
DEVELOPMENT OF A METHOD FOR AUTOMATED
CATEGORIZATION OF DEFECTS ON NATURAL STONE

FACADES OF BUILDINGS ON THE BASIS OF AN
APPROPRIATE DEEP LEARNING APPROACH

ERARBEITUNG EINES VERFAHRENS ZUR
AUTOMATISIERTEN KATEGORISIERUNG VON SCHÄDEN
AN NATURSTEINFASSADEN VON BAUWERKEN UNTER

EINSATZ EINES GEEIGNETEN DEEP LEARNING
VERFAHRENS

Diploma Thesis

Approved by the Faculty of Civil Engineering
Institut of construction informatics
Dresden University of Technology

Dresden, Germany

Written by
Jiesheng Yang

Supervisors:
Dr. -Ing. Peter Katranuschkov

M. Sc. Fangzheng Lin
Dr. -Ing. Sebastian Fuchs

Dipl. -Math. Robert Schülbe

Date of submission: 15. May 2019

Declaration

Hereby, I declare that the diploma thesis report entitled ” DEVELOPMENT OF A A METHOD

FOR AUTOMATED CATEGORIZATION OF DEFECT ON NATURAL STONE FACADES

OF BUILDINGS ON THE BASIS OF AN APPROPRIATE DEEP LEARNING APPROACH”

is carried out independently on my own and without any other resources than the ones indicated.

All thoughts taken directly or indirectly from external sources are properly denoted.

Dresden, 13.05.2019

Jiesheng Yang

i

Abstract

To improve the efficiency of the renovation process, this thesis proposed a convolutional neural

network based method to detect cracks of nature stones. At first, a dataset of concrete crack

with 40,000 images in two classes was built. After analyzing of classic CNN structures, we

built a network structure and trained it to detect concrete cracks. With the method of transfer

learning, the model that is able to detect cracks of nature stones is also trained. Besides, we

trained a model that can distinguish cracks from joints of nature stones.

ii

Contents

Abstract ii

1 Introduction 1

1.1 Background . 1

1.2 Research Goals . 4

1.3 Outline . 5

2 Methology 6

2.1 Classic Architecture . 6

2.2 Convolutional Layer . 9

2.3 Pooling Layer . 13

2.4 Active Function . 15

2.5 Fully Connected Layer . 20

2.6 Transfer Learning . 22

3 Stone Defects Description 23

iii

CONTENTS iv

4 Detecting Cracks 26

4.1 Databank Generation . 26

4.1.1 Assign Labels to Images and Feed Dataset into The Model 26

4.1.2 Comparison of Two Different Formats 31

4.2 From Classic CNN to Crack Detector . 31

4.2.1 Layer Pattern of Classic Network Structures 31

4.2.2 Network Structure for Crack Detection 33

4.3 Hyperparameters Tuning . 38

4.4 Training Process . 41

4.5 From Concrete to Nature Stone . 45

5 Differentiate Joint from Crack 47

5.1 Databank Generation . 47

5.2 Training . 48

6 Results and Analysis 49

6.1 Optimal Learning Rate . 49

6.2 Model Evaluating . 50

6.2.1 Concrete Crack Recognition Model . 51

6.2.2 Nature Stone Crack Recognition Model 54

6.2.3 Crack and Joint Recognition Model . 56

6.3 Working Mechanism of TensorFlow . 58

7 Discussion 60

7.1 Discussions . 60

7.2 Comparison . 61

7.3 Limitations and Potential Improvements . 62

8 Conclusions 63

8.1 Conclusion . 63

8.2 Outlook . 64

Bibliography 64

A Rename File with Batch 68

B Input 69

C Network Structure 71

D Train the model 75

E Usage 78

v

List of Tables

2.1 Comparing between different CNN architecture 9

3.1 Natural stone clad defects classification [6] . 24

4.1 Resource consumption of different format . 31

4.2 Filter shape and parameter number of each layer 36

vi

List of Figures

1.1 Human vision and computer vision [33] . 2

2.1 LeNet-5 architecture [23] . 7

2.2 AlexNet architecture [22] . 7

2.3 VGG architecture [32] . 8

2.4 Visualization of the filter on the image . 9

2.5 How to convoluting . 10

2.6 Feature matched . 11

2.7 Feature did not match . 12

2.8 Different kernels [9] . 13

2.9 Max pooling . 14

2.10 Max pooled image . 14

2.11 Linear activation function and Sigmoid function 16

2.12 Tanh and logistic sigmoid . 18

2.13 ReLU and Leak ReLU . 19

2.14 Visualization fully connected layers . 21

vii

LIST OF FIGURES viii

3.1 Cultural heritages with stone defects [6] . 23

4.1 Examples of images in the dataset . 27

4.2 The visualization of TFRecord format . 27

4.3 File structure . 28

4.4 Replacing the 5 × 5 CONV layer with two 3 × 3 CONV layer [38] 32

4.5 Network structure for crack detection . 33

4.6 SAME padding . 35

4.7 Truncated standard deviation . 39

4.8 Comparison between small batch training and large batch training [21] 41

4.9 Learning rate and cost function [10] . 43

4.10 Coordinator [4] . 44

4.11 Training process . 44

4.12 Examples of crack in data set of nature stone 46

5.1 Examples of images in data set for joint and crack 48

6.1 Learning rate and time . 50

6.2 Learning rate and loss . 51

6.3 Loss and accuracy of concrete crack detection model 53

6.4 Utilization of concrete crack detection model . 54

6.5 Transfer learning for nature stone crack recognition model 55

6.6 Loss and accuracy of nature stone crack detection model 55

6.7 Utilizing of natural stone crack detection model 56

6.8 Transfer learning for crack and joint recognition model 57

6.9 Loss and accuracy of crack and joint detection model 57

6.10 Utilizing of natural stone crack detection model 58

6.11 Working mechanism of TensorFlow . 59

7.1 Overfitting and underfitting . 61

8.1 Mask RCNN . 64

ix

Chapter 1

Introduction

1.1 Background

In the past decades, there is a growing demand for maintenance and renovation works for

buildings made of natural stone facades. Therefore, some emphasis is placed on the need to

reduce the construction costs as well as on improving the efficiency of the renovation process.[31]

For this purpose, an identification and classification method for the defects occurring in natural

stone using image recognition is very promising.

Presently, the inspection and diagnoses of the defects in stonework are mostly done by special

equipment and human work by means of ultrasonic techniques, thermal techniques and assisted

visual analysis.[27] However, issues from the high expense and the intensive human labor cost

have not been adequately addressed.

Image recognition is one of the skills that humans get from the very first moment we are born

and it is gained naturally and easily for adults. Generalized from our prior knowledge, human

beings are able to recognize patterns and objects quickly even in different image environments.

However, we didn’t share this skill with machines. While human and animal brains recognize

objects with ease, computers have difficulty with the task. Image recognition, in the context of

machine vision, is a process of extracting meaningful information from given images, such as the

1

1.1. Background 2

feature of objects. Computers can use the Deep Learning (DL) to achieve image recognition.

(a) Human vision (b) Computer vision

Figure 1.1: Human vision and computer vision [33]

Instead of a human face with resolution of 28 × 28 pixels, computers see only an array of

pixel values (see Figure 1.1). Depending on the resolution and the size of images, it breaks

the image into a 28 × 28 × 3 matrix of pixels1 and stores the value of color for each pixel at

the representative points. These values, from 0 to 255 at each position describing the pixel

intensity, are the only inputs available to the computer.

The idea of image recognition is that with the matrix of numbers, a computer outputs values

which describe the probability of Figure 1.1 (a) being which class (e.g. 0.85 for Elon Musk ,

0.15 for Robert Downey Jr, 0.05 for Steve Jobs).

Image recognition is used to perform a large number of machine-based visual tasks, such as

labeling the content of images with meta-tags, performing image content search and guiding

autonomous robots, self-driving cars and accident avoidance systems.[14]

Until now, considerable researches have been conducted detecting damages by vision-based

methods, primarily using Image Processing Techniques (IPTs) which has been proposed to

1 The 3 refers to three color channels R, G, B.

1.1. Background 3

redeem the situation. One significant advantage of IPTs is that almost all superficial defects

(e.g. cracks and corrosion) are likely identifiable.[15]

An early comparative study using four edge detection methods (the fast Haar transform (FHT),

fast Fourier transform, Sobel edge detector, and Canny edge detector) was conducted by Abdel-

Qader to find concrete cracks. He proved that FHT is a better approach to solve the problem.

After this study Yeum and Dyke (2015) used IPTs combined with a sliding window technique

to detect steel cracks.

However, the results of edge detection are mainly affected by the noises of the image. Several

factors in the real-world, including low light conditions, camera sensor size, higher ISO settings,

and long exposures, can affect the level of noise.[5] To deal with the challenge of noises from the

real-world, an approach using IPT-based image feature extractions and DL algorithms based

classifications is implemented.

For different research purposes and verity of industrial fields applications, many types of artifi-

cial neural networks (ANNs) have been developed. For example, convolutional neural networks

(CNNs) show great promise at image recognition. 2012 is the first year as Alex Krizhevsky

used CNN to win that year’s ImageNet competition. This competition is equivalent to the

Olympics game in computer vision world. His AlexNet achieves an astounding improvement

by dropping a top 5 error2 from 26% to 15.4%. Inspired by the visual cortex of animals, CNN

is now a state-of-the-art technique in image recognition challenges. In contrast to the standard

NN, CNN can reduce much more computational effort, since it has the sparsely connected neu-

rons and the pooling process. Furthermore, it works as an automatic feature extractor without

bother users with feature selection or confused users whether the extracted feature would work

with the model or not. CNN extracts all possible features, from the low-level ones like edges,

to the higher-level features like faces and objects.

As a specialized sub-field of machine learning, DL is large neural networks that keeps getting

better as you feed them more data. When you hear the term DL, just think of a large deep

2 Top 5 error is the rate at which, given an image, the model does not output the correct label with its top 5
predictions.

1.2. Research Goals 4

neural net. Deep refers to the number of layers typically and so this kind of the popular term

that’s been adopted in the press. I think of them as deep neural networks generally.[19]

In DL, a computer model can learn to perform classification tasks directly from videos, images,

texts, or sound. DL models have proven promising and very useful. It can achieve a very high

accuracy, sometimes even exceed human-level performance. The models are usually trained by

using a large set of labeled data and neural network architectures that contain many layers.[13]

Therefore, a vision-based method using a deep architecture of CNN for detecting cracks and

other natural stone defects is proposed.

It should be pointed out that the train speed accelerates with the increasing computational

power of GPU. Therefore, DL has great developmental potential and wide industrial application

prospect.

1.2 Research Goals

The research goals of this thesis is to use CNN to build a nature stone cracks detector from image

inputs, and to prove the applicability of CNN for more scenarios in building renovation.The

main contributions in this work are as follows:

• The concrete dataset which contains 40,000 images in two classes is made to train the

network.

• The CNN structure for crack detection is built after analysis of classic CNN structures.

• A model is trained to be able to detect concrete cracks.

• After building a small dataset of nature stone crack with 150 images, a model is trained

with the method of transfer learning and is able to detect cracks of nature stones.

• A dataset including 150 images classed with joints and cracks of nature stone is made.

With transfer learning, a model is trained and is able to distinguish cracks from joints.

1.3. Outline 5

1.3 Outline

The structure of this thesis is described as follows:

Chapter 2 presents the state of the art of present studies on CNN. To build our own network

structure, roles of different layers and the theory behind them are explained.

Chapter 3 gives a brief introduction of nature stone defects.

Chapter 4 describes in detail how we build databanks and our network structures, and how

to tune the hyperparameters and train the models. After training, two models that detect

concrete cracks and nature stone cracks are built.

Chapter 5 goes a further step to apply CNN on nature stone problems. A model that distin-

guishes joints and cracks of nature stones is built.

Chapter 6 presents the training results and evaluates the trained models.

Chapter 7 deals with discussions of our findings, where some limitations of proposed method

are also addressed.

Chapter 8 summarize this work and gives suggestions for future work.

Chapter 2

Methology

For the purpose of building our own CNN architecture, we will at first review classic CNN

architectures and then elaborate the role of each layer. After having a basic understanding, the

CNN architecture for crack detection will be build on the end of this chapter.

2.1 Classic Architecture

A Convolutinonal Neural Network (CNN) is very similar to ordinary ANNs, they both use

neurons with learnable weights and biases. The whole network takes images as inputs and then

outputs the class scores on the end. Unlike primitive hand-engineered filters, CNNs can be

trained and are capable of learning these filters.[1][29]

The ImageNet project is an image database which can be a useful resource for researchers,

educators, students and everyone that want to commit themselves into image studies.[7] To

make researchers across the world have a chance to present and compare their newest efforts,

the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is held annually since 2010.

This challenge evaluates the algorithms for object detection and image classification at large

scale. In the following text, we will see the top competitors of the CNN architectures.

LeNet-5 is a classic CNN architecture proposed by Yann LeCun, Leon Bottou, Yosuha Bengio

6

2.1. Classic Architecture 7

Figure 2.1: LeNet-5 architecture [23]

and Patrick Haffner in 1998.[23] It is applied in banking to recognize handwritten numbers on

checks. Because of the limited computing power at that time, grayscale images in 32× 32 pixel

is considered as inputs. LeNet-5 has 7 layers, 3 of them are convolutional layers. This structure

has around 60 thousand parameters.

In 2012 Alex Krizhevsky beats out all the prior competitors and won the LSVRC with AlexNet.[22]

This CNN architecture reduces the top-5 error from 26% (XRCE) to 15.3%. It uses ReLU ac-

tivation function instead of Sigmoid or Tanh functions for the same accuracy but with a five

fold speed. AlexNet is much deeper compared with LeNet-5 and has complexer structure and

stacked convolutional layers. Because of that, this structure has around 60 million parameters.

Figure 2.2: AlexNet architecture [22]

In 2014 the VGG architecture is introduced by Simonyan and Zisserman in their paper Very

Deep Convolutional Networks for Large Scale Image Recognition.[32] They apply a pretraining

2.1. Classic Architecture 8

method, which trains the smaller networks at first and then uses these results as initialization

for larger networks and get a top-5 error rate of 7.30%. Despite it’s advantages argue Mishkin

and Matas in 2016 that all you need is a good init.[26] Instead of the pretraining method,

researchers prefer Gaussian initialization, Xavier initialization[18] and MSRA initialization.[20]

Figure 2.3: VGG architecture [32]

The champion of the ILSVRC 2014 is GooLeNet [35] with a top-5 error rate of 6.67%. This

CNN architecture is also known as ”Inception module ” which consists of 22 layers. The number

of parameters decrease from 60 million (AlexNet) to 6.79 million.

The winner of the ILSVRC 2015 is the Residual Neural Network (ResNet) of Kaiming He et

al.[20] It is worthwhile mentioning that the human top-5 classification error rate on this dataset

has been reported to be 5.1%. The ResNet achieves a top-5 error rate of 3.57% which beats

human. But it still has 60.2 million parameters.

Finally, Table 2.1 shows the key figures around these networks: In terms of accuracy, DL models

for Image Classification have been developed a lot from 1998 to 2015. However, parameter

numbers of every new model is more than 60 millions that far beyond the capacity of a laptop.

As a result, LeNet-5 is a classic CNN architecture which meets the needs of this work with

acceptable accuracy and lower computational cost. A number of modifications will be done to

fit this architecture to the research goal.

The basic structure of CNNs are identical: feature extraction parts are composed of various

CNOV and pooling layers, while classification parts are FC layers. An image passes through

a series of layers to get the output which is a set of numbers with different probabilities of

classes describing the image. To understand how CNN architectures work and be able to do

2.2. Convolutional Layer 9

Name LeNet-5 AlexNet VGG GoogLeNet ResNet

Year 1998 2012 2014 2014 2015
Top-5 Error - 15.30% 7.30% 6.67% 3.57%
Data Augmentation - + + + +
Number of Convolutional Layers 3 5 16 21 151
Layer Number 7 8 19 22 152
Parameter Number 6.E+04 6.E+07 1.E+08 7.E+06 6.E+07

Table 2.1: Comparing between different CNN architecture

modifications, basic information about input layer, convolutional layer (CONV), Activation

Layer, Pooling Layer and fully-connected (FC) layer as well as how they work together should

be interpreted.

2.2 Convolutional Layer

The term convolution refers to an orderly mathematical procedure, in which two sources of

information are intertwined and a new information is produced. In the case of a CNN, the

convolution is used on the input data with the kernels (filters) to produce feature maps.

(a) Feature matched (b) Feature didn’t match

Figure 2.4: Visualization of the filter on the image

Supposing that there is a flashlight that is shining from top left of the input image (see Figure

2.4). This flashlight shine covers a 5 × 5 area. The flashlight first slides across the image

horizontally, then comes down and slides in the next row horizontally, until the entire area of

this image is covered once. That is how convolution in machine learning works. This flashlight

is professionally called a kernel or a filter, and the region which the kernel shines over is named

2.2. Convolutional Layer 10

as receptive field. The kernel is a matrix with values which are called weights or parameters in

machine learning. Those values will be put in use second time when the weight matrix moves

along the image. This basically enables parameter sharing in a CNN. The stride is the number

of pixels, with which we slide our filter horizontally or vertically.

Figure 2.5: How to convoluting

As illustrated in the Figure 2.5, the filters are now sliding over the respective input image

channels and producing a processed feature map of each. The convolution happens between

the values in the filter and the original pixel values of the image. Out of mathematical reasons,

the depth of this kernel should be exactly the same as the depth of the input, so that the

dimension of this kernel is 3@3 × 3. After the convolution we get a 3@3 × 3 feature map

out from the 3@5× 5 input. Some kernels may have stronger weight than others to give more

2.2. Convolutional Layer 11

emphasis to certain input channels than others. In real case, each of the three channel processed

output is then summed together to form one channel. Lastly, each output filter has one bias

term. The final output will be bias plus the previous output.

The roll convolution, which actually plays here from a high level, is feature identifiers. The

features are some of the simplest characteristics that all images have in common. A line would

be a good example. As shown in Figure 2.6 (a) and (b), the filter is 5 × 5 and is going to be

a line detector (assuming that the input is a black and white picture). As a line detector, the

filter has a pixel structure. In which there are higher values along the curve shaped area.

We can now convolute the multiplications between the parameters of the filter and the original

pixel values of the input image.

Feature matched

What will happen if there is a shape from the input image that generally matches the curve this

filter is representing? The summation of multiplication will result in a large value as illustrated

by Figure 2.6 here.

(1× 60) + (1× 60) + (1× 60) = 180

(a) Visualization of a
Line Detector Filter

(b) Pixel Representa-
tion of Filter

(c) Pixel Representa-
tion of Receptive Field

(d) Visualization of
Receptive Field

Figure 2.6: Feature matched

Feature didn’t match

On the contrary, if we move our filter and there is nothing in the input image that responds

to the curve detector filter, the result of the multiplications summed together will be a much

2.2. Convolutional Layer 12

lower value as figure 2.7 shown below.

(1× 0) + (1× 0) + (1× 0) = 0 (2.1)

(a) Visualization of a
Line Detector Filter

(b) Pixel Representa-
tion of Filter

(c) Pixel Representa-
tion of Receptive Field

(d) Visualization of
Receptive Field

Figure 2.7: Feature did not match

The small example is a visualized filter that only detects line. We can have different filters to

detect various kinds of features, for example, curves to the left, curves to the right and straight

edges.[17]

Feature engineering

We always want something from the input images which contain a lot of unnecessary infor-

mation. In order to achieve that, we convoluting images with kernels to filter the distracting

information out. Jannek Thomas applies a Sobel edge detector (similar to the kernel above) on

the input data to filter the outlines and shapes out of the image. For this reason, the application

of convolution is often called filtering, and the kernels are often named filters.

The procedure of taking inputs, transforming them and feeding the transformed inputs to an

algorithm is called feature engineering. There are dozens of different kernels with varying

functions, for instance those that sharpen or blur the image, and each feature map may help

our algorithm to carry out better on its task. Feature engineering is so painful, because for

each type of data and each type of problem different features are required.

However, when we extract information from images, is it possible to automatically find the

most suitable kernels for a task?

2.3. Pooling Layer 13

(a) (b)

Figure 2.8: Different kernels [9]

Feature learning

Convolutional nets do exactly this. Rather than having fixed numbers in the kernel, we first

assign random parameters to these kernels which is trained on the data. As the training

process of the CNN goes on, the kernel does better and better at filtering a given image (or

a given feature map) for relevant information. This process is automatic and is called feature

learning. Without such difficulties mentioned before by feature engineering, feature learning

automatically generalizes filters to each task. We simply need to train the network to find the

best filters. This is what makes convolutional nets so powerful.

2.3 Pooling Layer

After setting the convolution layer, it is common to insert a pooling layer between successive

convolutional layers. Just like convolution, pooling operates on each image (feature map)

yet without filters. Instead of computing the sum of the multiplication, pooling computes the

average of the pixel values in each window (average pooling) or takes the maximum pixel values

and abandon the rest (Max Pooling).

Max pooling is the most common form of pooling that is applied to the pooling layer. As you

2.3. Pooling Layer 14

can see in the example, both the specified stride and the pooling size are 2. The operation is

applied to each depth dimension of the convoluted output (feature map). As illustrated in the

figure below, the 4× 4 feature map becomes 2× 2 after the max pooling operation.

Figure 2.9: Max pooling

The following example shows how max pooling looks on a real image. In this example, the

input volume of size [224×224×64] is pooled with filter size 2 and stride 2 into output volume

of size [112× 112× 64].

(a) Origional image (b) After max pooling

Figure 2.10: Max pooled image

As shown in Figure 2.10 The max pooled image still retains the information, while the dimen-

sions of the image is halved.

There are many reasons for the proven effectiveness of the idea of pooling in practice. Pooling

can reduce the feature map size as the layers get deeper while at the same time keep the sig-

nificant information. It helps to reduce the number of parameters and memory consumption

in the network. This also shortens the training time and controls overfitting. Moreover, pool-

ing provides basic invariance to rotations and translations, and improves the object detection

capability of convolutional networks. The larger the size of the pooling window, the more in-

Pooling in some sense tries to do feature selection by reducing the dimension of the input. Overfitting can be simply thought of as fitting patterns that do not exist due to the high number of features or the low number of training examples. So by selecting a subset a subset of features, you are less likely to find false patterns.

2.4. Active Function 15

formation is condensed, which leads to slim networks that fit more easily into GPU memory.

However, if the pooling size is too large, it will cause a predictive performance decrease because

too much information is thrown away.

2.4 Active Function

Human brain learns things by firing electrical impulse from one neuron to another in the hier-

archy. In the programming world, researchers simulate biological electrical impulse in neutral

networks with activation functions. The primary goal of these functions is to convert an input

signal to an output signal.

In an ANN, a neuron sums all their products of inputs (X) and their corresponding weights

(W). Following this product is an addition of bias. Before the output is transmitted to the

next neuron, an activation function f(x) would be used to decide whether this value should

be delivered as an input to the next neuron or even better to be a zero (not activated). For

example:

Y = Sigmoid(W ·X +Bias) (2.2)

Moreover, activation functions can also introduce Nonlinear properties to the Network. Without

activation function, an ANN is a linear regression model, because the output signal always is

a linear function. A linear function can be defined as a polynomial with the highest exponent

equals to one. In contrast, a nonlinear function is a function which is not linear and has a

curvature when they are plotted.

ANN can be considered as a Universal Function Approximators, which means no matter what

function we want to realize, there is an ANN model with appropriate parameters that can

accomplish the mission. To process more complicated data inputs such as images, audios, and

videos, it is necessary to make ANN more powerful. With activation functions we are able to

give ANN the ability to learn complex data and generate non-linear mappings between inputs

and outputs.

2.4. Active Function 16

In backpropagation optimization strategy we compute the gradients of errors (loss) with gra-

dient descent optimization or other techniques to reduce error. That requires a differential of

the activation functions.

In the following text, four kinds of activation functions are reviewed:

• Linear or Identity activation function

• Sigmoid Function

• Hyperbolic Tangent Function (Tanh)

• Rectified Linear Unit (ReLU)

After going through all the activation functions above, the most appropriate one for this diploma

thesis will be chosen.

(a) Linear activation function (b) Sigmoid function

Figure 2.11: Linear activation function and Sigmoid function

Linear or Identity Activation Function

As shown in Figure 2.11 (a), the function is linear. Consequently, the output of the functions

is not limited between any range.

Equation:

f(x) = x

2.4. Active Function 17

Linear Function helps nothing with the complexity or various parameters of usual data which

is fed to the ANN. Instead, the most frequently used activation functions are the nonlinear

activation functions.

Sigmoid or Logistic Activation Function

The Sigmoid Function has a characteristic ”S”-shaped curve. As shown in Figure 2.11 (b), Y

values are steep between the X values from -2 to 2. The output of this function is confined

between 0 and 1.

Equation:

f(x) =
1

1 + e−x

Since the probability of anything exists only from 0 to 1, though Sigmoid function can be used

as a classifier considering its property, there are also problems of this function: at both ends

of the Sigmoid function Y values tend to change very little in response to the change of X,

which means the gradient in this range is very small. This leads to a problem of ”vanishing

gradients”. This can cause an ANN to get stuck at the training time. The logistic Sigmoid

function can cause a neural network to get stuck at the training time.

As a more generalization of the Sigmoid function, the Softmax function works not only for

binary classification problems but also for multi-class classification problems.

Tanh or Hyperbolic Tangent Activation Function

Tanh function has a similar ”S” - shaped curve, as Sigmoid function, but its’ range is from -1

to 1.

Equation:

f(x) = tanh(x) =
1

1 + e−2x
− 1

In fact, it could be seen as a scaled sigmoid function:

2.4. Active Function 18

Figure 2.12: Tanh and logistic sigmoid

f(x) = 2 · Sigmoid(2x)− 1

The advantage of Tanh function is that with negative, zero or positive inputs you will also

get negative, zero or positive mapped value respectively. It makes Tanh function suitable for

the two classes classification tasks. However, for the similar reason of Sigmoid function, Tahn

function still suffers from the vanishing gradient problem.

ReLU Activation Function

The Rectified Linear Unit (ReLU) activation function has become a very popular activation

function in DL currently. Since it is used in almost all the CNNs or DL. The range of ReLU is

[0,∞), which means that only a non-negative x-value yields and outputs.

Equation:

R(x) = max(0, x)

There are many advantage of ReLU activation function: The mathematical form of this function

is very simple and efficient. With a network using randomly initialized weights, approximately

2.4. Active Function 19

half of the neurons have 0 as output because of the mentioned characteristic of ReLU. That is

to say, the network is very light. In Machine Learning field, the best techniques and methods

are the most simple and consistent. As Avinash Sharma V says: ”ReLU is less computationally

expensive than Tanh and Sigmoid because it involves simpler mathematical operations.”.

Another advantage of this function is that it avoids the vanishing gradient.

However, ReLU should only be used in the hidden layers of ANN but not in the output layer.

For the classification in the output layer we need to calculate the probabilities for each class,

which Softmax function is capable of.

Another problem with ReLU is that any input with negative values yields zero. With the

horizontal line for negative X in ReLU, the gradient towards 0. It means the weights not

get updated during the training. This weakens the power of the ANN to fit or train what

from the input data suitably. As a matter of fact, any input with negative values fed to the

ReLU activation function will output the value zero. This problem makes the model not fit the

negative values properly and can cause several neurons to die.

Figure 2.13: ReLU and Leak ReLU

To fix the ”negative X” problem, Leaky ReLU function is used. By introducing the horizontal

line with a slight slope, the gradient is not zero and the neurons can keep the updates alive.

2.5. Fully Connected Layer 20

Conclusion

Due to the vanishing Gradient Problem, Sigmoid function and Tanh function is not applied

in the DL model. Instead, ReLU should be used in the hidden layers. Leaky ReLU function

should be used when the model suffers from dead neurons problem.

In this Diploma thesis the inputs are only the images with a positive value. Thus, ReLU

activation function is the best choice for the hidden layer. To get the classification job down,

a Softmax function should be applied in the output layer.

2.5 Fully Connected Layer

The whole classification network can be divided into two main parts: feature extraction part

and classification part. The convolutional layers serves the purpose of feature extraction, while

the Fully Connected (FC) layers classify data into various classes. To make the model end-to-

end trainable, we need to figure out a non-linear function to connect those extracted high-level

features of the input image. In CNN, this non-linear function is learned by a set of FC layers,

which aims to map the extracted features into a class probability distribution. As can be

seen from Figure 2.14, in a FC layer, every neuron is connected with all the neurons in the

previous layer. FC layers in CNN are identical to a fully connected multilayer perception (MLP)

structure. With suitable weight parameters, FC layers could create a stochastic likelihood

representation. After combining relevant high-level features, the Dresden Frauenkirche was

found in the input image.

If the last layer is a FC layer:

y
(l)
i = f(z

(l)
i) with z

(l)
i =

m
(l−1)
(1)∑
j=1

w
(l)
i,jy

(l−1)
i + bj (2.3)

2.5. Fully Connected Layer 21

Figure 2.14: Visualization fully connected layers

If the last layer is a convolutional layer:

y
(l)
i = f(z

(l)
i) with z

(l)
i =

m
(l−1)
1∑
j=1

m
(l−1)
2∑
r=1

m
(l−1)
3∑
s=1

w
(l)
i,j,r,sy

(l−1)
i + bj (2.4)

where y
(l)
i is the output of FC layer, f is active function. The input zi of FC layer equals to the

summation of dot product between weights wi,j or wi,j,r,s and output of previous layers y
(l−1)
i

plus bias bj. FC layers output an N -dimensional vector, where N is the number of classes that

the model need to identify. In this work, N would be 2 because two different classes need to

be identified at the same model. For example, the FC layer of classification model gets an

output [0.15, 0.85], which represents that the probability of the input being an image with label

1 is 15%, and the probability of an image labeled with 2 is 85%. The labels are settled before

training, for example label 1 stands for image with a crack and label 2 is a Joint. Briefly, FC

layer connects with high level features that extracted from convolutional layer with particular

weights, and outputs the probabilities of different classes.

2.6. Transfer Learning 22

2.6 Transfer Learning

The transfer learning method can apply the weights of an already trained DL model to a

different but related problem. After modifications and adjustments to the network for the new

task, a transferred network can be employed to train new models. Most DL models use the

transfer learning approach because this method can save a lot of time from training a completely

new feature extractor.

Because of the shortage of data in this new task related to natural stones, we can use the

transfer learning method to address this issue. Instead of starting the training process from

the very beginning, this method starts with features that have been learned from an old task,

where a lot of labeled training data are available.

Transfer learning is meaningful when a new task and an old task have the same input. For

example, they both use audios or images as input. Besides, transfer learning is usually used if

the old task has more data than the new task. Additionally, the low-level features in the old

task could be helpful for learning a new task.

In Neural Networks, the models usually detect edges in their earlier layers, shapes in their

middle layers and some task-specific features in the later layers. The transfer learning methods

use the early and middle layers and only re-train the later layers.

Chapter 3

Stone Defects Description

Cracks and deformation, detachment, features induced by material loss, discoloration and de-

posit, and biological colonization are the general defects as stone materials aging. In Germany,

France and all over the world, cultural heritages are destroyed because of stone aging. For

example, sugaring in Figure 3.1 (a) on the head of a marble sculpture is found in Munich,

Germany. Limestone element of a cathedral in France has peeled off (see Figure 3.1 (b)). And

there is a network of thin cracks on the sculpture in Versailles, France.

(a) Sugaring (b) Peeling (c) Thin cracks

Figure 3.1: Cultural heritages with stone defects [6]

We classify the quality grade of the stone products by studying the existence or the size of

these defects. The durability of natural stone can be affected by different factors, for instance,

poor structure, incorrect bedding, lime run-off and frost attack or acid rain. In the table below

you can see more information about natural stone defects with delicate classification.

23

24

Damage Details
Crack and
Deformation

Crack Fracture, Star crack, Hair crack, Craquele, Splitting
Deformation

Detachment

Blistering
Bursting
Delamination Exfoliation
Disintagration Crumbling, Granular disintegration
Fragmentation Splintering, Chipping
Peeling
Scaling Flaking, Contour scaling

Features induced
by material loss

Alveolization Coving
Erosion Differential erosion, Loss, Rounding, Roughening
Mechanical damage Impact damage, Cut, Scratch, Abrasion, Keying
Microkarst
Missing part Gap
Perforation
Pitting

Discoloration
and deposit

Crust Black crust, Salt crust
Deposit
Discolouration Colouration, Bleaching, Moist area, Staining
Efflorescence
Encrustation Concretion
Film
Glossy aspect
Graffiti
Patina Iron rich patina, Oxalate patina
Soiling
Subflorescence

Biological
colonization

Biological colonization
Alga
Lichen
Moss
Mould
Plant

Table 3.1: Natural stone clad defects classification [6]

25

This work will focus on nature stone cracks due to time and data limitation.

Chapter 4

Detecting Cracks

4.1 Databank Generation

The dataset includes totally 40,000 RGB images with 227 × 227 pixel resolutions. All the

dataset files are stored in databank folder. The whole dataset is evenly divided into two groups

as positive crack and negative crack images for classification as shown in Figure 4.1. All the

images are collected from various METU Campus Buildings by Lei Zhang et al (2016). To

generate the dataset, a total of 245 high-resolution images with 4032 × 3024 pixel resolutions

is cropped into 40,000 smaller images with 227× 227 pixel resolutions. Data augmentation like

random rotation or flipping is not used in this dataset. In order to get a robust classifier, the

smaller size of input images is used to train the network, so that this network can be able to

process any larger images than 227× 227 pixel resolutions.

4.1.1 Assign Labels to Images and Feed Dataset into The Model

The next step after building the model is to feed it with image dataset. There are many ways

to get this job done in TensorFlow. In the text below, we can see what are the differences

between TFRecord format and Raw format, and then choose a proper solution for this work.

26

4.1. Databank Generation 27

(a) Negative (b) Positive

Figure 4.1: Examples of images in the dataset

Figure 4.2: The visualization of TFRecord format

TFRecord

The visualization of TFRecord format in figure 4.2 shows a binary storage format which stores

all the image information and label information as a sequence of binary strings. This format

is recommended by the TensorFlow official website and described as efficient. No matter how

many images are in the databank, one TFRecord file is able to store all of them and their

corresponding labels.

Step 1. Specifying and organizing dataset: The first step before writing TFRecords is

to specify and organize the dataset. As can be seen from Figure 4.3 (a), images with the

same labels should be grouped together. The reason for that is TFRecord stores all the data

as a sequence of strings, and an organized file structure helps during the reading and writing

process.

Step 2. Splitting dataset and creating TFRecords: The next step is to write TFRecords

and split the dataset into training and testing subsets as shown in Figure 4.3 (b). The training

dataset is fed to the model in the training process. Instead of training loops, we call it training

steps in machine learning. The training dataset is used again in every steps of training process

so that the model learns from these data. Only after the model is completely trained, the testing

dataset is then used to test and evaluate this model. Tarang Shah wrote in 2017 that the dataset

split ratio is not fixed.[30] Out of the total 40,000 images, 400 of them (1%) are randomly picked

4.1. Databank Generation 28

(a) Datasets structure (b) TFRecords structure

Figure 4.3: File structure

out as a testing set in this work. With the function tf.python io.TFRecordWriter we are able

to write data into TFRecord files as we want.

Step 3. Reading and Checking TFRecords: With the first two steps TFRecords are

created. Before being put into use in the training process, it should be read first. The

tf.TFRecordReader can read the image and label information, which is later used by tf.train.

shuffle batch to train the model. The shuffle function builds a shuffling batch queue that

serves the purpose of preventing over-fitting from affecting the generalization ability of the

model. Moreover, in algorithms like stochastic gradient descent (SGD), shuffling batch helps

to ensure that we are less likely to converge to a solution lying in the global minimum for the

whole training set, but more likely to find a solution that generalizes better.

Meanwhile, we can also check the TFRecords after reading it by using tf.decode raw to decode

image information from TFRecord and tf.reshape(image, [227, 227, 3]) to help to define the

277 x 277 resolution of the image with RGB channels. The function tf.cast(features[’label’],

tf.int32) can read the label information of the image. If everything goes well without dataset,

we can extract the picture with corresponding label by img.save(swd+str(i)+’ ’ ’Label ’+str(l)

+’.jpg’) . With fresh images named with their labels out of TFRecords, we can now check if

4.1. Databank Generation 29

labels match with images and if testing set and training set have duplicate images, and confirm

whether the dataset is correctly split. Therefore, the TFRecord checking step is of great benefit

to us.

Raw Image

Step 1. Splitting dataset and adding labels: The first step is to split the dataset into

the training set and testing set. As by TFRecords, we use the same dataset and the same split

ratio with 1%, in other words, we have 400 random images as the testing set and the rest 39600

images as the training set. Before the training process starts, we need to add labels on the

training set, so that our model can learn the feature from images with the same labels. All

the images in training set need to be renamed with the same label Number.jpg format, for

example, Positive 19991.jpg and negative 00035.jpg . In order to improve the efficiency of the

rename operation, a batch file (see Appendix A) is employed.

Step 2. Disorder dataset: The next step is to disorder the dataset, in order to prevent over-

fitting and make the model converge faster than using SGD algorithm (see TensorFlow Step 3

for more details). Before random ordering the dataset, we need to save all images and labels in

a temp file: temp = np.array([image list,label list]) , and then use temp = temp.transpose()

to transport the array. Finally, a numpy function is used to finish the random operation

np.random.shuffle(temp) .

Step 3. Reading dataset: In the last step, we save all the key information into a temp file and

transposed it. So the first column of the temp file refers to image information, and the second

column is about label information. With image list = list(temp[:,0]) label list = list(temp[:,1])

label list = [int(i) for i in label list] we can read those information from the temp file. To make

the image information readable for TensorFlow, they should at first be converted to string and

then decoded by TensorFlow: image = tf.cast(image,tf.string) , image = tf.image.decode jpeg ,

(image contents,channels =3) . We set the channels as 3, because the dataset consists of color

images. Similarly, label information should be converted to int32 format.

4.1. Databank Generation 30

It is worthwhile mentioning that the value of images should be standardized to make gradient

descent converge more quickly in two aspects.

First of all, we can speed up gradient descent by feature scaling, because gradient descends

quickly on small ranges and slowly on large ranges. Standardization (or Z-score normalization)

is the process of re-scaling features in statistics, so that the multiple features can take on similar

scale (range of values). The idea is to make sure that all the values from different features can

have a Gaussian distribution with µ = 0 and σ = 1, where µ is the mean and σ is the standard

deviation of all values in image:

σ =

√√√√ 1

N

N∑
i=1

(xi − µ)2 (4.1)

µ =
1

N

N∑
i=1

xi (4.2)

with σ = 1 the gradient descends more quickly than on the original range. However, the values

of each pixel in RGB channel already have a similar scale (from 0 to 225), we hence apply an

adjusted standard deviation where NRGB calculates the number of pixels in each of the three

channels:

σadjusted =
max(σ, 1)

NRGB

(4.3)

So the standard scores (or z scores) are calculated as follows:

Z =
xi − µ
σadjusted

(4.4)

Secondly, standardized data is distributed around the center of 0 (µ = 0), which makes conver-

gence of the gradient more effective. If the input data are all positive, then the output value of

ReLU activation function of each layer is also positive (see Figure 2.13). This ends up in the

back propagation with all positive or negative gradient of the weight w (because the output

values of activation function depended on the the error that passed to the current layer). As

a result, the optimal path of gradient descent becomes a zigzag path, which is undesired for a

4.2. From Classic CNN to Crack Detector 31

effective convergence gradient descent algorithm.[1]

Standardization process can be operated by a TensorFlow inbuilt function:

tf.image.per image standardization .

4.1.2 Comparison of Two Different Formats

Classification ability of the model is not affected by the method of feeding images, since both

datasets used the same images. After labeling operation, datasets are fed to the same model

for training. However, there are still differences between the two methods. As shown in Table

4.1, TFRecords can be read very fast, because it stores all the data as a sequence of strings.

But before reading, TFRecords needs to be created, which consumes a lot of time. On the

other hand, TFRecords requires about 10 times more storage space. In contrast, raw images

consumes less time and less storage resources. As a result, raw images format is used in this

work for datasets.

Images TFRecords

Time of Creating Dataset/s 0 380
Time of Reading Dataset/s 170 40

Total Time assumption 170 420

Space of Storage/MB 234 1874

Table 4.1: Resource consumption of different format

4.2 From Classic CNN to Crack Detector

4.2.1 Layer Pattern of Classic Network Structures

As previously noted in section 2.1, CNNs are commonly made up of three types of layers: the

convolutional layer, pooling layer and fully connected layer. We focus on the layer pattern in

this section and build a CNN architecture for crack detection in the next section.

4.2. From Classic CNN to Crack Detector 32

As can be seen from the previously mentioned CNN structures, most structures have a similar

pattern: CNN uses CONV layers to extract features. Activation functions are always applied

in the next step to add nonlinear. After that a pooling layer is used to reduce the feature map

size as well as the number of parameters. Finally, FC layers work as a classifier to give us the

result of the predictions. This is supported by the study from Stanford Vision and Learning

Lab, as they described this CNN pattern with:

INPUT → [(CONV → RELU)×N → POOL]×M → [FC → RELU]×K → FC (4.5)

where CONV stands for convolutional layer, × means a reasonable repetition of this layer, and

POOL indicates the possibility to apply a pooling layer with 0 ≤ N ≤ 3, 0 ≤M, 0 ≤ K ≤ 3.

Besides, a stack of small size convolutional layers is more efficient than one large size convo-

lutional layer for two reasons: The first is that this kind of small size CONV layers stack has

fewer parameter, coinciding with that obtained by studies from Szegedy et al, which benefits

the training time.[36] The second reason is out of expression ability of nonlinear. Since a stack

of small size CONV layers have obviously more activations than a single CONV layer.[38]

Figure 4.4: Replacing the 5 × 5 CONV layer with two 3 × 3 CONV layer [38]

An example of it is the comparison between a stack of two 3× 3 CONV layers and another of

5×5 CONV layers (see Figure 4.4): A neuron on the first CONV layer has a 3×3 view of input

volume. On the second layer, each neuron has a 3× 3 view of the first CONV layer as well as a

5×5 view of the input volume. Supposing this is an image with C channels with input channel

4.2. From Classic CNN to Crack Detector 33

= output channel, then the two 3×3 CONV layers need 2×3×3×C×C = 18×C2 parameters,

while one 5× 5 contains 5× 5×C×C = 25×C2 parameters. Compared with two 3× 3 filters,

a single filter contains 25/18 = 1.39 times more parameters. As a result, sliding this small 3×3

CONV set over the input image is more reasonable than using a 5× 5 CONV layer, because a

stack of small filters expresses more features of the input image with less parameters.

4.2.2 Network Structure for Crack Detection

Figure 4.5: Network structure for crack detection

After the introduction of the classic CNN architecture in previous text, this section builds the

architecture of our crack detector. According to the Table 2.1, LeNet is the best structure for

this work, because it meets the need of computational cost and has an acceptable accuracy. In

the building process of our new network architecture, changes and modifications are necessary

to let this architecture fit to the research goal. As shown in Figure 4.5, CONV layers are labeled

Cx, pooling layers are labeled Px and FC layers, where x is the index of layer. All calculations

are described in the later section.

The first layer is an input layer, where the original LeNet and the modified version in this work

differ from each other: Instead of one channel black and white images, the three channels colors

are fed into the network. The input images are re-sized to 228×228 pixels, in case some images

in the dataset are with different sizes.

The second layer of this image classification network is a CNOV layer with 16 feature maps.

4.2. From Classic CNN to Crack Detector 34

Every unit of feature map is connected to a 3 × 3 area in the input image. Both strides in

horizontal and vertical are 1, which means every time the filter moves to 1 pixel on the input.

During the CNOV operation, a SAME padding technique is used. Layer C1 contains 448

trainable parameters and 824,464 connections.

As aforementioned in section 4.2.1, a single 5×5 CONV layer can be replaced by a stack of two

3×3 CONV layers, which has fewer parameters with the same input and output size. There are

two main downsides for CONV operation: First of all, the output volume shrinks (see Figure

2.5. Secondly, the pixels in the corner are scanned only once while the pixels in the middle get

covered more than once. As a matter of fact, we extract more information from the middle

pixels. Therefore, zeros are commonly used to pad the border in practice. In TensorFlow we

can chose between VALID Padding and SAME Padding. VALID Padding means no padding

and every right-most column or bottom-most row are dropped, if the image width is not a

multiple of the filter width or the image height is not a multiple of the filter height. In contrast,

SAME Padding uses zeros to pad around the image to make sure the output size is the same

as the input size after CONV operation. As can be seen from Figure 4.6, the size of the input

volume doesn’t change after CONV with SAME padding.

Additionally, in propose of introducing nonlinear properties to the Network, CONV layers

are always followed by an activation function. The original LeNet uses Sigmoid as activation

function, which suffers from vanishing gradient problem. As discussed in the preceding section,

ReLU is accordingly the best choice among all the activation functions for this work, because

the inputs images are always positive values.

The third layer is a max pooling layer that contains 16 feature maps of size 114 × 114. Each

unit in feature map is connected to a 3× 3 neighborhood in the feature map of CONV1 layer.

Both strides in horizontal and vertical are 2. In spite of 207936 connections, layer P1 has zero

parameter, since it has no weights and biases.

Pooling operation makes the number of rows and columns half as the feature maps in CONV

1. It helps to reduce the parameter number and memory consumption. Compared with other

pooling methods, max pooling is capable to keep features on the feature map.

原本是average pooling

4.2. From Classic CNN to Crack Detector 35

Figure 4.6: SAME padding

Inspired by AlexNet, a Local Response Normalization (LRN) method is employed here to imi-

tate real neurons, which creating competition for big activities among neuron outputs computed

using different kernels.[22] Details of LRN can be found in the next subsection.

The fourth layer is a CNOV layer with 32 feature maps of size 114 × 114. Every unit of

the feature map is connected to a 3 × 3 area in the input image. According to Szegedy etl.:

Higher dimensional representations are easier to process locally within a network. Increasing

the activations per tile in a convolutional network allows for more disentangled features. The

resulting networks will train faster.[36] That is to say, the feature map number of CONV layer

should get more to help disentangling features, which makes a faster training. Both strides in

horizontal and vertical are 1. During the CNOV operation, a SAME padding technique is used.

Layer C2 has 4640 trainable parameters and 415,872 connections.

The fifth layer is again a max pooling layer containing 32 feature maps of size 57 × 57. Each

unit of the feature map is connected to a 3 × 3 neighborhood in the feature map of CONV1

layer. Both strides in horizontal and vertical are 2. Layer P2 has zero parameter, since it has

no weights and biases, but 51,984 connections. It should be pointed out that the feature maps

4.2. From Classic CNN to Crack Detector 36

Layer
Input Volum Filter Size Stride Output Volum

Parameters
Di Hi Wi K Fx Fy Sx Sy Do Ho Wo

Input
C1
P1
C2
P2

FC1
FC2

3
3
16
16
32
32.
1

228
228
228
114
114
57
128

228
228
228
114
114
57
-

-
16
-

32
-
1
1

-
3
3
3
3
-
-

-
3
3
3
3

128
128

-
1
2
1
2
-
-

-
1
2
1
2
-
-

3
16
16
32
32
1
1

228
228
114
114
57
128
2

228
228
114
114
57
-
-

0
448
0

4640
0

13308032
258

Table 4.2: Filter shape and parameter number of each layer

of P2 is now 32@57 × 57, but the input of FC layers need to be a 1st-order tensor. Similar

with 1× 1 CONV operation in LeNet, this converting operation will be done by a TensorFlow

inbuilt function tf.reshape(P2,[-1]) .

The sixth layer is a FC layer with 128 units. Each unit connects with all units in the previous

layer, which makes F1 has an amount of 13,308,032 trainable parameters. A ReLU activation

is processed on the outputs of F1 layer.

The seventh layer is still a FC layer with 128 units. F2 layer is fully connected with F1 layer.

There are 258 trainable parameters in this layer. A multiFC layer set composed of F1 and F2

gives the network a stronger expression ability nonlinear to connect those extracted features

from previous layers. A ReLU activation is again processed on the outputs of F2 layer. The

output of F2 is an arbitrary real value vector with the shape 1 × N with N = 2 , since the

classes N for this work is 2. Softmax function takes this N-dimensional vector of arbitrary real

values and produces another N-dimensional vector with real values in the range (0, 1) that add

up to 1.0, e.g.: The two element vector such as [2, 3] gets transformed into [0.269, 0.731]. The

calculation of this function can be described with

Sj =
eaj

σTk=1e
ak

(4.6)

where Sj is the softmax value of element j, aj is the original value of the element, and T is the

number of elements in the vector.

The Table above walks through the filter shape, the layer shape and the parameters of each

4.2. From Classic CNN to Crack Detector 37

layer. Following formulas describe those calculations in details. There is a volume with size

W i×H i×Di as input to this CONV layer, and in this layer there are K filters with size of

Fx × Fy sliding with stride Sx and Sy in x and y directions.

For CONV layers: the output size with SAME Padding is Wo ×Ho ×Do, where [12]

Wo = Wi/Sx (4.7)

Ho = Wo/Sy (4.8)

Do = K (4.9)

The number of zeros need to be padded on height Zh and on width Zw that are calculated by:

Zw = (Wo − 1)× Sx + Fx −Wi (4.10)

Zh = (Ho − 1)× Sy + Fy −Hi (4.11)

Thus, Zw/2 zeros are padded on the top as well as on the bottom of this image.

As parameters are shared in CONV layer, this layer introduces Fx × Fy ×Di weights per filter

and K biases: [24]

ParameterNumber = (Fx × Fy ×Di + 1)×K (4.12)

E.g.: Layer C1 has totally (3× 3× 3 + 1)× 16 = 448 parameters.

For pooling layers: The output size is Wo ×Ho ×Do, where [24]

Wo = (Wi − Fx)/Sx (4.13)

Ho = (Wo)/Fy (4.14)

4.3. Hyperparameters Tuning 38

Do = K (4.15)

Pooling layers introduce zero parameter since there is no weights and biases in this operation.

For FC layers: The number of weights is calculated with: Wi × Hi × Di × Fy. Especially Fy

is here the number of neurons. The number of biases is the same with neuron numbers Fy. In

Conclusion,

ParameterNumber = (Wi ×Hi ×Di × Fy)×K + Fy (4.16)

E.g.: Layer F1 has totally (57× 57× 32× 128) + 128 = 133, 080, 32 Parameters.

4.3 Hyperparameters Tuning

In machine learning, hyperparameters are the variables set before a training process begins.

They determine how the network is structured as well as how the network is trained. Complete

details of these hyperparameters will be provided in this section.

The value of num threads controls the maximum number of threads enqueuing ’tensors’, in

other words, it controls the number of multiple threads that prepare training examples and

push them in the queue. This value is dependent on the hardware. The image loading process

of this network is run on a machine with Intel i78550U CPU which has 4 core and 8 threads[8].

As a result, we will run the training process on GPU with num threads = 8 .

Hyperparameters also includes the size of filters and the number of filters that we mentioned

in the last section. Incidentally, bias and weights need to be defined, too. The shape of biases

of CONV layers is the same with the feature map numbers. Thus, CONV1 has 16 biases and

CONV2 has 32 biases. Meanwhile, every unit in FC layers has a bias so that both FC1 and

FC2 have 128 biases. The values of all the biases are initialized before the training process as

0.1 with initializer=tf.constant initializer(0.1)) , which ensures that all ReLU units fire in the

beginning, and therefore obtain and propagate some gradient. The shape of weights needs to

4.3. Hyperparameters Tuning 39

be preset as well. For CONV layers weights are set with shape=[a, b, c, d] , where a and b are

the size of filters with a = Fx; b, c is the number of input depth, and d is the number of feature

maps in this layer. Thus, CONV 1 has the weights of shape [3, 3, 3, 16] and CONV2 has the

weights of shape [3, 3, 16, 32]. The value of all the weights are initialized before the training

process as 0.1 with initializer=tf.truncated normal initializer(stddev=0.1, dtype=tf.float32)) .

This makes all the weights random values with 0.1 standard deviation and follow a normal

distribution with a specified mean and standard deviation. Except that values, whose magni-

tude is more than 2 standard deviations from the mean, are dropped and re-picked, as shown

in Figure 4.7. According to Tensorflow website, this is the recommended initializer for neural

network weights.[11]

(a) Standard deviation (b) Truncated standard deviation

Figure 4.7: Truncated standard deviation

As mentioned before, LRN was applied after pooling layers. This normalization can be described

with:

bix,y =
aix,y

(k + α
∑j=min(N−1, i+n

2
)

j=max(0, i−n
2

)
ajx,y

2
)β

(4.17)

bix,y is the regularized output for kernel i at position x, y; aix,y is the source output of kernel

i applied at position x, y; N is the depth radius; K is base; α is a scale factor and β is an

exponent. The constants k, n, α and β are hyperparameters whose values are determined using

a validation set, n = 4 , k = 1 , α = 10−4 , and β = 0.75 .

In case input images have different sizes, a resize operation with tf.image.esize image with crop or

4.3. Hyperparameters Tuning 40

padding(image,IMG W, IMG H) is needed before training. This operation resizes any image

in this work to a target width IMG W = 228 and height IMG H = 228 by either centrally

cropping the image or padding it evenly with zeros.

The learning rate is one of the most important hyperparameters for neuron networks. With

this hyperparameter, the backpropagation process is able to know how far to move the weights

in the gradient decent direction for a mini-batch.

If the learning rate is low [10], the training process takes a lot of time, but become more reliable,

because very tiny updates to the weights are made. However, if the learning rate is high, weight

changes can be too big to make the loss worse, in other words, the training doesn’t converge.

Consequently, the value of the learning rate is set to be 0.00003. This value is not fixed all the

time, because an Adaptive Moment Estimation (Adam) optimizer is applied during training.

Details of Adam are provided in the next subsection.

Batch size is the number of sub samples given to the network after which parameter update

happens. According to Andrew NG’s opinion: the extreme situation are the gradient descents

using the entire dataset. In this case training process saves time by going to the right direction

to a local minimum. Another extreme situation is that batch size has only one sample, which

can lead gradient towards wrong direction, but reduce the computing burden. Several studies

on the other hand show that large batch has limits, too. Large-batch methods tend to converge

to sharp minimizers of the training and testing functionsand as is well known, sharp minima

lead to poorer generalization. In contrast, small-batch methods consistently converge to flat

minimizers, and our experiments support a commonly held view that this is due to the inherent

noise in the gradient estimation [21]. Figure 4.8 shows that training and testing accuracy

for small batch size is better than large batch size methods as a function of epochs. This

is supported by Masters and Luschi: performance has been consistently obtained for mini-

batch sizes between m = 2 and m = 32, which contrasts with recent work advocating the

use of mini-batch sizes in the thousands [25]. We hence set the batch value in this work with

BATCH BATCH SIZE = 32 .

Capacity is an integer, which stands for the maximum number of elements in the queue, and

4.4. Training Process 41

(a) Model 1 (b) Model 2

Figure 4.8: Comparison between small batch training and large batch training [21]

can be three times bigger than batch size. In this work, CAPAVITY = 256 . The relationships

between batch size, queue and capacity will be presented in figure 6.11.

4.4 Training Process

In this stage, the model is gradually optimized until it meets our research goal. The model’s

loss plays an important roll in the training stage as well as in the evaluation stage later. This

loss value reflects how far the predictions are from the right label, in other words, how bad the

model is performing. Our intention is to minimize this loss value near 0 and get the softmax

score as close as possible to 1.00.[3]

In LeCun’s LeNet5 model, a Mean-Squared Loss (MSL) is used to calculate the loss scores.

However, MSL is reported to have limitations: the MSE loss makes sense when the predictions

are truer. However, if the predictions are false, the MSE loss may not be the best bet.[37]

We hence use the most widely accepted loss function: With sparse softmax cross entropy with

textsl logits() the sparse softmax cross entropy between the model’s class probability predic-

tions and the desired label can be calculated, and returns the average loss across the examples.

This loss function could be described with:

L = logSj (4.18)

4.4. Training Process 42

where L is the loss value and Sj is the softmax score of prediction j.

To minimize the loss function, an optimizer needs to be applied. In TensorFlow, there are many

in-build loss functions. Stochastic Gradient Decent is the simplest gradient decent method:

W = W − η ∂L
∂W

(4.19)

where W is the weight, L is the loss value, and η is the learning rate. This method needs

a long time to converge and can lead a divergent behavior to the loss function. Moreover,

this optimizer has no ability to update the learning rate. Momentum optimizer is able to

some degree control the divergent of loss function, but it may lead to a wrong direction to the

gradient decent.

Unlike all the other optimizers, Adaptive Moment Estimation (Adam) is a method that com-

putes adaptive learning rates for every parameter. Just like momentum, Adam can store an

exponentially decaying average of the past squared gradients vt, and keep an exponentially

decaying average of the past gradients mt at the same time. In fact, momentum behaves like

a ball running down a slope, while Adam is more like a heavy ball with friction. The decaying

averages of mt and vt can be calculated with:

mt = β1mt−1 + (1− β1)gt (4.20)

vt = β2mt−1 + (1− β2)g2t (4.21)

The first and second moment are estimated by mt and vt respectively, thus, this method is

named Adaptive Moment Estimation. The authors of Adam observe that mt and vt are biased

to zero, specifically during the initial time steps and the decay rates are small. Therefor, these

biases by computing bias-corrected first and second moment estimates are counteracted with:

m̂t =
mt

1− βt1
(4.22)

4.4. Training Process 43

v̂t =
vt

1− βt2
(4.23)

where the default value is 0.9 for β1, 0.999 for β2 and 10−8 for ε. The parameters can then be

updated with:

θt+1 = θt −
η√
v̂t + ε

m̂t (4.24)

As for learning rate, training should start from a relatively large learning rate so that those

random initialized weights are far from optimal. After using optimizer, learning rate decreases

during training process to give the weight a more fine-grained updates possibility.[34] Then we

can start to find learning rate that minimizes J(θ).

(a) Low learning rate (b) Optimal learning rate (c) High learning rate

Figure 4.9: Learning rate and cost function [10]

As shown in figure 4.9 (a), a small learning rate requires many updates before reaching the

minimum point. The optimal learning rate swiftly reaches the minimum point (see figure 4.9

(b)). In contrast, a too high learning rate causes drastic updates which leads to divergent

behaviors (see figure 4.9 (c)). As a result, learning rate with value 0.001 which has the shortest

training time is chosen.

It should be mentioned that a coordinator coord = tf.train.Coordinator() for CPU and GPU

is applied to make the training process more efficient in physical level. As can be seen from

Figure 4.10, coordinator helps to reduce idleness of CPU and GPU by making them working

at the same time.

Now we can finally start the training loop (see Figure 4.11):

Step 1 Feed the images and labels into the mode.

4.4. Training Process 44

(a) Dataset with coordinator

(b) Dataset without coordinator

Figure 4.10: Coordinator [4]

Step 2 Iterate over each example in the training dataset within an step by grabbing its features

and label.

Step 3 Compare the prediction of inputs and compare it with the real label. Measure the softmax

value of the prediction and use that to calculate the model’s loss and gradients.

Step 4 Update the model’s variables with Adam optimizer.

Step 5 Repeat for each epoch.

Figure 4.11: Training process

In this work, all parameters are saved as a model for every 50 steps so that we can always chose

a proper model before it get over-trained. To different with other models in this work, we name

this model concrete crack recognition model. Training results and evaluation of this model can

be found in Chapter 6.

4.5. From Concrete to Nature Stone 45

4.5 From Concrete to Nature Stone

With the method of transfer learning we are able to pass the training knowledge from a pre-

trained model to a new model, which saves a lot of time. Our goal is to transfer the knowledge

from a concrete crack recognition model to a nature stone crack recognition model.

Before training starts, we should check and read the previous model with

1 ckpt = t f . t r a i n . g e t c h e c kpo i n t s t a t e (l o g s t r a i n d i r)

2 i f ckpt and ckpt . mode l checkpoint path :

3 saver . r e s t o r e (s e s s , ckpt . mode l checkpoint path)

Besides, a new database is made to train the model for the new propose. All the images of

nature stone damages are taken by Dr. Sebastian Fuchs in the distance of 1.5 m and 3 m with

RGB channels and 2560× 1920 pixel of resolution, from which 75 smaller images with different

contains stone crack are cropped out. By different resolutions of images in training set we can

introduce noises in to the data, and that makes the model more robust. As a result, this dataset

including 150 small images with different resolutions. The whole dataset is divided into a test

set of 10 images and a train set of 140 images. In the training set, 70 images are labeled with

crack and other 70 images are labeled with negative. As is shown in figure 4.12, different types

of cracks are contained in the dataset, such as hair crack and splitting.

Next step is to start training loop. Neither hyperparameters nor network structure of previous

model are modified because we have similar classification problem and same number of classes

as the model of concrete detection. This time, our goal is to achieve at least a 97% train

accuracy by means of transfer learning. The training processes are run on an external GeForce

GTX 1070. Maximum training step is set to be 50,000. Results and evaluation of nature stone

crack recognition model can be found in Chapter 6.

4.5. From Concrete to Nature Stone 46

(a) Hair crack (b) Splitting

Figure 4.12: Examples of crack in data set of nature stone

Chapter 5

Differentiate Joint from Crack

In this chapter, a new model that can tell joints and cracks is trained. At first we make a new

database which contains both cracks and joints of nature stone. Then we start to train this

model with a transfer learning.

5.1 Databank Generation

For the propose of detecting joint and crack, a new database is made. This database has a

number of 150 images with different pixel of resolutions. The whole dataset is divided into

testing set and training set which contains 10 images and 140 images separately. The training

set is composed of 70 images nature stone crack and 70 images with joints of nature stone.

When it comes to test set, 5 images are nature stone with cracks and others are with nature

stone joints. All the images related with nature stone cracks are cropped from RGB images

with 2560× 1920 pixel of resolution, which are taken by Dr. Sebastian Fuchs in distance of 1.5

m and 3 m. Images of The Great Wall from Chinese websites are collected to made the sets of

nature stone joints. All images in training set are labeled while images in test set are not. As

shown in the figure 5.1, figure 5.1 (a) is one of the pictures with nature stone joint, and figure

5.1 is an image of nature stone crack example.

47

5.2. Training 48

(a) Joint of nature stone (b) Crack of nature stone

Figure 5.1: Examples of images in data set for joint and crack

5.2 Training

Our research goal is to have at least a 97% train accuracy by means of transfer learning. The

training processes are run on an external GeForce GTX 1070. Max training step is set to be

6000 and learning rate is of 0.0001. Neither hyper-parameters nor network structure of previous

model are modified because we have similar classification problem and same number of classes

as before.

The first step is to read model information from previous model. Due to the advantage of more

train images, the model information of concrete crack detection is transferred to the joint and

crack detection model. And then, we start the training loop (see Figure) until research goal

achieved. Training results and analysis can be found in Chapter 6.

Chapter 6

Results and Analysis

In this chapter, we analyze the results of the experiments and try to explain the reasons. At

first, comparison between the affects of the different learning rates on training time and training

loss is made. Then we see how did the losses and accuracies of the three models change during

training and time consumption. Finaly, the working mechanism of TensorFlow is presented.

6.1 Optimal Learning Rate

As mentioned before, we start the training process with a large learning rate from 0.1, and found

that the loss function doesn’t improve and even started decreasing in the first few iterations.

This means that any higher value doesn’t help to train. Every time we train the model with

a slightly smaller learning rate, until the loss function starts to decrease. During the research,

Adam optimizer is applied.

As can be seen from Figure 6.1, 13 different learning rates from 0.00001 to 0.1 with Adam

optimizer are trained. In each time, the network is trained until it achieved at least 97% train

accuracy. The maximum step allowed is 2000. The experiments are run on an external GeForce

GTX 1070. The dataset is a concrete crack dataset.

With learning rate of 0.1, 0.06, 0.03 and 0.01, the accuracy doesn’t meet our goal (97 %), and

49

6.2. Model Evaluating 50

from 0.006, training time begins to reduce until it gets the lowest point, which has a learning

rate 0.001 with 312 seconds training time. After that, training time begins to rise slowly.

Figure 6.1: Learning rate and time

Detailed values of loss and all 13 different learning rate can be found in figure 6.2. From this

graph we can see that all grey lines are learning rate values that either take to much time or

can not reduce loss. For example, the training losses with learning rate of 0.1, 0.06, 0.03 and

0.01 reduce very slowly, which further explains why these learning rates in Figure 6.1 do not

get our goal within maximum training step. On the other hand, the line with orange color

of 0.01 learning rate reduces loss efficiently and achieves our goal. It’s worth mentioning that

all learning rate smaller than 0.01 are able to achieve a 97 % training accuracy within 2000

steps, and some of them even have a better performance on loss. Nevertheless, the value of

0.001 is set to the learning for the same training result and less training time. To have similar

classification problem, all models in this work use the same value of learning rate.

6.2 Model Evaluating

There are three models for different research goals a trained in this work: One model that

recognizes concrete cracks, another that knows nature stone crack, and the last one that tells

joints from cracks of nature stone. This section presents and evaluates training results of each

6.2. Model Evaluating 51

Figure 6.2: Learning rate and loss

model. After the evaluation, results for utilize are also illustrated.

6.2.1 Concrete Crack Recognition Model

Training results

During training, a dataset of concrete cracks including 40,000 images is employed. The max-

imum training step is set to be 15,000. With the learning rate of 0.0001, the whole training

process takes around 50 minutes 38 seconds (3,038 seconds). Our goal is to train a model that

can recognize concrete cracks.

Figure 6.3 shows the loss and accuracy changes during training process of the concrete crack

model. As can be seen from figure 6.3 (a) , those lines in purple and orange show the fluctuation

of training loss and testing loss separately. Over the steps from 0 to 10,800, the values of both

lines are fluctuated but show a downward trend overall. This means the model is learning and

trying to descent gradient by finding the minimum loss value. In contrast, values of both lines

6.2. Model Evaluating 52

after 11,100 training steps stabilized near 0.01 except for slight floating. figure 6.3 (b) shows

some characteristics in common with Figure 6.3 (a): With the same training step, every value

of accuracy corresponds to the value of loss. They both show sharp fluctuation before 10,800

training steps and trend to become steady after 11,100 training steps. Until 15,000 training

steps, the accuracy of testing gets stable around 100%. The training accuracy is calculated by:

Nright

Ntotal

× 100 (6.1)

where the value of Nright indicates the number of images with right predicted labels in training

process, and Ntotal is the total number of images in this batch. Similarly, testing accuracy could

be calculated with:
N
′

right

N
′
total

× 100 (6.2)

where N
′

right indicates the number of right predicted images during test process and N
′

total

stands the number of test data. According to the figures, the concrete crack model gets the

best performance. Taking the model with 14,199 training steps for example, when the test loss

is near to 0, the test accuracy is near to 1. We hence keep the model with 14,199 training steps

for validation and transfer learning.

Utilizing

After training and evaluating, this model can be used to detecte concrete cracks. First of all,

the model information need to be loaded. Then a random image from testing set is picked

out and fed into the model. During the process of utilizing, the notwork outputs classification

results without updating weight. The accuracy of the single sample is calculated with:

accuracy = e−Loss (6.3)

As can be seen from Figure 6.4, after loading the models of 14,199 training steps, Figure 6.4

(a) is predicted to have a crack with a probability of 0.951548. Figure 6.4 (b) is predicted

6.2. Model Evaluating 53

(a) Loss

(b) Accuracy

Figure 6.3: Loss and accuracy of concrete crack detection model

6.2. Model Evaluating 54

the probability of no crack is 1.000000. The research goal to train a model which can detect

concrete cracks is achieved.

(a) Predition results of concrete with crack (b) Predition results of concrete without crack

Figure 6.4: Utilization of concrete crack detection model

6.2.2 Nature Stone Crack Recognition Model

Training results

The dataset for nature stone crack contains 150 images (details of this dataset can be found in

section 4.5). The maximum training step is 2000. With the learning rate of 0.0001, it takes 367

seconds to finish the training process. Our goal is to train a model that can recognize nature

stone cracks.

As can be seen in Figure 6.5, the red line stands for the accuracy of transfer learning, and the

light purple line stands for the accuracy without using transfer learning. After first 50 training

steps, the accuracy of the model with transfer learning (87.5%) is around 35% higher than

the one without (53.12%). After 100 steps, however, the accuracy of model without transfer

learning catches up and both methods have nothing different in terms of training accuracy.

Taking time into consideration, the training with transfer learning takes 36 seconds to get a

6.2. Model Evaluating 55

Figure 6.5: Transfer learning for nature stone crack recognition model

training accuracy over 97%, while it takes 62 seconds for the training without transfer learning

to achieve the same training accuracy. The results suggest that the main advantages of transfer

learning is the potential to save training time and make neural network performs better at the

same training steps even without a lot of data.

(a) Loss (b) Accuracy

Figure 6.6: Loss and accuracy of nature stone crack detection model

Figure 6.6 provides data regarding loss and accuracy changes while the model is training. From

figure 6.6 (a), we can see that both training loss and testing loss fall sharply at the first 150

training steps. In contrast, the value of both losses from 150 steps to 2000 steps remain stable

with training loss near 0 and testing loss around 0.1. Similarly, both accuracy keep steady

after 150 train steps with 100 % of training accuracy and around 90 % of testing accuracy. It

is clear that due to the limited number of training images, this model does not perfectly suit

every image in the testing set.

6.2. Model Evaluating 56

Utilizing

As can be seen from Figure 6.7, after loading the models of 1999 training steps, Figure 6.4

(a) presents a nature stone that is predicted to have a 0.999998 probability with a crack on it.

Figure 6.4 (b) shows the prediction results of a nature stone, which has a 0.951548 probability

to have a crack. Consequently, the research goal to train model to detect cracks of nature stone

is achieved.

(a) Prediction results of natural stone with crack (b) Prediction results of natural stone with crack

Figure 6.7: Utilizing of natural stone crack detection model

6.2.3 Crack and Joint Recognition Model

Training results

The dataset for joint and nature stone crack contains 480 images (details can be found in section

5.1), and is used to train this model. The training processes are run on an external GeForce

GTX 1070. The max training step is set to be 6000. With the learning rate of 0.0001, the

whole training process takes 14 minutes 34 seconds (874 seconds). Our goal is to train a model

that can recognize cracks and joints of nature stones.

6.2. Model Evaluating 57

Figure 6.8: Transfer learning for crack and joint recognition model

Figure 6.8 is a line chart that illustrates the changes of training accuracy between transfer

learning and normal training during training process. The figure shows that transfer learning

need less time (28 seconds) than normal training (44 seconds) to get an accuracy over 97%.

Besides, training accuracy of model with transfer learning has a higher value after the first

training step.

Figure 6.9 shows the loss and accuracy change during training process. At the first 400 steps,

training accuracy and testing accuracy increase to around 100 % and around 82 separately. In

the stage from 400 steps to 6000 steps, both accuracy keep steady, and the values of training

and testing loss stay stable, too. Due to the limitations of small databases, features are not

learned well in this model, which leads to a relative lower test accuracy.

(a) Loss (b) Accuracy

Figure 6.9: Loss and accuracy of crack and joint detection model

6.3. Working Mechanism of TensorFlow 58

Utilizing

Figure 6.10 are examples of utilizing the trained model. After loading model information of

5999 training steps, Figure 6.10 (a) is predicted with a 0.982381 probability to have joints on

the stone and Figure 6.10 (b) is predicted with a 0.999999 probability to have cracks on it.

Thus, our research goal to train a model which can detect joints and cracks of nature stone is

achieved, and this model even works with unfocused images.

(a) Prediction results of natural stone with joint (b) Prediction results of natural stone with crack

Figure 6.10: Utilizing of natural stone crack detection model

6.3 Working Mechanism of TensorFlow

To summarize the working mechanism of TensorFlow (see Figure 6.11), performing a training

step should at first use multiple threads to prepare the image data and corresponding labels,

and push them in the queue. The length of this queue is defined with capacity. Every time a

mini batch of BATCH SIZE elements is picked out to train the network and calculate the loss

of this batch. This loss is updated by the trainable parameters as well as the learning rate,

until we have a stable loss near zero.

6.3. Working Mechanism of TensorFlow 59

Figure 6.11: Working mechanism of TensorFlow

Chapter 7

Discussion

In this work, we have built one network with a suitable structure and two databases. Three

models are trained and validated: one that recognizes concrete cracks, another that recognizes

nature stone cracks, and the other that distinguishes joints and cracks of nature stones. In

this chapter, we will at first make discussions and further analyze the results. Secondly, a

comparison between our work and other studies will be made. Finally, limitations and potential

improvements to the current work is presented.

7.1 Discussions

After comparing the training results in this work, it is clear that training loss reduces sharply

in the early stage of training, and tends to become stable in the subsequent training. This

suggests that we can set the max step with a slightly larger value to observe the loss curve,

so that we could decide if the loss is steady. For example, in figure 6.6 (b) the loss of training

barely changes after 200 steps, but in order to observe whether the model has stabilized, we

still trained the model till 1800 steps.

Concerning the input format, TFRecord needs more time for its’ generation and more storage

space, but has a faster reading speed as shown in Table 4.1. We hence believe that TFRecord

60

7.2. Comparison 61

is an optimal choice if there are a large amount of samples in database and enough storage

space in the hard disk. This is because TFRecords can be used repeatedly once it is generated.

Moreover, with a faster reading speed, a lot of time can be saved during the tune of hyper-

parameters in the repeatedly training process.

The training accuracy of the nature stone detection model and of the model that distinguishes

joints from cracks are limited. According to the textbook of University Toronto [2], whether

the model is over-trained can be told from the line chart of cost values. As shown in Figure 7.1,

the model is under-fitting if the training loss and the test loss are both high. With over-fitting,

on the other hand, the training loss is low while the test accuracy is still very high. Before the

model is over-fitted, the loss of validations slopes down at first until it hits the minimum point

and then starts to slope up again. The results of loss suggest that those two mentioned models

are well trained, and the reason for the limited test accuracy is that the size of training set is

too small for model to learn all the features.

Figure 7.1: Overfitting and underfitting

7.2 Comparison

By comparing the results with those from other similar projects, we hope to determine whether

our results match the state of the art methods and what new light we caste on the research of

building renovation. There are three similar projects that can be compared with.

The first project was built on GiitHub by Satyen [28]. This model achieved a 85% accuracy on

7.3. Limitations and Potential Improvements 62

the test set of his own data set with a total of 8 layers. The sizes of the three CONV layers are

24@10× 10, 48@7× 7 and 96@11× 11.

The second project was led by Dr. Cha [15]. This model achieved a 97.95% test accuracy on

his own data set with a total of 6 layers. The sizes of the four CONV layers are 24@20 × 20,

, 48@15× 15, 96@10× 10 and 2@1× 1. The last CONV layer with 2@1× 1 plays the same role

as FC layers in our work.

The third project was also led by Dr. Cha [16] with region based DL method. This method

achieved a 94.7%, 91.8%, 86.1%, 90.9% and 85.2% test accuracy respectively for concrete cracks,

medium steel corrosion, high steel corrosion, bolt corrosion and steel delimitation. This network

contains 16 layers, 5 of which are CONV layers with the size of 96@7×7, 256@5×5, 384@3×3,

384@3 × 3 and 256@3 × 3 separately. Although it has a huge amount of parameters, the

prediction of each image takes only 0.03 seconds due to the matching performance of the

computer. Therefore, this model can also process videos in real time.

Compared with all projects above, the results of our work consistent with the research showing

that CNN method can detect concrete cracks with pretty high accuracy. Besides, our results

suggest that this method also has a promising potential in detecting nature stone problem like

cracks and joints detection. Last but not least, we have verified that transfer learning method

makes training process performance better.

7.3 Limitations and Potential Improvements

The limitations of this work mainly refer to two aspects: the amount of images and the com-

puting power of the machine. Our training set is rather small, which reduces the performance

of models because there are only limited features extracted during training process. If we had

a bigger data base, we would have higher test accuracy and a chance to train a model that can

detect Multiple Damage Types. The other limitation, lack of machine computer power, affects

the depth and complexity of the network structure and the application scene of trained model.

With higher computer power, we can build a deeper network with better performance.

Chapter 8

Conclusions

The chapter summarizes contributions and makes conclusions of this work. Suggestions and

preview for further researches are also presented.

8.1 Conclusion

The primary purpose of this thesis is to detect cracks of nature stones with CNN method. In

order to achieve it, we build a dataset about concrete crack with 40,000 images in two classes.

After analysis of classic CNN structures, a network structure is built and trained to detect

concrete cracks. With the method of transfer learning, the modle that is able to detect cracks

of nature stones is also trained. Moreover, with limited size of dataset, we build a model that

can distinguish cracks from joints of nature stones.

To conclude, the proposed CNN method can not only detect crack but also distinguish joint

from crack. In addition, the application of transfer learning can improve training efficiency

and achieve higher accuracy of prediction with fewer training steps. This means that neural

networks have greater potential in the field of architectural renovation. CNN has the ability

to learn features from a huge amount of data, but it also means that the implementation of

method requires a vast amount of training to build a robust model.

63

8.2. Outlook 64

8.2 Outlook

If a database of nature stone with multiple defect types can be created, DL method would be

able to identify more types of damage. Imaging there is a real time classifier that is able to

mark all different types of stone damages from video inputs (see figure 8.1), this network for

automatical identification of multiple damage types can mark the location and types of defects.

It will provide us a work method which is safer, more efficient, with lower cost and labor costs,

as well as with a more objective analysis in building renovation.

Figure 8.1: Mask RCNN

Bibliography

[1] CS231n convolutional neural networks for visual recognition.

[2] CSC321 winter 2018.

[3] Custom training: walkthrough | TensorFlow core.

[4] Data input pipeline performance | TensorFlow core.

[5] Digital noise: What is it & how to correct it.

[6] Illustrated glossary on stone deterioration =: Glossaire illustr sur les formes d’altration de

la pierre. OCLC: 845610298.

[7] ImageNet.

[8] Intel core i7-8550u processor (8m cache, up to 4.00 GHz) product specifications.

[9] Kernel (image processing). Page Version ID: 873534713.

[10] Setting the learning rate of your neural network.

[11] tf.initializers.truncated normal | TensorFlow core 1.13.

[12] tf.nn.convolution | TensorFlow core 1.13.

[13] What is deep learning? | how it works, techniques & applications.

[14] What is image recognition? - definition from WhatIs.com.

65

BIBLIOGRAPHY 66

[15] Young-Jin Cha, Wooram Choi, and Oral Bykztrk. Deep learning-based crack damage de-

tection using convolutional neural networks: Deep learning-based crack damage detection

using CNNs. 32(5):361–378.

[16] Young-Jin Cha, Wooram Choi, Gahyun Suh, Sadegh Mahmoudkhani, and Oral Bykztrk.

Autonomous structural visual inspection using region-based deep learning for detecting

multiple damage types: Autonomous SHM using deep faster r-CNN. 33(9):731–747.

[17] Adit Deshpande. A beginner’s guide to understanding convolutional neural networks.

[18] Xavier Glorot and Yoshua Bengio. Understanding the difculty of training deep feedforward

neural networks. page 8.

[19] Google for Startups Campus Korea. Google tech talk with jeff dean at campus seoul.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:

Surpassing human-level performance on ImageNet classification.

[21] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping

Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp

minima.

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification with

deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.

Weinberger, editors, Advances in Neural Information Processing Systems 25, pages 1097–

1105. Curran Associates, Inc.

[23] Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Ha. Gradient-based learning

applied to document recognition. page 46.

[24] Fei-Fei Li, Justin Johnson, and Serena Yeung. Lecture 6: Training neural networks, part

i. page 90.

[25] Dominic Masters and Carlo Luschi. Revisiting small batch training for deep neural net-

works.

BIBLIOGRAPHY 67

[26] Dmytro Mishkin and Jiri Matas. ALL YOU NEED IS a GOOD INIT. page 13.

[27] Natlia Neto and J. de Brito. Inspection and defect diagnosis system for natural stone

cladding. 23(10):1433–1443.

[28] Satyen Rajpal. Crack detection for an autonomous UAV. contribute to

satyenrajpal/concrete-crack-detection development by creating an account on GitHub.

original-date: 2018-01-03T01:33:05Z.

[29] Sumit Saha. A comprehensive guide to convolutional neural networks the ELI5 way.

[30] Tarang Shah. About train, validation and test sets in machine learning.

[31] A. Silva, J. de Brito, and P.L. Gaspar. Service life prediction model applied to natural

stone wall claddings (directly adhered to the substrate). 25(9):3674–3684.

[32] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale

image recognition.

[33] Dave Smith. Cutting-edge face recognition is complicated. these spreadsheets make it

easier.

[34] Leslie N. Smith. Cyclical learning rates for training neural networks.

[35] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper

with convolutions.

[36] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wo-

jna. Rethinking the inception architecture for computer vision.

[37] Rohan Varma. Picking loss functions - a comparison between MSE, cross entropy, and

hinge loss.

[38] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Object

detectors emerge in deep scene CNNs.

Appendix A

Rename File with Batch

1 @echo o f f

2 t i t l e Batch Rename

3 echo .

4 echo With t h i s batch f i l e we could rename a l l f i l e s in t h i s order .

5 echo .

6 echo .& s e t /p strtemp3= f i l e typ :

7 echo .& s e t /p strtemp2= What you want to add be fo r the name :

8 s e t l o c a l enab lede layedexpans ion

9 f o r / f ” de l ims=” %%a in (' d i r /a /b ∗.% strtemp3% ') do (

10 ren ”%%˜a” ”%strtemp2% %%a”)

11 echo .

12 echo OK

13 echo .

14 pause

68

Appendix B

Input

1 # coding : utf−8

2

3 # In [1] :

4

5 import t en so r f l ow as t f

6 import os

7 import numpy as np

8

9 de f g e t f i l e s (f i l e d i r) :

10 Po s i t i v e s = []

11 l a b e l P o s i t i v e s = []

12 Negat ives = []

13 l a b e l Nega t i v e s = []

14 f o r f i l e in os . l i s t d i r (f i l e d i r) :

15 name = f i l e . s p l i t (sep = ' . ')

16 i f ' Pos i t i ve ' in name [0] :

17 Po s i t i v e s . append (f i l e d i r + f i l e)

18 l a b e l P o s i t i v e s . append (0)

19 e l s e :

20 i f 'Negative ' in name [0] :

21 Negat ives . append (f i l e d i r + f i l e)

22 l a b e l Nega t i v e s . append (1)

23 ima g e l i s t = np . hstack ((Po s i t i v e s , Negat ives))

69

70

24 l a b e l l i s t = np . hstack ((l a b e l P o s i t i v e s , l a b e l Nega t i v e s))

25 # pr in t ('There are %d Po s i t i v e s \nThere are %d Negatives ' %(len (

Po s i t i v e s) , l en (Negat ives)))

26 temp = temp . t ranspose ()

27 np . random . s h u f f l e (temp)

28 ima g e l i s t = l i s t (temp [: , 0])

29 l a b e l l i s t = l i s t (temp [: , 1])

30 l a b e l l i s t = [i n t (i) f o r i in l a b e l l i s t]

31 re turn imag e l i s t , l a b e l l i s t

32

33 de f ge t batch (image , l abe l , image W , image H , ba t ch s i z e , capac i ty) :

34 image = t f . ca s t (image , t f . s t r i n g)

35 l a b e l = t f . c a s t (l abe l , t f . i n t32)

36 input queue = t f . t r a i n . s l i c e i n pu t p r o du c e r ([image , l a b e l])

37 l a b e l = input queue [1]

38 image contents = t f . r e a d f i l e (input queue [0])

39 image = t f . image . decode jpeg (image contents , channe l s =3)

40 image = t f . image . r e s i z e image w i th c r op o r pad (image , image W , image H)

41 image = t f . image . pe r image s tandard i za t i on (image)

42 image batch , l ab e l b a t ch = t f . t r a i n . batch ([image , l a b e l] , b a t c h s i z e =

bat ch s i z e , num threads = 8 , capac i ty = capac i ty)

43 l a b e l b a t ch = t f . reshape (l ab e l b a t ch , [b a t ch s i z e])

44 image batch = t f . c a s t (image batch , t f . f l o a t 3 2)

45 re turn image batch , l ab e l b a t ch

Appendix C

Network Structure

1 #coding=utf−8

2 import t en so r f l ow as t f

3

4 de f i n f e r e n c e (images , ba t ch s i z e , n c l a s s e s) :

5

6 with t f . v a r i a b l e s c op e (' conv1 ') as scope :

7 weights = t f . g e t v a r i a b l e (' weights ' ,

8 shape=[3 , 3 , 3 , 1 6] ,

9 dtype=t f . f l o a t32 ,

10 i n i t i a l i z e r=t f . t r u n c a t e d n o rma l i n i t i a l i z e r (

stddev =0.1 , dtype=t f . f l o a t 3 2))

11 b i a s e s = t f . g e t v a r i a b l e (' b ia se s ' ,

12 shape =[16] ,

13 dtype=t f . f l o a t32 ,

14 i n i t i a l i z e r=t f . c o n s t a n t i n i t i a l i z e r (0 . 1))

15 conv = t f . nn . conv2d (images , weights , s t r i d e s =[1 , 1 , 1 , 1] , padding='SAME

')

16 p r e a c t i v a t i o n = t f . nn . b ias add (conv , b i a s e s)

17 conv1 = t f . nn . r e l u (p r e a c t i v a t i on , name=scope . name)

18

19 with t f . v a r i a b l e s c op e (' poo l i ng1 l rn ') as scope :

20 pool1 = t f . nn . max pool (conv1 , k s i z e =[1 , 3 , 3 , 1] , s t r i d e s =[1 , 2 , 2 ,

1] , padding='SAME' , name='pool ing1 ')

71

72

21 norm1 = t f . nn . l r n (pool1 , depth rad ius=4, b i a s =1.0 , alpha=0.001 /

9 . 0 , beta =0.75 , name='norm1 ')

22

23 with t f . v a r i a b l e s c op e (' conv2 ') as scope :

24 weights = t f . g e t v a r i a b l e (' weights ' ,

25 shape=[3 , 3 , 16 , 3 2] ,

26 dtype=t f . f l o a t32 ,

27 i n i t i a l i z e r=t f .

t r u n c a t e d n o rma l i n i t i a l i z e r (stddev =0.1 , dtype=t f . f l o a t 3 2))

28 b i a s e s = t f . g e t v a r i a b l e (' b ia se s ' ,

29 shape =[32] ,

30 dtype=t f . f l o a t32 ,

31 i n i t i a l i z e r=t f . c o n s t a n t i n i t i a l i z e r

(0 . 1))

32 conv = t f . nn . conv2d (norm1 , weights , s t r i d e s =[1 , 1 , 1 , 1] ,

padding='SAME')

33 p r e a c t i v a t i o n = t f . nn . b ias add (conv , b i a s e s)

34 conv2 = t f . nn . r e l u (p r e a c t i v a t i on , name='conv2 ')

35

36 # pool2 and norm2

37 with t f . v a r i a b l e s c op e (' poo l i ng2 l rn ') as scope :

38 norm2 = t f . nn . l r n (conv2 , depth rad ius=4, b i a s =1.0 , alpha=0.001 / 9 . 0 ,

beta =0.75 , name='norm2 ')

39 pool2 = t f . nn . max pool (norm2 , k s i z e =[1 , 3 , 3 , 1] , s t r i d e s =[1 , 2 , 2 , 1] ,

padding='SAME' , name='pool ing2 ')

40

41 with t f . v a r i a b l e s c op e (' l o c a l 3 ') as scope :

42 reshape = t f . reshape (pool2 , shape=[ba t ch s i z e , −1])

43 dim = reshape . ge t shape () [1] . va lue

44 weights = t f . g e t v a r i a b l e (' weights ' ,

45 shape=[dim , 128] ,

46 dtype=t f . f l o a t32 ,

47 i n i t i a l i z e r=t f . t r u n c a t e d n o rma l i n i t i a l i z e r (

stddev =0.005 , dtype=t f . f l o a t 3 2))

48 b i a s e s = t f . g e t v a r i a b l e (' b ia se s ' ,

73

49 shape =[128] ,

50 dtype=t f . f l o a t32 ,

51 i n i t i a l i z e r=t f . c o n s t a n t i n i t i a l i z e r (0 . 1))

52 l o c a l 3 = t f . nn . r e l u (t f . matmul (reshape , weights) + b ia se s , name=scope . name)

53

54 # lo c a l 4

55 with t f . v a r i a b l e s c op e (' l o c a l 4 ') as scope :

56 weights = t f . g e t v a r i a b l e (' weights ' ,

57 shape=[128 , 128] ,

58 dtype=t f . f l o a t32 ,

59 i n i t i a l i z e r=t f . t r u n c a t e d n o rma l i n i t i a l i z e r (

stddev =0.005 , dtype=t f . f l o a t 3 2))

60 b i a s e s = t f . g e t v a r i a b l e (' b ia se s ' ,

61 shape =[128] ,

62 dtype=t f . f l o a t32 ,

63 i n i t i a l i z e r=t f . c o n s t a n t i n i t i a l i z e r (0 . 1))

64 l o c a l 4 = t f . nn . r e l u (t f . matmul (l o ca l 3 , weights) + b ia se s , name=' l o c a l 4 ')

65

66 # softmax

67 with t f . v a r i a b l e s c op e (' so f tmax l inea r ') as scope :

68 weights = t f . g e t v a r i a b l e (' so f tmax l inea r ' ,

69 shape=[128 , n c l a s s e s] ,

70 dtype=t f . f l o a t32 ,

71 i n i t i a l i z e r=t f . t r u n c a t e d n o rma l i n i t i a l i z e r (

stddev =0.005 , dtype=t f . f l o a t 3 2))

72 b i a s e s = t f . g e t v a r i a b l e (' b ia se s ' ,

73 shape=[n c l a s s e s] ,

74 dtype=t f . f l o a t32 ,

75 i n i t i a l i z e r=t f . c o n s t a n t i n i t i a l i z e r (0 . 1))

76 s o f tmax l i n e a r = t f . add (t f . matmul (l o ca l 4 , weights) , b ia s e s , name='

so f tmax l inea r ')

77

78 re turn s o f tmax l i n e a r

79

80 de f l o s s e s (l o g i t s , l a b e l s) :

74

81 with t f . v a r i a b l e s c op e (' l o s s ') as scope :

82 c r o s s en t r opy = t f . nn . s p a r s e s o f tmax c r o s s e n t r o py w i t h l o g i t s \

83 (l o g i t s=l o g i t s , l a b e l s=l abe l s , name='

xentropy per example ')

84 l o s s = t f . reduce mean (c ro s s ent ropy , name=' l o s s ')

85 t f . summary . s c a l a r (scope . name + '/ l o s s ' , l o s s)

86 re turn l o s s

87

88 de f t r a i nn ing (l o s s , l e a r n i n g r a t e) :

89 with t f . name scope (' opt imizer ') :

90 opt imize r = t f . t r a i n . AdamOptimizer (l e a r n i n g r a t e= l e a r n i n g r a t e)

91 g l o b a l s t e p = t f . Var iab le (0 , name=' g l oba l s t ep ' , t r a i n ab l e=False)

92 t r a i n op = opt imize r . minimize (l o s s , g l o b a l s t e p= g l o b a l s t e p)

93 re turn t r a i n op

94

95 de f eva lua t i on (l o g i t s , l a b e l s) :

96 with t f . v a r i a b l e s c op e (' accuracy ') as scope :

97 c o r r e c t = t f . nn . i n t op k (l o g i t s , l ab e l s , 1)

98 c o r r e c t = t f . c a s t (co r r e c t , t f . f l o a t 1 6)

99 accuracy = t f . reduce mean (c o r r e c t)

100 t f . summary . s c a l a r (scope . name + '/ accuracy ' , accuracy)

101 re turn accuracy

Appendix D

Train the model

1 # coding : utf−8

2

3 # In [1] :

4 import os

5 import numpy as np

6 import t en so r f l ow as t f

7 import input data

8 import model

9

10

11 N CLASSES = 2

12 IMGW = 220

13 IMG H = 220

14 BATCH SIZE = 32

15 CAPACITY = 256

16 MAX STEP = 2000

17 l e a r n i n g r a t e = 0.0001

18

19

20 de f r un t r a i n i n g () :

21

22 t r a i n d i r = 'C:\\ Users \\ J ie sheng Yang\\Desktop \\8 thTry\\Train \\ '

23 l o g s t r a i n d i r = 'C:\\ Users \\ J ie sheng Yang\\Desktop \\8 thTry\\

75

76

LeNet5 mode l o f crack \\ '

24 t ra in , t r a i n l a b e l = input data . g e t f i l e s (t r a i n d i r)

25 t ra in batch , t r a i n l a b e l b a t c h = input data . ge t batch (t ra in ,

26 t r a i n l a b e l ,

27 IMGW,

28 IMG H,

29 BATCH SIZE,

30 CAPACITY)

31 t r a i n l o g i t s = model . i n f e r e n c e (t ra in batch , BATCH SIZE, N CLASSES)

32 t r a i n l o s s = model . l o s s e s (t r a i n l o g i t s , t r a i n l a b e l b a t c h)

33 t r a i n op = model . t r a i nn ing (t r a i n l o s s , l e a r n i n g r a t e)

34 t r a i n a c c = model . eva lua t i on (t r a i n l o g i t s , t r a i n l a b e l b a t c h)

35 summary op = t f . summary . merge a l l ()

36 s e s s = t f . S e s s i on ()

37 t r a i n w r i t e r = t f . summary . F i l eWr i t e r (l o g s t r a i n d i r , s e s s . graph)

38 saver = t f . t r a i n . Saver ()

39 s e s s . run (t f . g l o b a l v a r i a b l e s i n i t i a l i z e r ())

40 coord = t f . t r a i n . Coordinator ()

41 threads = t f . t r a i n . s t a r t queue runne r s (s e s s=ses s , coord=coord)

42

43 ckpt = t f . t r a i n . g e t c h e c kpo i n t s t a t e (l o g s t r a i n d i r)

44 i f ckpt and ckpt . mode l checkpoint path :

45 saver . r e s t o r e (s e s s , ckpt . mode l checkpoint path)

46

47 t ry :

48 f o r s tep in np . arange (MAX STEP) :

49 i f coord . shou ld s top () :

50 break

51 , t r a l o s s , t r a a c c = s e s s . run ([t ra in op , t r a i n l o s s , t r a i n a c c])

52

53 i f s t ep % 50 == 0 :

54 pr in t (' Step %d , t r a i n l o s s = %.2 f , t r a i n accuracy = %.2 f%%' %(

step , t r a l o s s , t r a a c c ∗100 .0))

55 summary str = s e s s . run (summary op)

56 t r a i n w r i t e r . add summary (summary str , s tep)

77

57

58 i f s t ep % 100 == 0 or (s tep + 1) == MAX STEP:

59 checkpo int path = os . path . j o i n (l o g s t r a i n d i r , 'model . ckpt ')

60 saver . save (se s s , checkpoint path , g l o b a l s t e p=step)

61

62 except t f . e r r o r s . OutOfRangeError :

63 pr in t ('Done t r a i n i n g −− epoch l im i t reached ')

64 f i n a l l y :

65 coord . r e que s t s t op ()

66 coord . j o i n (threads)

67 s e s s . c l o s e ()

68

69 # tra i n

70 r un t r a i n i n g ()

Appendix E

Usage

1 # coding : utf−8

2

3 # In [1] :

4 #coding=utf−8

5 import t en so r f l ow as t f

6 from PIL import Image

7 import matp lo t l i b . pyplot as p l t

8 import input data

9 import numpy as np

10 import model

11 import os

12

13 de f get one image (t r a i n) :

14 f i l e s = os . l i s t d i r (t r a i n)

15 n = len (f i l e s)

16 ind = np . random . rand int (0 , n)

17 img d i r = os . path . j o i n (t ra in , f i l e s [ind])

18 image = Image . open (img d i r)

19 p l t . imshow (image)

20 p l t . show ()

21 image = image . r e s i z e ([2 2 0 , 220])

22 image = np . array (image)

23 re turn image

78

79

24

25

26 de f eva luate one image () :

27

28 # tra i n = 'C:\\ Users \\ J ie sheng Yang\\Desktop\\Wall \\ '

29 t r a i n = 'C:\\ Users \\ J ie sheng Yang\\Desktop \\8 thTry\\Test \\ '

30 image array = get one image (t r a i n)

31

32 with t f . Graph () . a s d e f a u l t () :

33 BATCH SIZE = 1

34 N CLASSES = 2

35 image = t f . ca s t (image array , t f . f l o a t 3 2)

36 image = t f . image . pe r image s tandard i za t i on (image)

37 image = t f . reshape (image , [1 , 220 , 220 , 3])

38 l o g i t = model . i n f e r e n c e (image , BATCH SIZE, N CLASSES)

39 l o g i t = t f . nn . softmax (l o g i t)

40 x = t f . p l a c eho lde r (t f . f l o a t32 , shape=[220 , 220 , 3])

41 l o g s t r a i n d i r = 'C:\\ Users \\ J ie sheng Yang\\Desktop \\8 thTry\\

LeNet5 mode l o f crack \\ '

42 saver = t f . t r a i n . Saver ()

43

44 with t f . S e s s i on () as s e s s :

45 pr in t (” Loading Model from the s p e c i f i e d d i r e c t o r y ”)

46 ckpt = t f . t r a i n . g e t c h e c kpo i n t s t a t e (l o g s t r a i n d i r)

47 i f ckpt and ckpt . mode l checkpoint path :

48 g l o b a l s t e p = ckpt . mode l checkpoint path . s p l i t ('/ ') [−1] . s p l i t

('− ') [−1]

49 saver . r e s t o r e (s e s s , ckpt . mode l checkpoint path)

50 pr in t ('Model Loading su c c e s s f u l , Train ing step i s %s ' %

g l ob a l s t e p)

51 e l s e :

52 pr in t ('Load Model f a i l e d , f i l e not found ')

53 p r ed i c t i on = s e s s . run (l o g i t , f e e d d i c t={x : image array })

54 max index = np . argmax (p r ed i c t i o n)

55 i f max index==0:

80

56 pr in t ('The Probab i l i t y o f a Crack i s %.6 f ' %pred i c t i on [: , 0])

57 e l s e :

58 pr in t ('The Probab i l i t y o f No Crack i s %.6 f ' %pred i c t i o n [: , 1])

59

60 eva luate one image ()

