriate for reuse, further-use or recycling are demolished conventionally. The integ-

rity of components is not relevant for further-use and recyclable materials since, by defi-

nition the product form will be dissolved in the recycling process anyway. Similarly, the 

solubility without destruction is not important for materials that will be used for energy 

purposes. (Rosen, 2020, p. 96) The primary goal of CE strategies is the waste reduction or 

prevention and therefore to minimize the extent of conventional deconstruction and 

eventually to completely avoid it. A circular system is envisioned where resources are re-

peatedly reintroduced through reuse or recycling, without any end of life and with mini-

mal resource input (Çetin et al., 2021, p. 6). 

(11) Preparation for Reuse: Refurbishment or testing needed? 

(12) Component refurbishment and testing 

The technical prerequisites for reuse are technical suitability and functionality, and the 

fulfillment of corresponding approval requirements (Redaktionskreis Baufachliche Richt-

linien Recycling, 2018, p. 53). However, the reassembly of used materials is hindered by 

legal uncertainties, as liability and warranty concerns remain unresolved. Additionally, the 

construction sector lacks sufficient guidance documents on reuse and reutilization 

(Dechantsreiter et al., 2015, p. 32). 
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In Germany, there is no differentiation in the law between new and reused components. 

That is why, a building authority approval is required for a disassembled component be-

fore its reuse, just like for a new component. The reuse of wood components is regulated 

separately and is complicated by the 2002 Altholzverordnung (Waste Wood Regulation), 

which only addresses the recycling of wood and not its reuse, and categorizes wood ac-

cording to its level of pollution, requiring a pollutant test before reuse (John and Stark, 

2021, p. 27). In many instances, even with a high quantity of elements all the reused sec-

tions need to be tested to certify their properties and assure their quality (Rakhshan et 

al., 2020, p. 363).  

(13) Transport 

(14) Storage 

(15) Reuse in different project or 

(16) Reuse in same location (but new project) 

The final stage of the reuse planning is the preparation of the next use cycle. The disas-

sembly of the components on site and their reuse in a new project usually are usually 

time-delayed and spatially separated. Therefore, transport and storage need to be con-

sidered. In the German Technical guideline on recycling in construction two prioritized 

reuse scenarios are suggested: 

1. Reuse as part of repurposing or integration into a new building object at the same 

location 

2. Reuse in other buildings owned by the client (Redaktionskreis Baufachliche Richt-

linien Recycling, 2018, p. 53) 

However, when storing the components is a viable option, reuse opportunities in other 

projects increase. "It is necessary to evaluate whether the space and storage method are 

adequate for the construction materials, or whether damage may be caused, compromis-

ing reutilization” (Carvalho Machado et al., 2018, p. 9). Furthermore, “the closer the stor-

age space to where deconstruction or re-sale is taking place, the lower the environmental 

impact and transportation costs. The location must not affect urban areas and it must be 

a safe environment" (Carvalho Machado et al., 2018, p. 9).  

4.1.3. WHAT TO REUSE 

The last section concluded that in general components, that are non-pollutant, non-de-

structively disassemble and compliant with technical standards can be considered reusa-

ble. In the limited reuse practice a selection of component types can be identified, that 

comply with these requisites due to their standardized assembly and whose reuse is more 

established. In this section these “reusable by default”-components were identified 

through a field search including online marketplaces, practice publications, and guide-

lines. 
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According to the German Construction Guidelines for Recycling, components suitable for 

reuse include paving stones, roof tiles, facade parts; steel structures (halls), wooden beam 

structures; windows, doors, sanitary objects, lighting systems and technical building 

equipment (heating and air-conditioning technology) (Redaktionskreis Baufachliche Richt-

linien Recycling, 2018, p. 53). 

Dechantsreiter et al. (2015, p. 53) focused on components of the interior and building en-

velope, whose reuse has been practically tested (building component exchanges/ 

bauteilnetz Germany and Association of Historical Building Material Dealers), and for 

which there is already a market. The selection considers interior components, i.e. compo-

nents that are permanently attached to the building, but excludes, built-in kitchens, cabi-

nets, lamps, and other furniture (Dechantsreiter et al., 2015, p. 53). Specifically, the selec-

tion includes exterior windows, doors, gates, interior doors, stairs, flooring, roof/walls, 

heat generators/radiators, sanitary facilities, pavements, enclosure: fences/gates and rail-

ings (Dechantsreiter et al., 2015, pp. 7–8) and describes required product and marketing 

properties. The online marketplaces were selected based on the research in John and 

Stark (2021) and using the search engine Google (see Table 16.  

Table 16 Online marketplaces for reused components 

Name Website Country 

Concular https://shop.concular.de/  Germany 

Restado https://restado.de/ Germany 

Bauteilnetz  http://www.bauteilnetz.de  Germany 

Ebay Kleinanzeigen https://www.ebay-kleinanzeigen.de/ Germany 

SALZA https://salza.ch/ Switzerland 

Useagain (ex: Bauteilclick) https://www.useagain.ch/de/ Switzerland 

The selection has the following limitations: only components that are considered to gen-

erate revenue are offered on online platforms, which excludes components that are re-

usable but need to undergo refurbishment or testing; the sellers are usually private per-

sons or companies that offer easily and fast removable components rather than all theo-

retically reusable components. It is therefore, that economic reusability is not considered. 

The selection shown in the graphs is based on the number of articles in each category, 

however, in some of the marketplaces an article can include several elements. For exam-

ple, in the marketplace Concular the category bricks had three articles, but each article 

included a sample of 100.000 bricks, that were sold as a pack. 

https://shop.concular.de/
https://restado.de/
http://www.bauteilnetz.de/
https://www.ebay-kleinanzeigen.de/
https://salza.ch/
https://www.useagain.ch/de/
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Figure 39 Online Marketplaces' top 10 reused component. Absolute numbers of offered components (image 

by author) 
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Component selection for machine learning application 

In the application of the machine learning algorithm doors, windows, radiators, sanitary 

objects, and lights should be identified. These five component types were chosen accord-

ing to the following selection criteria in Table 17. 

Table 17 Selection criteria for component identification 

Selection criteria Description 

Relevance in practice The component should be reusable per default, with little refurbishment and 

no testing needed. 

Typology The components should have standard features, but different configurations. 

Shapes and colors should differ. 

Indoor The availability of data demands a restriction to indoor components. 

Electrical equipment and MEP installations are not part of the selection as performance 

parameters that cannot be retrieved from image data, are essential for their reuse. The 

necessary and optional properties for the reuse of the selected objects are shown in Table 

19 to Table 21. 

Table 18 Necessary and optional reuse properties: Radiators and Sanitary 

Mandatory properties Optional properties 

Property Data format Property Data format 

component name alphanumeric Fabrication year numeric 

Component types alphanumerical Color alphanumeric 

height numeric   

depth numeric   

width numeric    

material core alphanumeric   

material surface Alphanumeric   

quantity numeric   

unit alphanumeric   

condition alphanumeric   
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Table 19 Necessary and optional features for reuse: Doors 

Mandatory properties 

Property Data format Example (opt.) 

component name alphanumeric  

Component type alphanumerical  

height numeric  

depth numeric  

width numeric   

material core alphanumeric  

material surface Alphanumeric  

quantity numeric  

unit alphanumeric  

condition alphanumeric  

Location  alphanumeric Indoor, outdoor 

Frame type alphanumeric surround frame, corner frame, block frame 

Opening type alphanumeric DIN left, DIN right, sliding door, folding door, seg-

ment door, revolving door, pivot door 

Locking Alphanumerical Details of locks or locking and access mechanisms 

and required keys, electronic cards and their 

number 

Fire protection boolean True/false 

Smoke protection class alphanumeric  

Thermal protection Alphanumeric  

Sound protection Alphanumeric  

Burglary protection Alphanumeric  

Motorized, electronic opening Boolean  

Optional properties   

Property Data format Example 

Fabrication year numeric 1960: 2002 

Fitting types alphanumerical hinges, handles, lever handles 

Sensors Boolean True/false 

Spies Boolean True/false 
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Table 20 Necessary and optional properties for reuse: Windows 

Mandatory properties 

Property Data format Example 

component name alphanumeric  

Component type alphanumerical  

height numeric  

depth numeric  

width numeric   

material core alphanumeric  

material surface Alphanumeric  

quantity numeric  

unit alphanumeric  

condition alphanumeric  

Location  alphanumeric Indoor, outdoor 

Frame material alphanumeric Wood, aluminum, plastic, steel 

Glazing type alphanumeric Single, double, multi glazing 

Isolation Boolean True/false 

U-value Numerical 𝑈𝑔-value >  1,3 − 1,1 (
𝑊

𝑚2𝐾
) to comply with legal energy sav-

ing requirements (Dechantsreiter et al., 2015, p. 54) 

Sash type alphanumeric DIN left, DIN right, sliding door, folding door, segment door, 

revolving door, pivot door 

Locking Alphanumeri-

cal 

Details of locks or locking and access mechanisms and re-

quired keys 

shading Boolean True/false 

Shading type alphanumerical Inter-pane-space; external, internal 

Fire protection boolean True/false 

Smoke protection class alphanumeric  

Thermal protection Alphanumeric  

Sound protection Alphanumeric  

Burglary protection Alphanumeric  

Motorized, electronic 

opening 

Boolean  

Optional properties   

Fabrication year numeric  

Fitting types alphanumerical hinges, handles, lever handles 

Sensors alphanumeric  
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Table 21 Necessary and optional reuse properties: Lamps 

Mandatory properties Optional properties 

Property Data format Property Data format 

component name alphanumeric Fabrication year numeric 

Component types alphanumerical Operating Voltage numeric 

height numeric Illuminant type alphanumeric 

depth numeric Transformer necessary boolean 

width numeric  Operation mode alphanumeric 

material core (frame) alphanumeric Power per Lamp numeric 

material surface (frame) Alphanumeric Protection class numeric 

quantity numeric   

unit alphanumeric   

condition alphanumeric   

Component distinction 

During the on-site inpection, differentiation took place according to the visual distinguish-

ing characteristics in Figure. 

 

Figure 40 Component differentiation in in-site inspection (image by author) 

The different classes of components are further divided into different types of compo-

nents. A type differs in the following characteristics: interior or exterior component, com-

ponent material, component shape. The definition of the type distinction is important for 

planning the annotation because the examples must be meaningful and differentiable. 

Unlike rule-based learning, in which the differentiation occurs according to rules pertain-

ing to specified features, in ML, this differentiation rule learns itself based on the features 

identified by the model.   
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4.2. COMPONENT IDENTIFICATION USING MACHINE LEARNING 

The thesis has found that the circular economy is far from being established in the AEC 

sector due to diverse barriers. Urban mining requires several steps, such as the inspection 

of the building before the demolition, detecting reusable components, taking inventory, 

planning of deconstruction etc. Furthermore, a certain level of expertise and time are re-

quired, which implies additional costs compared to a conventional demolition. Still, as es-

tablished in the previous chapter, the existing reuse practice largely relies on analog work-

flows. Significant disadvantages of the analog urban mining workflow are the error-prone-

ness in the data collection, evaluation, and documentation and the temporal expenditure 

of the onsite assessments.  

The premise of this thesis is to contribute to the acceleration of the established urban 

mining practice by automatizing the onsite assessment (steps (4) and (5)) including the 

component detection and classification using machine learning technologies. Therefore, 

in this chapter firstly the scope of the machine learning algorithm and special require-

ments resulting from the use of 360° images are elaborated. Secondly, techniques to iden-

tify components are analyzed and subsequently, a selection of machine learning algo-

rithms based on the performance estimation takes place.  

4.2.1. SCOPE 

The objective of this research is to facilitate the reuse of components by utilizing Machine 

Learning techniques and 360° images. Component reuse is reliant on several factors and 

properties, including numerical and alpha-numeric characteristics, as discussed in the 

previous chapter. Machine Learning can be optimally employed to predict the potential 

for component reuse and independently describe or categorize the components. An ideal 

model should not only classify components into pre-existing categories but also utilize 

unsupervised learning models to group them based on their component type, material, 

and size. The chapter 6.5 Future Research contains a detailed explanation of this ap-

proach and its potential intersection with other digital technologies, such as RMMs, ma-

terial passports, and BIM, and should be considered as a future research opportunity. 

However, due to time and resource limitations this paper does not address this ideal so-

lution. The scope of this research is to demonstrate that the combination of Machine 

Learning applications and 360° images, commonly utilized in inventory assessments, can 

enable, and expedite the reuse of certain components by largely automating the record-

ing or inventory process and reducing the amount of necessary human interaction. 
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Therefore, the ML application should solve the following tasks: 

1) Identification of various components in 360° imaging, with a focus on se-

lecting reusable components 

2) Categorization of the components into different types. 

3) Listing of elements in each type as material passports, including an image 

of each component. The output can be in PDF or Excel format. 

Drawing on chapter 2.3.2 The Task 𝑇 this type of computer vision task corresponds to 

object class recognition. As established above object class detection focuses on recogniz-

ing (always unseen before) instances of some pre-defined categories (Zhang et al., 2013, 

p. 2), which in this thesis translates to identifying components belonging to the defined 

reusable component types (windows, doors, sanitary, lightning and heating).  

The identification of reusable components in 360° images as in task (1) relates to the ob-

ject classification task, which “determines whether or not any instance of the categories 

of interest is present in a given image” (Zhang et al., 2013, p. 4). As in scope (2) multiple 

classes (doors, windows, sanitary, lightning and heating) are of interest, the task is a multi-

class detection task (Salakhutdinov et al., 2011), by which all instances (components) of 

these predefined categories are detected (Zhang et al., 2013, p. 5).  

In this thesis, the terms "class" or "category" refer to a group of objects (component types) 

sharing common semantic features, such as "door" or "window". On the other hand, "ob-

ject" or "instance" refers to a specific individual (component) within a class. It should be 

noted that these pairs of terms are used interchangeably. (Zhang et al., 2013, p. 4) 

4.2.2. ANALYSIS OF TECHNIQUES FOR IDENTIFYING COMPONENTS 

In this section, techniques to identify components are analyzed and the model selection, 

i.e. the performance estimation of different models in order to choose the best one, is 

performed. The selected model is then trained in 5.2 Training and validated in 5.2.3 Vali-

dation to estimate its prediction error (Hastie et al., 2009, p. 222). 

In the realm of generic object detection, the ultimate objective is to design a versatile al-

gorithm that can achieve the two competing goals of high accuracy and high efficiency. 

High-quality detection entails precise localization and recognition of objects in images or 

video frames, which facilitates the differentiation of a wide range of object categories 

prevalent in the real world (i.e., high distinctiveness) and localization and recognition of 

object instances within the same category while considering intra-class appearance vari-

ations (i.e., high robustness). High efficiency demands that the entire detection process 

must operate in real-time while keeping memory and storage requirements within ac-

ceptable limits (Liu et al., 2018a, pp. 4–5). At present, convolutional neural networks 

(CNNs) are widely regarded as one of the most powerful tools in the field of computer 

vision (Su and Grauman, 2017, p. 1) and frameworks (region-based and unified) play a 
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crucial role in reducing the computational cost. Region based (or two-stage) detectors im-

plement the R-CNN architecture, which is subsequently followed by its variations includ-

ing Fast R-CNN (Girshick, 2015), FasterR-CNN (He et al., 2017; Ren et al., 2015) and Mask 

R-CNN (He et al., 2017) (Li et al., 2023, p. 510). Among the one-stage frameworks, OverFeat 

(Sermanet et al., 2013), DetectorNet (Szegedy et al., 2014), You Only Look Once or Yolo 

(Redmon et al., 2016) and Single Shot Detector or SSD (Liu et al., 2015) are the most pop-

ular (Liu et al., 2018a, p. 13). However, state-of-the-art research mainly focuses on using 

conventional 2D images.  

Conversely to 2D images, 360° images are interpreted as a sphere or spheroid around the 

camera viewpoint. As seen in 2.6 360° Imaging, “360°images are usually represented in 

either equirectangular projection (ERP) or (multiple) perspective projections (PSP)” (Zhao, 

P. et al., 2019, p. 1). “Perspective projections offer less distortion, but require projecting a 

large number of candidate areas to cover” (Zhao, P. et al., 2019, pp. 1–2) and are therefore 

less efficient. In this thesis the equirectangular projection of the images will be used as 

input.  

Conversely to 2D images, 360° images are interpreted as a sphere or spheroid around the 

camera viewpoint. Therefore, “360°images are usually represented in either equirectan-

gular projection (ERP) or (multiple) perspective projections (PSP)” (Zhao, P. et al., 2019, 

p. 1). “Perspective projections offer less distortion, but require projecting a large number 

of candidate areas to cover” (Zhao, P. et al., 2019, pp. 1–2) and are therefore less efficient. 

In this thesis the equirectangular projection of the images will be used as input. An 

equirectangular projection is a cylindrical equidistant projection, which is a projection that 

“maps a sphere (or spheroid) onto a plane” (Wolfram Mathworld, 2023b) transforming the 

polar coordinates of the sphere to Cartesian coordinates. In the equirectangular projec-

tion (see Figure 41) “the horizontal coordinate is the longitude and the vertical coordinate 

is the latitude, so the standard parallel is taken as φ1 = 1 “ (Wolfram Mathworld, 2023a). 

 

Figure 41: Equirectangular projection (Trek View, 2020) 
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“Although most object detection neural networks designed for the perspective images are 

applicable to 360° images in equirectangular projection (ERP) format” (Cao et al., 2022, 

p. 1), the “conversion of 360° content to the projection plane introduces geometric distor-

tion […], which results in inefficient feature extraction by the neural network. Moreover, 

the objects located at the boundary of the projection image appear incomplete“ (Li et al., 

2023, p. 508). “The distortions of objects vary with distance and viewpoint (see Figure 42) 

and show randomness to some extent” (Fucheng Deng et al., 2017, p. 375). The lack of 

high-resolution images and a lack of annotated training data are other challenges in the 

object detection using equirectangular panorama images (Yang et al., 2018).  

 

Figure 42 Example of equirectangular projection. 

The distortion varies with distance of the object from the viewpoint. The doors in proximity to the image 

center (dark blue) appear more distorted than the door in the distance (light blue). (Bendiek Laranjo, 2023) 

To overcome these challenges, two general approaches are distinguished in the applica-

tion of CNNs for object detection in 360° images: 

1) applying object detection models on the planar projection of a spherical image, or  

2) repeatedly projecting the 360° image to tangent planes, (Su and Grauman, 2017, p. 2). 

 

Figure 43 Approaches working with 360° images (Su and Grauman, 2017, p. 2) 
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The first approach involves the application of conventional object detection models on 

equirectangular images (Chou et al., 2020) or the optimization of the convolution layers 

using distortion-aware convolution modules, which can handle the geometric defor-

mation during the feature extraction stage (Li et al., 2023, p. 511). Approaches so far pro-

posed deformable convolution (DeformConv) to improve CNN feature extraction on pan-

orama images (Dai et al., 2017). Hu et al. (2019) improved DeformConv addressing the 

issue of useless context regions interfering with feature extraction. Furthermore, Spheri-

cal CNN (Cohen et al., 2018) have been proposed for classification and geometric distor-

tion encoding rotational invariance methods. Fernandez-Labrador et al. (2019) proposed 

equirectangular convolution (EquiConv) to eliminate geometric distortion under 

equirectangular projection, while orthographic convolution (OrthConv) is designed for or-

thographic projection (Li et al., 2023, p. 510). In addition, Coors et al. (2018) created the 

synthetic FlyingCars dataset by attaching rendered 3D car images to real-world omnidi-

rectional images, and solved the distortion in ERP using spherical convolution applied to 

a vanilla SSD (Zhao, P. et al., 2019, p. 3). Most recently Li et al. (2023) proposed a novel 

two-stage detection network, RepF-Net, that utilizes multiple distortion-aware convolu-

tion modules to efficiently extract features and deal with geometric distortion in 360°con-

tent, developed to address the problem of incomplete objects at the boundary of projec-

tion images (Li et al., 2023, p. 508). This is only a list of popular distortion aware CNN and 

does not claim to be complete. 

The second approach, on the other hand, works with spherical images without using ERP. 

This approach was pursued by Yang et al. (2018) who used a multi-projection variant of 

the YOLO detector (mp-YOLO) to handle the geometric deformation issue by using multi-

ple stereographic projections. Based on that, Zhao et al. (2020, p. 12959) proposed Repro-

jection R-CNN (Rep R-CNN) “by combining the advantages of both ERP and PSP, yielding 

efficient and accurate 360°object detection” (Zhao et al., 2020, p. 12959). The Rep R-CNN 

detector has two stages: a spherical region proposal network (SphRPN) for efficiently pro-

posing coarse detections on ERP, and a reprojection network (RepNet) for accurately re-

fining the proposals based on PSPs (Zhao et al., 2020, p. 12962). The detector outperforms 

previous methods, including the multi-projection YOLO, by over 30% on mAP5 with com-

petitive speed (Zhao et al., 2020, p. 12959). Finally, the spherePHD detection model pro-

posed by Lee et al. (2019) projects an omnidirectional image onto an icosahedral spherical 

polyhedron6 and applies it to a CNN structure, resulting in a representation with signifi-

cantly less irregularity compared to ERP and other representations (2019, p. 9175). Lastly, 

SPHCONV proposed by Su and Grauman (2017) is a hybrid form of the two approaches, 

in which a CNN is learned “that processes a 360° image in its equirectangular projection 

(…) but mimics the “flat" filter responses that an existing network would produce on all 

 
5 mAP – mean average precision (see 0 Metrics) 
6  
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tangent plane projections for the original spherical image (…)” (Su and Grauman, 2017, 

p. 2). 

In Table 61 in Annex IV a compilation of these popular object detection models capable of 

processing equirectangular images was analyzed to determine the most suitable tech-

nique for enabling component reuse in the AEC sector. The models were gathered in re-

search publications (Chou et al., 2020; Li et al., 2023; Liu et al., 2018a; Su and Grauman, 

2017; Zhang et al., 2013; Zhao, Z. Q. et al., 2019) and conference outcomes, including the 

Conference on Computer Vision and Pattern Recognition (CVPR), International Confer-

ence on Computer Vision (ICCV), and European Conference on Computer Vision (ECCV), 

and then evaluated according to the criteria presented in Annex IV. 

4.2.3. TECHNIQUE SELECTION  

The final selection of the object detection model for training and validation was made for 

the following reasons: First, this thesis’ aims to demonstrate the suitability of machine 

learning methods for detecting reusable components in the context of 360° images. 

Therefore, developing a proprietary model is beyond the scope, which limited the model 

selection to publicly available implementations. Second, it was logical to train a model for 

each of the two presented approaches, however, due to limited resources, it was not pos-

sible to annotate the dataset in both equirectangular projection and a spherical projec-

tion. However, this comparison is considered very important and offers the potential for 

future research topics (see 6.5 Future Research). As a result, for the sake of comparability 

and limited computational resources, a conventional one-stage detector, YOLO, was cho-

sen. Different versions of this one-stage-detector have already been applied in the field 

of object detection in 360° images (see (Chou et al., 2020), (Yang et al., 2018)), as well as 

being frequently used as a benchmark model, for example in (Zhao, Z. Q. et al., 2019) and 

(Zhao et al., 2020). The model is briefly described below. 

YOLO 

“You Only Look Once” or YOLO is a “unified, real-time object detection” model proposed 

by Redmon et al. (2016). While SOTA detection models hitherto had repurposed classifiers 

to perform detection, YOLO formulated object detection "as a single regression problem, 

straight from image pixels to bounding box coordinates and class probabilities." (Redmon 

et al., 2016, p. 779). It combines feature detection, bounding box and class probabilities 

prediction in a single neural network. Unlike other object detection models that are based 

on sliding window or region-proposal based techniques, YOLO uses features from the en-

tire image to predict each bounding box and simultaneously predicts all bounding boxes 

for all classes. Therefore, the input image is divided into an 𝑆 ×  𝑆 grid and the grid con-

taining the center of an object is responsible for this object's detection. Each grid cell pre-

dicts 𝐵 bounding boxes and their corresponding confidence values for object presence 

and accuracy. The confidence value should be zero, if no object exists in that cell, and 
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otherwise correspond to the intersection over Union (IoU) between the predicted field 

and ground truth. The confidence is defined as: 

𝑃𝑟(𝑜𝑏𝑗𝑒𝑐𝑡)  ∗  𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ. Equation 4-1 

For each grid cell, the model predicts 𝐶 conditional class probabilities, 𝑃𝑟(𝐶𝑙𝑎𝑠𝑠𝑖|𝑂𝑏𝑗𝑒𝑐𝑡), 

given that an object is present in that cell. Only one set of class probabilities is predicted 

per grid cell, independently of the number of bounding boxes 𝐵. In the test run the class-

specific confidence score that encodes both the probability of a class’s presence and the 

accuracy of the predicted box fitting the object, is calculated by multiplying the conditional 

class probabilities and the individual box confidence predictions (Redmon et al., 2016, 

p. 780): 

𝑃𝑟(𝐶𝑙𝑎𝑠𝑠𝑖|𝑂𝑏𝑗𝑒𝑐𝑡)  ∗  𝑃𝑟(𝑂𝑏𝑗𝑒𝑐𝑡)  ∗  𝐼𝑂𝑈 𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ  = 𝑃𝑟(𝐶𝑙𝑎𝑠𝑠𝑖)  ∗  𝐼𝑂𝑈 𝑝𝑟𝑒𝑑

𝑡𝑟𝑢𝑡ℎ Equation 4-2 

Yolo is implemented as convolutional neural network (see 2.4.3 Convolutional Neural Net-

works) in which the „initial convolutional layers […] extract features from the image while 

the fully connected layers predict the output probabilities and coordinates“ (Redmon et 

al., 2016, p. 780). 

The network architecture consists of 24 convolutional layers followed by 2 fully connected 

layers. It is inspired by GoogLeNet, but uses 1×1 reduction layers followed by 3×3 convo- 

lutional layers instead of the inception modules. The network outputs a 7 × 7 × 30 tensor 

of predictions. (Redmon et al., 2016, pp. 780–781) The network is shown in Figure 44. 

 
Figure 44: The YOLO detection model architecture (Redmon et al., 2016, p. 781) 
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5 MACHINE LEARNING PIPELINE 

After the problem framing in 4.2.1 Scope and selecting an appropriate model in 4.2.3 

Technique selection this chapter will elaborate on the machine learning pipeline for the 

task of identifying reusable components. A ML pipeline refers to a sequence of steps or 

formalized processes that are intended to standardize machine learning projects (Hapke 

and Nelson, 2020).  

In this thesis, the pipeline comprises three main processes, including data acquisition and 

preparation (section 5.1 Data), training and validation techniques (5.2 Training and Vali-

dation), as well as the final testing and evaluation methods (5.3). It should be noted that 

the deployment of the validated model and its scaling (Hapke and Nelson, 2020) are be-

yond this thesis’ scope. 

 

Figure 45 Machine Learning Pipeline (image by author) 

5.1. DATA 

Data is the foundation of any machine learning project. The model's usefulness and per-

formance rely on the quality of the data used for training, validation, and analysis (Hapke 

and Nelson, 2020). This chapter focuses on the first step of the machine learning pipeline 

that comprises the dataset generation, image annotation, pre-processing, format conver-

sion, and splitting into training, validation, and test sets.  

In 5.1.1 appropriate datasets are considered and the necessity to generate a proprietary 

dataset is outlined. In 5.1.2 the image generation for the TUDataset is described, while the 

feature and category selection is conducted in 5.1.3 to guide the annotation process in 

5.1.5. The collected data is then cleaned and normalized in 5.1.4 and augmented (5.1.6).  
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Finally, the dataset is split into training, validation, and testing sets for supervised learning 

approaches in 5.1.6 and converted to a suitable format. By following this process, a high-

quality dataset can be prepared to train a machine learning model. 

Table 22 Overview of the used software for data deployment 

Steps Software 

Data generation Openexperience Bauhelm 

Preprocessing Roboflow  

Annotation Roboflow 

Training  PyCharm 

5.1.1. DATASETS 

Various publicly accessible datasets exist on the internet, catering to diverse visual tasks 

(i.e. categorization, detection, or segmentation), with different sources of images and an-

notations such as category names, bounding boxes, and pixel-level labels (Zhang et al., 

2013, p. 38). Most popular datasets are: Pascal VOC (Everingham et al., 2010), ImageNet 

(Russakovsky et al., 2014), MS COCO (Lin et al., 2014), Places (Khosla et al., 2018), Open 

Images (Alina Kuznetsova et al., 2018). However, these datasets include exclusively con-

ventional images that impose limitations on current computer vision algorithms by re-

stricting the visual field to a narrow region. These restrictions are overcome by 360° im-

ages (also “omnidirectional” or “panoramic” images), that offer a comprehensive view of 

the scene. The popularity of 360° omnidirectional images has been on the rise (Cao et al., 

2022; Chou et al., 2020; Feng et al., 2020; Zhang et al., 2022) due to their ability to capture 

more comprehensive scene information than traditional images. As a result, they are 

meeting the growing need for a wider field of vision in various settings, including both 

industry and daily life (Zhang et al., 2022, p. 1). In the construction industry, 360° images 

are gaining popularity in building documentation. With the growing amount of data, there 

is an increasing interest in computer vision to explore 360°visual recognition (Chou et al., 

2020, p. 835). Therefore, several 360° datasets have recently been developed (Chou et al., 

2020). Based on the existing 360° dataset compilations by Chou et al. (2020) and Xu et al. 

(2022) in Table 22 (p. 99) an updated list of existing datasets is presented. 

“However existing equirectangular projection image datasets, including Sun360, Pano-

Context, SunCG, Stanford2D3D, and Structured3D, all lack standard object detection an-

notations” (Li et al., 2023, p. 516). The 360-Indoor Dataset stands out because of its similar 

domain and object detection scope. It was released in 2020 by Chou et al. (2020) and was 

the first and largest object detection and classification dataset available. It comprises 

3,000 equirectangular indoor images and 90,000 annotations for Bounding FoVs (BFoVs) 

across 37 categories in its present version (Chou et al., 2020). 
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Table 23 Existing 360° datasets in 2D domain to date, based on (Xu et al., 2022) and (Chou et al., 2020) 

Datasets 360° Data 

type 

Domain Purpose #images/ 

videos 

# 

categ. 

# 

boxes 

Annotation  

360-Indoor images indoor 

scenes 

Object  

detection 

3000 37 89148 Bounding Field 

of View 

(Chou et 

al., 2020) 

Matter-

port3D 

images Indoor 

scenes of 

90 buildings 

Object  

Segmenta-

tion 

10.800 40 50811 Instance-level 

segmentation 

Masks 

(Chang et 

al., 2017) 

SUN360  images Indoor and 

outdoor 

scenes 

Not  

specified 

67583 80 - not annotated (J. Xiao et 

al., 2012) 

Stanford 

2D-3D-S 

images Indoor 

spaces (13 

room types) 

Seg- 

mentation 

1413 13 5614 Instance-level 

Segmentation 

Masks 

(Armeni et 

al., 2017) 

What's in 

my room?  

Images indoor 

scenes 

Seg- 

mentation 

666 14 
 

Segmentation 

Masks 

(Guer-

rero-Viu 

et al., 

2020) 

Deng et al. Images Indoor 

scenes 

Object  

detection 

2000 8 
 

Bounding 

Boxes 

(Fucheng 

Deng et 

al., 2017) 

Pano2Vid Videos Outdoor ac-

tivities 

Automatic 

Cinematog-

raphy 

86 - - not annotated (Yu-Chuan 

Su et al., 

2016) 

Sports-360 360° Vid-

eos 

Sports Visual Pilot, 

Object de-

tection 

   Viewing Angles (Hu et al., 

2017) 

YouTube/ 

Vimeo 

360° , 

normal 

field-of-

view 

(NFOV) vid-

eos 

Wed-

ding/Music 

Videos 

Highlight 

detection 

115  

(360° vid-

eos) 

- - not annotated (Yu et al., 

2018) 

Narrated-

360 

Videos House/Tour 

Guiding 

Visual 

Grounding  

864 - - Bounding Box (Chou et 

al., 2017) 

Wild-360 Videos Nature and 

Wildlife 

Saliency De-

tection 

85 - - Saliency Map (Cheng et 

al., 2018) 

ERA images 

(video 

frames) 

Dynamic 

activities 

Object 

detection 

903 10 7199 Bounding Field 

of View 

(Yang et 

al., 2018) 

Flying Cars Images Synthesis 

Cars (3D car 

models) 

Object 

detection 

- 1 6000 Bounding Field 

of View 

(Coors et 

al., 2018) 

OSV Images Streets 

scenes (Ja-

pan) 

Object 

detection 

600 5 5058 Bounding Box (Yu and Ji, 

2019) 

Pandora 360° Im-

ages 

Indoor 

scenes 

Object 

detection 

3000 47 94353 Rotated 

Bounding Field 

of View(RBFoV) 

(Xu et al., 

2022) 
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Although the 360-Indoor represents a "new benchmark for visual object detection and 

class recognition in 360°indoor images“ (Chou et al., 2020, p. 834), it was decided to gen-

erate proprietary data for the following reasons: The dataset was generated using public 

images in the databases  Flickr7, Kuula8, and the dataset "Narrated 360° videos” (Chou et 

al., 2017). As a result, the set contains a large number of images of a wide variety of build-

ings, but these images only very poorly describe the respective building. It is often recog-

nizable from the interior design that several images must come from one (public) building, 

but no conclusion can be drawn about the rest of the premises. 

This thesis aims to enable the recognition of building components for reuse by automatic 

recognition using ML. The following working hypotheses are used: Urban mining projects 

usually include one or more buildings to be considered in their entirety. Furthermore, 

within a building, it can be assumed that a selection of different designs (types) of a build-

ing component is frequently repeated. For example, in practice, uniform window types 

are often found per façade and floor: for instance, in residential buildings up to about the 

1950s, window fronts are often found on the ground floor, and the largest windows are 

pm 1st floor (the "belle étage") than on the floors above. Smaller window sizes face the 

courtyard that remain constant throughout the building were usually installed. With 37 

labels the 360-Indoor dataset currently has “the largest category number” (Chou et al., 

2020, p. 834), but lacks the intra-class variation required for reuse: for the next-life con-

siderations the format, materiality and the design of the components are required infor-

mation and a distinction between outdoor and indoor components is useful (see 5.1.3 

Category Selection). 

Finally, for good generalization it is crucial that the training data is representative of the 

new cases that will be generalized to (Géron, 2023, p. 25). Hence, a dataset is needed that 

documents the entire building, , in which the different types of components within a class 

are frequently repeated. For these reasons, the need to create a separate dataset was 

seen and the TUDataset was generated as described below. 

  

 
7 https://flickr.com/ 
8 https://kuula.co/ 

https://flickr.com/
https://kuula.co/
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5.1.2. DATA GENERATION: TUDATASET 

Spherical object detection datasets can be generated using various methods (Zhao et al., 

2021). The first method, used by Su and Grauman (2017) and Zhao, P. et al. (2019), is the 

transformation of planar datasets to panoramic ones, e.g. by randomly cropping objects 

with backgrounds of varying sizes from images, and subsequently projecting these 

cropped images onto arbitrary points on a sphere (Zhao et al., 2020, pp. 12963–12964). 

Another approach is to composite real-world background images with rendered or seg-

mented images (Coors et al., 2018; Zhao et al., 2020), as seen in the FlyingCars dataset, 

which integrates real-world panoramic images captured by an omnidirectional 360° ac-

tion camera with computer-generated 3D car models (Coors et al., 2018, p. 537). Thirdly, 

synthetic images with pixel-level annotations can also be generated from virtual worlds 

as in the SYNTHIA dataset (Ros et al., 2016). Finally, some methods involve the generation 

of data using specialized cameras or profiting of the increasing prevalence of omnidirec-

tional sensors in drones, robots, and autonomous cars (Cohen et al., 2018). These images 

are then manually annotated in spherical images, as opted by Zhang et al. (2022) or, more 

frequently, in the equirectangular projection of the image. 

In this thesis the data was generated from scratch using the specialized cameras. Specifi-

cally, an OpenExperience 360° camera helmet (as seen in Figure 46) was used to capture 

real-life images.  

 

Figure 46: DIGIBAU 360° helmet camera (DIGIBAU 360°-Baudokumentation, 2023) 

Two 180-degree cameras are installed in the helmet, whose individual images are subse-

quently stitched together to one spherical 360° image. The ERP of the images have a res-

olution of 7000 x 3500 pixels, a horizontal and vertical resolution of 96 dpi, and a bit depth 

of 24.  

To ensure the suitability of the captured images for recognizing reusable building compo-

nents, two modern buildings (Nürnberger Ei, built in 1996, and House 116 in August-Be-

bel-Strasse 30, built in 1970 and renovated in 2013), as well as three buildings of reform 
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architecture from the early 20th century (Beyer-Bau, built in 1913; Fritz-Foerster-Bau, built 

in 1926; and Georg-Schumann-Bau, built in 1906) were selected. Due to the similar archi-

tecture and authorship an overlap in the component selection for the reform buildings 

was anticipated. Moreover, the dataset will be made publicly available in the future, mak-

ing it advantageous to record images in public buildings. A total of 1112 images were cap-

tured. The image generation protocol is found in Table 24. 

Table 24 Data generation protocol 

Generation 

Date 

Building Location Construction 

Year 

Images 

30.03.2023 Fritz-Foerster-Bau Mommsenstraße 6, 1069 Dresden 1926/2022 280 

30.03.2023 Nürnberger Ei Nürnberger Straße 31a, 01187 Dresden 1996 37 

31.03.2023 Georg-Schumann-Bau Münchner Platz 3, 01187 Dresden 1906 369 

31.03.2023 Haus 116 August-Bebel-Straße 30, 01219 Dresden 1970/2013 159 

14.04.2023 Beyer-Bau George-Bähr-Straße 1, 01069 Dresden 1913 277 
    

1122 

Some of the main challenges for machine learning are related to the data and accordingly 

to the quality of the dataset. A dataset should consider the following factors: size of the 

dataset, representativeness, relevance, date (image) quality (Géron, 2023, pp. 23–27) and 

variance. 

The importance of quantity was shown in Banko and Brill (2001)’s renowned experiment, 

in which different learning methods, even those that were relatively simple, showed 

nearly equal proficiency in solving a challenging task of natural language disambiguation 

when provided with sufficient data (Banko and Brill, 2001, pp. 27–28). 

With 1112 unaltered images the TUDataset can be considered a mid-sized dataset (before 

data augmentation), but due to the representativeness of the data (during data-cleaning 

only images with at least one relevant component were included), the quantity is consid-

ered sufficient for the task at hand. Furthermore, the relevance of training data can be 

defined as the extent to which it aligns with the data that the model is likely to encounter 

in the production phase (Witt, 2023). The model will be used prior to demolition of a build-

ing or to inventory the building for planning its conversion or continued use. Therefore, 

the selected locations for generating the dataset can be considered meaningful for the 

subsequent use of this model. Finally, the dataset offers a vast range of object categories 

and intra-class variations, which can be explained by the imaging conditions. First, the 

data was captured at different times of the day and under varying weather conditions, 

resulting in different lighting and shading conditions. Furthermore, the images were taken 

without a fixed object distance, often capturing the same room from different positions 

and from a person’s viewpoint, so that a variance in the object appearance, scale and 

occlusion is generated. Also, the use of a helmet camera instead of a tripod camera leads 
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to the fact that the images have different resolutions and components are displayed both 

high-resolution and slightly blurred. Lastly, the choice of the buildings leads to the repre-

sentation of different equipment and corresponding image clutter: The refurbishment of 

the Fritz-Förster-Bau has just been completed, so the premises have only recently been 

occupied and are partly still empty. The Beyer Building is in a not-yet-completely-rehabil-

itated state, which could also correspond to the condition after a partial gutting and thus 

an end-of-life scenario. The Nürnberger Ei, as well as the Schumann-Bau, contain offices 

and corresponding equipment. 

In summary, the diverse set of images captured under different conditions allows for bet-

ter generalization of the model, improving its performance on real-world scenarios where 

object appearance and environmental factors vary significantly. The resulting dataset is 

named TUDataset after the location of the image generation and the author’s affiliation. 

Modern buildings and their locations included in the TUDataset 

 

Figure 47: View of August-Bebel-Straße 30 after the 

renovation in 2012 (Meyer, 2023) 

 
Figure 48: Haus 116, August-Bebel-Straße 30, 

01219 Dresden, Germany, Screenshot of Map 

Area, (OpenStreetMap, 2023), OdbLv1.0 

  

Figure 49: View of the Nurnberger Ei. (Terfloth, 

2023), (CC-SA-3.0) 

 

Figure 50: Institute of Construction Informatics, 

Nürnberger Str. 31a, 01187 Dresden, Germany, 

Screenshot of Map Area, (OpenStreetMap, 2023), 

OdbLv1.0 
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Reform architecture buildings and their location used in the TUDataset 

  

Figure 51: View of the Georg-Schumann-Bau. 

(Blobelt, 2021), (CC BY-SA 4.0) 

 

Figure 52: Georg-Schumann-Bau, Münchner Platz 

3, 01187 Dresden, Germany. Screenshot of Map 

Area, (OpenStreetMap, 2023), OdbLv1.0 

  

Figure 53: View of the Beyer Bau after facade reno-

vation in 2021, (CC BY-SA 4.0) (Ponna, 2021) 

Figure 54 Beyer-Bau, George-Bähr-Straße 1, 01069 

Dresden, Germany. Screenshot of Map Area, 

(OpenStreetMap, 2023), OdbLv1.0 

  

Figure 55: View of the Fritz-Foerster-Bau after ther 

renovation 2023.(Gebhardt, 2023), (CC BY-SA 4.0) 

Figure 56 Fritz-Foerster-Bau, Mommsenstraße 6, 

01069 Dresden, Germany. Screenshot of Map Area,  

(OpenStreetMap, 2023), OdbLv1.0 
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5.1.3. CATEGORY SELECTION 

One important step in the data set preparation is to consider how the objects should be 

recognized and categorized to match the scope: This thesis aims at enabling component 

reuse by accelerating the inventory of reusable components in the end-of-use phase. 

Therefore, a higher granularity of the reuse component categories "windows, doors, san-

itary objects, electrical installation" is necessary so that the components can be invento-

ried according to the planning steps from section 724.1.2 How to reuse. To ensure con-

sistency and minimize subsequent editing of the output, it is recommended to refer to 

common categories.  

Standardization would be possible using established ontologies as well as the reference 

to standards. However, since this thesis is considered a first approach but not the ideal 

solution, in which a direct link to digital planning is aimed through the 3D reconstruction 

of components (see 6.5 Future Research), the reference to standards is preferred for sim-

ple application of the approach in practice. Therefore, in this thesis the German AEC sec-

tor’s building cost structure published by the national standard DIN 276:2018-12 

(Deutsches Institut für Normung e.V., 2018), hereafter simplified as DIN276, was used to 

uniform the process. Categorization by cost group will not only standardize the work in 

different projects by reference to a public standard, it will also provide the operational 

basis for rapid cost determination for selective deconstruction. Thus, the first step was to 

determine the cost groups for the component selection (windows, doors, plumbing, lights 

and heating). It should be noted that windows and doors are sorted into different groups 

depending on their installation location, as seen in Figure 57.  

 

Figure 57 Reuse components sorted by cost groups according to DIN276 (Deutsches Institut für Normung 

e.V., 2018) :windows (blue); doors (purple); sanitary (green); heating (dark green); lights (orange); 

Hence, it is useful to establish the component types as super-categories and the different 

cost groups as component categories.  
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5.1.4. DATA CLEANING 

In the context of data preprocessing for machine learning applications, the following steps 

are often undertaken: 

(i) removal or correction of outliers in the dataset; 

(ii) substitution of missing values with appropriate strategies, such as zero, mean or 

median imputation or removal of the affected rows or columns; 

(iii) optional feature selection process to remove redundant or irrelevant attributes; 

(iv) feature engineering operations including discretization of continuous features, de-

composition of categorical, date/time features, addition of potential feature trans-

formations, and aggregation of features into new ones; and 

(v) feature scaling through standardization or normalization techniques to ensure 

uniformity and comparability across features. (Géron, 2023, p. 757) 

However, in object detection, images or videos are used as inputs, and the features are 

extracted from the information in the pixels. The YOLO (You Only Look Once) model em-

ploys a feature extraction method that does not require the prior definition and cleaning 

of features. Therefore, the data cleaning was limited to elimination of duplicates, exclu-

sion of low-quality images and blurred images. 

5.1.5. ANNOTATION 

In supervised learning methods, like YOLO, “the example contains a label or target as well 

as a collection of features” (Goodfellow et al., 2016, p. 105). The process in which the label 

is generated to mark the features in the training example (image) is called annotation. In 

computer vision, the most commonly used type of annotation are bounding boxes 

(Pokhrel, 2020) that specify the object’s class and its localization in the image. In two-di-

mensional scenarios, an object's spatial position and size are typically determined using 

an axis-aligned rectangle (𝑥, 𝑦, 𝑤, ℎ) that tightly encompasses the object, where (𝑥, 𝑦) de-

notes the center point of the rectangle, and (𝑤, ℎ) represents the rectangle's width and 

height, respectively (Zhao et al., 2021, p. 4).  

However, in the field of object detection in equirectangular images, no annotation ap-

proach has yet become completely accepted and further annotation types have derived 

from the common rectangular bounding boxes: Yang et al. (2018) used the Bounding Field 

of View (BFoV) or “spherical rectangle” (Xu et al., 2022, p. 239) annotation to ensure the 

consistent annotation for objects in equirectangular panorama images. The projection of 

panoramas can change an object's appearance depending on its spatial location, making 

it necessary to select a "canonical pose" (field of view) where bounding box coordinates 

are valid and have a box-like shape (see Figure 58: Example of a spherical images annota-

tion: (a) Bounding Field Annotation  and (b) a bounding box annotation, image by (Yang et 

al., 2018, p. 2)). In contrast to conventional bounding boxes represented by top-left and 



 

108 

bottom-right corners, the ground truth annotations include: object label 𝑙𝑖, the bounding 

box center as angular coordinates 𝜙𝑖 , 𝜆𝑖, and the bounding box angular dimensions 

∆𝜙𝑖, ∆𝜆𝑖. (Yang et al., 2018) 

 

Figure 58: Example of a spherical images annotation: (a) Bounding Field Annotation  and (b) a bounding box 

annotation, image by (Yang et al., 2018, p. 2) 

Another type of annotation is the Rotated Bounding Field of View (RBFoV) introduced by 

Xu et al. (2022), which is characterized by five parameters: 𝜃, 𝜑, 𝛼, 𝛽, and 𝛾. Here, 𝜃 and 𝜑 

correspond to the longitude and latitude coordinates of the object center, while 𝛼 and 𝛽 

represent the object's occupation angles in the up-down and left-right fields of view, re-

spectively. Finally, 𝛾 denotes the angle of rotation (positive for clockwise and negative for 

counterclockwise) of the tangent plane of the RBFoV along the 𝑂𝑀 axis, where 𝑀 is the 

tangent point (𝜃, 𝜑) (Xu et al., 2022, p. 240).  

Despite BFoVs and RBFoVs being "unbiased" (Xu et al., 2022, p. 239), in this thesis the 

common rectangular bounding box approach was chosen. This is because custom anno-

tation tools must be used for other spherical annotations, as in (Xu et al., 2022) and (Chou 

et al., 2020). Furthermore, the spherical annotations need a prior conversion to the target 

format of the chosen model. According to the YOLO annotation format, the bounding box 

contains five predictions: x, y, w, h, and confidence. The (x, y) coordinates represent the 

centroid of the box in relation to the grid cell limits. The width and height are calculated 

in relation to the entire image. Finally, the IOU between the projected box and any ground 

truth box is represented by the confidence prediction. (Redmon et al., 2016, p. 780)  

The annotation of the TUDataset was conducted in Roboflow9, which is an online tool that 

offers various functionalities such as annotating images, converting annotation formats, 

preprocessing images, and augmenting images (Roboflow, 2023b), and resulted in 136 

reuse component classes. The class diagram can be seen in  

 
9https://roboflow.com/ 
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Table 25 Classlabels used in the TUDataset in costgroup "Building Construction" 

KG300 

Building Construction 

330 Exterior walls/  

vertical building structures, 

exterior 

340 Interior walls/  

vertical building structures, interior 

334 Exterior wall openings 344 Interior wall openings 

Exterior win-

dows 

Exterior doors Interior win-

dows 

Interior doors 

'window-exte-

rior-bulleye1' 

door-exterior-

entrance1' 

'window-inte-

rior-type1' 

'door-indoor-

type1' 

'door-indoor-

glassdoor1' 

'door-interior-

emergency' 

'window-exte-

rior-bulleye2' 

'door-exterior-

entrance2' 

'window-inte-

rior-type2' 

'door-indoor-

type2' 

'door-indoor-

glassdoor2' 

 

'window-exte-

rior-type1' 

'door-exterior-

entrance3' 

'window-inte-

rior-type3' 

'door-indoor-

type3' 

'door-indoor-

glassdoor3' 

 

'window-exte-

rior-type2' 

'door-exterior-

entrance4' 

'window-inte-

rior-type4' 

'door-indoor-

type4' 

'door-indoor-

glassdoor4' 

 

'window-exte-

rior-type3' 

'door-exterior-

entrance5' 

'window-inte-

rior-type5' 

'door-interior-

type5' 

'door-indoor-

glassdoor5' 

 

'window-exte-

rior-type4' 

'door-exterior-

entrance6' 

'window-inte-

rior-type6' 

'door-interior-

type6' 

'door-indoor-

glassdoor6' 

 

… 'door-exterior-

entrance7' 

'window-inte-

rior-type7' 

'door-interior-

type7' 

…. 
 

'window-exte-

rior-type59' 

'door-exterior-

entrance8' 

'window-inte-

rior-type8' 

'door-interior-

type8' 

'door-indoor-

glassdoor16' 

 

'window-exte-

rior-type60' 

'door-exterior-

entrance9' 

'window-inte-

rior-type9' 

… 'door-indoor-

glassfacade' 

 

'window-exte-

rior-type61' 

 
'window-inte-

rior-type10' 

'door-interior-

type24' 

'door-indoor-

glassdoor11' 
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Table 26 Classlabels used in the TUDataset in costgroup "Technical Installations" 

KG400 

Technical Installations 

 

410 Sewage, water,  

gas installations 

 

420 Heat sup-

ply systems 

 

440 Electrical installations 

 

412 Water installations 

 

423 Room 

heating sur-

faces 

 

445 Lighting installations 

 

Toilet Sink Pissoir Radiators Fixed lights Safety Light-

ing 

‘toilet’ ‘sink’ ‘pissoir’ ‘radiator’ Wall Ceiling Emeergency 

   'radiator-ver-

tical' 

Wall Ceiling Wall 

     'light-fixed-

wall' 

'light-fixed-

ceiling-LED' 

'light-emer-

gency' 

    'light-fixed-

wall-dot' 

'light-fixed-

ceiling-dot' 

 

 

     'light-fixed-

ceiling-lumi-

naire' 

 

     ‘light-fixed-

ceiling-pen-

dant’ 

 

5.1.6. SET PARTITION 

After annotating the data, the next step is to split the dataset into training, validation, and 

test subsets. There are two distinct objectives in model analysis – model selection and 

model assessment – and in a data rich situation, the most effective approach is to ran-

domly divide the dataset into a training set, validation set, and test set. The test-set is used 

for fitting the models, while the validation set is for estimating prediction error for model 

selection and test set is for assessing the generalization error of the final model configu-

ration. The test set is kept reserved and not reused, as doing so can result in a substantial 

underestimation of the true test error. (Hastie et al., 2009, p. 222). The TUDataset was 

divided into 70% training (792 images), 20% validation (226 images) and 10% testing (116 

images). 
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5.1.7. PREPROCESSING 

The next step includes the application of preprocessing techniques to the training, valida-

tion, and testing sets to ensure that the machine learning model learns and infers based 

on consistent image properties. In computer vision, inference refers to the process of 

generating predictions (Roboflow, 2023a). The preprocessing steps suggested by Ultralyt-

ics include the Auto-Orientation and the size stretching to 640x640 pixels (Jocher, 2023a). 

The auto-orient feature removes the EXIF (Exchangeable Image File Formal) data from im-

ages to ensure that they are displayed in the same manner as they are stored on the disk. 

The EXIF data contains metadata such as information on the orientation of an image, 

which applications utilize to present the image in a designated orientation, even if the 

stored orientation differs. (Roboflow, 2023a) Furthermore, YOLO relies on a CNN and re-

quires a fixed size input, so that the default 640x640 size was chosen (Jocher, 2023a). 

5.1.8. AUGMENTATION 

The final step in the ML pipeline is the data augmentation or training set expansion, a the 

technique of artificially growing the training set (Géron, 2023, p. 465). Data augmentation 

creates multiple realistic versions of each training instance to artificially increase the train-

ing set size. This technique serves as a regularization method, reducing overfitting (see 

Training). To be effective, the augmented instances should be as realistic as possible and 

ideally be indistinguishable from non-augmented instances by the human eye. Realistic 

variations, such as shifting, rotating, and resizing images, improve the model's tolerance 

to position, orientation, and size changes. (Géron, 2023, p. 465) 

In the preprocessing of the TUDataset several augmentation techniques were applied. 

The outputs per training sample were set to three, which means that for every image 

three altered images were created. Due to the particularity of the equirectangular projec-

tion training data augmentation techniques according to Zhao et al. (2021) were imple-

mented: the images were flipped horizontally and sheared ∓15° horizontally and 

∓15° vertically both on the image level and bounding box level (see Figure 59 and Figure 

60-Figure 65). The data augmentation resulted in 2718 (3x792) images. 
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Figure 59: Data augmentation: horizontal and vertical bounding box shear (+-15°) (Roboflow, 2023c) 

   

Figure 60: Data augmentation: Pre-

processed image before flipping and 

image level shearing (0° horizontal, 

0° vertical) (Roboflow, 2023c) 

Figure 61: Data augmentation: Im-

age horizontally flipped (Roboflow, 

2023c) 

 

Figure 62: Data augmentation: Im-

age level shearing (+15° horizon-

tally, +15° vertically) (Roboflow, 

2023c) 

   

Figure 63: Data augmentation: Im-

age level shearing (+15° horizontally, 

-15° vertically) (Roboflow, 2023c) 

Figure 64: Data augmentation: Im-

age level shearing (-15° horizontally, 

+15° vertically) (Roboflow, 2023c) 

Figure 65: Data augmentation: Im-

age level shearing (-15° horizon-

tally, -15° vertically) (Roboflow, 

2023c) 
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5.2. TRAINING AND VALIDATION 

This chapter covers the training and validation of the YOLOv8 model. First, a choice is 

made between a pre-trained and an untrained model, and a model architecture is se-

lected (5.2.1 Pre-Trained Model vs. Training from Scratch). Secondly, the training goal is 

formulated, and the used training arguments are explained in 5.2.2 Training Configura-

tion. Next, the different model configurations will be compared and validated in 5.2.3 Val-

idation. The performance of these models will be evaluated using various metrics, includ-

ing accuracy, precision, recall, and F1 score, which will be briefly presented. Finally, in 5.2.4 

the training strategy is explained based on the different training runs and a configuration 

is chosen out of the nine training configurations for the final test and evaluation on the 

previously unseen test set. 

Furthermore, an iterative training and validation process is adopted as proposed by 

Géron (2023) in which the training configurations are tweaked based on the performance 

on an independent validation set. This is because of the risk of overfitting (see 5.2.3 Vali-

dation), wherein the model becomes excessively optimized for the test set and fails to 

generalize to novel data. Only after selecting a final configuration the model is evaluated 

on the test set. The approach is simplified in Figure 66. 

 

Figure 66 Iterative Training approach according to (Géron, 2023), (image by author) 

It is noted that in this thesis “error” and “loss” are used interchangeably. Furthermore 

“validation error” and “test error” “both refer to use of validation data to find the error or 

accuracy produced by the network during training” (Smith, 2018, p. 2).  

5.2.1. PRE-TRAINED MODEL VS. TRAINING FROM SCRATCH 

Prior to training the model needs to be selected, choosing between a pre-trained and a 

simple model. There is a consensus among the AI community to exploit the benefits from 

transfer-learning by using pre-trained models (PTMs) as the backbone for downstream 

tasks rather than opting to train models from scratch (Han et al., 2021, p. 1). Transfer 

learning formalizes a two-phase learning framework: a pre-training phase to capture 

knowledge from one or more source tasks, and a fine-tuning stage to transfer the cap-

tured knowledge to target tasks. By fine-tuning PTMs with a small amount of task-specific 

data, they can perform well on downstream tasks, making them a feasible solution for the 

challenge of data scarcity. (Han et al., 2021, p. 2)  
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Accordingly, a YOLOv8 model pre-trained on the COCO dataset (Lin et al., 2014) was se-

lected to target the object detection task with limited manually annotated data, namely 

the detection of reusable components in the TUDataset. Ultralytics, the YOLO developing 

company, offers various pre-trained YOLOv8 models that differ in their architecture and 

size (see Table 27). YOLOv8n has the smallest number of layers and parameters, making 

it the fastest and most lightweight model, but also potentially less accurate. YOLOv8s-

YOLOv8l have increasingly more layers and parameters, thus decreasing in speed and 

increasing potential accuracy. Finally, YOLOv8x has the largest number of layers and pa-

rameters, making it the slowest but potentially the most accurate model. In general, larger 

models tend to perform better but are slower and require more resources to train and 

run. The selection process was constrained by the GPU capacity and ultimately resulted 

in the choice of Yolov8s. 

Table 27 YOLOv8 pre-trained models as released by Ultralytics 

Model Size  

 

mAPval Speed 

CPU ONNX 

Speed 

A100 TensorRT 

params FLOPs 

 [pixels] 50-95  [ms] [ms] (x106) (x109) 

YOLOv8n 

(nano) 

640 37.3 80.4 0.99 3.2 8.7 

YOLOv8s 

(small) 

640 44.9 128.4 1.20 11.2 28.6 

YOLOv8m 

(medium) 

640 50.2 234.7 1.83 25.9 78.9 

YOLOv8l 

(large) 

640 52.9 375.2 2.39 43.7 165.2 

YOLOv8x 

(extra large) 

640 53.9 479.1 3.53 68.2 257.8 

In the above table the columns express the following characteristics: 

size input image size in pixels that the YOLOv8 models were trained and evaluated on. 

mAP mean average precision, metric to evaluate the object detection precision (see more in Metrics). 

Speed refers to the inference speed, the amount of time it takes for the model to process one input im-

age and produce an output, when running on a CPU using the ONNX runtime and A100 GPU 

with TensorRT optimization. 

Params Number of parameters (weights and bias) in Millions 

FLOPs Number of floating point of operations in Billions; describes the computation complexity (Ma et 

al., 2021, p. 7) 
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5.2.2. TRAINING CONFIGURATION 

Training is the process of optimizing a machine learning model by reducing the error 

measure on a training set, called training error. The goal of training is not just to minimize 

the error on the training set, but also to achieve low generalization error or test error, that 

indicates how well the model performs on new, unseen data drawn from the same distri-

bution as the training data (Goodfellow et al., 2016, p. 108). The training and test error are 

measured by the cost or loss function that compares the predicted bounding box outputs 

with the actual outputs. During training, the YOLO model optimizes “for sum-squared er-

ror in the output of our model “(Redmon et al., 2016, p. 781), which was adapted to ad-

dress equal weighting of localization and classification errors and to account for empty 

grid cells in an image (Redmon et al., 2016, p. 781). The information from this cost function 

flows backward through the network using the backpropagation algorithm and enables 

the calculation of the gradient (Goodfellow et al., 2016, p. 200), which is then used to up-

date the weights in to minimize the loss. The optimized weights are used for the validation 

of the model’s performance on the validation set. 

The performance, speed and accuracy of the model training process depend on the usage 

of various hyperparameters and configurations. Hyperparameters are not updated by the 

learning algorithm through the course of training (Goodfellow et al., 2016, p. 118) and 

therefore need careful experimentation. Important trainings settings are batch size, learn-

ing rate, momentum, and weight decay, as well as the choice of optimizer, loss function, 

and training dataset composition (Ultralytics, 2023). The explanation of the implemented 

basic settings can be taken from Table 28. These training settings are passed to the train 

function as argument.  
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Table 28 Training Configurations 

Key Arguments dflt value Explanation 

epoch Epochs 100 A training epoch refers to one iteration over 

the entire trainings set. (Hastie et al., 2009, 

p. 397) 

patience Patience 50 Epochs to bide if no progress is observed be-

fore discontinuing training (Ultralytics, 2023) 

batch Batch 16 Number of examples in each batch. Batch is a 

subset of the training data used in a single iter-

ation of the training process. The use of 

batches allows the training process to make in-

cremental updates to the model parameters 

and can help accelerate the training process.  

imgsz Image Size 640 "Size of input images as integer or w,h" (Ultra-

lytics, 2023) 

lr0, lrf Learning rate 0.01, 0.01 Initial learning rate; final learning rate; 

optimizer Optimizer ‘SGD‘ Optimization algorithm: SGD (stochastic gradi-

ent descent) is set as default; 

momentum Momentum 0.937 The momentum algorithm uses a variable 

which represents the speed and direction at 

which the model parameters move during 

training (Goodfellow et al., 2016, p. 293).  

weight_decay Weight decay 0.0005 Weight decay is a regularization technique that 

helps to prevent overfitting during the training 

of a model. It involves adding a penalty term to 

the loss function that is proportional to the 

sum of the squares of the model's weights 

(Vasani, 2019). It is also known as L², ridge re-

gression or Tikhonov regularization (Goodfel-

low et al., 2016). 

cos_ls Cosine Annealing 

learning rate 

scheduler 

False The cosine annealing technique is used to de-

cay the learning rate during the training pro-

cess. A cyclic pattern of learning rate adjust-

ments is used, where the learning rate is peri-

odically increased and then gradually de-

creased using the cosine function (Loshchilov 

and Hutter, 2016).  
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5.2.3. VALIDATION 

The validation is the process in which the performance of a trained model is evaluated 

and the hyperparameters are adjusted (Goodfellow et al., 2016, p. 119). The performance 

of a ML algorithm depends on its capacity to 

1) Minimize the training error,  

2) Minimize the difference between training and test error. 

These factors relate to the two central challenges in machine learning: underfitting and 

overfitting (Goodfellow et al., 2016, p. 109). Overfitting "is given when the model lacks 

generalization of the data" (Gonzalez Viejo et al., 2019, p. 9). DNNs such as YOLOv8 can 

recognize subtle patterns in the data, however, in the case where the training set is af-

fected by noise, or it is undersized leading to sampling noise, the model tends to recognize 

patterns in the noise itself. These patterns are not useful for prediction in new examples 

(Géron, 2023; Gonzalez Viejo et al., 2019), resulting in a large gap between the training 

error and test error (Goodfellow et al., 2016, p. 110). Underfitting, on the other hand, "oc-

curs when the model is not able to obtain a sufficiently low error value on the training set" 

(Goodfellow et al., 2016, pp. 109–110).  

In this thesis the validation approach as proposed by Smith (2018) was adopted. In this 

approach, the arguments presented in Table 29, namely learning rate, batch size, 

momentum, and weight decay as well as cyclical learning rates (cosine learning 

rate scheduler) and cyclical momentum, are examined. This process involves analyz-

ing the validation loss during training to detect indications of underfitting and overfitting 

to determine the optimal combination of hyperparameters. (Smith, 2018) Specifically, in 

the YOLOv8 training process the validation loss is computed at the end of each epoch. 

The training loss is calculated on the training set, while the validation loss is calculated on 

the validation set. Both the training loss (𝑡𝑟𝑎𝑖𝑛𝑏𝑜𝑥 𝑙𝑜𝑠𝑠, 𝑡𝑟𝑎𝑖𝑛𝑐𝑙𝑠 𝑙𝑜𝑠𝑠, 𝑡𝑟𝑎𝑖𝑛𝑑𝑓𝑙 𝑙𝑜𝑠𝑠) and the val-

idation (𝑣𝑎𝑙𝑏𝑜𝑥 𝑙𝑜𝑠𝑠, 𝑣𝑎𝑙𝑐𝑙𝑠 𝑙𝑜𝑠𝑠 , 𝑣𝑎𝑙𝑑𝑓𝑙 𝑙𝑜𝑠𝑠) are recorded in the results.csv file, which is the ba-

sis for the hyperparameter tuning. The generalization error is calculated as the difference 

between validation loss and the training loss (Smith, 2018, p. 3). The metrics and values 

related to the training process will be explained in the following section. 
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Metrics 

The results.csv of each training run contains a table that lists the following values and 

metrics for each epoch (see Table 29). 

Table 29 Metrics and values in results.csv related to the training process 

Value/metric Explanation 

epoch Index of the respective epoch 

train/box_loss Bounding box regression loss (sum of squared error loss)  (Redmon and Farhadi, 

2018) during training; difference between predicted box coordinates and ground 

truth annotations; 

Train/cls_loss classification loss (binary cross-entropy) (Redmon and Farhadi, 2018) during 

training 

train/dfl_loss the dual focal loss (DFL) addresses the class imbalance and class weakness prob-

lems (Hossain et al., 2021) during training 

precision(B) precision metric for bounding box predictions during training 

recall(B) recall metric for bounding box predictions during training 

mAP50(B) mean Average Precision (mAP) at IoU threshold of 50%. (Lihi Gur Arie, 2022) for 

bounding box predictions during training 

mAP50-95(B) mAP over different IoU thresholds, ranging from 50% to 95% (Lihi Gur Arie, 2022) 

during training 

val/box_loss Bounding box regression loss (Mean Squared Error) (Lihi Gur Arie, 2022) during 

validation; difference between predicted box coordinates and ground truth an-

notations 

val/cls_loss classification loss (binary cross-entropy) (Redmon and Farhadi, 2018) during val-

idation 

val/dfl_loss the dual focal loss (DFL) addresses the class imbalance and class weakness prob-

lems (Hossain et al., 2021) during validation 

lr/pg0 the learning rate for the first parameter group10 during training 

lr/pg1 the learning rate for the second parameter group during training 

lr/pg2 the learning rate for the third parameter group during training 

Furthermore, for each training run the precision against confidence graph (P-Curve), the 

precision against recall graph (PR-Curve), the F1 against confidence graph (F1-Curve) and 

the recall against confidence graph (R-Curve) are plotted. The F1-score is defined as: 

𝐹1 =  
2 ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙)
; 

Equation 5-1 

 

 
10 The official documentation for YOLOv8 is not published yet, however based on the metrics it is 

inferred that it shares the same parameter groups as YOLOv5 - i.e. backbone, neck and head, each 

containing specific layers (Jocher (2023b). 



5 Machine Learning Pipeline 

119 

With precision 𝑃 and recall 𝑅 defined as: 

𝑃 =
𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁)
; 

Equation 5-2 

𝑅 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

Equation 5-3 

Where 𝑇𝑃 denotes true positive values, 𝑇𝑁 denotes true negative values, 𝐹𝑃 denotes false 

positive values, and 𝐹𝑁 denotes false negative values. (Li et al., 2018) In object detection, 

recall is used to measure the ability of a model to identify all instances of a target class in 

an image or set of images. A high recall means that the model can identify most of the 

positive examples, indicating a low rate of false negatives, which are the positive examples 

that the model fails to detect (Hapke and Nelson, 2020). Precision indicates the proportion 

of predicted bounding boxes that are correctly assigned to the true positive class, i.e., the 

bounding boxes that accurately identify the object of interest (Hapke and Nelson, 2020). 

The F1 score is defined as the harmonic mean of precision and recall. Unlike the regular 

mean that assigns equal importance to all values, the harmonic mean assigns greater im-

portance to lower values. Therefore, a high F1 score can only be achieved if the classifier 

has high precision and recall simultaneously. (Géron, 2023, p. 93) 

Furthermore, the precision over recall curve can be summarized using the Mean Average 

Precision (mAP), an important metric in object detection (see Table 29). The mAP is ob-

tained by calculating the maximum precision achievable at different recall levels. This al-

lows for a fair evaluation of the model's performance. In multi-class scenarios, AP is com-

puted for each class and then averaged to obtain the mAP. Additionally, in object detec-

tion, an IOU threshold is often used to determine if a prediction is correct. The mAP can 

be computed at a specific IOU threshold or across multiple IOU thresholds to account for 

different levels of accuracy. (Géron, 2023, p. 491) Intersection over Union or IoU, is a met-

ric used to evaluate localization accuracy in object detection models and calculate locali-

zation errors. It measures the overlap between predicted and ground truth bounding 

boxes. The IOU is calculated by dividing the intersection area by the union area, providing 

an estimate of how well the predicted bounding box aligns with the original bounding box. 

(Kundu, 2023) 

The corresponding plotted graphs and their interpretation are presented in Figure 67-

Figure 71). 
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Figure 67 F1-Confidence Curve (Image by author). 

The F1 against confidence plot shows how the F1 

score varies depending on the confidence score. 

According to the equation, a high F1 score at a 

low confidence level indicates that the classifier 

makes both a lot correct as incorrect predictions, 

while a high F1 score at a higher level of confi-

dence indicates that the classifier makes less pre-

dictions but with higher confidence in their cor-

rectness. 

 

 

Figure 68 Recall-Confidence-Curve (Image by au-

thor). 

Each point on the graph represents the trade-off 

between recall and confidence. A good model will 

have high recall values at high confidence levels, 

which will correspond to points on the upper left 

corner of the graphs. Accordingly, the model used 

in the figure is not well-performing.  

 

 

Figure 69 Precision-Confidence-Curve (Image by 

author).  

Each point on the graph represents the trade-off 

between precision and confidence. A good model 

will have high precision values at high confidence 

levels, which will correspond to points on the up-

per left corner of the graphs. 

The confidence threshold used by the model can 

be adjusted to change the trade-off between pre-

cision and recall. A higher confidence threshold 

will result in higher precision but lower recall, 

while a lower confidence threshold will result in 

higher recall but lower precision. 



5 Machine Learning Pipeline 

121 

 

Figure 70 Precision-Recall-Curve (Image by author)  

Each point on the PR curve corresponds to a dif-

ferent confidence threshold used by the model 

during object detection, which is a parameter con-

trolling the trade-off between precision and recall. 

A well-performing model will have high precision 

and recall at a specific confidence threshold, cor-

responding to a point in the upper right corner of 

the PR curve. A model with low precision will pro-

duce many false positives, while a model with low 

recall will miss many true positives. As such, the 

PR curve can aid in identifying the optimal balance 

between precision and recall for a given confi-

dence threshold. 

 

 

Figure 71 Confusion Matrix (image by author). 

The confusion matrix is a tabular representation that compares the predicted classes of objects with their 

actual ground truth labels. Each row in a confusion matrix represents an actual class, while each column 

represents a predicted class (Géron, 2023, p. 91). To compare error rates rather than absolute numbers of 

error, that penalizes abundant classes, the normalized confusion matrix is regarded, which is obtained by 

dividing "each value in the confusion matrix by the number of images in the corresponding class" (Géron, 

2023, p. 103). By normalizing the values, the confusion matrix accounts for differences in class sizes, making 

it possible to assess the error rates proportionally across classes. This is particularly important when dealing 

with imbalanced datasets, where some classes may have a significantly larger number of images compared 

to others. 
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5.2.4. TRAINING STRATEGY 

In this thesis a total of eleven training runs were conducted. The nine training runs and 

their validation as well as the final testing were locally implemented in PyTorch using an 

NVIDIA RTX A4000 GPU. All training metrics, values and visualizations are attached to the 

digital annex. 

Model 1 

Training algorithms for deep learning models are usually iterative and thus require the 

user to specify some initial point from which to begin the iterations (Goodfellow et al., 

2016, pp. 296–297). Currently there are no simple and easy ways to set hyperparameters 

– specifically, learning rate, batch size, momentum, and weight decay (Smith, 2018, p. 1). 

Therefore, in the first training run most of the default values were kept, only setting the 

input image size to 640 pixels and increasing the batch size to 32, while decreasing the 

workers from 8 workers per default to two.  

#Model 1 

model.train(data="data.yaml", 

            task="detect", 

            mode="train", 

            epochs=100 

            imgsz=640, 

            workers=2, # reduced workers 

            batch=32) # increased batch size 

This is a common strategy to improve the training speed and efficiency of object detection 

models for a "fixed computational budget" (Smith, 2018, p. 7), because it can reduce the 

time spent on communication overhead between workers while keeping the GPU fully 

utilized. When the batch size is increased, more samples can be processed simultane-

ously, leading to better GPU utilization and faster training times. Generally speaking, 

larger total batch sizes result in higher test accuracy while smaller batch sizes yield lower 

test loss. (Smith, 2018, p. 7) 

Table 30 Metrics and values of best performing epoch during training  of model #1 

 Train Metrics Validation 

# box_ 

loss 

cls_ 

loss 

dfl_ 

loss 

Precision (B) Recall (B) mAP50 (B) mAP50-95 (B) box_ 

loss 

cls_ 

loss 

dfl_ 

loss 

79 0,9265 0,6166 0,99204 0,73058 0,51666 0,59517 0,35653 1,7444 1,3375 1,4421 

Table 31 Metrics of best performing epoch in validation of model #1 

Class Images Instances Box (P R mAP50 mAP50-95) 

all 226 2078 0.756 0.497 0.6 0.358 

The first training run is used as benchmark to determine the consecutive configurations. 

From the metrics it can be observed that the model achieved relatively low losses in terms 

oof bounding box loss (box_loss), classification loss (cls_loss) and dual focal loss (dfl_loss), 

which indicates that the model is able to fit the training data well. Furthermore, in Table 
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30 the precision and recall values indicate only a moderate precision and recall during 

training. The precision and recall values on the unseen validation data in Table 31 suggest 

that the model can correctly identify a significant portion of positive instances. However, 

the mAP50 and mAP50-95 values show that the model’s performance may vary across 

different detection thresholds. Furthermore, the mAP in training and validation do not 

significantly vary, suggesting that the model’s performance in terms of object detection 

accuracy is consistent across both datasets. This may indicate that the model is not sig-

nificantly overfitting or underfitting the data, as it is able to generalize well to unseen data. 

On the other hand, the training loss values are consistently lower than the validation 

losses, which is a sign that the model is overfitting the training data and does not gener-

alize well to new data (Géron, 2023, pp. 133–134). This could be due to the model learning 

specific patterns or noise present in the training data that do not hold true in the valida-

tion data (Gonzalez Viejo et al., 2019, p. 9). 

Model 2 and model 3 

To adjust the overfitting, two general strategies are proposed by James et al. (2021): slow 

learning and regularization. Slow learning refers to a slow iterative learning process for 

example using gradient descent. (James et al., 2021, p. 434) However, in model 2 and 3 

the second strategy, regularization, was adopted. "Regularization is any modification we 

make to a learning algorithm that is intended to reduce its generalization error but not its 

training error" (Goodfellow et al., 2016, p. 117). Therefore, the learning rate decreased 

from 0.01 by default to 0.001. Furthermore, the recommendation of Géron (2023) to use 

Adam (Kingma and Ba, 2014) for optimization, was considered. However, AdamW was 

eventually selected, which is a modification to the Adam optimization algorithm that aims 

to recover the original formulation of weight decay regularization (Loshchilov and Hutter, 

2017, p. 1). It decouples the weight decay from the optimization steps taken with respect 

to the loss function. This modification allows for more flexibility in choosing the weight 

decay factor independently of the learning rate setting and "substantially improves 

(Adam’s) generalization performance" (Loshchilov and Hutter, 2017, p. 1).  

#model 2 ---> AdamW optimizer, learning  

rate = 0,001, weight_decay = 0.01 

model.train(data="data.yaml", 

            task="detect", 

            mode="train", 

            epochs=100, 

            imgsz=640, 

            workers=2, 

            batch=32, 

            optimizer='AdamW', 

            lr0=0.001, 

            weight_decay=0.01) 

 

# model 3: decrease learning rate, 

workers --> default = 8 

model.train(data="data.yaml", 

            task="detect", 

            mode="train", 

            epochs=100, 

            batch=32, 

            imgsz=640, 

            save=True, 

            optimizer='AdamW', 

            lr0=0.0007,  # decreased learning 

rate by 30% 

            weight_decay=0.001,#decreased 

weight decay) 
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These adjustments led to a small improvement in the training losses, but to a decline of 

the validation losses (see Table 32). For further regularization, the learning rate was 

decreased by 30% in model 3, while the workers were set to the default value (workers = 

8). The combination of increasing the number of workers and decreasing the learning rate 

can be effective in balancing computational efficiency and model performance. Further-

more, the weight decay was set to 10-3 as suggested by Smith (2018). 

The configurations made in model 2 and 3 resulted in a small reduction in training and 

validation losses, but no significant improvements in the mAP50 or mAP50-95 were 

achieved (see Table 32-Table 35) 

Table 32 Metrics and values of best performing epoch during training of model #2 

 Train Metrics     

# box_ 

loss 

cls_ 

loss 

dfl_ 

loss 

Precision (B) Recall (B) mAP50 (B) mAP50-95 (B) box_ 

loss 

cls_ 

loss 

dfl_ 

loss 

86 0,8833 0,5271 0,98322 0,6111 0,5512 0,582 0,3574 1,7681 1,2854 1,5215 

Table 33 Metrics of best performing epoch in validation of model #2 

Class Images Instances Box (P R mAP50 mAP50-95) 

all 226 2078 0.611 0.551 0.583 0.359 

Table 34 Metrics and values of best performing epoch during training of model #3 

 Train Metrics Validation 

# 

box_ 

loss 

cls_ 

loss 

dfl_ 

loss Precision (B) Recall (B) mAP50 (B) mAP50-95 (B) 

box_ 

loss 

cls_ 

loss 

dfl_ 

loss 

86 0,8711 0,5209 0,9785 0,7554 0,4967 0,5996 0,3579 1,7647 1,2613 1,4992 

Table 35 Metrics of best performing epoch in validation of model #3 

Class Images Instances Box (P R mAP50 mAP50-95) 

all 226 2078 0.756 0.497 0.6 0.358 

Model 4 

Reducing the learning rate resulted in an overall reduction in training and validation 

losses, so this approach was continued in Model 4. To decay the learning rate during the 

training the cosine annealing technique or cosine learning rate scheduler is used. 

The configurations of model 2 with an initial learning rate of 0.001 were used as base. 

#model 4: introduce cosine learnrate scheduler 

model.train(data="data.yaml", 

            task="detect", 

            mode="train", 

            epochs=100, 

            batch=32, 

            imgsz=640, 

            save=True, 

            optimizer='AdamW', lr0=0.001, weight_decay=0.001, 

            cos_lr=True) #introduced cos lr scheduler 
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This configuration resulted in an overall decline of the models performance, as seen in 

Table 36 and Table 37: the loss values have increased, while the precision, recall and mAP 

values in the validation set have deteriorated. 

Table 36 Metrics and values of best performing epoch during training of model #4 

 Train Metrics Validation 

# 

box_ 

loss 

cls_ 

loss 

dfl_ 

loss Precision (B) Recall (B) mAP50 (B) mAP50-95 (B) 

box_ 

loss 

cls_ 

loss 

dfl_ 

loss 

56 1,0242 0,63336 1,0359 0,73212 0,49955 0,58145 0,34271 1,7835 1,2868 1,4758 

Table 37 Metrics of best performing epoch in validation of model #4 

Class Images Instances Box (P R mAP50 mAP50-95) 

all 226 2078 0.611 0.551 0.583 0.359 

Model 5 and 6 

In model 4, however, the gap between training and validation losses was reduced, indi-

cating a good network convergence (Smith, 2018, p. 3) Therefore, the approach with the 

cosine learning rate scheduler is used as a starting point for further hyperparameter 

tuning. Specifically, the epoch, batch, image size and learning rate were tweaked, us-

ing the following approaches:  

In model 5 the workers were set to 2 and the input image size was reduced to 512 pixels, 

while the number of epochs was increased to 150. Furthermore, since the training loss is 

higher than the validation loss, it must be assumed that some patterns are not general-

ized well to unseen data. Increasing the number of epochs to 150 allows the model to go 

through more training iterations, potentially allowing it to learn more complex patterns 

and improve its overall performance. Since there are limited computational resources 

available, increasing the number of epochs reduces the anaclity of the workers. By reduc-

ing the number of workers, the communication overhead between workers is minimized, 

resulting in faster training times. Additionally, reducing the size of the input image to 512 

pixels can help reduce the model's memory requirements and computational complexity. 

The metrics and values of this configuration are found in Table 38 and Table 39. 

Table 38 Metrics and values of best performing epoch during training of model #5 

 Train Metrics Validation 

# 

box_ 

loss 

cls_ 

loss 

dfl_ 

loss Precision (B) Recall (B) mAP50 (B) mAP50-95 (B) 

box_ 

loss 

cls_ 

loss 

dfl_ 

loss 

113 0,83595 0,48984 0,94943 0,65402 0,54315 0,57696 0,35531 1,7366 1,2284 1,5047 

Table 39 Metrics of best performing epoch in validation of model #5 

Class Images Instances Box (P R mAP50 mAP50-95) 

all 226 2078 0.654 0.543 0.578 0.356 
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The configurations in model 5 resulted in an improvement in loss values and validation 

metrics. Therefore, in model 6 only the batch size was reduced from 32 to 16. This change 

was adopted to allow for more frequent weight updates and potentially improving the 

model's generalization ability. It also helps mitigating memory limitations and reduce the 

computational burden, enabling smoother training on the limited hardware. The perfor-

mance metrics and loss values are seen in Table 40 and Table 41 

Table 40 Metrics and values of best performing epoch during training of model #6 

 Train Metrics Validation 

# 

box_ 

loss 

cls_ 

loss 

dfl_ 

loss Precision (B) Recall (B) mAP50 (B) mAP50-95 (B) 

box_ 

loss 

cls_ 

loss 

dfl_ 

loss 

113 0,8360 0,4898 0,9494 0,65402 0,54315 0,57696 0,35531 1,7366 1,2284 1,5047 

Table 41 Metrics of best performing epoch in validation of model #6 

Class Images Instances Box (P R mAP50 mAP50-95) 

all 226 2078 0.654 0.543 0.578 0.356 

Model 7-9 

Based on the performance of model 6 in model 7, 8 and 9 the parameters epoch, learning 

rate and patience were tweaked. Specifically in model 7 the epochs were increased to 

500 and the learning rate was further reduced from 0.0007 to 0.0005. Based on the 

deterioration of the metrics in model 7, model 8 and model 9 used the configuration of 

model 6 and were used solely to test whether the performance of Model 6 could be fur-

ther improved by increasing the epochs.  

Table 42 Metrics and values of best performing epoch during training of model #7 

 Train Metrics Validation 

# 

box_ 

loss 

cls_ 

loss 

dfl_ 

loss Precision (B) Recall (B) mAP50 (B) mAP50-95 (B) 

box_ 

loss 

cls_ 

loss 

dfl_ 

loss 

84 1,0282 0,62262 1,022 0,65375 0,52818 0,58395 0,35345 1,6606 1,156 1,4252 

Table 43 Metrics of best performing epoch in validation of model #7 

Class Images Instances Box (P R mAP50 mAP50-95) 

all 226 2078 0.625 0.56 0.598 0.352 

Table 44 Metrics and values of best performing epoch during training of model #8 

 Train Metrics Validation 

# 

box_ 

loss 

cls_ 

loss 

dfl_ 

loss Precision (B) Recall (B) mAP50 (B) mAP50-95 (B) 

box_ 

loss 

cls_ 

loss 

dfl_ 

loss 

137 0,93936 0,55566 0, 0,64231 0,55414 0,59669 0,35974 1,664 1,1216 1,4764 

Table 45 Metrics of best performing epoch in validation of model #8 

Class Images Instances Box (P R mAP50 mAP50-95) 

all 226 2078 0.735 0.509 0.596 0.359 



5 Machine Learning Pipeline 

127 

Finally, in model 9 a patience of 250 epochs was implemented to avoid overfitting. Accord-

ingly, the training was stopped early at 452 epochs and 7.147 hours of computing, as the 

model's performance on the validation set did not improve within a specified number of 

epochs. The training was stopped after 7,147 hours of computing. 

Table 46 Metrics and values of best performing epoch during training of model #9 

 Train Metrics Validation 

# 

box_ 

loss 

cls_ 

loss 

dfl_ 

loss Precision (B) Recall (B) mAP50 (B) mAP50-95 (B) 

box_ 

loss 

cls_ 

loss 

dfl_ 

loss 

201 0,83303 0,48108 0,94848 0,6628 0,5652 0,59382 0,36145 1,6816 1,1053 1,4957 

Table 47 Metrics of best performing epoch in validation of model #9 

Class Images Instances Box (P R mAP50 mAP50-95) 

all 226 2078 0.664 0.565 0.594 0.36 

Due to the limited time and resources of this work, the fine-tuning of the Yolov8s model 

was concluded after the ninth training run. 

5.2.5. MODEL SELECTION 

For the final model selection, the performance metrics of the different model configura-

tions are compared as in the iterative training and validation process. Based on the met-

rics mAP, precision, recall and F1 score, model 6 and model 9 are shortlisted as they 

achieved the highest values in the metrics. 

  

Figure 72 F1-Confidence-Curve of model #6  

(image by author) 

Figure 73 F1-Confidence-Curve of model #9 

(image by author) 
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Regarding mAP50 (B), both models have the same value of 0.594, indicating similar per-

formance in terms of average precision at 50% IoU. However, when considering mAP50-

95 (B), model 6 has an insignificantly higher value of 0.361 compared to model 9's value 

of 0.36. According to these metrics, model 6 and model 9 have comparable performances, 

with some differences in precision, recall, and mAP50-95 (B). Furthermore, since the two 

models differ only in the number of epochs and patience, the computational require-

ments of each configuration, including inference speed and memory usage, is not consid-

ered as a determining criterion. Based on the F1-Confidence curves (Figure 72 and Figure 

73), model 9 performed better, as it has a higher F1 score at a higher confidence than 

model 6. This implies that the model's predictions at higher confidence thresholds are 

more accurate in terms of both precision and recall and accordingly, model 9 is making 

fewer false positive and false negative errors when it is more confident about its predic-

tions. Finally, the model 9 was selected for the test run. 

5.3. TEST AND EVALUATION 

In the final step of the machine learning pipeline, the performance of the selected model 

is evaluated against a retained test set. Subsequently, further approaches are assessed, 

and the limitations of the entire method are highlighted. 

5.3.1. ASSESSMENT 

The test run was performed with the test set consisting of 116 images with a total of 975 

instances. The evaluation focuses on the detection performance and properties of the 

individual classes. 

Detection performance: Precision P, recall R, F1 score and mAP 

The model achieved a mean average precision (mAP) at 0.5 IoU threshold of 0.634, indi-

cating a satisfactory overall performance in correctly detecting and localizing objects. Fur-

thermore, both the precision and recall have higher values than in the validation. 

Table 48 Test set performance metrics 

Class Images Instances Box (P R mAP50 mAP50-95) 

all 116 975 0,721 0,596 0,634 0,371 

The model achieved high precision (P and recall (R) values for several classes, indicating 

its ability to accurately detect those objects. For example, classes like „window-exterior-

type22“ (P=0,953, R=1) ,“window-exterior-type55“ (P=0,809, R=1) and „window-exterior-

type52“ (P=0,781, R=1) achieved perfect precision and recall. 
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Figure 74 F1-Confidence Score in test-run  

(image by author) 

Figure 75 Precision-Recall-Curve in test-run 

(image by author) 

The F1 curve for all classes starts at a relatively low point (0, 0.35) and reaches its maxi-

mum of 0.57 at a threshold of 0.378. Figure 74 reveals that the majority of class labels 

exhibit a comparatively high F1 score, indicated by the curves positioned above the blue 

average F1 score line. An F1 score close to 1.0 suggests that the model achieves a favora-

ble trade-off between precision and recall, resulting in accurate predictions of positive 

instances for these classes. However, the overall F1 score of 0.57 for all classes is influ-

enced by a few object classes that exhibit a notably low F1 score. In these classes, the 

model struggles to correctly detect positive instances, potentially due to an elevated pres-

ence of false positives or false negatives. 

Likewise, the PR curve demonstrates a mixture of classes with favorable performance and 

a subset of classes with considerably inferior PR curves. This combination leads to an 

overall mAP@50 of 63.4% for all classes The PR-curve starts at with a precision of 81% at 

the lowest recall level (0% recall) but becomes less precise as it tries to capture more pos-

itive instances, meaning there is a trade-off between recall and precision. In summary, the 

PR-curve indicates a model that demonstrates relatively high precision at the beginning 

and overall good performance in terms of precision and recall trade-off.  
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Class-wise performanc 

In the class-wise evaluation, it was found that the model’s performance varies across dif-

ferent classes. The classes with the best performance can be found in Table 49. 

Table 49 Metrics of best performing classes in test run 

Class Instances Box (P R mAP50 mAP50-95): 

window-exterior-type2 1 0,953 1 0,995 0,895 

window-exterior-type55 2 0,809 1 0,995 0,824 

window-exterior-type52 2 0,781 1 0,995 0,822 

window-exterior-type3 3 0,491 1 0,995 0,796 

door-interior-type11 1 0,711 1 0,995 0,796 

window-exterior-type54 1 0,701 1 0,995 0,796 

window-exterior-type1 2 0,734 1 0,995 0,748 

window-exterior-type35 4 0,88 1 0,995 0,712 

window-exterior-type53 1 1 1 0,995 0,697 

window-exterior-type23 18 0,968 0,944 0,988 0,652 

The classes with the best performance have high precision, recall, and mAP values due to 

several factors. These classes may have clear and distinctive visual features that facilitate 

discrimination from background and other objects. In addition, they may have sufficient 

training data for the model to learn robust features and object representations for accu-

rate detection. In contrast, the worst performing classes are seen in Table 50:  

Table 50 Worst performing object classes in test-run 

Class ID Instances Box(P R mAP50 mAP50-95): 

window-exterior-type31 91 4 0 0 0 0 

door-indoor-type4 31 3 1 0 0 0 

door-interior-type8 51 2 1 0 0 0 

window-exterior-type25 84 2 1 0 0 0 

window-exterior-type44 104 2 1 0 0 0 

door-indoor-glassdoor11 12 1 1 0 0 0 

door-interior-type13 36 1 1 0 0 0 

door-interior-type21 44 1 1 0 0 0 

window-exterior-type16 74 1 1 0 0 0 

window-exterior-type18 76 1 0 0 0 0 

window-exterior-type29 88 1 1 0 0 0 

window-interior-type8 135 1 1 0 0 0 

window-interior-type9 136 1 1 0 0 0 

door-interior-type12 35 2 1 0 0,0647 0,0194 

window-exterior-type32 92 10 0 0 0,0411 0,0206 

door-indoor-glassdoor3 19 7 0,0458 0,0262 0,0771 0,0377 

In most of these classes, zero instances were detected, resulting in low precision, recall, 

and mAP scores, which indicates that the model does not effectively detect and localize 
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instances of these classes. These classes may have visual attributes that are difficult for 

the model to distinguish, leading to recognition errors. Furthermore, insufficient training 

data for these classes could also contribute to poor performance, as the model is not 

sufficiently exposed to different examples for effective learning.  

Similar conclusions are reached when the confusion matrix (see Figure 76) is used. 

 

Figure 76 Normalized Confusion-Matrix of test-run (image by author). 

Class IDs 1 to 52 describe door types, class IDs 53 to 59 describe lights, class ID 60-64 belong to sanitary, 

class IDs 65-136 describe window types. 

From the diagonal in confusion matrix, it can be inferred that the majority of the classes 

are correctly predicted. However, the outliers allow the following conclusions to be drawn: 

Some classes are incorrectly assigned to another specific class with a high confidence. 

This can be recognized by a single point in a row and the coloring of the point in the graph. 

For these classes, more images or higher quality images are needed so that the features 

that lead to differentiation from the other component type can be better extracted by the 

model. Certain classes, such as class 135 (‚window-interior-type8‘) and class 136 (‚window-

interior-type8‘) Class 136 and 135 lack fundamental distinguishing features, which is visi-

ble in the erroneous assignment to very different component types (doors, lights, win-

dows). 
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Speed and efficiency 

The model’s speed was measured during different stages of the process. The prepro-

cessing stage took an average of 1.8ms per image, the inference stage took 305.4ms per 

image, the loss calculation took 0.0ms, and the post-processing stage took 4.4ms per im-

age. Overall, the model achieved a relatively fast speed during the inference stage, which 

is essential for real-time or time-sensitive applications. 

Visual Assessment 

Finally, the visual assessment of the test output is performed by analysing the images 

batch-wise. In particular, the following criteria are considered: Object localization, object 

classification, object recognition, accuracy and precision, generalization, and false posi-

tives and false negatives. When checking object localization, it is considered whether the 

model accurately locates the objects of interest in the image. This involves checking that 

the bounding boxes tightly enclose the objects and that there are no false positives or 

missed detections. Regarding the object classification, the assigned class labels were ex-

amined. Misclassifications or ambiguous designations are searched for. Furthermore, ob-

ject recognition evaluates whether the model can recognize multiple objects in the same 

image. Overlapping or closely spaced objects must be recognized and distinguished as 

separate objects. Further, accuracy and precision refer to the predictions of the model. 

Attention is paid to discrepancies between ground truth annotations and objects recog-

nized by the model. The generalization ability of the model can be determined by model 

performance on images with different backgrounds, lighting conditions, orientations, and 

scales. It is investigated whether the model can handle variations in real-world data that 

may be encountered during application for component recognition in different buildings. 

Last, the false positive or false negative detections that the model makes are identified. 

False-positive detections refer to objects that were incorrectly identified as being present, 

while false-negative detections refer to missing detections. 

The batches and all predicted images are found in the digital annex. 

Batch 0 

In Batch 0, the overall performance can be assessed as very good. The model made errors 

in 3 out of 16 images. It is noticeable that in the first image, radiators were not localized 

despite having better image quality compared to others where heaters were distorted or 

poorly represented (see Figure 77). However, they have very low contrast with the wall. 

Additionally, there were instances of swapping similar window types, which can be at-

tributed to the low resolution. Window types with the same basic shape (e.g., four- or five-

sided) are usually differentiated based on the presence and number of mullions. If these 

mullions are not visible, incorrect assignment is likely. 

Furthermore, a particular mismatch occurred where windows in the last few images were 

mistakenly identified as emergency lights (see Figure 78). This could be explained by one 

of the features of emergency lights being green. In this image, unlike other windows, trees 

are visible, creating a unique combination of white (light) and green (trees) as features for 
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these windows, leading to a resemblance to emergency lights. Overall, good generaliza-

tion is observed as objects are recognized in both heavily distorted (polar regions) and 

undistorted (central) areas, under various lighting conditions. The bounding boxes align 

with the ground truth annotations or even enclose the objects more tightly. 

 

Figure 77 Sample image from batch 0 in the test 

run.  

The radiators below the windows were not recog-

nized. Image from (Bendiek Laranjo, 2023) 

 

Figure 78 Sample image from batch 0 in the test 

run. 

The windows are miscategorized as emergency 

lights. 

Batch 1 

Batch 1 performs similarly well as Batch 0, although more localization errors are found. 

First, ‘door-interior-type23’ was not localized, although other instances of the same class 

were present in the image (see Figure 79). This could be explained by the distortions of 

the door in the polar regions. Similarly, individual components in the edges of the image 

were not confidently recognized, e.g., in Figure 80 the cut-off door was not recognized, 

and in the same image a window was not correctly localized despite being displayed un-

distorted. However, generally a good object recognition is noticed, as several object cate-

gories are correctly detected on the images and tightly captured in bounding boxes. When 

examining Batch1, individual errors in the original dataset were noticed: The windows in 

Figure 82 are labeled as 'window-exterior-type59' in the TUDataset but were correctly de-

tected by the model as 'window-exterior-type61', suggesting high precision in this object 

class. Similarly, the right orange door in Figure 81 was incorrectly labeled in the annota-

tion process, but correctly identified as ‘door-interior-type23’ in the model. In the same 

picture another error is found, as the ceiling light is localized twice. The dataset will be 

corrected accordingly.  
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Figure 79 Sample image from batch 1. The door in 

the left edge is not recognized. 

 

 
Figure 80 Sample image from batch 1 in the test 

set.  

The cut off part of 'door-indoor-glassdoor15' was 

not recognized in the right edge of the image. Fur-

thermore, the smaller window above the 'window-

exterior-type39' was not localized 

 

Figure 81 Sample image from batch 1 in the test 

set. 

The model correctly predicted the label 'door-inte-

rior-type23' for the right orange door. However, the 

ceiling-light was localized twice. 

 

Figure 82 Sample image from batch 1 in the test 

set. 

The windows were correctly labeled as Type 61.83 
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Batch 2 

Among the considered batches, Batch 2 demonstrates the fewest errors. All relevant ob-

jects are accurately localized and tightly enclosed by bounding boxes, with no false detec-

tions observed. The model displays strong object recognition capabilities, successfully 

identifying and distinguishing multiple objects in an image, even when they are closely 

spaced or at varying distances from the viewpoint. The evaluation of this batch indicates 

that the model generalizes well, effectively recognizing the same type of window in differ-

ent lighting conditions, orientations, and scales. However, errors are observed in the clas-

sification of objects. Specifically, there appears to be a difficulty in distinguishing between 

'Window-Exterior-Type50' and 'Window-Exterior-Type57'. The former has eight cutouts 

per sash in the center field, while the latter has six window cutouts per sash in the same 

area. Inconsistencies in the dataset annotations contribute to the model's challenge in 

accurately distinguishing between these two object classes. 

 

Figure 84 A representative image from the TUDa-

taset, which is not included in the test set.  

Depicting windows belonging to the 'window-exte-

rior-type50' class with eight cutouts per sash in the 

center field. Image from (Bendiek Laranjo, 2023) 

 

Figure 85 Image from batch 2 in test set. 

The labels of these windows are wrongly predicted 

as 'window-exterior-type50'.Since these windows 

have six cut-outs per sash in the central part, they 

correctly belong to the class 'window-exterior-

type57'. 
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5.3.2. EVALUATION 

Overall, the scope of this thesis was achieved by the model. The YOLOv8s model trained 

here demonstrated promising performance in facilitating the reuse process by accelerat-

ing the recognition of components. The approach assumes that 360° images are increas-

ingly used for documenting the as-built condition of structures. The time for image gen-

eration is not considered in the component recognition process as the images serve other 

purposes besides the reuse assessment. The model's current state allows for accurate 

determination of reusable components, enabling an initial cost estimate for deconstruc-

tion. Additionally, the model significantly reduces the time required for component inven-

tory compared to analog methods, potentially resulting in savings in labor costs and time. 

Further research could potentially be conducted to explore these saved costs and time. 

The model in this study deals effectively with distortions, by successfully recognizing com-

ponent types, even when presented in different conditions and deformations, and accu-

rately assigning them to the correct class. It achieved satisfactory detection and localiza-

tion results, with high precision and recall for several classes. However, there is room for 

improvement, especially in classes with low F1 scores and poor performance. Addressing 

the misclassifications, reducing false positives and false negatives, and increasing the 

training data for challenging classes would enhance the model's ability to accurately rec-

ognize components and further accelerate the reuse process.  

Strategies to address these issues could include the application of dropout regularization 

to prevent overfitting, dataset augmentation to increase the sample size, and fine-tuning 

the model on a larger and more diverse dataset. Dropout is a regularization technique 

that involves randomly dropping out (removing) hidden and visible units from the net-

work, along with all their connections (Nitish Srivastava et al., 2014, p. 1930). Data aug-

mentation is a good solution to address the large number of object categories and intra-

class variations in the TUDataset that arise from different representations of the compo-

nents in the ERP. A large discriminative power is required from the detector to distinguish 

between subtly different interclass variations (Liu et al., 2018a, p. 5) that can be achieved 

by feeding a diverse set of examples of each class to the model (Rakhshan et al., 2021a, 

p. 7). Additionally, improvements in camera quality or image enhancement techniques, 

such as denoising, deblurring, or contrast adjustment, can contribute to better represen-

tations of the components, leading to better feature extraction and enhanced intra-class 

distinction. Finally, normalizing the dataset and exploring alternative validation strategies 

are also important factors to enhance the model's performance. Normalization and data 

cleaning are necessary because errors in the annotation and inconsistencies in the label 

designation were noticed during the assessment of the model. Lastly, in this thesis hold-

out validation is used, where a "holdout" subset of the training data is used to evaluate 

multiple candidate models (Géron, 2023, p. 31). 
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However, a small validation set may lead to imprecise model evaluations, while a large 

validation set reduces the size of the remaining training set. Repeated cross-validation 

with multiple small validation sets solves this, but increases training time, as each model 

is evaluated on each validation set, and their evaluations are averaged for more accurate 

performance measurement. (Géron, 2023, p. 31) 

For smaller data sets, unsupervised pre-training helps to prevent overfitting40 , leading 

to significantly better generalization when the number of labelled examples is small, or in 

a transfer setting where we have lots of examples for some ‘source’ tasks but very few for 

some ‘target’ tasks. Once deep learning had been rehabilitated, it turned out that the pre-

training stage was only needed for small data sets. (LeCun et al., 2015, p. 439) 
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6 CONCLUSION 

6.1. SUMMARY AND CONTRIBUTIONS 

The thesis "Implementing the principles of Circular Economy in the Architecture, Engineer-

ing and Construction (AEC) sector: About the identification of reusable components using 

360° Scans and Machine Learning" aims at advancing circular economy (CE) practices in 

the built environment using machine learning in combination with 360° images. The thesis 

is motivated by the need to promote adopting a circular economy in the construction in-

dustry, considering its resource-intensive nature and environmental impact. 

The thesis defines Circular Economy in the Built Environment as adopting strategies at 

every stage of a building's life cycle to maximize the retention of materials within a closed 

loop. This thesis focuses on the Reuse strategy. In addition, the underlying key concepts 

of artificial intelligence, machine learning, neural networks, computer vision, and 360° im-

ages are defined to provide the necessary theoretical foundations for object detection 

using a convolutional neural network in the practical implementation of the thesis. 

A systematic literature review explores the state of the art in circular economy implemen-

tation in the built environment. Research trends are identified using the scientometric 

software VOSViewer, and implementation barriers are discussed. The analysis revealed 

seven trends in the research field of CE in the AEC sector. Furthermore, the implementa-

tion of circular economy in the construction practice was examined on the micro, meso, 

and macro levels. The role of machine learning in enabling a circular built environment is 

also analyzed, including its applications and potential for component reuse. 

For the methodology of this thesis the process of reuse is formalized by creating a process 

framework. Due to the lack of a standard, reusable components are identified based on 

a field study of component exchanges, and it is determined which components should be 

recognized by the machine learning algorithm and what their distinguishing characteris-

tics are. Windows, doors, lights, heaters, and sanitary objects (toilet, sink, pissoirs) were 

specified as selection. Machine learning techniques for component identification were 

then analyzed, and the specifics of using 360° imagery were addressed. Based on the pre-

sented reuse process, the need for cost- and time-efficient solutions for inventory is de-

termined, and the scope for machine learning applications is defined. 

The one-stage object detection model Yolov8 was chosen for this thesis task. The practical 

implementation of the machine learning pipeline is presented in detail, covering data gen-
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eration, annotation, training, validation, and testing. The practical part of the work encom-

passes all steps from data collection to creating a custom dataset, training and validation 

of different YOLOv8 model configurations, and testing. The resulting TUDataset consists 

of approximately 2,400 360° images in Equirectangular projection and 136 object classes. 

The selected model configuration achieves a mean Average Precision at IoU 0.5 of 63% 

and a mean Average Precision at IoU 0.5 to 0.95 of 37%. Finally, the model is evaluated, 

and various configurations are proposed. Overall, this thesis contributes to the transition 

towards a circular economy in the construction industry by proposing a practical solution 

for identifying reusable building components. It combines interdisciplinary approaches, 

incorporating machine learning and 360° imaging, to address the challenges of resource 

utilization and waste reduction. 

6.2. CONTRIBUTIONS 

The effectiveness of CNNs in AEC applications is heavily reliant on the quantity of data 

used during training. To prevent the problem of overfitting, a substantial amount of data 

is typically needed for training. Unfortunately, many CNN-based approaches designed for 

the AEC sector encounter this problem because they rely on a relatively small amount of 

training data, often gathered through conventional cameras. (Darko et al., 2020, p. 14) The 

thesis provides a fully labeled dataset of 360° images, facilitating research and practical 

applications in object detection. To the authors best knowing it is the first Object Detec-

tion dataset generated in the Technical University of Dresden.  

Furthermore, this work demonstrates the effectiveness of using 360° images for object 

detection tasks, showcasing their potential in accurately identifying objects. Additionally, 

the thesis demonstrates the benefits of incorporating machine learning techniques into 

the inventory process, highlighting how it accelerates and improves the efficiency of in-

ventory management. 

Furthermore, to the author’s best knowledge it is the first attempt to use object detection 

in 360° images with the purpose of enabling component reuse. 

6.3. DISCUSSION OF RESULTS 

The results of this work will be summarized and critically reviewed below.  

First, the literature review has shown that the field of CE in BE is developing very rapidly. 

The research focuses on analyzing barriers to CE, the different strategies, and the increas-

ing connection of CE with digital technologies like BIM or GIS. There is a significant misa-

lignment between research and practice: while in research, very tangible strategies and 

frameworks are proposed and evaluated, in practice, these take place only in individual 
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projects. Despite the urgency and already existing guidelines (e.g., on the EU level), a com-

prehensive strategy is not available and requires a turnaround of politics and the econ-

omy. A similar conclusion is drawn from the analysis of CE practice projects implemented 

mainly on the micro (component or material level) and meso level (construction project 

level). The least project approaches can be found at the regional or macro level. Never-

theless, it was found that digital approaches for implementing CE strategies are increas-

ingly being proposed in research. According to the "two birds with one stone" principle, 

the low level of digitization and the slow CE implementation could thus be advanced. 

The author of this thesis agrees with (Pomponi and Moncaster, 2017), that implementing 

CE in the construction industry should focus on assessing and mining existing buildings 

rather than new construction. In terms of planning for circularity, from the considerations 

in this thesis, several obstacles arise concerning reuse, including: 

The lack of accurate data on the current state. Often, reliable information about the 

materials used or product manufacturers is unavailable. This is partly due to inadequate 

documentation of subsequent modifications to the building or a lack of centralized man-

agement and accessibility of such documentation. Detailed measurements and condition 

descriptions need to be included. 

The limited awareness among industry practitioners regarding the potential for re-

using building components. This results in the potential of components being recog-

nized only when they become "waste" and a cost burden. Late identification of potential 

components poses significant logistical challenges. Planning construction projects re-

quires considerable time and lead time for implementation. To incorporate a reusable 

component into the planning, it must already be cataloged, and its availability date must 

be determined. Suppose a component is identified for reuse shortly before or even after 

its installation. In that case, it can only be included in the planning and re-enter the circular 

process after the completion of the project. This leads to storage times that have a nega-

tive impact on costs and space requirements. Early identification of reuse potential is, 

therefore, necessary to save costs. 

The reliance of component documentation on analog and fragmented solutions. Alt-

hough individual tools like Concular or Madaster are available, the author considers them 

inefficient for rapid component capture. The "Material Passport" approach by Concular 

requires each component to be photographed and its attribute template to be filled out 

manually. Madaster, on the other hand, assumes the existence of an as-built BIM model 

or Excel cadaster and is, therefore, rarely applicable to Urban Mining projects. 

The need for easily accessible information for planning with reusable components. 

Although component exchanges exist as described in Chapter 4, they do not meet the 

quality standards required for planning purposes. Currently, there is a lack of standard-

ized formats for cataloging components andcadasters that capture the building stock. It 
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would also be highly advantageous to provide digital drawings or models in addition to 

images for each component. 

The approach presented in this thesis serves as a proof-of-concept, showcasing the po-

tential use of 360° images and artificial intelligence for Urban Mining. It demonstrates the 

suitability of 360° cameras for inventory management with the purpose of component 

detection. Furthermore, it shows that sufficient accuracy can be achieved using conven-

tional object detection models on equirectangular projections. Machine learning enables 

significant time savings and sufficient precision in identifying component classes and, to 

a lesser extent, component types within a class. However, further fine-tuning and revision 

of the TUDataset are necessary. The approach presented in this thesis serves primarily as 

a solution to overcome the analog and time-consuming work methods and is not a final 

concept but should be integrated into a comprehensive proposed framework, to be out-

lined in the 6.5 Future Research section. 

6.4. LIMITATIONS 

Firstly, it is important to note that the study focuses solely on reuse, representing a highly 

specific and limited case within the broader context of the circular economy strategies 

employed throughout the entire building lifecycle.   

Regarding the data, it should be noted that the selection of components examined in this 

research represents only a small subset, and a broader range of non-destructive, non-

toxic components can potentially be reintegrated into a circular economy. This limitation 

stems from the assumption that all areas and spaces within a building are accessible. 

Consequently, only the components captured by the camera can be identified. Therefore, 

introducing similar uncertainties in the number of components as in traditional on-site 

inspections and component identification processes. 

Regarding the model used in this study, it is crucial to highlight that, thus far, the model 

has only detected the component type. Further research and analysis should be con-

ducted to extract additional crucial information, such as the condition and, most im-

portantly, the dimensions of the components. Additionally, the current data analysis did 

not consider the location of the components within the building. However, it is recom-

mended that future research considers this aspect. For instance, leveraging the capabili-

ties offered by Open Experience, integrating floor plans, and linking them with the cap-

tured images while specifying the field of view would enable more precise and efficient 

localization of the building components within the structure. 

In terms of the model employed in this thesis, the objective was to demonstrate the suit-

ability of 360-degree images as a foundation for object detection. The training of the 
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model aimed to achieve a high level of precision and performance. However, it is im-

portant to acknowledge that further training is necessary to develop a model that can 

compete with existing state-of-the-art models in terms of performance and accuracy.  

Furthermore, it should be noted that various approaches integrating spherical layers into 

convolutional neural networks have been proposed in related literature. These ap-

proaches were not explored in this research due to resource limitations. Nonetheless, 

they should be regarded as important references and potential alternatives for future in-

vestigations. Lastly, it is worth mentioning that no comparative model was implemented 

in this thesis. As a result, the performance values of the chosen model can only be evalu-

ated compared to similar publications. The lack of further performance metrics on the 

TUDataset represents a significant limitation, as it hinders the ability to numerically com-

pare the results. Therefore, it is evident that further research is needed to incorporate 

and evaluate additional models, providing a more comprehensive analysis and under-

standing of the topic.  

In conclusion, while this thesis has contributed valuable insights into extracting infor-

mation from images within the context of reuse in the building construction sector, it is 

essential to acknowledge and address the limitations discussed.  A more comprehensive 

and robust understanding of the subject matter can be achieved by recognizing these 

limitations and incorporating them into future research endeavors. Due to the lack of pre-

vious research in this field, this thesis provides a groundwork to be built on. 

6.5. FUTURE RESEARCH 

The identified problems of unreliable information, lack of tools and standards for rapid 

data acquisition, and the provision and storage of component information should be con-

sidered interdependent and require a holistic solution. The author views Building Infor-

mation Modeling (BIM) as a suitable technology that should be at the center of the solu-

tion, encompassing all relevant information. Therefore, technical solutions for implement-

ing Circular Economy (CE) strategies should consider the interfaces with the BIM model 

from the outset. The ultimate goal is to create an as-built model of existing buildings, 

serving as a central database that incorporates all information and generates further in-

sights. The following research approaches are considered: 

Geometric modeling through 3D reconstruction 

Further efforts to automate inventory processes using machine learning should be pur-

sued. Existing research in 3D reconstruction aims to reconstruct components and their 

connections as-built using photogrammetry, machine learning, and data from LIDAR point 

clouds and 360° images (Fujita and Kuki, 2016; Gordon et al., 2023; Wang and Cho, 2015). 

If these components are not only created as 3D representations but also as BIM objects, 
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the advantages of BIM can be utilized, with components serving as building passes or 

material passes. 

Information enrichment through BDA (Big Data Analytics) and ML (Machine Learning) 

Efforts should be made to refine object detection models to extract geometric, material, 

and static information from images. Additionally, this work exclusively employed object 

class detection, but future possibilities include object instance detection, which can iden-

tify specific component models based on manufacturer specifications. Manufacturer 

specifications serve as sufficient planning references for component reuse. Specific in-

stance identification could also drive recycling programs. For example, based on a manu-

facturer’s product catalog, it is conceivable to identify the specific component types used 

in a deconstruction project and have the manufacturer remove and refurbish them. This 

scenario could become relevant due to the increasing costs of primary resources for man-

ufacturers. However, data and object detection datasets are required for this research 

endeavor, and its procurement should also be a focus of future work.  

BDA tools have already been used in research to manage information from various digital 

and analog (historical) sources and building data has to be combined with urban data and 

component data. Therefore, research is needed to implement these technologies to make 

building information, such as data from building authorities, available. In addition to in-

formation acquisition, storing information in the model is important. Significant research 

is needed to standardize component descriptions for reuse and generating material 

passes. Currently, DIN SPEC 91484 is being developed to "a procedure for capturing con-

struction products as a basis for assessing their reuse potential before demolition and 

renovation works, ensuring that all market participants have sufficient and consistent 

data depth at all stages of the value chain" (Deutsches Institut für Normung e.V., 2022 

translated by author). Nevertheless, future research could focus on implementing these 

standards in BIM ontologies. 

Deriving information from the BIM model 

Material passes and material registers, integration with LCA (Life Cycle Assessment) tools 

and RMMs (Resource Management Models): Research is needed to determine the output 

format, scope, and legal binding of material passes. Additionally, a comprehensive con-

cept for macro-level inventory is necessary, and further research is needed to promote 

the integration of BIM and GIS (Geographic Information System).  

The BIM model is a database from which components can be available on component 

exchanges. While BIM online catalogs exist, they have yet to be utilized for the commercial 

distribution of used components or as a planning foundation. For example, BIMObject 11 

provides CAD and DWG files for various component products. However, these platforms 

have the disadvantage of lacking standardized information content for components. 

 
11 https://www.bimobject.com/de  

https://www.bimobject.com/de
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In conclusion, the author recognizes the need for research on the tracking of components. 

Due to the limited establishment of Circular Economy (CE) in the built environment, there 

are few or no long-term studies on the behavior of reused components. The existing ap-

proaches to track components using Blockchain technology (BCT) and monitor compo-

nent behavior with sensors should be further explored in future studies. 
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I SOURCECODE DOCUMENTATION 

MAIN PROGRAM FOR MODEL TRAINING (MAIN.PY) 

from ultralytics import YOLO 

from ultralytics import YOLO 

from fpdf import FPDF 

 

def save_table_to_pdf(data, filename): 

    pdf = FPDF() 

    pdf.add_page() 

    pdf.set_font("Arial", size=12) 

 

    # Set table cell width and height 

    cell_width = pdf.w / len(data[0]) 

    cell_height = pdf.font_size + 2 

 

    # Add rows to PDF 

    for row in data: 

        for item in row: 

            pdf.cell(cell_width, cell_height, txt=str(item), border=1) 

        pdf.ln() 

 

    # Save PDF 

    pdf.output(filename) 

 

if __name__ == '__main__': 

    import multiprocessing as mp 

 

    mp.freeze_support() 

 

    # Load a model 

    model = YOLO("C:/Users/anaom/OneDrive/Dokumente/01 TUD/Diplom/Experiments/Ana/runs/de-

tect/train9/weights/best.pt") 

 

    model.train(data="data.yaml", 

                task="detect", 

                mode="train", 

                epochs=100, 

                imgsz=640, 

                workers=2, 

                batch=32)  # train the model 

 

    #model 2 ---> AdamW optimizer, learning rate = 0,001, weight_decay = 0.01 

    #model.train(data="data.yaml", 

                #task="detect", 

                #mode="train", 

                #epochs=100, 

                #imgsz=640, 

                #workers=2, 

                #batch=32, 

                #optimizer='AdamW', 



 

CLXVIII 

                #lr0=0.001, 

                #weight_decay=0.01 

                #scheduler=StepLR(optimizer, step_size=50, gamma=0.1)) 

 

    # model 3: decrease learning rate, workers --> default = 8 

    #model.train(data="data.yaml", 

                #task="detect", 

                #mode="train", 

                #epochs=100, 

                #batch=32, 

                #imgsz=640, 

                #save=True, 

                #optimizer='AdamW', 

                #lr0=0.0007,  # decreased learning rate by 30% 

                #weight_decay=0.001,#decreased weight decay) 

 

    #model 4: introduce cosine learnrate scheduler 

    #model.train(data="data.yaml", 

                #task="detect", 

                #mode="train", 

                #epochs=100, 

                #batch=32, 

                #imgsz=640, 

                #save=True, 

                #optimizer='AdamW', 

                #lr0=0.001, 

                #weight_decay=0.001, 

                #cos_lr=True) #introduced cos lr scheduler 

 

    # model 5: increase epochs to 150, decrease image size, decrease learning rate 

    #model.train(data="data.yaml", 

            #task="detect", 

            #mode="train", 

            #epochs=150, #increase epochs 

            #imgsz=512, #decrease image size 

            #workers=2, 

            #batch=32, 

            #optimizer='AdamW', 

            #lr0=0.0007, 

            #weight_decay=0.001, 

            #cos_lr=True) 

 

 

    #model 6: decrease batch size 

    #model.train(data="data.yaml", 

                #task="detect", 

                #mode="train", 

                #epochs=150,  # increase epochs 

                #imgsz=512,  # decrease image size 

                #workers=2, 

                #batch=16, #decrease batch size for generalization 

                #optimizer='AdamW', 

                #lr0=0.0007, 

                #weight_decay=0.001, 

                #cos_lr=True) 
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    # model 7: increase epochs, decrease learning rate 

    #model.train(data="data.yaml", 

            #task = "detect", 

            #mode = "train", 

            #epochs = 500,  # increase epochs 

            #imgsz = 512, 

            #workers = 2, 

            #batch = 16, 

            #optimizer = 'AdamW', 

            #lr0 = 0.0005, #learning rate -30% 

            #weight_decay = 0.001, 

            #cos_lr = True) 

 

    # model 8: same config as model 6, but increase epochs 

    #model.train(data="data.yaml", 

                #task="detect", 

                #mode="train", 

                #epochs=500,  # increase epochs 

                #imgsz=512, 

                #workers=2, 

                #batch=16, 

                #optimizer='AdamW', 

                #lr0=0.0007, 

                #weight_decay=0.001, 

                #cos_lr=True) 

 

    # model 9: same config as model 6, more epochs 

    #model.train(data="data.yaml", 

                #task="detect", 

                #mode="train", 

                #epochs=500,# increase epochs 

                #patience=250,#set patience 

                #imgsz=512, 

                #workers=2, 

                #batch=16, 

                #optimizer='AdamW', 

                #lr0=0.0007, 

                #weight_decay=0.001, 

                #cos_lr=True) 

 

 

    #config 10: final config 

    #model.train(data="data.yaml", 

                #task="detect", 

                #mode="train", 

                #epochs=500,  # increase epochs 

                #patience=250,  # set patience 

                #imgsz=512, 

                #workers=2, 

                #batch=16, 

                #optimizer='AdamW', 

                #lr0=0.0007, 

                #weight_decay=0.001, 

                #cos_lr=True 
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                #amp = True, 

                #droput = True) 

 

 

    #Validate the model --> set test set to val set 

    #model = YOLO("C:/Users/anaom/OneDrive/Dokumente/01 TUD/Diplom/Experiments/Ana/runs/de-

tect/train9/weights/best.pt") 

    #metrics = model.val( save=True) #batch=16, 

                        #iou=0.5, 

                        #conf=0.005) 

    #metrics.box.map    # map50-95 

    #metrics.box.map50  # map50 

    #metrics.box.map75  # map75 

    #metrics.box.maps   # a list contains map50-95 of each category 
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DATA YAML 

train: C:\Users\anaom\OneDrive\Dokumente\01 TUD\Diplom\Experiments\Ana\TUDataset\train 

val: C:\Users\anaom\OneDrive\Dokumente\01 TUD\Diplom\Experiments\Ana\TUDataset\valid 

test: C:\Users\anaom\OneDrive\Dokumente\01 TUD\Diplom\Experiments\Ana\TUDataset\test 

 

nc: 136 

names: ['door-exterior-entrance1', 'door-exterior-entrance2', 'door-exterior-entrance3', 

'door-exterior-entrance4', 'door-exterior-entrance5', 'door-exterior-entrance6', 'door-ex-

terior-entrance7', 'door-exterior-entrance8', 'door-exterior-entrance9', 'door-indoor-

glassdoor1', 'door-indoor-glassdoor10', 'door-indoor-glassdoor11', 'door-indoor-

glassdoor12', 'door-indoor-glassdoor13', 'door-indoor-glassdoor14', 'door-indoor-

glassdoor15', 'door-indoor-glassdoor16', 'door-indoor-glassdoor2', 'door-indoor-

glassdoor3', 'door-indoor-glassdoor4', 'door-indoor-glassdoor5', 'door-indoor-glassdoor6', 

'door-indoor-glassdoor7', 'door-indoor-glassdoor8', 'door-indoor-glassdoor9', 'door-indoor-

glassfacade', 'door-indoor-type1', 'door-indoor-type2', 'door-indoor-type24', 'door-indoor-

type3', 'door-indoor-type4', 'door-interior-emergency', 'door-interior-type10', 'door-inte-

rior-type11', 'door-interior-type12', 'door-interior-type13', 'door-interior-type14', 

'door-interior-type15', 'door-interior-type16', 'door-interior-type17', 'door-interior-

type18', 'door-interior-type19', 'door-interior-type20', 'door-interior-type21', 'door-in-

terior-type22', 'door-interior-type23', 'door-interior-type24', 'door-interior-type5', 

'door-interior-type6', 'door-interior-type7', 'door-interior-type8', 'door-interior-type9', 

'light-emergency', 'light-fixed-ceiling-LED', 'light-fixed-ceiling-dot', 'light-fixed-ceil-

ing-luminaire', 'light-fixed-ceiling-pendant', 'light-fixed-wall', 'light-fixed-wall-dot', 

'pissoir', 'radiator', 'radiator-vertical', 'sink', 'toilet', 'window-exterior-bulleye', 

'window-exterior-bulleye2', 'window-exterior-type1', 'window-exterior-type10', 'window-ex-

terior-type11', 'window-exterior-type12', 'window-exterior-type13', 'window-exterior-

type14', 'window-exterior-type15', 'window-exterior-type16', 'window-exterior-type17', 

'window-exterior-type18', 'window-exterior-type19', 'window-exterior-type2', 'window-exte-

rior-type20', 'window-exterior-type21', 'window-exterior-type22', 'window-exterior-type23', 

'window-exterior-type24', 'window-exterior-type25', 'window-exterior-type26', 'window-exte-

rior-type27', 'window-exterior-type28', 'window-exterior-type29', 'window-exterior-type3', 

'window-exterior-type30', 'window-exterior-type31', 'window-exterior-type32', 'window-exte-

rior-type33', 'window-exterior-type35', 'window-exterior-type36', 'window-exterior-type37', 

'window-exterior-type38', 'window-exterior-type39', 'window-exterior-type4', 'window-exte-

rior-type40', 'window-exterior-type41', 'window-exterior-type42', 'window-exterior-type43', 

'window-exterior-type44', 'window-exterior-type45', 'window-exterior-type46', 'window-exte-

rior-type47', 'window-exterior-type48', 'window-exterior-type49', 'window-exterior-type5', 

'window-exterior-type50', 'window-exterior-type51', 'window-exterior-type52', 'window-exte-

rior-type53', 'window-exterior-type54', 'window-exterior-type55', 'window-exterior-type56', 

'window-exterior-type57', 'window-exterior-type58', 'window-exterior-type59', 'window-exte-

rior-type6', 'window-exterior-type60', 'window-exterior-type61', 'window-exterior-type7', 

'window-exterior-type8', 'window-exterior-type9', 'window-interior-type1', 'window-inte-

rior-type10', 'window-interior-type2', 'window-interior-type3', 'window-interior-type4', 

'window-interior-type5', 'window-interior-type6', 'window-interior-type7', 'window-inte-

rior-type8', 'window-interior-type9'] 

 

roboflow: 

  workspace: project 

  project: tudataset 

  version: 1 

  license: CC BY 4.0 

  url: https://universe.roboflow.com/project/tudataset/dataset/1

https://universe.roboflow.com/project/tudataset/dataset/1
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machine learning, circular economy, and 360° images for identifying reusable compo-

nents in the built environment. The thesis defines Circular Economy in the Built Environ-

ment and explores its implementation in the construction practice at various levels. It an-

alyzes the role of machine learning in enabling a circular built environment, including its 

applications and potential for component reuse. The methodology formalizes the process 

of reuse, identifies reusable components based on a field study, and analyzes machine 

learning techniques for component identification using 360° imagery. The practical imple-

mentation covers data generation, annotation, training, validation, and testing, resulting 

in a dataset with high precision. Overall, the thesis contributes to transitioning towards a 

circular economy in construction by proposing a practical solution for identifying reusable 

building components, combining interdisciplinary approaches of machine learning and 
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Object Detection 
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ANNEX I RELEVANCE OF THEME 

Table 51 Preliminary Search in Scopus 

Date Search String Re-

sults 

20.05.2023 TITLE(ai OR "artificial intelligence" OR "machine learning" OR "deep 

learning" OR "object detection" OR "object recognition" OR "com-

puter vision") AND TITLE("component reuse" OR "urban mining" 

OR "circular economy") 

35 

20.05.2023 TITLE(ai OR "artificial intelligence" OR "machine learning" OR "deep 

learning" OR "object detection" OR "object recognition" OR "com-

puter vision")  

AND TITLE("360 imag*" OR "omnidirectional imag*" OR "pano-

ram*" OR "360°" OR "360 vision" OR "omnidirectional vision" OR 

"panoram* vision")  

AND ( LIMIT-TO ( SUBJAREA,"COMP" ) OR LIMIT-TO ( SUB-

JAREA,"ENGI" ) ) 

118 

20.05.2023 TITLE("component reuse" OR "urban mining" OR "circular econ-

omy") AND TITLE("360 imag*" OR "omnidirectional imag*" OR 

"360°" OR "360 vision" OR "omnidirectional vision" OR "panoram* 

vision") 

0  

20.05.2023 TITLE(ai OR "artificial intelligence" OR "machine learning" OR "deep 

learning" OR "object detection" OR "object recognition" OR "com-

puter vision")  

AND TITLE("360 imag*" OR "omnidirectional imag*" OR "pano-

ram*" OR "360°" OR "360 vision" OR "omnidirectional vision" OR 

"panoram* vision")  

AND TITLE("component reuse" OR "urban mining" OR "circular 

economy") 

0  

20.05.2023 TITLE-ABS-KEY ( ai OR "artificial intelligence" OR "machine learning" 

OR "deep learning" OR "object detection" OR "object recognition" 

OR "computer vision" )  

0 



6 Conclusion 

I 

AND TITLE-ABS-KEY ( "360 imag*" OR "omnidirectional imag*" OR 

"panoram*" OR "360°" OR "360 vision" OR "omnidirectional vision" 

OR "panoram* vision" )  

AND TITLE-ABS-KEY ( "component reuse" OR "urban mining" OR 

"circular economy" ) 

Table 52 Preliminary Search in Web of Science 

Date Searchstring Re-

sults 

20.05.2023 TI= (ai OR "artificial intelligence" OR "machine learning" OR "deep 

learning" OR "object detection" OR "object recognition" OR "com-

puter vision") AND TI=("component reuse" OR "urban mining" OR 

"circular economy") 

31 

20.05.2023 TI=(ai OR "artificial intelligence" OR "machine learning" OR "deep 

learning" OR "object detection" OR "object recognition" OR "com-

puter vision") AND TI=("360 imag*" OR "omnidirectional imag*" OR 

"panoram*" OR "360°" OR "360 vision" OR "omnidirectional vision" 

OR "panoram* vision") 

and limit to: Computer Science, Engineering 

74 

20.05.2023 TI=("component reuse" OR "urban mining" OR "circular econ-omy")  

AND TI=("360 imag*" OR "omnidirectional imag*" OR "360°" OR 

"360 vision" OR "omnidirectional vision" OR "panoram* vision") 

0 

20.05.2023 TI=( ai OR "artificial intelligence" OR "machine learning" OR "deep 

learning" OR "object detection" OR "object recognition" OR "com-

puter vision" ) AND TI=( "360 imag*" OR "omnidirectional imag*" 

OR "panoram*" OR "360°" OR "360 vision" OR "omnidirectional vi-

sion" OR "panoram* vision" ) AND TI=( "component reuse" OR "ur-

ban mining" OR "circular economy" ) 

0 

  



 

ii 

ANNEX II RESEARCH PROTOCOL 

SUCCESSFULLY IMPLEMENTED PROJECTS IN RESEARCH 

Table 53 Overview of research results in Scopus, Google Scholar and Web of Science 

 
Scopus Google Scholar Web of Science 

Search String 
TITLE ( circular AND econ-

omy ) AND TITLE ( built 

AND environment ) OR 

TITLE ( construction ) OR 

TITLE ( building ) OR TITLE 

( aec ) 

allintitle: "built environ-

ment" OR aec OR building 

OR construction "circular 

economy" " 

TI=("circular economy") 

AND TI=("built environ-

ment" OR aec OR con-

struction OR building) 

 

Date of Search 24.01.2023 20.01.2023 19.01.2023 

Number of results 366 916 281 

Filters AND ( LIMIT-TO ( OA,"all" 

) OR LIMIT-TO ( OA,"pub-

lisherfullgold" ) OR LIMIT-

TO ( OA,"publisherhy-

bridgold" ) OR LIMIT-TO ( 

OA,"publisherfree2read" 

) OR LIMIT-TO ( OA,"re-

pository" ) ) AND ( LIMIT-

TO ( DOCTYPE,"re" ) ) 

Review Articles OpenAccess, 

Review Articles 

Number of results 28 99 24 

Selected reviews 11 27 10 

Total  

(elimination acc. to criteria) 

  28 
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Table 54 Publications included in the SLR on "Successfully implemented projects in research" 

Authors Title Year Journal 

Yu Y., Junjan V., 

Yazan D.M., Iacob M.-

E. 

A systematic literature review on Circular Economy im-

plementation in the construction industry: a policy-

making perspective 

2022 Resour. Conserv. 

Recycl. 

Sáez-de-Guinoa A., 

Zambrana-Vasquez 

D., Fernández V., 

Bartolomé C. 

Circular Economy in the European Construction Sector: 

A Review of Strategies for Implementation in Building 

Renovation 

2022 
 

Andersen S.C., Birgis-

dottir H., Birkved M. 

Life Cycle Assessments of Circular Economy in the Built 

Environment—A Scoping Review 

2022 Sustainability 

Yu Y., Yazan D.M., 

Junjan V., Iacob M.-E. 

Circular economy in the construction industry: A review 

of decision support tools based on Information & Com-

munication Technologies 

2022 Journal of Cleaner 

Production 

Osobajo O.A., Oke A., 

Omotayo T., Obi L.I. 

A systematic review of circular economy research in 

the construction industry 

2022 Smart Sustain. Built 

Environ. 

Purchase C.K., Al Zu-

layq D.M., O’brien 

B.T., Kowalewski M.J., 

Berenjian A., 

Tarighaleslami A.H., 

Seifan M. 

Circular economy of construction and demolition 

waste: A literature review on lessons, challenges, and 

benefits 

2022 Materials 

Charef R., Morel J.-C., 

Rakhshan K. 

Barriers to implementing the circular economy in the 

construction industry: A critical review 

2021 Sustainability 

Akhimien N.G., Latif 

E., Hou S.S. 

Application of circular economy principles in buildings: 

A systematic review 

2021 J. Build. Eng. 

Ginga C.P., Ongpeng 

J.M.C., Daly M.K.M. 

Circular economy on construction and demolition 

waste: A literature review on material recovery and 

production 

2020 Mater. 

Gallego-Schmid A., 

Chen H.-M., Shar-

mina M., Mendoza 

J.M.F. 

Links between circular economy and climate change 

mitigation in the built environment 

2020 Journal of Cleaner 

Production 

Anastasiades K., 

Blom J., Buyle M., Au-

denaert A. 

Translating the circular economy to bridge construc-

tion: Lessons learnt from a critical literature review 

2020 Renewable Sustain-

able Energy Rev 

Joensuu, Tuomo; 

Edelman, Harry; 

Saari, Arto;  

Circular economy practices in the built environment 2020 Journal of cleaner 

production 

Munaro, Mayara Re-

gina; Tavares, Sérgio 

Fernando; Bragança, 

Luís;  

Towards circular and more sustainable buildings: A sys-

tematic literature review on the circular economy in 

the built environment 

2020 Journal of Cleaner 

Production 

Çimen, Ömer;  Construction and built environment in circular econ-

omy: A comprehensive literature review 

2021 Journal of cleaner 

production 

Mhatre, Purva; Ge-

dam, Vidyadhar; Un-

nikrishnan, Seema; 

Verma, Sanjeev;  

Circular economy in built environment–Literature re-

view and theory development 

2021 Journal of building 

engineering 



 

iv 

Oluleye, Benjamin I; 

Chan, Daniel WM; 

Olawumi, Timothy O;  

Barriers to circular economy adoption and concomi-

tant implementation strategies in building construction 

and demolition waste management: A PRISMA and in-

terpretive structural modeling approach 

2022 Habitat Interna-

tional 

Tirado, Rafaela; 

Aublet, Adélaïde; 

Laurenceau, Sylvain; 

Habert, Guillaume;  

Challenges and opportunities for circular economy pro-

motion in the building sector 

2022 Sustainability 

Benachio, Gabriel 

Luiz Fritz; Freitas, 

Maria do Carmo Du-

arte; Tavares, Sergio 

Fernando;  

Circular economy in the construction industry: A sys-

tematic literature review 

2020 Journal of cleaner 

production 

Hossain, Md Uzzal; 

Ng, S Thomas; Antwi-

Afari, Prince; Amor, 

Ben;  

Circular economy and the construction industry: Exist-

ing trends, challenges and prospective framework for 

sustainable construction 

2020 Renewable and Sus-

tainable Energy Re-

views 

Ruiz, Luis Alberto 

López; Ramón, Xa-

vier Roca; Domingo, 

Santiago Gassó;  

The circular economy in the construction and demoli-

tion waste sector–A review and an integrative model 

approach 

2020 Journal of Cleaner 

Production 

Ghisellini, Patrizia; 

Ripa, Maddalena; Ul-

giati, Sergio;  

Exploring environmental and economic costs and ben-

efits of a circular economy approach to the construc-

tion and demolition sector. A literature review 

2018 Journal of Cleaner 

Production 

Wuni, Ibrahim Ya-

haya;  

Mapping the barriers to circular economy adoption in 

the construction industry: A systematic review, Pareto 

analysis, and mitigation strategy map 

2022 Building and Envi-

ronment 

Charef, Rabia; Lu, 

Weisheng; Hall, Da-

niel;  

The transition to the circular economy of the construc-

tion industry: Insights into sustainable approaches to 

improve the understanding 

2022 Journal of Cleaner 

Production 

Osei-Tutu, Safowaa; 

Ayarkwa, Joshua; 

Osei-Asibey, Dickson; 

Nani, Gabriel; Afful, 

Aba Essanowa;  

Barriers impeding circular economy (CE) uptake in the 

construction industry 

2022 Smart and Sustaina-

ble Built Environ-

ment 

Wuni, Ibrahim Ya-

haya;  

A systematic review of the critical success factors for 

implementing circular economy in construction pro-

jects 

2022 Sustainable Devel-

opment 

Norouzi, Masoud; 

Chàfer, Marta; Cab-

eza, Luisa F; Jiménez, 

Laureano; Boer, Di-

eter;  

Circular economy in the building and construction sec-

tor: A scientific evolution analysis 

2021 Journal of Building 

Engineering 

Adams, Katherine 

Tebbatt; Osmani, 

Mohamed; Thorpe, 

Tony; Thornback, 

Jane;  

Circular economy in construction: current awareness, 

challenges and enablers 

2017 Proceedings of the 

Institution of Civil 

Engineers-Waste 

and Resource Man-

agement 
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SUCCESSFULLY IMPLEMENTED PROJECTS IN PRACTICE 

Table 55 Overview of research results in Scopus, Google Scholar and Web of Science 

 

 

Scopus Google Scholar Web of Science Search-Engine Magazines 

Search 

String 
TITLE ( circular  AND  

economy )  AND  TI-

TLE ( built  AND  envi-

ronment )  OR  TITLE ( 

construction )  OR  TI-

TLE ( building )  OR  

TITLE ( aec )  AND  TI-

TLE-ABS-KEY ( "case 

study" )  OR  TITLE-

ABS-KEY ( "project" )  

allintitle: "circu-

lar economy" 

"case study" 

"building" OR 

"built environ-

ment" OR "con-

struction" OR 

"aec” 

TI=("circular 

economy") AND 

TI=("built envi-

ronment" OR 

aec OR con-

struction OR 

building) and 

TI= ("case 

study" OR "pro-

ject") 

 

Google 

SLUB 

(Availability) 

DETAIL Kreis-

laufwirtscaft 

Date of 

Search 

22.02.2023 22.02.2023 22.02.2023   

Number of 

results 

138 99 20 

 

  

Filters  
 OpenAccess, 

Review Articles 

 

  

Number of 

results 

73 67 65   

Selected re-

sults 

17 7 2   

Total  

(elimination 

acc. to crite-

ria) 

    26 

 

 

  



 

vi 

Table 56 Publications included in SRL on "Succesfully implemented projects" 

Authors Title Year Journal 

Christensen T.B., Jo-

hansen M.R., Buch-

ard M.V., Glarborg 

C.N. 

Closing the material loops for construction and demoli-

tion waste: The circular economy on the island Born-

holm, Denmark 

2022 Resources, Conser-

vation and Recycling 

Advances 

Maury-Ramírez A., Il-

lera-Perozo D., Mesa 

J.A. 

Circular Economy in the Construction Sector: A Case 

Study of Santiago de Cali (Colombia) 

2022 Sustainability (Swit-

zerland) 

O’Grady T.M., Min-

unno R., Chong H.-Y., 

Morrison G.M. 

Interconnections: An analysis of disassemblable build-

ing connection systems towards a circular economy 

2021 Buildings 

Dey S., Iulo L.D. The Circular Economy of Dharavi: Making building ma-

terials from waste 

2021 Enquiry 

Cellucci C. Circular economy strategies for adaptive reuse of resi-

dential building 

2021 Vitruvio 

Hjaltadóttir R.E., Hild 

P. 

Circular Economy in the building industry European pol-

icy and local practices 

2021 European Planning 

Studies 

Zabek M., Wirth M., 

Hildebrand L. 

Evaluating Regional Strategies towards a Circular Econ-

omy in the Built Environment 

2020 IOP Conference Se-

ries: Earth and Envi-

ronmental Science 

Ajayebi A., Hopkinson 

P., Zhou K., Lam D., 

Chen H.-M., Wang Y. 

Spatiotemporal model to quantify stocks of building 

structural products for a prospective circular economy 

2020 Resources, Conser-

vation and Recycling 

Pearlmutter D., Theo-

chari D., Nehls T., 

Pinho P., Piro P., 

Korolova A., Pa-

paefthimiou S., 

Mateo M.C.G., Cal-

heiros C., Zluwa I., Pi-

tha U., Schosseler P., 

Florentin Y., Ouan-

nou S., Gal E., Aicher 

A., Arnold K., Ig-

ondová E., Pucher B. 

Enhancing the circular economy with nature-based so-

lutions in the built urban environment: Green building 

materials, systems and sites 

2020 Blue-Green Systems 

Huovila P., Iyer-Ran-

iga U., Maity S. 

Circular Economy in the Built Environment: Supporting 

Emerging Concepts 

2019 IOP Conference Se-

ries: Earth and Envi-

ronmental Science 

Akanbi L.A., Oyedele 

L.O., Omoteso K., Bi-

lal M., Akinade O.O., 

Ajayi A.O., Davila Del-

gado J.M., Owolabi 

H.A. 

Disassembly and deconstruction analytics system (D-

DAS) for construction in a circular economy 

2019 Journal of Cleaner 

Production 

Ajayabi A., Chen H.-

M., Zhou K., Hopkin-

son P., Wang Y., Lam 

D. 

REBUILD: Regenerative Buildings and Construction sys-

tems for a Circular Economy 

2019 IOP Conference Se-

ries: Earth and Envi-

ronmental Science 
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Leising E., Quist J., 

Bocken N. 

Circular Economy in the building sector: Three cases and 

a collaboration tool 

2018 Journal of Cleaner 

Production 

Akanbi L.A., Oyedele 

L.O., Akinade O.O., 

Ajayi A.O., Davila Del-

gado M., Bilal M., 

Bello S.A. 

Salvaging building materials in a circular economy: A 

BIM-based whole-life performance estimator 

2018 Resources, Conser-

vation and Recycling 

Cross M. Wallasea Island Wild Coast Project, UK: Circular econ-

omy in the built environment 

2017 Proceedings of Insti-

tution of Civil Engi-

neers: Waste and 

Resource Manage-

ment 

Andersen, SC; Birgis-

dottir, H; Birkved, M 

Life Cycle Assessments of Circular Economy in the Built 

Environment-A Scoping Review 

2022 SUSTAINABILITY 

Rakhshan, K; Morel, 

JC; Daneshkhah, A 

Predicting the technical reusability of load-bearing 

building components: A probabilistic approach towards 

developing a Circular Economy framework 

2021 JOURNAL OF BUILD-

ING ENGINEERING 

Bertino, G; Kisser, J; 

Zeilinger, J; Langer-

graber, G; Fischer, T; 

Osterreicher, D 

Fundamentals of Building Deconstruction as a Circular 

Economy Strategy for the Reuse of Construction Materi-

als 

2021 APPLIED SCIENCES-

BASEL 

Mangialardo, Alessia; 

Micelli, Ezio;  

Rethinking the construction industry under the circular 

economy: principles and case studies 

2018 Smart and Sustaina-

ble Planning for Cit-

ies and Regions: Re-

sults of SSPCR 2017 

2 

Stallkamp, Christoph;  https://www.crl.fraunhofer.de/selfcheck/ 2021 links 

Mangialardo, A; Mi-

celli E (2018b)  

Rethinking the construction industry under the circular 

economy: principles and case studies 

 
Smart and sustaina-

ble planning for cit-

ies and regions. 

Springer, Cham, 

Switzerland 

Engez, Anil; Ranta, 

Valtteri; Aarikka-

Stenroos, Leena;  

How innovations catalyse the circular economy: building 

a map of circular economy innovation types from a mul-

tiple-case study 

2021 Research Handbook 

of Innovation for a 

Circular Economy 

Weinstein, Zvi;  Circular Economy in Construction from Waste to Green 

Recycled Products in Israel: A Case Study 

2021 Rethinking Sustaina-

bility Towards a Re-

generative Economy 

Çetin, Sultan; Gruis, 

Vincent; Straub, Ad;  

Digitalization for a Circular Economy in the Building In-

dustry: Multiple-Case Study of Dutch Housing Organiza-

tions 

 
Available at SSRN 

4114994 

 

  



 

viii 

ML AS AN ENABLER OF CE IN AEC 

Table 57 Research protocol for machine learning applications in the BE and for CE 

 
Scopus Web of Science 

Machine Learning + Circular Economy + Built Environment 

Search 

String 
TITLE ( "circular economy" OR reuse OR "urban min-

ing" ) AND TITLE-ABS-KEY(ai OR "artificial intelli-

gence" OR "machine learning" OR "deep learning" ) 

AND TITLE-ABS-KEY(construction OR building OR 

"built environment" ) AND ( LIMIT-TO ( OA,"all" ) OR 

LIMIT-TO ( OA,"publisherfullgold" ) OR LIMIT-TO ( 

OA,"publisherfree2read" ) OR LIMIT-TO ( OA,"reposi-

tory" ) ) 

TI=("circular economy" OR "reuse" or "urban 

mining") AND TI = ("built environment" OR 

construction OR building OR aec) AND 

(TI=("artificial intelligence" OR ai OR "ma-

chine learning" OR "deep learning" OR "neu-

ral networks") OR AB =("artificial intelligence" 

OR ai OR "machine learning" OR "deep learn-

ing" OR "neural networks")) 

Date of 

Search 

01.03.2023 01.03.2023 

Results 19 10 

Rele-

vant re-

sults 

8 1 

Machine Learning + Built Environment 

Filters TITLE(ai OR "artificial intelligence" OR "machine 

learning" OR "deep learning" ) AND TITLE(construc-

tion OR "built environment" OR "building industry") 

AND ( LIMIT-TO ( OA,"all" ) OR LIMIT-TO ( OA,"publish-

erfullgold" ) OR LIMIT-TO ( OA,"publisherfree2read" ) 

OR LIMIT-TO ( OA,"repository" ) ) AND ( LIMIT-TO ( 

SUBJAREA,"ENGI" ) OR LIMIT-TO ( SUBJAREA,"ENVI" ) 

OR LIMIT-TO ( SUBJAREA,"MATE" ) ) 

TI = ("built environment" OR "construction in-

dustry" OR "building industry" OR aec) AND 

TI=("artificial intelligence" OR ai OR "machine 

learning" OR "deep learning" OR "neural net-

works") 

Results 240 28 

Rele-

vant re-

sults 

- 7 

Machine Learning + Circular Economy  

Search 

query 

TITLE ( "circular economy" OR reuse OR "urban min-

ing" ) AND TITLE(ai OR "artificial intelligence" OR "ma-

chine learning" OR "deep learning" ) AND ( LIMIT-TO 

( OA,"all" ) OR LIMIT-TO ( OA,"publisherfullgold" ) OR 

LIMIT-TO ( OA,"publisherhybridgold" ) OR LIMIT-TO ( 

OA,"publisherfree2read" ) OR LIMIT-TO ( OA,"reposi-

tory" ) 

TI=("circular economy" OR "reuse" or "urban 

mining") AND TI=("artificial intelligence" OR 

ai OR "machine learning" OR "deep learning" 

OR "neural networks") 

Results 17 78 

Rele-

vant re-

sults 

2 11 

Total (elimination acc. to criteria) 26 

Manually added from Google Scholar 1 
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Table 58 Publications included in the review "Machine Learning for Component Reuse" 

Authors Title Year Journal 

Duan Q., Qi L., Cao R., 

Si P. 

Research on Sustainable Reuse of Urban Ruins Based on 

Artificial Intelligence Technology: A Study of Guangzhou 

2022 Sustainability 

Rakhshan K., Morel J.-

C., Daneshkhah A. 

Predicting the technical reusability of load-bearing 

building components: A probabilistic approach towards 

developing a Circular Economy framework 

2021 Journal of Building 

Engineering 

Rakhshan K., Morel J.-

C., Daneshkhah A. 

A probabilistic predictive model for assessing the eco-

nomic reusability of load-bearing building components: 

Developing a Circular Economy framework 

2021 Sustinable Produc-

tion and Consump-

tion 

Lai, Y; Kontokosta, CE Topic modeling to discover the thematic structure and 

spatial-temporal patterns of building renovation and 

adaptive reuse in cities 

2019 Computers, Environ-

ment and Urban sys-

tems 

Daware, S; Chandel, 

S; Rai, B 

A machine learning framework for urban mining: A case 

study on recovery of copper from printed circuit boards 

2022 Minerals Engineer-

ing 

Yu, KH; Zhang, Y; Li, 

DN; Montenegro-

Marin, CE; Kumar, PM 

Environmental planning based on reduce, reuse, recycle 

and recover using artificial intelligence 

2021 Environmental Im-

pact Assessment Re-

view 

Genske, DD; Huang, 

DB; Ruff, A 

An Assessment Tool for Land Reuse with Artificial Intel-

ligence Method 

2010 International Journal 

of Automation and 

Computing 

Yeung, Jamie; Wal-

bridge, Scott; Haas, 

Carl 

The role of geometric characterization in supporting 

structural steel reuse decisions 

2015 Resources, Conser-

vation and Recycling 

Fujita, Masanori; 

Kuki, Keiichi 

An Evaluation of Mechanical Properties with the Hard-

ness of Building Steel Structural Members for Reuse by 

NDT 

2016 Metals 

Cavalli, Alberto; 

Bevilacqua, Lorella; 

Capecchi, Gianluca; 

Cibecchini, Daniele; 

Fioravanti, Marco; 

Goli, Giacomo; Togni, 

Marco; Uzielli, Luca 

MOE and MOR assessment of in service and dismantled 

old structural timber 

2016 Engineering Strcu-

tures 

Çetin, S., De Wolf, C., 

Bocken, 

N.,"57222071860 

Circular digital built environment: An emerging frame-

work 

2021 Sustainability 

Darko, A., Chan, 

A.P.C., Adabre, M.A., 

Edwards, D.J., Hos-

seini, M.R., Ameyaw, 

E.E.,"57190178235 

Artificial intelligence in the AEC industry: Scientometric 

analysis and visualization of research activities" 

2020 Automation in Con-

struction 

 

  



 

x 

Table 59 Publications regarding ML application for transitioning CE in the BE according to Çetin et al. (2021) 

Authors Title Application of ML 

Design Decisions 

(Gan et al., 

2020) 

Simulation optimisation towards energy efficient 

green buildings: Current status and future trends 

 

(Arcadis) Artificial Intelligence in the AEC Industry:  

A Code of Practice 

 

(Płoszaj-Ma-

zurek et al., 

2020) 

Methods to Optimize Carbon Footprint of Buildings in 

Regenerative Architectural Design with the Use of Ma-

chine Learning, Convolutional Neural Network, and 

Parametric Design 

 

(Mehmood et 

al., 2019) 

A review of the applications of artificial intelligence 

and big data to buildings for energy-efficiency and a 

comfortable indoor living environment 

 

 FASA Project  

(Akanbi et al., 

2020) 

Deep learning model for Demolition Waste Prediction 

in a circular economy 

 

(Rakhshan et 

al., 2021a) 

A probabilistic predictive model for assessing the eco-

nomic reusability of load-bearing building compo-

nents: Developing a Circular Economy framework 

This study develops a probabilistic 

predictive model to evaluate the 

economic reusability of load-bear-

ing building elements. (Rakhshan et 

al., 2021a, p. 2) 

(Oluleye et al., 

2023) 

Adopting Artificial Intelligence for enhancing the im-

plementation of systemic circularity in the construc-

tion industry: A critical review 

 

(Davis et al., 

2021) 

The classification of construction waste material us-

ing a deep convolutional neural network 

 

 Determination of the composition of recycled aggre-

gates using a deep learning-based image analysis 

 

 





 

  

ANNEX III REUSABILITY ASSESSMENT 

Table 60 Questions for analysis of the characteristics that have direct influence (adapted from (Carvalho Ma-

chado et al., 2018, p. 10) 

Characteris-

tics 

Definition Questions for Analysis  Yes No 

Expected du-

rability 

Construction materials resulting from decon-

struction should have a remaining lifecycle 

that is equal to or longer than the desired 

lifecycle of a new component to avoid finan-

cial and environmental losses and minimize 

waste generation. 

Is the expected durability of the com-

ponent meant for reutilization longer 

than or equal to the lifecycle desired 

from the new use? 

+ x 

Toxicity and 

construction 

material haz-

ardousness 

In DfD toxic and hazardous construction ma-

terials should be avoided to reduce contami-

nation potential and health risks to workers. 

If the usage of these materials is inevitable, 

the design should consider the possibility of 

an easy and safe removal. 

Are toxic or hazardous construction 

materials used? 

* + 

If toxic or hazardous construction ma-

terials are used, is it possible to safely 

and easily remove them? 

− x 

Possibility of 

reutilizing (or 

preferably re-

using) con-

struction ma-

terials 

When building materials can be reused for 

their original purpose with minimal repairs, it 

justifies the deconstruction process. This 

end-of-life scenario is the most effective way 

to minimize environmental impacts during a 

building's lifespan since it doesn't involve re-

processing. 

Can the construction material be reuti-

lized in any way? 

+ x 

Is the deconstruction process neces-

sary to reutilize the construction mate-

rial? 

+ x 

Damage 

caused to con-

nected parts 

during con-

struction 

DfD guidelines generally suggest using me-

chanical connections instead of chemical 

ones as most chemical connections damage 

the connected parts during dismantling. 

However, it's important to analyze Guideline 

3.2, which recommends using mechanical 

connections, in terms of the possibility of re-

using connections after deconstruction and 

possible damage to the connected parts. 

Some chemical connections may not cause 

damage during deconstruction. If the dam-

age caused during the process is difficult to 

repair, deconstruction may not be a viable 

option. 

Will the connection type cause any 

kind of damage to connected parts 

during deconstruction? 

* + 

Can any damage arising from decon-

struction be repaired? 

− x 

Damage to 

connections 

Ideally, connections should remain intact dur-

ing deconstruction. It's crucial to assess if the 

Will connections be damaged during 

deconstruction? 

* + 
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during the 

process 

connection is necessary, easily repairable, or 

replaceable to ensure reuse without compro-

mising deconstruction viability. Otherwise, 

damage to the connection will hinder the pos-

sibility of reuse. 

Are connections necessary in the new 

use? 

* − 

Can connections be repaired or re-

placed when construction materials 

are reutilized? 

− x 

Construction 

material sepa-

ration 

The separation of construction materials is 

important for facilitating the reuse of compo-

nents according to DfD guidelines, which are 

based on layer theory. This theory divides a 

building into layers based on different lifecy-

cles of elements, with faster replacement cy-

cles located closer to the surface. The ease of 

separating a reusable component from the 

rest of the building should be considered dur-

ing deconstruction. Furthermore, the im-

portance of reusing construction materials by 

focusing on their separation when they can-

not be reused as a group is emphasized. 

However, there may be cases where separa-

tion is impossible without causing damage to 

the materials and preventing reutilization. 

Is it possible to separate the construc-

tion materials meant for reutilization? 

+ * 

If separation is impossible, can con-

struction materials be reutilized as a 

group without environmental dam-

age? 

− x 

Space for 

equipment 

and manoeu-

vring 

To ensure safe and efficient deconstruction, 

the layout of the deconstruction zone, build-

ing shape, and size of equipment and ma-

chinery must be considered. It is important to 

control the built environment and space 

around the building to ensure access for nec-

essary equipment and manoeuvring. In some 

cases, it may be impossible to access the nec-

essary equipment, which could compromise 

the safety of the operation and the integrity 

of construction materials. 

Is the space around the building suffi-

cient to ensure access and manoeu-

vring room for equipment and machin-

ery, considering the volume of con-

struction materials that will be re-

moved? 

+ x 

Space for cor-

rect storage of 

construction 

materials 

The closer the storage space to where decon-

struction or re-sale is taking place, the lower 

the environmental impact and transportation 

costs. The location must not affect urban ar-

eas and it must be a safe environment. It is 

necessary to evaluate whether the space and 

storage method are adequate for the con-

struction materials, or whether damage may 

be caused, compromising reutilization 

Is there an adequate storage space 

that can ensure that stored construc-

tion materials will not deteriorate? 

+ x 

Risk assess-

ment and 

adoption of 

security 

measures 

Prioritize risk reduction in building disman-

tling to protect workers, nearby individuals, 

and construction materials. Identify risks, im-

plement control measures, and train the 

work team. 

Can risks present in the deconstruc-

tion process be eliminated or con-

trolled, allowing procedures to be car-

ried out safely? 

+ x 



 

II 

Disassembly 

procedure 

A basic deconstruction plan must be provided 

that include considerations of and recom-

mendations for the deconstruction proce-

dure, and in particular, the order of disassem-

bly, ideal element and component removal 

techniques, the location of construction ma-

terials that will be reutilized, lifting points, an 

equipment list, the tools and machinery that 

will be necessary, and a safety plan, among 

other aspects. 

Is there a deconstruction procedure 

with a disassembly order; an ideal 

technique for removing components 

and elements; locations of construc-

tion materials to be removed; lifting 

points; and a list of equipment, tools 

and machinery necessary and the 

safety plan? 

+ x 

Have deconstruction procedures, in-

cluding the safety plan, been passed 

on to those involved in the process, 

raising the team’s awareness? 

+ x 

As-built draw-

ings 

As-built drawings help with identifying parts 

and developing safe disassembly procedures, 

but an architectural/structural design update 

may be needed if they are non-existent or in-

sufficiently updated. Building Information 

Modelling (BIM) can facilitate information 

management and data exchange for effective 

deconstruction, and accurate and complete 

information should be stored in a BIM-based 

building model. 

Are there an updated as-built drawings 

of the building that will be decon-

structed? 

+ * 

Is there an architectural/structural de-

sign update, according to the building? 

− x 

DfD strategies 

adopted at 

the design 

stage 

Disassembling the building will be more via-

ble if DfD strategies are incorporated at the 

project’s design stage. This characteristic in-

volves possible strategies that can be 

adopted at the beginning of construction in 

order to enable future deconstruction. Even 

when a building has not been designed for 

deconstruction, certain basic characteristics 

that favour deconstruction must be present 

to enable the process, as well as characteris-

tics that are related to the selection of con-

struction materials and the connections be-

tween them. 

The characteristics listed in this Table 3 

are considered under ideal or accepta-

ble conditions? 

+ * 

Are there actions which could be taken 

after construction to change the char-

acteristics’ condition and make the de-

construction viable? 

- x 

Legend + Ideal condition-positive aspect;  

− Acceptable condition-negative aspect;  

x Condition that can impede deconstruction; 

* The analysis of deconstruction viability depends 

on the next quesit 





  

 

  



6 Conclusion 

i 

ANNEX IV OBJECT DETECTION MODELS 

Table 61 Machine Learning Frameworks for Object Detection using 360° images 

R-CNN Two-

stage 

planar AlexNet, VGG, ResNet, Incep-

tion etc. 

Yes Bounding Box PASCAL VOC 2010; ILSVRC2013 53.7% (Pascal VOC); 31.4% (ILSVRC2013) Moderate to 

High 

[Girshick et al., 2014] 

SPPNet Two-

stage 

planar VGG16 No Bounding Box ImageNet; Pascal VOC 2007; Cal-

tech101 

59.2%  Moderate [He et al., 2015] 

Fast R-CNN Two-

stage 

planar VGG16, ResNet-101 Yes Bounding Box PASCAL VOC 2012 
 

66% (PASCAL VOC2012) Moderate [Girshick, 2015] 

Faster R-CNN Two-

stage 

planar VGG16, ResNet, Inception, 

AlexNet 

No Bounding Box PASCAL VOC 2007, 2012, MS 

COCO 

30

0 

78.8 (VOC2007) ;75.9% (VOC2012); 42.7% 

(COCO) 

High [Ren et al., 2015] 

RFCN Two-

stage 

planar ResNet-101 Yes (600x1000) Bounding Box PASCAL VOC2007 
 

73.6% (Pascal VOC) High [Dai et al., 2016] 

Mask RCNN Two-

stage 

planar ResNet-101, ResNeXt-101, etc. No, Training 

(800x800) 

Instance Segmenta-

tion Mask 

COCO 2015; COCO 2016 62.3% (COCO) High [He et al., 2017] 

Cascade RCNN Two-

stage 

planar ResNet-50, ResNet-101 Yes (800 x 1333) Bounding Box PASCAL VOC2007, VOC2012 79.6% (Pascal VOC2007) High [Cai and Vasconcelos, 2018; Cai et 

al., 2018] 

Light Head RCNN Two-

stage 

planar ResNet, ResNeXt Yes (600x1000; 

800x1200) 

Bounding Box COCO 
 

41.5% (COCO test-dev) Moderate [Li et al., 2018] 

Sphere SSD (based on 

SphereNet) 

Two-

stage 

spher-

ical 

SphereNet; VGG16 Yes (512× 256) Spherical BB Flying Cars - 50.18% (Flying Cars) Moderate to 

High 

[Coors et al., 2018] 

Reprojection R-CNN (Rep 

R-CNN) 

Two-

stage 

spher-

ical 

VGG16 Yes Spherical BB VOC360, COCO-Men (synthetic da-

tasets); SUN360 

71.88% (VOC360); 81.48 (COCO-Men) High [Zhao, You et al., 2019] 

YOLO unified planar Darknet-19, Darknet-53 Yes (in multiples of 

32) 

Bounding Box PASCAL VOC2007, VOC2012 63.4% (VOC2007; VOC2012) Moderate to 

High 

[Redmon et al. 2016] 

OverFeat unified planar AlexNet, OverFeat Yes Bounding Box ImageNet 2012 - 24.3 (ILSVRC13 test set) Moderate to 

High 

[Sermanet et al. 2014] 

SSD (Single Shot MultiBox 

Detector) 

unified planar VGG16, MobileNet, ResNet50, 

ResNet101 

Yes (300×300; 

512x512) 

Bounding Box PASCAL VOC2007, COCO, 

ILSVRC 

- 74.3% (VOC2007; 300x300); 76.9% 

(VOC2007; 512 x 512) 

Moderate [Liu et al., 2016] 

RetinaNet unified planar ResNet-101-FPN Yes Bounding Box COCO trainval35k 
 

40.8% (COCO) High [Lin, Goyal et al., 2017] 

Deng et al. unified planar VGG16 No Bounding Box Own dataset 
 

68.7% Moderate to 

High 

[Deng,  Zhu et al., 2017 ] 

RepF-Net unified spher-

ical 

StdConv; DeformConv; 

SteConv; 

Yes (640 x 640) Bounding Box RepF-dataset 
 

80.0%  High [Li, Meng et al., 2023] 

Panoramic BlitzNet unified spher-

ical 

ResNet50 No Spherical BB Own dataset  

generated from SUN360 

77.8% (on complete SUN360) Moderate [Guerrero-Viu, Fernandez-Labra-

dor et al., 2020] 

Multi-projection YOLO 

(mp-YOLO) 

unified spher-

ical 

Darknet-19, Darknet-53 Yes (864 x 864; 608 

x 608) 

Bounding Box ImageNet, COCO 
 

34.29%  Moderate [Yang, Qian et al., 2018] 

CornerNet unified planar Hourglass-104 No Keypoints COCO - 42.2% (COCO) Moderate [Law and Deng 2018] 

 


