
Fakultät Bauingenieurwesen Institut für Bauinformatik

THESIS

A Deep Learning Approach to Big Data
An Application to Traffic Prediction

Submitted by: Falk Hügle (3254131)

Advisors: Prof. Dr.-Ing. Raimar Scherer
Dipl.-Ing. Ngoc Trung Luu

Selbstständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne
Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus fremden Quellen
direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht.

Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher oder ähnlicher Form
einer anderen Prüfungsbehörde vorgelegt und ist auch noch nicht veröffentlicht worden.

New York, 19.05.2017

.............................
Falk Hügle

Contents

List of Figures II

List of Tables III

List of Algorithms IV

1 Introduction 1
1.1 Subject and Goals . 1
1.2 Structure . 1

2 Academic and Historical Context 2
2.1 Academic Context . 2
2.2 Historical Context . 3

3 Theory 7
3.1 Machine Learning . 7

3.1.1 Basics . 7
3.1.2 Learning Paradigms . 8
3.1.3 Data in Machine Learning . 10
3.1.4 Statistical Learning Theory . 11
3.1.5 Loss and Cost Functions . 15
3.1.6 Types of Problems . 20
3.1.7 Types of Models . 28
3.1.8 Hyperparameter Optimization . 29
3.1.9 Assessing Performance . 33

3.2 Artificial Neural Networks . 35
3.2.1 Basics . 35
3.2.2 Artificial Neurons . 37
3.2.3 Types of Architectures . 42
3.2.4 Learning Algorithms . 54
3.2.5 Improving Generalization . 67

3.3 Deep Learning . 74
3.3.1 Theoretical Justification . 74
3.3.2 Challenges in Training Deep Neural Networks 76
3.3.3 Solutions to Challenges . 79
3.3.4 New Developments . 86

3.4 Big Data . 89

4 Application to Traffic Prediction 94
4.1 Problem Description . 94
4.2 Related Research . 95
4.3 Traffic Research Basics . 96
4.4 Data and Data Pre-Processing . 97
4.5 Model . 101
4.6 Implementation . 109
4.7 Training . 110
4.8 Model Evaluation . 116
4.9 Possible Improvements and Future Research . 122
4.10 Other Applications in Civil Engineering . 123
4.11 Conclusion . 124

References 125

Acronyms 138

I

List of Figures

3.1 Loss Functions - Regression . 16
3.2 Loss Functions - Classification . 18
3.3 Linear Regression example . 22
3.4 Logistic Regression example . 25
3.5 Density Estimation example . 27
3.6 Biological Neuron . 38
3.7 Artificial Neuron . 38
3.8 Activation Functions . 41
3.9 Perceptron and Multilayer Perceptron . 44
3.10 Autoencoder . 45
3.11 Fully Connected and Stacked Elman Recurrent Neural Network 48
3.12 Boltzmann Machine and Restricted Boltzmann Machine 53
3.13 Deep Boltzmann Machine . 54
3.14 Momentum and Nesterov Momentum update rule 58
3.15 Recurrent Neural Network unrolled in time . 62
3.16 Underfitting and Overfitting . 68
3.17 Comparison Deep Learning and conventional models 74
3.18 Rectified Linear Activation Function . 79
3.19 Maxout Unit . 80
3.20 Long Short-Term Memory Unit . 81
3.21 Unsupervised Pre-Training effectiveness . 84

4.1 Fundamental Diagram of Traffic Flow . 96
4.2 Traffic Plot: Occupancy vs. Flow . 97
4.3 Traffic Plot: Speed vs. Flow . 97
4.4 Traffic Plot: Occupancy vs. Speed . 97
4.5 Traffic and Weather Station locations . 98
4.6 Incident Data format . 100
4.7 Model Architecture . 103
4.8 Correlation Significance Matrix . 105
4.9 Correlation Matrix . 105
4.10 Training and Validation Error . 116
4.11 Trained Weights - Convolutional Layers . 117
4.12 Trained Weights - LSTM Layer . 118
4.13 Mixture Components Probabilities . 119

II

List of Tables

3.1 Performance Metrics Classification . 34
3.2 Model Comparison 1 . 34
3.3 Model Comparison 2 . 34

4.1 Hyperparameters - Model . 110
4.2 Traffic Regimes . 111
4.3 Hyperparameters - Learning Algorithm . 111
4.4 Hyperparameters - Regularization . 112
4.5 Result MAE and MSE . 120
4.6 Result Accuracy, Precision and Recall . 120
4.7 Model Comparison LSTM vs. Trivial - Paired T-Test 121
4.8 Model Comparison LSTM vs. Trivial - McNemar Test 121
4.9 Model Comparison LSTM vs. RNN - Paired T-Test 121
4.10 Model Comparison LSTM vs. RNN - McNemar Test 122

III

List of Algorithms
1 Perceptron Learning Algorithm . 55
2 Batch Gradient Descent . 56
3 Mini-Batch Stochasic Gradient Descent . 57
4 Backpropagation . 61
5 Backpropagation Through Time . 63
6 Contrastive Divergence . 66

IV

Chapter 1

Introduction

1.1 Subject and Goals

The primary goals of this thesis are to give an overview over the field of Deep Learning (DL),
i.e. Machine Learning (ML) with deep Artificial Neural Networks (ANNs), and to demonstrate
an application of DL to a particular Big Data (BD) problem.

Specifically, a broad background introduction to the theory of ML and ANNs is provided. A
comprehensive exploration of the field DL then elucidates, from a theoretical perspective, why
DL works, what its advantages are over shallow ANNs, which problems occur in training Deep
Neural Networks (DNNs), and which recent theoretical advances have helped overcome these
challenges. Furthermore, the subject of BD is explored in some detail. In this context, it is
exhibited how, in light of ever larger and more ubiquitous Data Sets, DL presents itself as an
excellent approach to address BD problems.

In order to further substantiate the validity of this data-driven method, a practical application of
DL to Traffic Modeling (TM) is discussed in detail. This use case exemplifies a scenario in which
learning complex patterns directly from data is advantageous compared to explicitly modeling
the relationships between a system’s constituent parts. This research project encompasses
acquisition and Pre-Processing of a massive Data Set, model design and its implementation
using state of the art DL libraries, model training leveraging cloud accessible supercomputing
resources, as well as generation of predictions on test data and their statistical analysis.

1.2 Structure

Chapter 2 lays out the academic context of DL, including its definition and relationship to
other fields. Furthermore, the history of DL is explored in the broader context of the history of
Artificial Intelligence (AI) and, in particular, ANN research.

Chapter 3 focuses on theory. The subject requires a thorough understanding of ML and ANNs,
which are each discussed in dedicated subchapters. These two subchapters are to be understood
as a reference for the rest of the thesis and can be skipped if the reader has sufficient background
knowledge. The third subchapter provides a detailed view on DL, in particular, its theoretical
justification, what challenges exist in training DNNs, and what solutions are available to
overcome these challenges. Furthermore, promising new developments in the field are outlined.
The fourth subchapter provides an overview of the subject of BD and discusses its relationship
to DL.

Chapter 4 describes an application of DL to the BD problem of TM. In particular, the underlying
data, model design, model implementation, and training are explained in detail. Moreover,
possible use cases of the model, as well as results of example calculations are given, based on
which model quality is compared to alternative approaches. Lastly, other possible applications
of DL in Civil Engineering are discussed. No particular section is dedicated to the importance
and achievements of DL, instead, relevant references are included throughout the thesis, e.g.
chapter 2 and chapter 3, subchapter 3.

1

Chapter 2

Academic and Historical Context

2.1 Academic Context

Definition Deep Learning

Bengio [1, Introduction] defines Deep Learning (DL) broadly as a method to solve hard
to formalize problems using a computer, by means of learning complicated concepts from
experience. Concepts are defined in terms of their relationship to simpler concepts, in a deep,
hierarchical fashion.

Alternatively, DL can be described as a set of algorithms that model data by learning multiple
levels of representation and abstraction, using processing layers composed of linear and nonlinear
transformations [2]. The purpose of these algorithms is to make predictions, classify data, control
intelligent agents, or to generate new data with the same characteristics as the original data.

Sometimes, it is claimed that DL is synonymous with Artificial Neural Networks (ANNs),
however, this is incorrect. There are ANNs that are not deep, and there is DL that does not
involve ANNs, since learning multiple levels of function compositions can be achieved using
different algorithms [1, Introduction].

Hireachical Academic Context

DL is a subset of Representation Learning (RpL) [3], i.e. the learning of data representations or
”features” from the data itself, as opposed to manually engineering them. Specifically, it is the
subset of RpL that deals with learning deep hierarchies of such representations.

RpL, in turn, is a branch of Machine Learning (ML) [4] that is concerned with giving computers
the ability to learn from experience, i.e. to learn from examples and past mistakes, as opposed
to explicitly programming them.

ML can be considered a subfield of Artificial Intelligence (AI) [5] that studies the design of
machines that exhibit intelligence, i.e. the design of intelligent agents that perceive, reason
about, and act on their environment in order to achieve goals associated with human thinking
and activities [6, 7, 8]. In fact, ML is the subset of AI that is mostly concerned with perception,
Learning and to a lesser degree reasoning, in all of which DL methods are highly relevant.

Lastly, AI can be viewed as a branch of Computer Science (CS), the study of the theory of
computation, information processes, and the design of computational systems [9].

Hence, DL can be considered an approach to AI [1, Introduction], which currently, as a result
of recent theoretical advances and the availability of large Data Sets1, enjoys greater popularity
than alternative approaches, such as Knowledge-Based Systems (KBSs) [10] and Probabilistic
Graphical Models (PGMs) [11]. While DL has proven valuable for narrow AI tasks, such as
Automatic Speech Recognition (ASR) and Computer Vision (CV), it remains to be seen which
role it will play in solving Artificial General Intelligence (AGI) [12], i.e. AI capable of performing
any task that can be performed by a human.

1 compare 3.4

2

Relationship to Similar Fields

DL has clear overlaps with Statistics and Optimization as it heavily relies on methods that
originated in these fields, such as Gradient Descent (GD).1 However, Statistics has a stronger
focus on summarizing data, hypotheses testing, and on quantifying confidence in predictions.
DL, one the other hand, focuses on algorithms leveraging different representations of the data
in order to make the best possible predictions on unseen data.

DL is not synonymous with Data Mining (DM) [13], which is largely exploratory data analysis,
i.e. the discovery of unknown properties of the data and their transformation for further use. In
contrast, DL is more concerned with learning a model of the Data Generating Process. DL and
DM overlap, but they are not strict subsets of each other. While both can be considered Big
Data (BD) methods, DM often involves questions about efficient data management, organization,
and storage, which are not usually of primary concern in DL. DL uses DM techniques, and vice
versa. For instance, DM methods are often employed as Pre-Processing steps for DL applications.

Lastly, DL is distinct from Computational Neuroscience (CNS) [14] whose primary focus is to
understand how the brain works and to construct computational models of it. DL, by contrast,
concerns itself with building systems that can solve the same type of problems the brain can
solve, regardless of similarity.

2.2 Historical Context

This section is largely based on Bengio and Schmidhuber’s publications [1, ch. 1.2.1, 15] on the
history of DL, which should be consulted for a more comprehensive overview.

The history of DL is inseparably connected with the history of CS, AI, and in particular ANNs.
Since the early days of computing, people have wondered whether they could endow computers
with the ability to learn, instead of having to program them explicitly. Hence, DL only appears to
be a new concept, when it actually has been around since the 1940s, albeit under different names.
The history of DL can be roughly divided into three distinct waves of enthusiasm, interspersed
with two periods of pessimism.

Cybernetics (1940s - 1960s)

The Cybernetics period is characterized by the emergence of simple, linear models inspired by
Neuroscience, which had demonstrated that the brain is a network, propagating electrical signals
between neurons. This suggested the possibility of constructing an electronic brain.

In 1943, McCulloch and Pitts [16] presented the first model of an Artificial Neuron (AN)2,
which could differentiate between objects of two categories. However, it did not learn, i.e. its
parameters had to be set manually. In 1949, Hebb [17] first published ideas about how Learning
might be implemented in the brain, nowadays referred to as Hebbian Learning.

In 1956, the Dartmouth Conference brought together scientists from different fields to discuss
possible approaches to simulating aspects of intelligence on a machine. At this conference, Logic
Theorist, the first Automated Theorem Prover, was presented. Apart from earlier checkers
playing programs, this is often considered the first true AI program. Also at this conference,
John McCarthy coined the term ”Artificial Intelligence”, thus giving birth to the field [5, p. 17].
In 1958 and 1962, Rosenblatt [18, 19], described the Perceptron3, the earliest implementation of
an Artificial Neuron on a computer.

1 compare 3.2.4
2 compare 3.2.2
3 compare 3.2.3, Directed Architectures, Feedforward Neural Networks, Perceptron

3

In 1960, Widrow and Hoff [20] described ADALIN1, a physical system implementing a learnable
version of a McCulloch Pitts Neuron, similar to the Perceptron. However, error signals were
taken with respect to Net Input before thresholding, essentially implementing GD Learning2.

These early single-Layer, single-Unit ANNs were effectively equivalent to Linear Regression3

models. Soon, the first models featuring Hidden Layers (HLs) appeared [21]. In fact, networks
with up to 8 Layers were described [22], which can be considered the first instances of DL.

First AI Winter (1974 - 1980)

By the mid-70s, AI had become overhyped, following overly optimistic statements by leading
researchers.4 Furthermore, Rosenblatt had made overly optimistic predictions about the
Perceptron’s capabilities.5 However, Minsky and Papert [23] discovered a severe limitation of
the Perceptron, namely, that it could not learn the XOR function.

In 1973, Lighthill [24] pointed out that the field had failed to deliver on its promises, and
provided a pessimistic outlook on the scalability of the methods developed so far. In aggregate,
these events caused a loss of confidence in AI, leading to severe funding cuts for basic AI research
during the following 10 years.

Connectionism (1980s - 1990s)

This period is characterized by the hypothesis that intelligence is best understood as an
emergent phenomenon arising from the connections between computational units. The early
1980s saw extensive research into models of Symbolic Reasoning, i.e. Expert Systems (ExSs)
[25], however, it was not clear how the associated mechanisms could be implemented by the
brain. Connectionism, which relies on the concept of Distributed Representations (DRs)6 [26],
was a more plausible model of cognition.

It became clear that the limitations of Perceptrons identified by Minsky two decades earlier
could be addressed by multilayer networks, i.e. Multilayer Perceptrons (MLPs)7, which were
shown to be universal function approximators [27, 28]. In 1975 and 1980, Fukushima described
the Cognitron [29] and the Neocognitron [30]. These models were among the earliest examples
of deep, multilayered networks, representing data hierarchically.

In 1981, Werbos successfully applied the Backpropagation (BP) algorithm8 to training ANNs
[31]. BP, an efficient method for computing error gradients in deep networks, was further
popularized by a 1986 landmark paper by Rumelhart [32], who demonstrated that it could
give rise to useful DRs in the HLs. The paper also introduced the idea of using BP in training
Recurrent Neural Networks (RNNs)9, whose connections have directed cycles enabling them to
model temporal data. BP became one of the driving forces behind the resurgence of interest
in ANNs in the mid 1980s. In 1989, LeCun [33] applied BP to Handwritten Digit Recognition
(HDR), giving rise to one of the first commercially successful applications of ANNs, an automatic
check reading system.

1 ADAptive LInear Element
2 compare 3.2.4
3 compare 3.1.6, Regression
4 H. A. Simon, 1965: ”Machines will be capable, within twenty years, of doing any work a man can do.”
5 F. Rosenblatt: ”The Perceptron may eventually be able to learn, make decisions, and translate languages.”
6 compare 3.2.1, Principle of Distributed Representations
7 compare 3.2.3, Directed Architectures, Feedforward Neural Networks, Multilayer Perceptron
8 compare 3.2.4, Gradient Descent with Backpropagation, Backpropagation
9 compare 3.2.3, Directed Architectures, Recurrent Neural Networks

4

Another important milestone in Connectionism, apart from BP, were Hopfield Nets (HNs) [34],
which showed how an RNN could serve as an associative, content-addressable memory.

Second AI Winter (late 1980s - early 1990s)

By the end of the 1980s, it became apparent that, despite being promising from a theoretical
perspective, in practice, BP only worked well for shallow networks, limiting architectures to one
or two HLs. In particular, RNNs, which are deep in time1, could not be trained successfully to
learn long-term dependencies. Specifically, in a 1991 landmark paper, Hochreiter [35] identified
the Vanishing and Exploding Gradient (VEG) Problem2, which Schmidhuber [15] calls the
Fundamental DL Problem.

Like two decades earlier, overambitious goals had been set, e.g. Japan’s Fifth Generation Project
for AI aimed at producing a fully conversational AI within a short time frame. Moreover,
products had become overhyped and could not deliver on their initial promise. For instance,
investors became disappointed with the limitations of ExSs, resulting in a collapse of the market
for LISP machines [36].

These developments lead to government funding cuts to AI research, hampering ANN
development in particular. During this period, the field moved to other methods, such as Kernel
Machines [37] and PGMs [11, 38].

Deep Learning (2006 - today)

Up to 2006, it was widely believed that Deep Neural Networks (DNNs) were hard to train, and
it was not obvious whether it could be done using BP. While some groundwork had already been
laid much earlier, the lack of computer power did not allow for algorithms to scale to non-trivial
problem sizes.

As early as 1997, Hochreiter and Schmidhuber [39] described the Long Short-Term Memory
(LSTM) Unit3, one of the earliest methods developed to overcome the Fundamental DL Problem.
Another key advance in DL was the concept of Unsupervised Pre-Trainining (UPT). Already in
1991, Schmidhuber [40] had shown how UPT could be used to train stacks of RNNs. In 2006,
the concept was rediscovered in a landmark paper by Hinton [41] describing a greedy, layer-wise
Pre-Training method for a DNN. This demonstrated one of the first scalable applications for
training DNNs, coining the term ”Deep Learning”.

Recently, DL has established itself as the superior method for CV tasks. For instance, in 2011, for
the first time, a DL system reached super-human performance in a traffic sign recognition contest
[42]. In 2012, the winner of the ImageNet competition4 was a DL model [43]. The record-low
error rates set by this model have since been improved, reaching super-human performance
in 2015 [44]. DL had a similarly transformative effect on ASR, where error rates could be
decreased considerably compared to traditional systems [45, 46]. In Natural Language Processing
(NLP) and Machine Translation (MT), DL is quickly approaching the performance of the best
known alternative algorithms, and is now often the method of choice for various other Learning
problems.

1 compare 3.3.1, Types of Depth
2 compare 3.3.2, Vanishing and Exploding Gradient Problem
3 compare 3.3.3, Special Types of Units, Long Short-Term Memory Unit
4 The ImageNet Large Scale Visual Recognition Challenge is an important object detection and image
classification competition

5

The period since 2006 is characterized by a strong increase in the number of DL research groups
and by a defragmentation of the field. DL groups now often study NLP, CV, and ASR, while
traditionally these had been separate research areas. Since 2013, the field has its own conference,
the ”Conference on Learning Representations” [47], and has thus become a field in its own right.

The availability of large Data Sets1 and better computational resources played an important role
in scaling toy models of the past, contributing heavily to the popularity of the field. Furthermore,
with the release of various DL programming libraries, e.g. Theano [48], TensorFlow [49], and
Torch [50], DL has become an easily accessible technology, driving a quickly growing market for
AI related products.

1 compare 3.4

6

Chapter 3

Theory

3.1 Machine Learning

3.1.1 Basics

Definition

Machine Learning (ML) [51] is concerned with giving computers the ability to learn from
experience, i.e. to learn from examples and past mistakes, as opposed to explicit programming.
Examples of ML include teaching a computer program to detect fraudulent credit card
transactions, or to generate convincing images of handwritten digits.

Notation

For ease of notation, throughout this chapter P (x) is used as a shorthand to denote cumulative
probability functions FX(x), and p(x) to denote both probability mass functions pX(x) as well
as probability density functions fX(x). Furthermore, p(x) is referred to as a density in either
case. The infimum/supremum of a set {f(x) : x ∈ X} is denoted infx∈X f(x)/supx∈X f(x), even
though it is not necessarily an element of the set. Unless stated otherwise, superscripts j on xj

and yj denote indexes, not powers.

In ML the data can be endowed with probabilistic semantics [4]. Let x and y denote realizations
of the random input vector X and random target vector Y , such that x ∈ X and y ∈ Y, where
the input space X ⊆ Rn and the target space Y ⊆ Rk are compact. The following definitions of
basic terminology are largely adapted from [52].

Terminology

The Data Generating Process underlying the data is assumed to be representable in
the following way. The random input vectors X are generated independently and identically
distributed according to a fixed but unknown distribution P (x). Subsequently, additional data,
the targets Y , also referred to as labels, may be randomly realized according to a fixed but
unknown conditional distribution P (y|x).1 Hence, the data are fully characterized, either by
the joint distribution of inputs and targets P (x,y) = P (y|x)P (x), or by the distribution of the
inputs P (x) in case no targets exist.

A Training Set (TrS) of size m is a set of m independent and identically distributed random
samples, drawn from the data distribution. It is denoted as Sm = {(x1,y1), ..., (xm,ym)}, or
Sm = {x1, ...,xm} in case no targets exist.

The Learning Problem is the task of inferring a function h(x) from the TrS that best describes
particular characteristics of the data distribution, i.e. that best generalizes 3.2.5 to data beyond
the TrS. The Learning Problem is further specified by the applicable Learning Paradigm 3.1.2.

1 This is a generalization of the case in which the targets are a deterministic function of the inputs Y = f(X).

7

The Hypothesis Space H is the family of admissible functions from which h can be chosen.
Without loss of generality [52, p. 23], one can assumeH to be defined with respect to a parameter
space Θ, i.e. to represent the set of parameterized functions {h(x,θ) : θ ∈ Θ}, where θ is a
specific parameter vector.1

A Learning Machine, also referred to as Learning System, Learning Method, Learner, and
Model2 is mathematically equivalent to the Hypothesis Space H. Conceptually, a Learning
Machine can be thought of as an abstract machine, whose state is a particular choice h from a set
of functions H it can implement, i.e. a particular choice of admissible model parameters θ ∈ Θ.
When in a configuration θ, the Learning Machine converts its inputs x to outputs h(x,θ).3

Learning, also referred to as Training, is the process of transitioning of the Learning Machine
between an Initial State h0, i.e. θ0 to some final state hf , i.e. θf .

A Learning Algorithm A : H × Zm → H, i.e. A : Θ × Zm → Θ maps an Initial State θ0

and a TrS Sm to a, possibly approximately, and possibly locally, optimal hypothesis function
h∗ = h(x,θ∗), by actualizing the process of Learning. Z denotes the product space X × Y, or
X in case no targets exist. When in state θ∗ the machine is said to be trained.4

3.1.2 Learning Paradigms

Learning can be categorized into three fundamental Learning Paradigms that further specify
the Learning Problem and mainly differ in how much information is available to the Learning
Algorithm (LA).

Supervised Learning

In Supervised Learning (SL) [4, chs. 1.1.1 and 1.2], also referred to as Predictive Learning, one is
given a Training Set (TrS) of labeled data Sm =

{
(x1,y1), ..., (xm,ym)

}
, consisting of pairs of

inputs x and targets y. In the simplest instance of SL, the objective is to infer a parameterized
function h : X → Y from the Training Data that maps inputs to predictions ŷ = h(x;θ),
such that the mapping generalizes5 well beyond the TrS. This encompasses Regression and
Classification problems.6

An Action Space A, such that h : X → A, with A different from Y, has to be considered
whenever predictions and targets have different domains.

A Decision Rule δ : A → Y that maps the predictions of h into the target space is applied
whenever the action and target space differ.

1 In a linear model with one real-valued input variable and one real-valued output variable, the Hypothesis Space
is H = {θ0 + θ1x : θ0 ∈ R, θ1 ∈ R}
2 Often, the term Learning Algorithm is used synonymously with Learning Machine. This however, overloads the
term since Learning Algorithm also refers to the algorithm used to train the Learning Machine.
3 Some Learning Machines are intimately connected to a particular Learning Algorithm. As a result, the
combination of Learning Machine and Learning Algorithm may be referred to as Learning Machine
4 If the associated optimization problem has a closed-form solution, an Initial State is not required.
5 compare 3.2.5
6 compare 3.1.6, Regression and Classification

8

More generally, SL infers an estimator p̂(y|x;θ) of the conditional density p(y|x). The true
density p(y|x) is assumed to have known parametric form p(y;ϕ (x)), where ϕ are distribution
parameters.1 Therefore, h maps inputs to predictions of the distribution parameters ϕ̂(x;θ) =
h(x;θ), which allows p̂(y|x;θ) to be expressed indirectly as p̂(y; ϕ̂(x;θ)). This is referred to as
conditional Density Estimation (DE).2

The process of Learning manifests itself through an error correction procedure. The model’s
prediction errors are associated to a Cost Function (CF)3 to be minimized. During Learning,
the model parameters θ are successively adjusted, such that this cost decreases.

SL is loosely analogous to a teacher presenting training examples to a student, whose goal it
is to infer how the targets depend on the inputs, such that good predictions can be made for
unseen inputs. Each time a training example is presented to the student, she makes a prediction
and receives feedback from the teacher. Based on this feedback, the student adapts her internal
model so as to improve her predictions.

Unsupervised Learning

In Unsupervised Learning (UL) [4, chs. 1.1.1 and 1.3], also referred to as Descriptive Learning,
one is given a TrS of unlabeled data Sm =

{
x1, ...,xm

}
.4 The goal is to infer aspects of the

underlying distribution from the Training Data. In the most general case, a parameterized
function h(x;θ), representing an estimator p̂(x;θ) of the data density p(x), is learned.5

As in SL, Learning is the process of successively adjusting the model parameters θ in such a way
that some CF is minimized. However, there is no error signal, since no targets exist that could
be predicted. Instead, the CF quantifies the degree of inadequacy of p̂(x;θ) in representing the
Training Data.

UL is roughly analogous to a student, who learns on their own by observing the world and
constructing an internal model of it. For instance, children intuitively learn to represent the
concept of gravity without the need for a teacher.

Since labeling data requires a human expert, the vast majority of existing data is unlabeled. It
has been investigated how SL could benefit from these large amounts of unlabeled data. The
resulting methods, such as Unsupervised Pre-Trainining (UPT)6 [53], which involves both types
of data, are sometimes referred to as Semi-Supervised Learning [54].

Reinforcement Learning

Reinforcement Learning (RiL) [4, ch. 13] is concerned with teaching an agent to take appropriate
actions in an environment. There is no supervisor or TrS. Instead, the agent learns by observing
a reward signal determined by her actions and the state of the environment. Specifically, the
agent attempts to find a policy, i.e. a mapping from states of the environment to possible actions,
that maximizes an expectation of discounted, cumulative future reward.

An example of RiL is teaching a Learning System to play video games. Pixel data on the screen
represents the environment, and the game’s score is the reward signal [55]. RiL is out of scope
for this thesis and not discussed further.
1 Note that the distribution parameters ϕ are different from the model parameters θ. The distribution parameters
fully specify the density function. For instance, the distribution parameters of a Normal Distribution are mean µ,
and standard deviation σ.
2 compare 3.1.6, Density Estimation
3 compare 3.1.5, Definition Cost Function
4 The Training Set consists of inputs only, i.e. no targets exist.
5 compare 3.1.6, Density Estimation
6 compare 3.3.3, Special Initialization Schemes, Unsupervised Pre-Training

9

3.1.3 Data in Machine Learning

Types of Variables

While variables are often categorized by their associated Scale of Measure [56], this thesis
emphasizes their differences with respect to encoding. Based on this criterion, one can distinguish
three types of variables.

Numeric Variables represent continuous measurements. Variables of this type are encoded as
real numbers. In terms of Scales of Measure, they are measured on the Interval Scale1 or Ratio
Scale2.

Ordinal Variables represent discrete measurements that can be meaningfully ordered, i.e.
ranked. Variables of this type are encoded as integers. In terms of Scales of Measure, they are
measured on the Ordinal Scale3, Interval Scale, or Ratio Scale.

Nominal Variables represent discrete, qualitative measurements that cannot be meaningfully
ordered. Variables of this type are encoded as One-Hot Vectors, i.e. k-element binary vectors
with exactly one element equal to 1, and the other elements either all 0 or all −1, where k is the
number of states the variable can take. In the special case k = 2, a single binary number suffices
to encode the variable. In terms of Scales of Measure, Nominal Variables are measured on the
Nominal Scale4. This thesis refers to Nominal Variables as Categorical Variables. Furthermore,
Binary Variables exclusively refer to Categorical Variables with 2 categories, never to Ordinal
Variables.

Data Pre-Processing

Data Pre-Processing [57] is the process of transforming raw data into a Training Set (TrS).
Different Machine Learning (ML) models require different degrees of data Pre-Processing. While
Decision Trees [58] can be fed relatively unprocessed data, others models, such as Artificial
Neural Networks (ANNs) require heavily preprocessed Training Data in order to work well.

One Pre-Processing step that should always be taken is Outlier Detection [59], since outliers
introduce a bias into the trained model. However, this should be limited to detecting impossible
values, and obvious bad measurements. Data points that are merely unlikely or surprising should
be retained, since they may contain valuable information.

Another recommended Pre-Processing step is the Handling of Missing Values [60]. Samples
with missing attributes can either be deleted, or updated with imputed values. Unless values are
missing randomly, deleting samples can introduce a bias and should be avoided. The simplest way
of imputing values is replacing them with a constant, such as the mean over the good samples.
A more sophisticated approach is interpolation, e.g. Linear Interpolation, Spline Interpolation,
etc. A yet more sophisticated imputation method is to employ a Learning Model, such as a
Denoising Autoencoder5. This can be considered a form of nonlinear Interpolation based on the
entire information contained in the Data Set.

1 Variables measured on the Interval Scale do not possess a unique and non-arbitrary zero value, e.g. temperatures
measured in degrees Celsius. Therefore, differences but not ratios of measurements are meaningful.
2 Variables measured on the Ratio Scale possess a unique and non-arbitrary zero value, e.g. temperatures measured
in degrees Kelvin. Therefore, differences as well as ratios of measurements are meaningful.
3 Variables measured on the Ordinal Scale possess a unique and non-arbitrary rank order, but do not reflect
relative degrees of difference, e.g. ”Strongly Disagree”, ”Disagree”, etc. Therefore, neither differences nor ratios
of measurements are meaningful.
4 Variables measured on the Nominal Scale are non-numeric and do not possess a rank order, e.g.
”Red”,”Blue”,”Green”. Therefore, differences and ratios of these measurements are meaningless.
5 compare 3.2.3, Directed Architectures, Feedforward Neural Networks, Autoencoder

10

Often, attributes are measured in different units, which can result in vastly different variable
scales and ranges, e.g. number of bathrooms and price of houses. Particularly when working with
ML systems trained with Gradient Descent1, Feature Scaling [61] is a strongly recommended
Pre-Processing step. Rescaling the data to the unit range, or standardizing to zero mean and
unit standard deviation2 are possible options.

Typically, some form of Feature Decorrelation and Dimensionality Reduction is in
order, both of which can be achieved by applying Principal Component Analysis (PCA) [62].
High-dimensional data is often concentrated around a lower-dimensional manifold in Feature
Space.3 Feature Decorrelation by PCA, in conjunction with Feature Scaling by Standardization
leads to benign error surfaces, which in turn accelerates Gradient Descent. In terms of
dimensionality reduction, PCA returns a new set of uncorrelated variables, associated with
the axes of highest variation in Feature Space, the Principal Components. Retaining only the
first k Principal Components, one can often capture almost all of the information contained in
the Data Set. As a result of this information being encoded in fewer variables, Learning is sped
up considerably.

3.1.4 Statistical Learning Theory

Definition

Statistical Learning Theory (SLT) [63, 37] is the mathematical treatment of Machine Learning
(ML). It provides a rigorous framework to assess the Generalization Performance of models
learned using a finite set of Training Data, i.e. to assess how well a Learning Algorithm (LA)
can be expected to generalize its learned knowledge to unseen data. One of the central concerns
of SLT is the derivation of bounds providing probabilistic guarantees on the Generalization
Error (GE) of different LAs.4

This subsection discusses SLT as it relates to Supervised Learning (SL)5. A lot of mathematical
rigor is omitted to not obscure main results. Vapnik [52] provides a rigorous, complete treatment
of the material.

The Learning Problem

To formalize the Learning Problem, one defines a non-negative Loss Function (LF)6,
L(h(x;θ),y) that, for given input x and target y, quantifies the inadequacy of h(x;θ). In
case h(x;θ) outputs a prediction ŷ, the LF assigns a penalty to the prediction error e = ŷ − y
[65].7 The expected value of the LF evaluated at θ is called the Risk of θ.

R(θ) = EX,Y [L(h(X;θ),Y)] =

∫
X×Y

L(h(x;θ),y)dP (x,y) (3.1)

The goal of Learning is to find the model parameter setting θ∗ that minimizes the Risk.

θ∗ = arg min
θ∈Θ

R(θ) (3.2)

1 compare 3.2.4, Gradient Descent with Backpropagation, Basic Framework
2 This is accomplished by subtracting from each attribute its mean and dividing by its standard deviation.
3 compare 3.3.1, Principle of Deep Compositions
4 Much of the material covered in this subsection is part of a particular branch of SLT, called Vapnik-Chervonenkis
theory. Extensions and alternatives to the concepts discussed here exist, for instance Stability Theory [64].
5 compare 3.1.2, Supervised Learning
6 compare 3.1.5, Definition Loss Function
7 The concept of Prediction Error is not to be confused with two concepts commonly used in Statistics, (a)
”Error” ε = y − f(x), which is derived from the relationship y = f(x) + ε, where f(x) is the true functional
dependency of y on x, and ε is a random variable, and (b) ”Residual” r = ε̂ = y − ŷ, which is derived from the
relationship y = h(x;θ) + ε̂.

11

Empirical Risk Minimization

The minimization (3.2) cannot be carried out since R(θ) cannot be computed, as it depends
on the unknown joint distribution P (x,y). However, an estimator R̂m for R, the Empirical
Risk (ER) based on a sample of size m, can be computed from the sample Sm.

R̂m(θ) =
1

m

m∑
j=1

L(h(xj ;θ),yj) (3.3)

Hence, instead of minimizing the actual Risk R(θ), the Empirical Risk Minimzation (ERM)
principle refers to finding the parameter setting θ̂∗m that minimizes the ER R̂m(θ).

θ̂∗m = arg min
θ∈Θ

R̂m(θ) (3.4)

In other words, the average error on the Training Set (TrS), i.e. the Training Performance, is
used as an approximation for the expected error over all possible samples, i.e. the Generalization
Performance of the trained model.

A desirable property of any statistical estimator is Consistency1. Specifically, Consistency of
ERM means that both the true Risk of the ER minimizer R(θ̂∗m), as well as the minimal
ER R̂m(θ̂∗m), converge in probability2 to the smallest possible Risk R(θ∗). That means, as TrS
size increases, both Generalization Performance as well as the Training Performance of the ER
minimizer approach the best possible Generalization Performance [52, ch. 3.1].3

Vapnik [67] showed that under some technical conditions these two convergence requirements
are equivalent to uniform convergence in probability of the ER R̂m(θ) to the true Risk R(θ)
over the full set of functions {h(x;θ) : θ ∈ Θ}.

lim
m→∞

P

(
sup
θ∈Θ

(R(θ)− R̂m(θ)) > ε

)
= 0, ∀ε > 0 (3.5)

Hence, finding the necessary and sufficient conditions for the Consistency of ERM reduces to
finding necessary and sufficient conditions for uniform convergence in probability of the ER
R̂m(θ) to the true Risk R(θ).

Consistency alone is not strong enough a requirement to establish soundness of the ERM
principle. Even if ERM is consistent, it may be possible to construct cases where the asymptotic
rate of convergence of R(θ̂∗m) to R(θ∗) is arbitrarily small. Hence, in addition to Consistency,
Fast Convergence of ERM is required [52, ch. 3.12]. Concretely, Fast Convergence means
that there exits an m0, such that ∀m > m0

P
(
R(θ̂∗m)−R(θ∗) > ε

)
< e−cε

2m (3.6)

where c > 0 is a constant [65], i.e. as TrS size increases, Generalization Performance of the model
configuration found via ERM converges exponentially fast to the best possible Generalization
Performance.

1 An estimator T̂m for parameter T is consistent if it converges in probability to the true parameter value T , i.e.
limm→∞ P (|T̂m − T | > ε) = 0, ∀ε > 0. Informally, this expresses the property, that as sample size increases, it
becomes increasingly unlikely that the value of the estimator is far off the true value [66, ch. 1.8].
2 Incidentally, it really is uniform one-sided convergence in probability, which is a slightly different concept. As
long as no mathematician is around, this difference can be swept under the rug.
3 Recall that R(θ̂∗m) is not computable since P (x,y) is unknown, while R̂m(θ̂∗m) is computable by definition.
Furthermore, observe that it is not a requirement that θ̂∗m converge to θ∗, since ERM is not concerned with
finding a function that replicates the true minimizing function, but rather with finding a function whose Risk is
as close as possible to the Risk of the function with the lowest possible Risk.

12

Growth Function and VC-Dimension

Let NΘ(Sm) denote the number of different separations of the input vectors of sample Sm that
can be achieved using a set of indicator functions {h(x;θ) : θ ∈ Θ}.1

The Growth Function (GF) [52, ch. 4.9.1] is defined as

GΘ(m) = ln supNΘ(Sm) (3.7)

where the supremum is taken over all possible samples of size m. Any GF is either linear in m

GΘ(m) = m ln 2 (3.8)

or bounded by a logarithmic function for m > d

GΘ(m)

{
= m ln 2 if m ≤ d
< d

(
ln m

d + 1
)

else
(3.9)

The GF allows for the construction of a criterion that pins down easier to verify conditions for
Consistency and Fast Convergence of ERM. The limit condition

lim
m→∞

GΘ(m)

m
= 0 (3.10)

is a necessary and sufficient condition for uniform convergence of the ER R̂m(θ) to the true Risk
R(θ) over the full set of functions {h(x;θ) : θ ∈ Θ}, and therefore is a necessary and sufficient
condition for the Consistency of ERM. Furthermore, it is also a sufficient condition for Fast
Convergence of ERM. This criterion is distribution independent, i.e. it holds for every P (x,y).

The VC-Dimension [52, ch. 4.9] of the set of functions {h(x;θ) : θ ∈ Θ} is the integer d that
satisfies GΘ(d) = d ln 2 and GΘ(d+ 1) 6= (d+ 1) ln 2. That is, if GΘ(m) is linear, such a d does
not exist and the VC-Dimension is said to be infinite. Conversely, if GΘ(m) is bounded by a
logarithmic function with coefficient d, the VC-Dimension is finite and equal to d. Equivalently,
if the VC-Dimension of a set of indicator functions {h(x;θ) : θ ∈ Θ} is equal to d, then (a) there
exists a set of d points, such that these points can be separated in all of the 2d possible ways
by functions of this set, and (b) there does not exist a set of d+ 1 points for which this can be
done, i.e. for every set of d + 1 points there exists a binary labeling {y1, .., ym} of the points,
such that no function in the set can accomplish the corresponding separation.2

Hence, the VC-Dimension is a measure of the capacity of the set of hypothesis functions
considered by the LA. It shows that the notion of capacity is not merely equivalent to the number
of function parameters, but rather represents a more subtle notion of complexity. Observe that
(3.10) is satisfied if and only if the VC-Dimension d is finite.

1 Everything that follows assumes {h(x;θ) : θ ∈ Θ} to be a set of indicator functions. Generalizations to
real-valued functions exist.
2 For example, the VC-Dimension of the set of linear indicator functions h(x;θ) = I(θ0 +

∑n
i=1θixi ≤ 0),θ ∈ Rn,

in n dimensions is equal to n + 1. This is easy to see for n = 2, since in the plane, one can always find a set
of 3 points, such that there exists a parameterization of a line for each of the 8 possible ways the points could
be separated by this line. However, it is not possible to find such a set of 4 different points, since for 4 different
points in the plane it must be true that either (a) at least 3 points lie on a line, in which case there is no line
separating the outermost two points on the line from the other two points, or (b) they form a convex quadrilateral
whose diagonals connect to two disjunct sets of two points which cannot be separated by a line, or (c) they form a
non-convex quadrilateral, in which case there does not exist a line separating the point inside the quadrilateral’s
convex hull from the other 3.

13

Generalization Bounds

If (3.10) holds, i.e. if the VC-Dimension d is finite, Consistency and Fast Convergence of ERM
are guaranteed, and two important types of distribution independent bounds relating to the
generalization ability of ERM also hold [52, ch. 4.12]:

(1) A probabilistic guarantee on the Generalization Performance of the ER minimizer θ̂∗m

P
(
R(θ̂∗m) ≤ R̂m(θ̂∗m) + CI1

(m
d
,m, η

))
≥ 1− η (3.11)

where CI1(md ,m, η) is a confidence interval whose specific form depends on the set of functions
{h(x;θ) : θ ∈ Θ} under consideration. It is a monotonically decreasing function of m

d , m and
η. The above inequality guarantees that, with some minimum probability, the GE of the model
found using ERM is no greater than its Training Error (TrE) plus some buffer. The buffer is
smaller, the more samples are used training the model, the less complex the model, and the
higher the allowed probability η for (3.11) to fail.

(2) A probabilistic guarantee on the lowest achievable generalization error R(θ∗)

P
(
R(θ∗) ≥ R̂m(θ̂∗m)− CI2

(m
d
,m, η

))
≥ 1− 2η (3.12)

where CI2(md ,m, η) is a different confidence interval whose specific form also depends on the set
of hypothesis functions considered. The construction of the second bound relies on the fact that
the first bound holds. Hence, CI2 can sometimes be expressed as the sum of CI1 and another term
that may depend on m and η. This inequality guarantees that, with some minimum probability,
the lowest achievable GE is no smaller than the GE of the model found using ERM minus some
buffer.

These bounds1 show that the model capacity represented by the VC-Dimension d acts as a
trade-off parameter. Evidently, the higher d, the lower the TrE, but the wider the confidence
intervals.

Structural Risk Minimization

ERM is a large sample method appropriate if m/d is large, since this causes the confidence
interval CI1 to be small. If however, m/d is small, a small TrE does not imply a small GE. It
may even be possible to reduce TrE to zero while having poor generalization ability. This is
referred to as Overfitting2. Therefore, if only little Training Data is available, d needs to be kept
small.

Structural Risk Minimization (SRM) takes this effect into consideration. Under this paradigm,
minimizing GE is a trade-off, expressed by (3.11), between minimizing ER and obtaining a tight
generalization bound with VC-Dimension d, i.e. model capacity, as adjustment parameter. On
the one hand, ER decreases as d increases. On the other hand, CI1 increases as d increases.

Let the set of function {h(x;θ) : θ ∈ Θ} be endowed with a structure, such that Sk =
{h(x;θ) : θ ∈ Θk} with S1 ⊂ S2 ⊂ . . . ⊂ Sn ⊂ . . . , and let the VC-Dimension of each subset
dk be finite satisfying d1 < d1 < . . . < dn < . . . , then SRM corresponds to the following two
step process [68]. First, a minimization of the ER is carried out for each subset. Subsequently,
the Sn is selected that minimizes the sum of the minimal ER and the corresponding confidence
interval.

1 Vapnik [52, ch. 4] derives concrete expressions for CI1 and CI2 for various sets of functions {h(x;θ) : θ ∈ Θ}
with finite VC-Dimension.
2 compare 3.2.5, Generalization Error

14

In practice, it is rarely possible to compute the VC-Dimension of a set of functions. As a result,
it is generally impossible to derive an exact expression for the confidence interval. However, SRM
provides a theoretical justification for the concept of Regularization1, and concrete algorithms
can be derived in some cases [69].

While for Artificial Neural Networks (ANNs), the VC-Dimension cannot generally be computed
[70], there are ways of inducing structure, allowing for the model capacity to be varied
qualitatively [68]. For instance, model capacity can be systematically increased by increasing the
number of Units in the Hidden Layer (HL), thus endowing the set of functions implementable
by the network with a structure in the above-defined sense. Another way of inducing structure is
to adjust the regularization parameter used in Weight Decay (WD) Regularization2. Decreasing
the value of this parameter systematically reduces the constraints on the set of functions
implementable by the network. In both cases, SRM corresponds to training multiple models
with different capacity, subsequently picking the one with the lowest GE.

3.1.5 Loss and Cost Functions

The terms Loss Function (LF), Cost Function (CF), Error Function, and Objective Function are
often used synonymously. At least two distinct concepts exist that will be distinguished here.

Definition Loss Function

In Supervised Learning (SL)3, for a single given input-target pair (x,y), a LF

L(h(x;θ),y) (3.13)

quantifies the inadequacy of the model output h(x;θ). Typically, it is real-valued and
non-negative. In case4 h(x;θ) outputs a prediction ŷ, the LF assigns a penalty to the Prediction
Error, e = ŷ − y with L(ŷ,y) = 0 if and only if ŷ = y [71]. In case h(x;θ) outputs estimators
for the distribution parameters ϕ ∈ Φ of a parametric density p(y;ψ), i.e. ψ̂ = h(x;θ), the LF
expresses the negative of a Goodness of Fit measure of p̂ given the input-target pair.5

In Unsupervised Learning (UL), the LF also quantifies the inadequacy of the model output,
however, without relating it to a target. In what follows, only the SL case is considered.
Aggregation of Losses of multiple output-target pairs leads to the concept of a CF, which is
used as an Objective Function to be minimized by a Learning Algorithm (LA).

The choice of LF should reflect the salient characteristics of the Learning Problem at hand. If the
application dictates that large deviations of predictions from targets are disproportionately worse
than small ones, the LF should take account of that. Moreover, the LF affects the convergence
rate of the LA as well as the bounds on Generalization Error (GE) [72].6

Types of Loss Functions

Below, commonly used LFs [72, 73] are exhibited, along with their derivatives needed in
Backpropagation (BP)7.

1 compare 3.2.5
2 compare 3.2.5, Weight Decay
3 compare 3.1.2, Supervised Learning
4 compare 3.1.1, Terminology
5 Note, that the distribution parameters ψ are different from the model parameters θ. The distribution parameters
fully specify a parametric density, e.g. the mean and standard deviation parameter of the Normal Distribution,
while the model parameters parameterize the Learning Machine.
6 compare 3.1.4, Generalization Bounds
7 compare 3.2.4, Gradient Descent with Backpropagation, Backpropagation

15

It is assumed for simplicity that the targets are scalars. The generalization to vector-valued
model outputs is straightforward. Assuming h(x;θ) is an n-dimensional vector and hj its jth
component, then the Loss is equal to the sum of the component Losses. The derivative of the
Loss with respect to a specific component hj is the derivative of the corresponding component
Loss.

L(h(x;θ),y) =

n∑
i=1

L(hi, yi) (3.14)

∂

∂hj
L(h(x;θ),y) =

∂

∂hj

n∑
i=1

L(hi, yi) =

n∑
i=1

∂

∂hj
L(hi, yi) =

∂

∂hj
L(hj , yj) (3.15)

The Squared Loss (SqrL) is most commonly used in Regression problems1, e.g. in Artificial
Neural Networks (ANNs) with Linear Output Units (LinOUs)2. It assigns a disproportionately
higher Loss to large deviations of predictions from targets.

L2(ŷ, y) = (ŷ − y)2 (3.16)

∂

∂ŷ
L2(ŷ, y) = 2(ŷ − y) (3.17)

The Absolute Loss (AbsL) is another LF for Regression that assigns a Loss proportional to
the magnitude of the prediction error.

L1(ŷ, y) = |ŷ − y| (3.18)

∂

∂ŷ
L1(ŷ, y) = sign(ŷ − y) (3.19)

Other LFs for Regression exist, such as the Absolute Percentage Loss, the Huber Loss [74],
and the Vapnik ε-insensitive Loss [75]. The last two address the sensitivity to outliers of the
SqrL. Figure 3.1 shows a plot of the Regression LFs described above.

Figure 3.1: Regression Loss Functions

1 compare 3.1.6, Regression
2 compare 3.2.2, Types of Activation Functions, Linear Activation Function

16

The Indicator Loss (IndL), also referred to as 0/1-Loss, [76] is a LF used in Binary
Classification (BC) problems1. If y and ŷ are both binary in {0, 1} or {−1, 1}, i.e. if h(x;θ)
maps directly into class predictions, this Loss indicates whether prediction and target disagree

L0/1(ŷ, y) = I(ŷ 6= y) (3.20)

If y ∈ {0, 1} and h(x;θ) ∈ R, the following version of the IndL is considered

L0/1(h(x;θ), y) = y I(h(x;θ) < b) + (1− y) I(1− h(x;θ) ≤ b) (3.21)

with b = 0 if h(x;θ) is unbounded, as in ANNs with Linear Output Unit (OU), and b = 0.5
if h(x;θ) ∈ (0, 1) in case of Logistic OU.2 This LF is neither convex nor differentiable since
its derivative is zero almost everywhere, and does not exist at the discontinuity. Minimization
problems based on this Loss are NP-hard [77] and inaccessible to gradient-based approaches.
Hence in practice, smooth, convex approximations are employed.

The Negative Log Likelihood (NLL) Loss is a very general LF. A particular instantiation
of it is used in BC. If y ∈ {0, 1} and ŷ ∈ (0, 1), it is defined as

Lnll(ŷ, y) = −y ln ŷ − (1− y) ln(1− ŷ) (3.22)

∂

∂ŷ
Lnll(ŷ, y) = −y

ŷ
+

1− y
1− ŷ

=
ŷ − y
ŷ(1− ŷ)

(3.23)

This can be regarded as a smooth, convex version of the IndL. The NLL Loss for BC never assigns
zero Loss, and the Loss approaches infinity as the prediction approaches the wrong value. More
generally, the NLL Loss is used in Density Estimation (DE) problems3

Lnll(h(x;θ), y) = − ln p̂(y;h(x;θ)) = − ln p̂(y|x;θ) (3.24)

∂

∂hi
Lnll(h(x;θ), y) = − 1

p̂(y;h(x;θ))

∂

∂hi
p̂(y;h(x;θ)) (3.25)

where p̂(y|x;θ) is an estimator for the density of the targets, conditional on the inputs.
Technically, it is not a proper LF as it can take negative values.

Example (1): Observe that the NLL Loss for BC (3.22) is a special case of the more general
NLL Loss (3.24), where p̂ is the density of a Bernoulli Distributed random variable [78]

− ln p̂(y;h(x;θ)) =− ln(h(x;θ)y(1− h(x;θ))1−y) = − ln(ŷy(1− ŷ1−y))

=− y ln ŷ − (1− y) ln(1− ŷ) = Lnll(ŷ, y)
(3.26)

Minimizing this Loss is analogous to Maximum Likelihood Estimation of the probability
parameter of a Bernoulli distributed random variable [79] based on a single training example.

Example (2): In conditional DE, assuming a normally distributed target, the model outputs
h(x;θ) = (µ̂(x;θ), σ̂(x;θ)) map into the distribution parameter space of the Normal
Distribution.

Lnll(h(x;θ), y) =− ln p̂(y;h(x;θ))

=− ln
1√

2πσ̂(x;θ)
+

1

2

(y − µ̂(x;θ))2

(σ̂(x;θ))2

(3.27)

1 compare 3.1.6, Classification
2 If y ∈ {−1, 1}, this version of the IndL simplifies to L0/1(h(x;θ), y) = I(y h(x;θ) ≤ 0) and L0/1(h(x;θ), y) =
I(y(h(x;θ)− 0.5) ≤ 0), respectively.
3 compare 3.1.6, Density Estimation

17

∂

∂µ̂
Lnll(h(x;θ), y) =− y − µ̂

σ̂2

∂

∂σ̂
Lnll(h(x;θ), y) =− 1

σ̂2
− (y − µ̂)2

σ̂3

(3.28)

The Cross Entropy (CE) Loss is widely used in Multiclass Classification (MC) problems,
as in ANNs with Softmax Output Layer (SOL)1. It is a generalization of the NLL Loss for BC
to k ≥ 2 classes. In this case, y is modeled as a k-dimensional One-Hot Vector2. Furthermore,
h(x;θ) is a k-dimensional vector whose components are non-negative and sum to one. Thus, it
models the probability mass function of a Categorically Distributed random variable.

Lce(h(x;θ),y) = −
k∑
l=1

yl lnhl (3.29)

∂

∂hl
Lce(h(x;θ),y) = − yl

hl
(3.30)

The CE Loss has its theoretical justification in Information Theory. It measures how well p(y|x)
is approximated by h(x;θ) [1]. In analogy to the NLL Loss for BC, it can be viewed as a smooth,
convex approximation to the IndL for k-class Classification problems.3

Figure 3.2 shows a plot of the LFs for BC described above. Two additional LFs commonly used,
the Logistic Loss and the Hinge Loss, are included for comparison.

Figure 3.2: Classification Loss Functions

Definition Cost Function

In Machine Learning (ML), CFs quantify aggregated Loss, and are employed as Objective
Functions to be minimized by a LA. This minimization, i.e. Learning, is done with respect to
the model parameters θ on the basis of output-target pairs {(h(x1;θ),y1), . . . , (h(xm;θ),ym)}
associated with a particular Training Set (TrS) Sm =

{
(x1,y1), ..., (xm,ym)

}
. It is therefore

1 compare 3.2.2, Types of Activation Functions, Softmax Activation
2 compare 3.1.3, Types of Variables
3 Note that for the case k=2, the NLL Loss for BC is recovered

18

convenient to make the dependency on the parameters explicit and omit the dependency on the
constant TrS. Hence, the Cost

C(θ) = g(L(h(x1;θ),y1), . . . , L(h(xm;θ),ym)) = g(l1, . . . , lm) (3.31)

∂C

∂θi
=
∂C

∂g

m∑
j=1

∂g

∂lj
∂lj

∂θi
(3.32)

aggregates the Losses lj = L(h(xj ;θ),yj) over the TrS using Aggregation Function g.

Mean Aggregation is based on the arithmetic average. Deep Learning (DL) applications
almost exclusively use this particular Aggregation Function. Incidentally, the Empirical Risk
(ER) (3.3) defines a CF based on Mean Aggregation.

gmean(l1, . . . , lm) =
1

m

m∑
i=1

lj (3.33)

Other Aggregation Functions are sometimes employed [80]. For instance, Sum Aggregation
differs from Mean Aggregation only by a constant factor m. Therefore, the corresponding
minimization problem has the same solution. However, Costs based on different sample sizes
are no longer comparable.

gsum(l1, . . . , lm) =
m∑
i=1

lj (3.34)

Root Mean Aggregation is defined as the square root of the mean Loss. For scaling purposes,
it is typically used in conjunction with the SqrL.

grm(l1, . . . , lm) =

√√√√ 1

m

m∑
i=1

lj (3.35)

In some instances, a CF based on Max Aggregation is constructed. Minimizing this CF is
equivalent to minimizing the maximum absolute Loss over the TrS, i.e. the worst case scenario.
This type of aggregation is related to the Minimax criterion in Statistical Decision Theory and
Robust Optimization [81].

gmax(l1, . . . , lm) = max(|l|1, . . . , |l|m) (3.36)

Types of Cost Functions

The Mean Squared Error (MSE) is the most widely used CF in Regression problems. It
combines the SqrL with the Mean Aggregation Function.

Cmse(θ) = gmean(l12, . . . , l
m
2) =

1

m

m∑
j=1

L2(ŷj , yj) =
1

m

m∑
j=1

(ŷj − yj)2 (3.37)

∂

∂θi
Cmse(θ) =

1

m

m∑
j=1

∂L2

∂ŷj
∂ŷj

∂θi
=

2

m

m∑
j=1

(ŷj − yj)∂ŷ
j

∂θi
(3.38)

MSE computes the average SqrL over the TrS. It is sensitive to outliers, which is a result of
the fact that the SqrL penalizes large errors disproportionately. During Learning, the model is
pushed towards reducing large prediction errors to the detriment of smaller errors. Regression
models trained on MSE learn estimators for the conditional mean of the targets given the inputs
E(Y |x) =

∫
Y y dP (y|x) [82, ch. 3.1.2].

19

The Mean Absolute Error (MAE) is another CF used in Regression. It combines the AbsL
and Mean Aggregation.

Cmae(θ) = gmean(l11, . . . , l
m
1) =

1

m

m∑
j=1

L1(ŷj , yj) =
1

m

m∑
j=1

|ŷj − yj | (3.39)

∂

∂θi
Cmae(θ) =

1

m

m∑
j=1

∂L1

∂ŷj
∂ŷj

∂θi
=

1

m

m∑
j=1

sign(ŷj − yj)∂ŷ
j

∂θi
(3.40)

MAE computes the average AbsL over the TrS. It is more robust to outliers than MSE, as
it places the same importance on large and small prediction errors. However, it is harder to
optimize than MSE due to it not being differentiable everywhere. Since in ML numerical LAs
are common, this does not constitute an obstacle. In case of one-dimensional target, Regression
models trained on MAE learn estimators for the conditional median of the target given the
input, i.e. an estimator for m, such that

∫m
−∞dP (y|x) ≥ 1

2 and
∫∞
m dP (y|x) ≤ 1

2 [82, ch. 3.1.2].1

Analogously, the Negative Log Likelihood CF and the Cross Entropy CF are defined as
combining the NLL Loss and the CE Loss with Mean Aggregation.

In practical DL applications, additional terms, implementing some form of Regularization2, are
often added to the CF. Typically, these terms take the form of norms on the parameter vector.
For instance, the Weight Decay (WD) term α‖θ‖p with p = 1 or 2 effectively restricts the
capacity of the model, with regularization parameter α controlling the strength of the effect.
This is an instance of Structural Risk Minimization (SRM).3

3.1.6 Types of Problems

Regression

In the context of Machine Learning (ML), Regression refers to predicting one or multiple
continuous target variables4, from one or multiple input variables5 [84, ch. 3.2, 4, ch. 1.2.2].
The use of the term differs slightly from its use in statistics where it simply refers to modeling
the relationship between dependent and independent variables, without the requirement for the
dependent variables to be continuous [85]. In ML, the term Regression is essentially synonymous
with Curve Fitting [86].

The purpose of Regression models is to infer and quantify causal relationships between variables
that can then be used for prediction. Examples of Regression problems include:

• predicting house prices from their square footage and number of rooms

• predicting daily returns of a stock index based on daily returns of the previous five days

• predicting Traffic Speeds at different locations given previous measurements and auxiliary
variables6

1 The conditional median is a special conditional quantile inf{y : P (y|x) ≥ τ}, τ ∈ [0, 1], with τ = 0.5. CFs for
arbitrary conditional quantiles exist. In particular, Cqτ (θ) = 1

m

∑m
j=1Lqτ (ŷj , yj) with Lqτ (ŷ, y) = 2(ŷ − y)(I(y >

0)− τ). Notice that Cq0.5 and Lq0.5 reduce to Cmae and L1, respectively [83].
2 compare 3.2.5
3 compare 3.1.4, Structural Risk Minimization
4 also referred to as labels, dependent variables, explained variables, predicted variables, endogenous variables,
response variables or regressands
5 also referred to as features, independent variables, explanatory variables, predictor variables, exogenous
variables, exposure variables or regressors
6 compare 4

20

The semantics of a Regression model are intimately tied to the Cost Function (CF)1 used to
train it. In most instances, a model of the mean of the targets conditional on the inputs2 is
considered. Moreover, models of the conditional median or arbitrary conditional quantiles3, and
even of the conditional mode4, exist.

Formally5, in Regression, one constructs a parameterized model h(x;θ) with parameters θ ∈ Θ,
that maps the n-dimensional input6 x to predictions ŷ of the targets y ∈ Rk, i.e. ŷ = h(x;θ).

For one-dimensional targets7 y and a Training Set (TrS) of m samples of input-target pairs
Sm =

{
(x1, y1), . . . , (xm, ym)

}
, the most common CF associated with Regression is the Mean

Squared Error (MSE) Cost Cmse based on the Squared Loss L2

Cmse(θ) =
1

m

m∑
j=1

L2(ŷj , yj) =
1

m

m∑
j=1

(h(xj ;θ)− yj)2 (3.41)

This Cost Function is an instance of the Empirical Risk (ER) based on a sample of size m, i.e.
Cmse(θ) = R̂m(θ), which is an estimator of the true risk

R(θ) = EX,Y [L2(h(X;θ),Y)] =

∫
X×Y

L2(h(x;θ), y)dP (x, y) (3.42)

Cmse(θ) reflects the average squared error over the TrS induced by the parameter configuration
θ, and the Learning Problem consists in finding the parameter vector θ̂∗m that minimizes this
CF

θ̂∗m = arg min
θ∈Θ

Cmse(θ) (3.43)

This is an instance of Empirical Risk Minimzation (ERM) and equivalent to solving a general
Least Squares [88, ch. 4] optimization problem. Cmse(θ̂

∗
m) reflects the Training Performance

of the trained model, i.e. Cmse(θ̂
∗
m) = R̂m(θ̂∗m), and is an estimator of its Generalization

Performance R(θ̂∗m).

Lastly, h(x, θ̂∗m) is an estimator for the expectation8 of Y, conditional on x

E[Y |x] =

∫ ∞
−∞

y dP (y|x) =

∫ ∞
−∞

yp(y|x) dy (3.44)

1 compare 3.1.5, Definition Cost Function
2 This models the expectation of the targets given the inputs.
3 This is referred to as Quantile Regression and, for a particular quantile qτ with τ ∈ [0, 1], models the value
below which the target falls with a probability of τ given the inputs. For τ = 0.5, Median Regression is recovered.
Note that the median is different from the mean if the conditional density is asymmetric [83].
4 This is referred to as Mode Regression or Modal Regression and models the most likely target given the inputs.
Note that the mode is different from the mean and from the median if the conditional density is asymmetric [87].
5 compare 3.1.4
6 The elements of x can be continuous or discrete and may each have different domains.
7 This formalism trivially generalizes to the multidimensional case y ∈ Rk.
8 In order to model conditional quantiles q(Y |x) = inf{y : P (y|x) ≥ τ}, τ ∈ [0, 1], or the conditional mode
mode(Y |x) = arg maxyp(y|x), the Squared Loss L2(ŷ, y) has to be replaced appropriately. For instance, for the
conditional median m = q0.5, the Absolute Loss L1(ŷ, y) is used, while for arbitrary conditional quantiles, Lqτ (ŷ, y)
is used; compare 3.1.5. For the conditional mode, more esoteric Loss Functions are available [87].

21

The simplest example of Regression is Linear Regression (LinR) [89, p. 26] in n input
variables and one-dimensional target. In this case, the Hypothesis Space is the set of linear
functions in n variables, i.e. the set of hyperplanes {θTx : θ ∈ Rn+1}, and the parameter space
is the n + 1-dimensional Euclidian Space. A bias term θ0 is accommodated by introducing a
degenerate feature x0, that is always equal to one. Hence, the line h(x;θ) = θ0+

∑n
i=1θixi = θTx

is fitted to the Training Data Sm using the Cmse Cost Function. LinR has the closed-form
solution θ̂∗m = (XTX)−1XTy, where X is an m× (n+ 1) feature matrix with [X]ji = xji and
y is an m-dimensional target vector. Figure 3.3 shows a randomly generated problem instance
for n = 1.

Figure 3.3: ŷ(x) is the solution of a randomly generated LinR problem based on a Training Set
of size m = 50. For comparison, the solution ŷ(x, x2) of a slightly more complicated model, which
includes x2 as explanatory variables, is shown as well. Even though a quadratic term is included,
this is still referred to as LinR. Evidently, the quadratic model is better able to capture the global
structure of the data.

Classification

In the context of ML, Classification refers to predicting one or multiple discrete target variables
from one or multiple input variables, where each target variable belongs to exactly one of multiple
distinct classes, also called categories. In the special case of two classes, this is called Binary
Classification (BC), otherwise Multiclass Classification (MC) [84, ch. 2.1, 4, ch. 1.2.1]. In BC
the classes are often referred to as Positive and Negative Class.

One can distinguish direct Classification methods that directly predict class membership, e.g.
a Perceptron1, and indirect Classification methods that first solve the intermediate problem of
predicting a probability distribution over class labels, e.g. a Multilayer Perceptron (MLP)2 with
Softmax Output Layer (SOL)3. Hence, indirect Classification models are actually Regression
models in the Statistics sense whose continuous output must be further processed in order to
predict a discrete class label.

1 compare 3.2.3, Directed Architectures, Feedforward Neural Networks, Perceptron
2 compare 3.2.3, Directed Architectures, Feedforward Neural Networks, Multilayer Perceptron
3 compare 3.2.2, Types of Activation Functions, Softmax Activation

22

Classification models partition Feature Space into non-overlapping subsets, one for each class,
such that each point in Feature Space maps to a unique class. A subset associated with a
particular class need not be connected, i.e. it can be the union of several disconnected sets.
In particular in BC, the partitioning hypersurface is called Decision Boundary. If the Classifier
induces a linear Decision Boundary, it is referred to as Linear Classifier.

While the purpose of direct Classification is exclusively predicting class labels, indirect
Classification can also be employed to infer and quantify causal relationships between input
variables and class probabilities, as well as for sampling from the predicted probability
distribution. Examples of Classification problems include:

• classifying emails into spam and not spam

• classifying whether the price of a stock index will go up or down based on whether it went
up or down during the previous five days

• classifying whether there will be traffic Congestion at different locations given previous
measurements at these locations and auxiliary variables1

Formally, in Classification, one constructs a parameterized model h(x;θ) with parameters θ ∈ Θ
that maps the n-dimensional input2 x to predictions ŷ of the targets3 y, i.e. ŷ = h(x;θ).

For a one-dimensional binary target y and a TrS of m samples of input-target pairs Sm ={
(x1, y1), . . . , (xm, ym)

}
, a possible CF associated with Classification is the Indicator Cost C0/1

based on the Indicator Loss L0/1

C0/1(θ) =
1

m

m∑
j=1

L0/1(ŷj , yj) =
1

m

m∑
j=1

I(h(xj ;θ) 6= yj) (3.45)

This requires the type of Classifier h(x;θ) that maps directly into class labels {0, 1} or {−1, 1}. In
this case, C0/1(θ) reflects the fraction of misclassified training cases induced by the parameter

configuration θ, and the Learning Problem consists in finding the parameter vector θ̂∗m that
minimizes this fraction

θ̂∗m = arg min
θ∈Θ

C0/1(θ) (3.46)

Unless4 C0/1(θ̂∗m) = 0, this problem is NP-hard [77]. Therefore, in practice, different CFs are
employed. A popular CF for BC is the Negative Log Likelihood (NLL) Cost Cnll for BC based
on the NLL Loss for BC Lnll

Cnll(θ) =
1

m

m∑
j=1

Lnll(h(xj ;θ), yj)

=− 1

m

m∑
j=1

(yj lnh(xj ;θ) + (1− yj) ln(1− h(xj ;θ)))

(3.47)

1 compare 4
2 The elements of x could be continuous or discrete, and may each have different domains.
3 If only one target variable is present, it is encoded as a binary scalar y ∈ {0, 1} or y ∈ {−1, 1}, where 1 is
referred to as the Positive Class and 0 or −1 as the Negative Class. If the target takes k > 2 values, it is encoded
in a k-dimensional One-Hot Vector, i.e. y ∈ {0, 1}k or y ∈ {−1, 1}k, where exactly one element of the vector
is equal to 1. If l target variables are present, the encoding is y ∈ {0, 1}l or y ∈ {−1, 1}l, and y ∈ {0, 1}kl or
y ∈ {−1, 1}kl, respectively. Depending on the type of Classification method used, predictions either have the same
domain as targets (direct Classification) or reflect real-valued probabilities (indirect Classification), i.e. ŷ ∈ [0, 1],
ŷ ∈ [0, 1]k, ŷ ∈ [0, 1]l, and ŷ ∈ [0, 1]kl, respectively, where in the second and last case vector elements referring to
the same variable sum to one.
4 compare 3.2.4, Perceptron Learning Algorithm

23

This Cost Function is appropriate for the type of Classifier h(x;θ) that maps to probabilities.
h(x, θ̂∗m) is an estimator for the probability of the event ”Y belongs to the Positive Class”,
conditional on x, i.e. p̂(1|x) = h(x, θ̂∗m). Furthermore, p̂(0|x) = 1 − h(x, θ̂∗m), since there are
only two classes. One has thus obtained a complete estimate p̂(y|x) of the distribution of Y ,
conditional on x. Subsequently, Classification is performed using a decision rule δ, i.e. ŷ =
δ(h(x; θ̂∗m)). Typically, the mode of the estimated conditional distribution, i.e. the most likely
y, is predicted as class label

ŷ = arg max
y∈Y

p(y|x) (3.48)

In BC using the NLL Cost, this is equivalent to ŷ = I(h(x; θ̂∗m) > 0.5) in case y ∈ {0, 1}, or
ŷ = I(h(x; θ̂∗m) > 0.5)− I(h(x; θ̂∗m) ≤ 0.5) in case y ∈ {−1, 1}.

MC, with k > 2 classes, can be implemented in one of several ways. For instance, one can train
k binary Classifiers mapping to probabilities, such that the ith Classifier learns to distinguish
between targets of class i and targets from all other classes. Alternatively, one can train k(k−1)/2
pairwise Classifiers, one for every possible pair of different classes. In order to pick a class label,
results from these binary Classifiers are then aggregated in one of several ways, e.g. using voting
schemes [84, ch. 3.1]. Preferably, a true multiclass Classifier, such as an MLP with SOL should
be used instead of multiple binary Classifiers.

One of the simplest examples of a Classification model is Logistic Regression (LogR) [89,
p. 128] in n input variables and one-dimensional binary target. In this case, the Hypothesis
Space is the set of functions {σ(θTx) : θ ∈ Rn+1}, where σ(z) = 1/(1 + e−z) is the Logistic
Function. The parameter space is the n + 1-dimensional Euclidian Space. A bias term θ0 is
accommodated by introducing a degenerate feature x0 that is always equal to one. Hence, the
parameterized Logistic Function h(x;θ) = σ(θ0 +

∑n
i=1θixi) = σ(θTx) is fitted to the Training

Data Sm using the Cnll CF. LogR does not have a closed-form solution, i.e. a numerical Learning
Algorithm (LA) is required. The probabilities predicted by the trained model are then fed into
a Decision Rule δ that assigns the Positive Class label if h(x; θ̂∗m) > 0.5 and the Negative Class
label otherwise. The Decision Rule thus defines a linear Decision Boundary in the form of an
n−1-dimensional hyperplane, embedded in the n-dimensional Feature Space.1 Figure 3.4 shows
a randomly generated problem instance for n = 2.

1 This is easy to see since h(x; θ̂∗m) > 0.5 is equivalent to θTx > 0, which defines a half-space. The acceptance
region for the Positive Class is separated from the rejection region by the hyperplane defined by θTx = 0. For
n = 2 this leads to θ0 + θ1x1 + θ2x2 > 0⇒ x2 > −(θ1/θ2)x1 − (θ0/θ2).

24

Figure 3.4: b̂1 is the solution, i.e. Decision Boundary, of a randomly generated LogR problem based
on a Training Set of size m = 100. For comparison, the solution b̂2 of a slightly more complicated
model, including x21, x

2
2 and x1x2 as explanatory variables, is shown as well. The nonlinear Classifier

has more capacity and is able to correctly classify the small population of positive samples in the
region of Feature Space where x1 and x2 are simultaneously small.

Density Estimation

In Density Estimation (DE), one estimates the (joint) probability density function of a set of
random variables given a finite number of samples from the associated distribution [4, ch. 1.3,
14.7, 26.1]. Here, the term ”density” is used for the continuous and discrete case.

DE can be categorized by what assumptions are made a priori about the density. In parametric
DE, a parametric1 density is assumed whose parameters are predicted from the input. If a
parametric Mixture Density [4, ch. 11.2], e.g. a Gaussian Mixture Model (GMM) is assumed,
some authors speak of semiparametric DE [90, 91].2 Nonparametric DE is a more general
approach in which no assumptions regarding the density are made. Instead, the model implicitly
encodes it via the model parameters.3

1 The term ”parametric” refers to the distribution parameters ϕ ∈ Φ which fully specify the density, e.g. the
mean and standard deviation of a Normal Distribution. These parameters are distinct from the model parameters
θ ∈ Θ.
2 The reason for this is that, asymptotically in the number of components, a Mixture Density can approximate
any density over a given domain arbitrarily well. For instance, a Mixture of Gaussians can approximate any
density over real vectors, and a Mixture of Bernoullies can approximate any density over binary vectors [92].
3 compare 3.2.3, Undirected Models, Boltzmann Machine, Restricted Boltzmann Machine

25

DE can be further categorized by whether a conditional or unconditional density is modeled.
Conditional DE refers to directly modeling the density of targets, conditional on input. No
joint density model of inputs and targets, nor of the inputs alone is learned.1 Therefore, methods
for conditional DE can be viewed as Discriminative Models (DisMs)2 and are learned using
Supervised Learning (SL)3. Associated models are generally parametric. In unconditional DE,
the joint density of the data is modeled. Since there is no distinction between inputs and targets,
methods for unconditional DE can be viewed as Generative Model (GenM) and are learned using
Unsupervised Learning (UL).

The purpose of DE is to obtain a complete picture of the characteristics of the modeled data. In
fact, a set of random variables is fully specified by its joint density. The estimated density can
then be used to perform Prediction or Classification and to quantify the associated uncertainty.
Another use case of DE is sampling, i.e. drawing random samples from the learned density for the
purpose of simulation, or generation of synthetic data [94]. Examples of DE problems include:

• estimating the density of the mass of stars (unconditional DE)

• estimating the conditional density of the daily change in the USDEUR exchange rate,
conditional on the previous five changes (conditional DE)

• estimating the density of traffic speeds at multiple locations, conditional on previous
measurements at these locations and auxiliary variables4 (conditional DE)

Formally, in parametric conditional DE, one assumes a parametric conditional distribution
p(y;ϕ) of the targets y, parameterized and fully specified by the distribution parameters ϕ ∈ Φ.
One then constructs a model h(x;θ), parameterized by model parameters θ ∈ Θ that maps the
n-dimensional input x to estimates of the distribution parameters ϕ̂ = h(x;θ). Thus, one
obtains an estimate of the density of the targets, conditional on the input p̂(y|x;θ) = p̂(y; ϕ̂) =
p̂(y;h(x;θ)).

In parametric unconditional DE, one assumes a parametric, conditional distribution p(x;ϕ)
of the data x, parameterized and fully specified by the distribution parameters ϕ ∈ Φ. In
this case, h(x;θ) is a direct model for the density whose model parameters correspond to
the distribution parameters, i.e. p̂(x;ϕ) = p̂(x;θ) = h(x;θ). This is equivalent to a simple
distribution parameter estimation problem.

In nonparametric conditional DE, one constructs a model h(x;θ) for an estimate of the
density of targets, conditional on input, p̂(y|x;θ) = h(x;θ). No explicit assumptions are made
about the density.

In nonparametric unconditional DE, one constructs a model h(x;θ) for an estimate of
the density of the data p̂(x;θ) = h(x;θ). Although, this looks equivalent to the parametric
unconditional case, density models are usually constructed implicitly as a product of factors.5

As a result, computing probabilities, much less obtaining an explicit expression for the density,
is typically infeasible. Asymptotically in the number of Artificial Neurons (ANs), these models
are capable of encoding any distribution over a given domain arbitrarily well [95].6

1 One could always solve the more general problem of modeling a full joint density of inputs and targets, and then
use Bayes’ Theorem to obtain the conditional density of targets given the inputs. However, this means solving
the problem indirectly, which has drawbacks [93, p. 477].
2 compare 3.1.7, Discriminative vs. Generative
3 compare 3.1.2, Supervised Learning
4 compare 4
5 compare 3.2.3, Undirected Models, Boltzmann Machine and Restricted Boltzmann Machine
6 These models are at the intersection of Artificial Neural Networks (ANNs) and Probabilistic Graphical Models
(PGMs) [11].

26

For one-dimensional target y and a TrS of m samples of input-target pairs Sm ={
(x1, y1), . . . , (xm, ym)

}
, the most common CF associated with parametric conditional DE is

the NLL Cost Cnll based on the NLL Loss Lnll

Cnll(θ) =
1

m

m∑
j=1

Lnll(h(xj ;θ), yj)

=− 1

m

m∑
j=1

p̂(ŷj ;h(xj ;θ)) = − 1

m

m∑
j=1

p̂(ŷj |xj ;θ)

(3.49)

Cnll(θ) reflects the average NLL taken over the TrS, and the Learning Problem consists in finding
the parameter vector θ̂∗m that minimizes this Cost

θ̂∗m = arg min
θ∈Θ

Cnll(θ) (3.50)

This is equivalent to the Maximum Likelihood method [96], with the only difference that
the equivalent minimization problem is solved. h(x; θ̂∗m) is an estimator for the distribution
parameters ϕ of p(y;ϕ), giving rise to p̂(y|x; θ̂∗m). The remaining three cases, i.e. parametric
unconditional, nonparametric conditional, and nonparametric unconditional are formally
analogous, except that in the last case approximations for the NLL Loss may be used, due
to the fact that it may not be feasible to obtain a closed-form expression of the density.

One of the simplest, interesting examples of DE is fitting a k-component GMM to observed
data. This falls into the category of parametric unconditional DE. For one-dimensional data,
the Hypothesis Space is the set of mixtures of Normal Densities with k components, the set
of functions {

∑k−1
i=1 θi φ(x; θk−1+i, θ2k−1+i) + (1 −

∑k−1
i=1 θi)φ(x; θ2k−1, θ3k−1) : θ1, . . . , θk−1 ∈

[0, 1]; θk, . . . , θ2k−1 ∈ R; θ2, . . . , θ3k−1 ∈ R+}, where φ(x;µ, σ) is the Normal Density of X,
parameterized by its mean µ and standard deviation σ. The model parameter vector θ =
(θ1, . . . , θ3k−1)T is (ρ1 . . . ρk−1 µ1 . . . µk σ1 . . . σk)

T where ρi is the mixture weight of the ith
component density. For k = 2, the density h(x,θ) = θ1 φ(x, θ2, θ4) + (1− θ1)φ(x, θ3, θ5) is fitted
to the Training Data Sm =

{
x1, ..., xm

}
, using the Cnll Cost. Figure 3.5 shows a randomly

generated problem instance.

Figure 3.5: p̂2(x) is the solution density of a randomly generated GMM DE problem based on
a Training Set of size m = 2000. A 2-component GMM was assumed a priori for p̂2(x), while the
Training Set is drawn from a 3-component GMM. For comparison, the solution density p̂3(x), for
which a 3-component GMM was assumed, is shown as well. The 2-component model is unable to fit
the data well, since it is forced to aggregate two of the three mixture components. The 3-component
model, on the other hand, recovers a good estimate of the true density.

27

3.1.7 Types of Models

In Machine Learning (ML), one can distinguish models by whether they are discriminative or
generative [97] and by whether they are deterministic or probabilistic [84, ch. 1.2, 63, p. 348].

Discriminative vs. Generative

Discriminative Models (DisMs) either learn a model of the density of the targets y,
conditional on the inputs x, p(y|x), or a quantity derived from this conditional density,
e.g. the conditional mean µ(Y |x) =

∫
Y y dP (y|x) =

∫
Y yp(y|x) dy, the conditional mode

mode(Y |x) = arg maxyp(y|x), or, if y is univariate, a conditional quantile qτ (Y |x) = inf{y :
P (y|x) ≥ τ}, τ ∈ [0, 1], with the conditional median as special case m(Y |x) = q0.5(Y |x). In
DisMs, no joint model of the inputs and targets, nor of the inputs alone is learned. They are
generally learned using Supervised Learning (SL)1 and are commonly employed for Regression,
Classification and conditional Density Estimation (DE) tasks2.

Generative Models (GenMs) learn a model of the joint density of targets and inputs p(x,y).
By Bayes’ Theorem, p(x,y) = p(y|x)p(x) holds. Therefore, a GenM is more general than a DisM,
since it implicitly constructs a full model of the Data Generating Process.3 In fact, a DisM can
be obtained from a GenM by dividing the joint density by the marginal density of the inputs,
i.e. p(y|x) = p(x,y)/p(x). The marginal density of the inputs can be obtained by marginalizing
out the targets, i.e. p(x) =

∫
Y p(x,y) dy.4 In some instances, there is no distinction between

targets and inputs, in which case there is just data x. Models learning the joint density p(x) are
also considered GenMs. GenMs are learned using SL5 or Unsupervised Learning (UL)6, and are
commonly employed for joint DE and indirectly7 for Regression and Classification tasks.

Since they make fewer assumptions on the structure of the data, DisMs are preferred over GenMs
if predicting targets is the objective. It has been shown [98] that GenMs have higher asymptotic
error than the corresponding DisMs. However, GenMs converges faster to this higher error. On
small Data Sets, GenMs can outperform DisMs if simplifying assumptions on the structure of the
data are introduced. An extreme example of this are the conditional independence assumption
of the Naive Bayes model [99]. These additional assumptions act as a regularizer8 preventing
the GenM to pick up on spurious patterns. However, as a result of their restrictive assumptions,
GenMs trained on large Data Sets may introduce bias, rendering it impossible to capture certain
dependencies that a DisM would be able to capture.

Deterministic vs. Probabilistic

Deterministic Models (DetMs) output properties associated with a probability density,
such as an expectation, quantiles or its mode. These derived quantities alone are, in general, not
sufficient to fully characterize the underlying density. In other words, a DetM returns concrete
values rather than a distribution over values. Typically, DetMs are DisMs9.

1 compare 3.1.2, Supervised Learning
2 compare 3.1.6, Density Estimation
3 compare 3.1.1, Terminology
4 Vice versa, a DisM can be extended into a GenM by constructing a model for the inputs and multiplying it
with the conditional density, i.e. p(x,y) = p(y|x)p(x). However, p(x) would have to be learned from scratch.
5 compare 3.2.3, Directed Architectures, Feedforward Neural Networks, Autoencoder
6 compare 3.2.3, Directed Models, Feedforward Neural Networks, Boltzmann Machine and Restricted Boltzmann
Machine
7 by first modeling a joint density, from which a conditional density is obtained that, in turn, is the basis for
solving the Regression or Classification task as in the DisM case
8 compare 3.2.5
9 compare 3.2.3, Directed Models, Feedforward Neural Networks, Multilayer Perceptron

28

Probabilistic Models (ProMs) either output distribution parameters sufficient to fully
characterize a probability density1, or implicitly represent a probability density parameterized by
the model parameters2. In the latter case, randomness is intrinsically generated by the model3,
e.g. in Stochastic Neurons4 in an Artificial Neural Network (ANN). A ProM can be used to
generate random samples from the output distribution. ProMs can be DisM5 or GenM6.

3.1.8 Hyperparameter Optimization

Definition

A Learning Algorithm (LA)Amaps a Training Data Set Strainm to an optimal hypothesis function
h∗ that best captures certain characteristics of the of the data distribution.7

The LA arrives at h∗ by optimizing a Cost Function (CF)8 that depends on h(x;θ) with respect
to the model parameters θ ∈ Θ, thus finding the optimal model parameters θ̂∗m. A is itself
parameterized by a set of Hyperparameters (HPs) λ ∈ Λ

h∗ = h(x;θ∗) = A(θ0, S
train
m ;λ) (3.51)

Hence, the HPs λ are meta-parameters of the LA and distinct from the model parameters θ. In
case of an Artificial Neural Network (ANN), the network weights represent the model parameters
θ, while the Learning Rate (LR)9 and the regularization parameters of the CF are examples of
HPs.10

Hyperparameter Optimization (HPO) is implemented in the context of Hold-Out Validation,
which is a model selection method [63, ch. 7]. The Data Set is partitioned into a Training
Set (TrS), a Validation Set (VaS) and a Test Set (TeS). Different models are trained on the TrS
using different HPs settings λ. The objective of Learning is to find the HP setting that minimizes
Generalization Error (GE)11. Since GE cannot be computed, it estimated using Validation Error
(VaE). Thus, the goal of HPO is to find the HP setting λ∗ that minimizes VaE

λ∗ = arg min
λ∈Λ

1

n

∑
(x,y)∈Svaln

L(h(x;θ∗),y)

= arg min
λ∈Λ

1

n

∑
(x,y)∈Svaln

L(A(θ0,S
train
m ;λ),y)

(3.52)

where L is a Loss Function (LF) and Sn =
{

(x1,y1), . . . , (xn,yn)
}

is the VaS containing n
samples.

Notice that the evaluation of A(θ0,S
train
m ;λ) constitutes an inner loop that involves training

an entire model, and is therefore computationally expensive. Notice further that the Validation
Set is never directly used for Training. Rather, it serves as out-of-sample data to estimate the

1 compare 3.2.3, Directed Models, Mixture Density Models
2 compare 3.2.3, Undirected Models, Boltzmann Machine and Restricted Boltzmann Machine
3 The inputs are assumed to be random, i.e. to be generated by the density p(x). However, this does not count
as intrinsic randomness.
4 compare 3.2.2, Stochastic Binary Activation
5 compare 3.2.3, Directed Models, Mixture Density Models
6 compare 3.2.3, Undirected Models, Boltzmann Machine and Restricted Boltzmann Machine
7 compare 3.1.1, Terminology
8 compare 3.1.5, Definition Cost Function
9 compare 3.2.4

10 Sometimes, quantities that are not parameters of A are considered HPs, e.g. the number of Hidden Units in a
particular Hidden Layer of an ANN.

11 compare 3.1.1 and 3.2.5

29

Generalization Performance of the trained models. The TeS is reserved for estimating the GE
of the final model, after HPO. The problem of HPO has thus been cast as a global optimization
problem

λ∗ = arg min
λ∈Λ

Ψ(λ) (3.53)

Ψ is called Response Function and Ψ(λ) over λ ∈ Λ is called Response Surface. Particular
elements λ ∈ Λ are referred to as trial points.

An important question is how to chose these trial points so as to avoid unnecessary evaluations
of Ψ. Bengio [100] shows that for a given Data Set, typically only few of the HPs have
significant impact on Validation Performance. This phenomenon is referred to as Low Effective
Dimensionality of Ψ. However, the subset of relevant HPs is, in general, different for different
Data Sets.

Types of Hyperparameter Optimization

Manual Search This method involves guessing different HP settings λ in a trial and error
manner, only guided by the intuition of the researcher. Manual Search (MS) is often used
in practice since it does not require additional programming. It is sometimes implemented in
combination with other methods [101, 102].

The main advantage of MS is its easy implementation. Moreover, it allows researchers to gain
intuition about the Response Surface while exploring different HP settings. The main drawbacks
of MS are its tediousness and that, in the presence of a large number of parameters, a person
can, due to cognitive limitations, easily fail to notice regularities in the Response Surface.

Grid Search In Grid Search (GS), a HP grid is set up that is then searched exhaustively. As
a first step, Λ is bounded and discretized, often logarithmically. Hence, for an n-dimensional
HP space, an n-dimensional grid is obtained whose grid points represent all possible HP
configurations. Subsequently, Ψ(λ) is evaluated for every grid point, requiring the training of∏
k |dk| models, where dk is the number of grid points along the kth dimension. The HP setting

corresponding to the lowest VaE is retained.

Apart from being easy to implement and parallelize, GS is advantageous for low-dimensional
λ, as it searches the entire HP space systematically. Depending on the granularity of the grid,
it is unlikely to miss the optimal HP configuration by much. However, for high-dimensional λ,
the method falls victim to the Curse of Dimensionality [103], since the number of grid points
grows exponentially in the number of dimensions. Another drawback of GS is that it wastes
time evaluating models along HP axes that have little effect on the objective, i.e. it may train
different complicated models varying only in irrelevant parameters.

Random Search In Random Search (RS), HP settings are picked uniformly at random over
Λ. This method has been shown to be more efficient than GS. Bergstra [100] shows that in ANNs,
RS finds better HP configurations than GS in a fraction of the time. This is a consequence of
the Low Effective Dimensionality of Λ. RS explores the entire HP space evenly, i.e. all trials try
different settings for each HP, as opposed to exactly repeating the same setting for subsets of
HPs, while varying irrelevant ones.

Just as MS and GS, RS is easy to implement and parallelize. It is often the default method for
HPO, and its results can be used as a baseline for comparison with more sophisticated methods.

30

Bayesian Hyperparameter Optimization Bayesian Hyperparameter Optimization
(BHPO) is an application of Bayesian Optimization (BO), a gradient-free, global optimization
procedure, based on a trade-off between Exploitation and Exploration of the search space [104,
105].

In BO, the objective is treated as a random function for which a prior distribution is assumed.
Function evaluations are considered experiments whose outcomes constitute data used to obtain
the posterior distribution over the objective.1 The posterior is then used to select a point for the
subsequent evaluation of the objective, i.e. to propose a new experiment. The specific selection
criterion, which is expressed by an Acquisition Function, is not only based on improvement of the
objective (Exploitation), but also on visiting promising regions of the search space (Exploration).
Therefore, a point with a poor expected objective function value could be chosen if it also has
more uncertainty associated with it. After each function evaluation, the posterior becomes the
new prior and the process is repeated.

Hence, BO explores the search space intelligently, attempting to gain information about the
location of the optimum by using as few objective function evaluations as possible through
implementing a sequence of few high-quality experiments. In contrast to gradient-based
optimization, which relies on local information, BO uses the information obtained from all
previous evaluations of the objective. This procedure can be parallelized, such that different
experiments are run simultaneously. Furthermore, it is possible to take variable evaluation time
of the objective under different parameter settings into account [106].

BO is therefore well-suited for HPO where evaluation of the objective Ψ is expensive and
only few configurations can be explored. In this setting, it is advantageous to spend additional
computational resources on searching for an appropriate HP setting to evaluate next. BHPO
has been demonstrated to outperform MS, GS, as well as RS [107].

Typically, a Gaussian Process (GP) is used as function prior [106]. A GP, X(t) ∼
GP(m(t), k(t, t′)) with Mean Function m(t) and positive semidefinite Covariance Function k(t, t′)
on a set T is a set of random variables {X(t) : t ∈ T}, such that ∀n ∈ N and ∀ t1, . . . , tn ∈ T ,
the vector of random variables (X(t1) . . . X(tn)) follows a multivariate Normal Distribution
with mean vector µ and covariance matrix Σ [108], i.e. (X(t1) . . . X(tn)) ∼ N (µ,Σ), with
µi = m(ti) and Σij = k(ti, tj). The Mean Function represents the most likely function, while the
Covariance Function, often referred to as Kernel Function, governs the variance of the function
values (t = t′) as well as their covariance with all other function values (t 6= t′).2 Hence, a GP
defines a Stochastic Process, a distribution over functions where a particular set of function
values {x(ti) : ti ∈ T, i = 1, . . . , n, n ∈ N} represents a realization of the set of random variables
{X(ti) : ti ∈ T, i = 1, . . . , n, n ∈ N}, and can thus be used as a prior for BHPO.

One of the advantages of GPs as function priors is ease of inference. Given a set of observations,
the posterior itself is a GP whose parameters have closed-form expressions. Specifically, if X(t)
is a GP with Mean Function m(t), Covariance Function k(t, t′), and given a set of n observations
O = {x(ti) : ti ∈ T, i = 1, . . . , n, n ∈ N}, the posterior itself is a GP with Mean Function m̃(t)
and Covariance Function k̃(t, t′)

X(t)|(O) ∼ GP(m̃(t), k̃(t, t′)) (3.54)

1 This is simply an application of Bayes’ Theorem. The new information contained in the observed data from the
experiments modifies the prior, which leads to the posterior. The posterior then contains information about the
prior beliefs as well as the observed data
2 The set T is arbitrary, e.g. T = N, in which case the GP reduces to a multivariate Normal Distribution, or
T = R. Hence, a GP can be viewed as a generalization of a multivariate Normal Distribution to potentially
infinitely many dimensions. Furthermore, T could be multidimensional, e.g. T = Rk, in which case the GP is
referred to as Gaussian Random Field.

31

m̃(t) = m(t) + kTK−1(x−m(t)) (3.55)

k̃(t, t′) = k(t, t′)− kTK−1k (3.56)

where x is a n-element vector of observations, such that xi = x(ti), k is a n-element vector of
Covariance Functions, such that ki = k(ti, t), and K is an n × n covariance matrix, such that
Kij = k(ti, tj), i, j = 1, . . . , n. Note that, at the observation coordinates ti, i = 1, . . . , n, the
posterior is deterministic, i.e. k̃(ti, ti) = 0, and coincides with the observations, i.e. m̃(ti) = x(ti).

For the purposes of BHPO, Ψ(λ) is assumed to be a GP on the set Λ with Mean Function m(λ)
and Covariance Function k(λ,λ′).1 Each HP setting λ has a Gaussian random variable Ψ(λ)
associated to it that represents the VaE under this HP setting.

The characteristics of the particular instance of GP, e.g. smoothness etc., crucially depend on
the choice of the Covariance Function, and to a lesser extent on the choice of the Mean Function
[108, ch. 4]. In BHPO, the Mean Function of the prior is typically assumed to be the zero
function. A possible choice for the Covariance Functions is the Squared Exponential Kernel

kSE(λ,λ′) = β0e
− 1

2
r2(λ,λ′) (3.57)

where
r2(λ,λ′) = (λ− λ′)TB(λ− λ′) (3.58)

and B is a scaling matrix. This particular choice implies a very strong smoothness assumption
on Λ, such that similar inputs have similar outputs. In practice, less restrictive Kernels are
preferred. There are various other important issues related to the choice of Kernel. A more
comprehensive discussion of this subject can be found in Snoek et al. [106].

The last ingredient to BHPO is the Acquisition Function a : Λ→ R+ that maps every λ to
a scalar indicating how desirable it is to evaluate Ψ(λ) next. The next point to evaluate λnext
is the point that maximizes the Acquisition Function

λnext = arg max
λ∈Λ

a(λ) (3.59)

Let σ̃(λ) =

√
k̃(λ,λ), µ̃(λ) = m̃(λ), γ(λ) = (Ψ(λbest) − µ̃(λ))/σ̃(λ), and Z(λ) =

(Ψ(λ) − µ̃(λ))/σ̃(λ). Furthermore, let Φ and φ denote the distribution and density function
of the Standard Normal Distribution. There are several popular choices for the Acquisition
Function that have closed-form expressions under the GP prior, such as the Probability of
Improvement [109]

aPI(λ) = P (Ψ(λ) < Ψ(λbest)) = P (Z(λ) < γ(λ)) = Φ(γ(λ)) (3.60)

the Expected Improvement [104]

aEI(λ) = E(max(Ψ(λbest)−Ψ(λ)), 0) =

∞∫
−∞

max(γ(λ))− Z(λ), 0)φ(z(λ)) dz(λ)

= σ̃(λ)(γ(λ)Φ(γ(λ)) + φ(γ(λ)))

(3.61)

and the Upper Confidence Bound [110]

aUCB(λ) = µ̃(λ)− κσ̃(λ) (3.62)

1 Note that, given the definition of a GP above, Ψ corrsponds to X, λ corresponds to t, and Λ corresponds to T .
Further note that Λ is a multidimensional space, with the number of dimensions equal to the number of HPs.

32

Gradient-Based Hyperparameter Optimization Gradient-Based Hyperparameter
Optimization (GHPO) makes use of the so-called Hypergradients ∂

∂λ
Ψ(λ) of the VaE with

respect to the HPs of a Gradient Descent (GD) procedure. Hypergradients are found by chaining
derivatives backwards through the entire training procedure using Backpropagation (BP)1.
Naive implementations of GHPO necessitate caching of the complete weight history during
Training [111, 112]. For large models this quickly fails due to memory constraints.

Recently, Maclaurin et al. [113] put forth a method that solves the memory issue. They
obtain the necessary weight history through reversing Stochastic Gradient Descent (SGD) with
Momentum2, effectively reverse-engineering the weights iteratively, going backwards through the
training procedure. Overall, this allows for computation of the required Hypergradients in time
complexity equal to the complexity of a forward run of SGD. The question of whether more
involved LAs can be reversed is an active area of research. GHPO makes it possible to optimize
thousands of HPs simultaneously, including Weight Decay (WD) parameters, fine grained LR
schedules, etc.

3.1.9 Assessing Performance

Definition

Model Performance is a property of a trained model defined with respect to the true data
distribution, i.e. not with respect to the Training Set (TrS) [1, ch. 8.1]. It is quantified by a
Performance Metric (PM) and measures the degree of usefulness of the model. It can have
meaning by itself or relative to the performance of alternative models. Therefore, it may be used
to compare trained models to trivial models, such as a constant or a Random Walk (RW)3, or
to rank competing models.

Typically, the PM reflects the true goal of Learning, which may be different from what is
expressed by minimizing the Cost Function (CF)4. If they are identical, the CF evaluated on
the Validation Set (VaS) is used. If they differ, the metric associated with the true Learning
goal is considered instead. For instance in Classification5, the Negative Log Likelihood (NLL)
Cost for Binary Classification (BC) is used as optimization objective, but one really cares about
Classification accuracy.

Performance Metrics

All CFs used for Regression are valid PMs. For BC, possible PMs are summarized in Table 3.1
[114]. A detailed discussion of these direct and derived metrics is out of scope for this thesis.
These PMs are also applicable in the multiclass case where they can be computed for each
individual class [84, ch. 3.1].

1 compare 3.2.4, Gradient Descent with Backpropagation, Backpropagation
2 compare 3.2.4, Gradient Descent with Backpropagation, Extensions with Momentum, Gradient Descent with
Momentum
3 compare 4.8, Test Results
4 compare 3.1.5, Definition Cost Function
5 compare 3.1.6, Classification

33

Total
N

ŷ = 1 ŷ = 0 Misclass. Rate
MCR = FP+FN

N

y = 1 True Positives
TP

False Negatives
FN

Recall
REC = TP

TP+FN

False Neg. Rate
FNR = FN

TP+FN

y = 0 False Positives
FP

True Negatives
TN

False Pos. Rate
FPR = FP

TN+FP

True Neg. Rate
TNR = TN

TN+FP

Accuracy
AC = TP+TN

N

Precision
PRE = TP

TP+FP

False Omission Rate
FOR = FN

TN+FN

F1 Score
F1 = 2 PRE REC

PRE+REC

False Discov. Rate
FDR = FP

TP+FP

Neg. Pred. Value
NPV = TN

TN+FN

Table 3.1: Performance Metrics Classification - False Pos: Type I Error, False Neg: Type II Error

Comparing Models

The simplest approach to model comparison is qualitative assessment based on eyeballing
respective performances. It is however preferable to use suitable Statistical Tests for performance
ranking. Statistical Tests allow for an assessment of whether the observed differences between
models are statistically significant, i.e. whether one can safely assume that they are not merely
due to chance. Any comparison should be based on Validation Performance, an estimator for
Generalization Performance1.

Great care should be taken when using Statistical Tests to compare Model Performance,
particularly when comparing multiple models [115]. A Two-Sample T-test [116, ch. 10.2] can
be used to compare PMs associated with Regression problems, such as the Mean Squared
Error (MSE) or Mean Absolute Error (MAE).

The McNemar Test [117] or, if the Data Set is small, Fisher’s Exact Test [118] should be
considered for Binary Classifiers. These tests do not compare the proportion of correctly classified
samples like a Two-Sample T-Test, instead they take into account how many of the samples
misclassified by one model are correctly classified by the other model. Whether 30 misclassified
samples out of 10 000 is significantly better than 40, depends on the off-diagonal terms in the
Contingency Table. Consider Tables 3.2 and 3.3 below [119]. Model A is significantly better2

than B, since it correctly classifies 11 cases that B gets wrong, while B only correctly classifies
one of the samples misclassified by A. However, Model A is not significantly better than C.

B wrong B correct

A wrong 29 1
A correct 11 9,959

Table 3.2: Model A vs. Model B

C wrong C correct

A wrong 15 15
A correct 25 9,945

Table 3.3: Model A vs. Model C

1 compare 3.1.4 and 3.2.5
2 details of calculation omitted

34

3.2 Artificial Neural Networks

3.2.1 Basics

Definition

Artificial Neural Networks (ANNs) are Learning Systems loosely based on Biological Neural
Networks (BNNs), such as the human brain. ANNs consist of interconnected Artificial Neurons
(ANs), also known as Units1, which communicate by sending signals between each other.2

Learning in an ANN corresponds to adapting the connection strengths between its ANs [121,
ch.1].

Depending on the particular architecture3, the Units may be organized in Layers, giving rise to
the notion of depth. Signals between two Units may be passed in one direction only, or both,
and there may be cycles in the connection pattern. Hence, ANNs can be represented as directed
or undirected graphs.

Formally4, an ANN is a Learning Machine whose model parameters θ are the network weights
and biases representing the connection strengths between its ANs.5 Therefore, an ANN is either:

(1) a parameterized function h(x;θ) mapping from inputs x to predictions ŷ.6 Hence,
the output of the network are point predictions. In this case, the ANN constitutes a
discriminative, deterministic model7, trainable using Supervised Learning (SL), or a combination
of Unsupervised Learning (UL) and SL8, and representable by a directed graph. These models
solve Regression and Classification problems.9

(2) a parameterized probability density p̂(y|x;θ) of the targets y, conditional on the inputs x.
Hence, the output of the network is a conditional density.10 In this case, the ANN constitutes
a discriminative, probabilistic model, trainable using SL or a combination of SL and UL, and
representable by a directed graph. These models solve Density Estimation (DE)11 problems and
can be used for sampling12. Since they contain (1) as a special case, they (indirectly) solve
Regression and Classification problems.

(3) a model encoding a parameterized probability density p̂(x;θ) of the Training Data x.13

In contrast to (2), the modeled density has no pre-specified form and cannot, in general, be
expressed analytically. In this case, the ANN constitutes a generative, probabilistic model
trainable using UL, and representable by an undirected graph. These models can be used to
generate samples from the same distribution as the Training Data, and from a conditional
distribution of a subset of the variables, given the remaining ones.

1 compare 3.2.2
2 The human brain has about 1014 connections between neurons, i.e. parameters, while the largest ANN trained
to date has on the order of 1011 parameters [120].
3 compare 3.2.3
4 compare 3.1.4
5 The network biases can be viewed as weights connecting to features that are always equal to one. Throughout
this thesis, the biases may be lumped together with the weights or made explicit, depending on the context.
6 compare 3.2.3, Directed Models, Feedforward Neural Networks, Multilayer Perceptron
7 compare 3.1.7
8 compare 3.1.2
9 compare 3.1.6, Regression and Classification

10 compare 3.2.3, Directed Architectures, Mixture Density Networks
11 compare 3.1.6, Density Estimation
12 Sampling refers to drawing random samples from the output density; compare 4.5, Model Architecture, Sampling
13 compare 3.2.3, Undirected Architectures, Boltzmann Machine and Restricted Boltzmann Machine

35

Learning in an ANN corresponds to the adaptation of the network weights and biases θ using
an appropriate Learning Algorithm (LA), transitioning the network from an untrained, initial
configuration θ0, to a final trained configuration θf .1

Advantages and Disadvantages

ANNs can learn complicated function mappings that would be hard to express using explicit
rules, such as computer programs, and hard to represent in explicit mathematical models, such
as differential equations. The problem of predicting aspects of the Traffic Flow in a highway
network2 is an example, since it comprises many variables interacting in complicated ways,
and its geometry imposes difficult boundary conditions. A model capturing all of the system’s
complexities can be obtained more conveniently by learning relevant relationships directly from
data.

Moreover, ANNs have great computational power. Universal Approximation Theorems [122,
28] show that Multilayer Perceptrons (MLPs) with at least one Hidden Layer (HL) are
Universal Function Approximators.3 Furthermore, Recurrent Neural Networks (RNNs) with
finite architecture and rational-valued weights can be shown [123] to be Universal Turing
Machines4. When irrational weights are permitted, RNNs have super-Turing5 capabilities [126],
which is, of course, practically irrelevant since infinite precision numbers would be required.

Compared to other Machine Learning (ML) models, such as Support Vector Machines (SVMs)
[69], Decision Trees [58], or Logistic Regression (LogR) [89, p.128], ANNs are a very general class
of models suitable for a wide range of problems. By choosing an appropriate architecture, Output
Units (OUs), and Cost Function (CF), ANNs can be made to emulate many other ML models.6

They can be employed to solve Regression, Classification, and Density Estimation problems,
can learn generative joint density models of high-dimensional data, and handle problems with
multiple outputs in a straightforward manner.

However, ANNs are somewhat hard to use. Some background knowledge is necessary to realize
their full potential. In particular, an understanding of Data Normalization, Regularization
methods7, and Hyperparameter Optimization (HPO)8 is imperative to avoid common pitfalls,
such as slow Training and bad Generalization Performance.

Moreover, ANNs are black-box models. In large, complex networks, it may not be obvious what
is represented by the patterns of activity in the ANs, and what implicit rules are encoded by the
network weights, thus making the model hard to interpret. However, there are ways to address
this shortcoming. By maximizing the activity of an AN with respect to network input, it is
possible to identify what a Units represent [127]. Furthermore, rule extraction algorithms can
be employed to better understand the knowledge encoded by the weights [128].

1 compare 3.1.1, Basics, Terminology
2 compare 4
3 This means they can approximate any continuous function on compact subsets of Rn
4 Informally, a Universal Turing Machine is a Turning Machine that can simulate any other Turing Machine. A
Turing Machine is an abstract model of a computer that can compute anything a desktop computer can compute.
For a more formal definition compare [124, ch. 1]
5 Informally, this means it could solve problems not solvable by a Turing Machine, such as the Halting Problem
[125].
6 compare 3.2.2
7 compare 3.2.5
8 compare 3.1.8

36

Lastly, in order to train very large ANNs as in Deep Learning (DL) applications, considerable
storage and processing resources are necessary [127]. However, the existence of the human brain,
at present believed to be comparable with the fastest supercomputers in terms of Floating Point
Operations Per Second1, while fitting in a volume of only 1 200 cm3 and consuming only 100 W
of power, indicates that efficiency of ANNs can likely be improved dramatically.

Principle of Distributed Representations

ANNs with HLs derive their computational power from making use of Distributed
Representations (DRs) [1, ch. 15.4]. In a DR of concepts, a particular Unit contributes to
representing multiple concepts and a particular concept can be represented by multiple Units,
i.e. there is a Many-to-Many relationship between Unit Activations and represented concepts. In
contrast, in Symbolic Representations (SRs), used by other ML methods, there is a One-to-One
relationship, where a particular Unit represents exactly one concept and every concept is
represented by exactly one Unit.

With SRs, each training example represents a point in n-dimensional Feature Space. Hence, with
m training examples and O(m) parameters, one can distinguish O(m) regions in Feature Space.
With DRs on the other hand, h linear threshold features, i.e. a HL with h Binary Threshold
Hidden Units (HUs)2, can partition Feature Space into

∑n
i=0

(
h
i

)
= O(hn) regions [130]. O(m)

training examples allow for O(m/n) distributed features, i.e.3 h ≈ m/n, such that the number
of distinguishable regions is O(mn), i.e. exponential in input size and polynomial in the number
of training samples. This constitutes an exponential gain in representational power over models
using SRs.

DRs improve Generalization Performance4 since attributes are shared between concepts. For
example, the descriptions of the concepts ”dog” and ”cat” share the attributes ”has fur” and
”has four legs”. This allows concepts to be represented more efficiently, which, in turn, improves
Generalization. In particular, an ANN can distinguish many regions in Feature Space, while
model capacity remains limited. For instance, the VC-Dimension5 of ANN with Binary Threshold
Units (BTUs) is O(w log w), where w is the number of weights [131]. This means, the network
is actually unable to use its full representational power, since it cannot learn arbitrary functions
from representation space to output.

3.2.2 Artificial Neurons

Structure of an Artificial Neuron

Artificial Neurons (ANs) are inspired by Biological Neurons (BNs), which constitute Biological
Neural Networks (BNNs). Figure 3.6 is a schematic depiction of a BN. Via the synapses, a
neuron receives electrical signals from other neurons connected to it. If the total input exceeds
a certain threshold, the neuron fires, sending an electrical signal along its axon to its many
axon terminals. At the terminals, neurotransmitters are released into the synaptic cleft where
they bind to receptors located on the dendrites of the connected neurons, thereby propagating
the signal. Properties of the synapse determine the degree of modulation the signal undergoes
during propagation. As a result of the synaptic plasticity, Learning and Memory are possible in
BNNs.

1 Currently, the fastest supercomputer is the Sunway TaihuLight, which is capable of 125 PFLOPS [129].
2 compare 3.2.2, Types of Activation Functions, Binary Activation
3 An n × h weight matrix contains p = nh parameters. In order to not have more parameters than training
examples, it has to be the case that m = nh =⇒ h = m/n.
4 compare 3.2.5
5 compare 3.1.4, Growth Function and VC-Dimension

37

Figure 3.6: Biological Neuron [132, Fig. 1]

Figure 3.7 displays the basic structure of an AN, as used in Artificial Neural Networks (ANNs).
The neuron computes a, possibly nonlinear, transformation f of its input vector x = x1, . . . , xk
to its scalar output a, the neuron’s Activation. The components of the input vector are either
inputs to the network or Activations of neurons in lower Layers. An Aggregation Function (AgF)
q computes a weighted average1 of its inputs using the neuron’s weight vector w = w1, . . . , wk
and bias term2 b. The output of the AgF z is called Net Input. Lastly, the Net Input is fed
through the Activation Function (AcF) g, sometimes referred to as Transfer Function, resulting
in a, which may then feed into multiple neurons in higher Layers. If the neuron is part of an
Output Layer (OL), a constitutes a network output.

Figure 3.7: Artificial Neuron

The source of the AN’s computational power is the ability to learn its parameters. By adjusting
w and b, it is able to adapt its behavior until it produces appropriate outputs. If q and g
are differentiable functions, the parameters can be learned using Backpropagation (BP)3. In
this case, the Activation’s derivatives with respect to the parameters are of interest, which are
obtained by repeated application of the Chain Rule.

∂a

∂wi
=
∂a

∂f

∂f

∂wi
=
∂a

∂g

∂g

∂z

∂z

∂q

∂q

∂wi
∂a

∂b
=
∂a

∂f

∂f

∂b
=
∂a

∂g

∂g

∂z

∂z

∂q

∂q

∂b

1 In the vast majority of cases, an arithmetic average is computed.
2 The bias terms is optional. If present, it can be thought of as a weight applied to an input that is always equal
to 1.
3 compare 3.2.4, Gradient Descent with Backpropagation, Backpropagation

38

An AN is a fairly simplified model of a BN. While much of the complexity of BNs is not
represented, it also behaves differently. Usually, ANs are equipped with continuous Transfer
Functions, while BNs spike, i.e. send discrete signals. Despite this, the AN appears to be a
practical abstraction typifying a useful computational device.

Types of Aggregation Functions

Sum Aggregation Function Almost all applications use a Sum AgF. This is equivalent to
computing the weighted arithmetic average of the inputs plus a bias term.

q(x) =
k∑
i=1

wixi + b = wTx+ b (3.63)

The main advantages of this AgF are that is has simple derivatives, and that it leads to benign
Error Surfaces. This allows for Training with gradient-based local optimization algorithms, such
as Gradient Descent (GD).1

∂q

∂wi
= xi

∂f

∂b
= 1

(3.64)

Given its ubiquity, ANs using this AgF are not given distinctive names. Rather, naming is
determined by the AcF alone, while Sum Aggregation is implicitly assumed.

Product Aggregation Function The Product AgF [133] is of historical interest. It computes
a weighted geometric average of its inputs, while a bias term is typically not included

f(x) =
k∏
i=1

xwii (3.65)

This type of AgF gives rise to Product Units (PUs) and Product Unit Networks (PUNs). While
in comparison, the information capacity of such networks is higher, i.e. they can learn certain
Boolean Functions using fewer Units, their Error Surface has more local minima. Therefore,
global metaheuristics, such as Particle Swarm Optimization [134], may be employed for Training.

Types of Activation Functions

Linear Activation The Linear AcF, sometimes referred to as Identity AcF, is the simplest
of all Activations. It simply passes through its input.

g(z) = z

∂g

∂z
= 1

(3.66)

Figure 3.8 displays a plot of the Linear AcF, along with other AcFs for comparison.

Assuming Sum Aggregation, it gives rise to Linear Units (LUs), which compute a weighted
average of their inputs plus a bias term.2

f(x) = g(q(x)) =
k∑
i=1

wixi = wTx+ b (3.67)

1 compare 3.2.4, Gradient Descent with Backpropagation, Basic Framework
2 Often, the literature refers to the composition (g ◦ q)(x) as Linear AcF, since it is understood that Sum
Aggregation is used. Analogously, this is the case for all f that follow. The same convention is used throughout
this thesis.

39

LUs are used exclusively in the OL of ANNs, since multiple Layers of LUs are equivalent to a
single Layer of LUs.

Given that the range of the Linear AcF is the real numbers, Linear Output Units (OUs) are
employed for solving Regression Problems1. In fact, an ANN without Hidden Layer (HL), Linear
OU, trained using the Mean Squared Error (MSE) Cost Function (CF)2, is equivalent to Linear
Regression (LinR).

Sigmoid Activation The Sigmoid AcF, also referred to as Logistic AcF, applies a sigmoid
nonlinearity to its input.

g(z) = σ(z) =
1

1 + e−z

∂g

∂z
= σ(z)(1− σ(z))

(3.68)

where σ is the Logistic Function. Figure 3.8 displays a plot of the Sigmoid AcF, along with other
AcFs for comparison.

This AcF, assuming Sum Aggregation, gives rise to Sigmoid Units (SUs) computing

f(x) = g(q(x)) = σ(wTx+ b) (3.69)

SUs can be used as Hidden Units (HUs) or OUs. As HUs, they compute a smooth, continuous,
and nonlinear transformation of the output of the below Layer. In contrast to LUs, multiple
Layers of SU increase the modeling capacity of the network.

As the range of the Logistic Function is the open interval (0,1), the output of a SU can be
interpreted as a probability. Therefore, ANNs with a single SU in their OL can be employed
for solving Binary Classification (BC) Problems3. Incidentally, an ANN without HL, Sigmoid
OU, trained using the Negative Log Likelihood (NLL) CF for BC4, is equivalent to Logistic
Regression (LogR).

Hyperbolic Tangent Activation The Hyperbolic Tangent AcF, i.e. Tanh AcF, applies a
tanh nonlinearity to its input.

g(z) = tanh(z)

∂g

∂z
= 1− tanh2(z)

(3.70)

This is a rescaled and stretched version of the Logistic Function to the range (-1,1). Figure 3.8
displays a plot of the Tanh AcF, along with other AcFs for comparison.

Using Sum Aggregation, this leads to so-called Tanh Units (TUs) computing

f(x) = g(q(x)) = tanh(wTx+ b) (3.71)

TUs are used in HLs, where they are generally preferred to SUs. There is evidence [101, 135]
that TUs learn faster and sometimes find better local minima. Since the range of the Tanh
AcF is symmetric around zero, its average output is zero. In contrast to that, SUs produce
positively biased Activations, pushing higher HLs to saturation. This leads to vanishing gradients
in saturated Units, and backpropagated error signals are nearly cancelled. This, in turn, slows
down Learning considerably.5

1 compare 3.1.6, Regression
2 compare 3.1.5, Types of Cost Functions, Mean Squared Error
3 compare 3.1.6, Classification
4 compare 3.1.5, Types of Cost Functions, Negative Log Likelihood Cost Function
5 While this effect can be countered by negative biases, unfortunate random weight initialization may put the
network in a position in weight space from which it cannot recover.

40

Rectified Linear Activation The Rectified Linear AcF, which, assuming Sum Aggregation,
gives rise to Rectified Linear Units (ReLUs), is discussed in the Deep Learning (DL) section1.

Binary Activation The Binary AcF is discrete and discontinuous, mapping its input to the
set {0, 1}.2 Thus, it computes

g(z) = I(Z ≥ 0) (3.72)

where I is the indicator function. Figure 3.8 displays a plot of the Binary AcF, along with other
AcFs for comparison.

Figure 3.8: Activation Functions

Assuming Sum Aggregation, this AcF gives rise to Binary Threshold Units (BTUs), also called
McCulloch-Pitts Units [16], computing

f(x) = g(q(x)) = I(wTx+ b ≥ 0) (3.73)

While biologically plausible, the Binary AcF is not differentiable. Therefore, BTUs cannot be
trained with gradient-based methods. The Perceptron3 is, in essence, a single BTU.

Stochastic Binary Activation This AcF is stochastic and shares characteristics with the
Sigmoid and Binary Threshold AcF. Like the Sigmoid AcF, it applies a sigmoid nonlinearity
to its inputs, modeling the probability of outputting 1. However, the actual output is binary.
Hence, g(z) is a Bernoulli distributed random variable, parameterized by z.

g(z) = B, with B ∼ Ber
(

1

1 + e−z

)
(3.74)

Assuming Sum Aggregation, this AcF gives rise to Stochastic Binary Units (SBUs), computing

f(x) = g(q(x)) = B, with B ∼ Ber

(
1

1 + e−w
Tx+ b

)
(3.75)

1 compare 3.3.3, Special Types of Activation Function, Rectified Linear Activation
2 Sometimes, {−1, 1} is used.
3 compare 3.2.3, Directed Architectures, Feedforward Neural Networks, Perceptron

41

SBUs are used in Undirected Architectures, such as Restricted Boltzmann Machines (RBMs)1.

Softmax Activation The Softmax AcF is different in nature from the AcFs discussed so far,
in that it maps its input vector to a vector, instead of a scalar. Thus, it is associated with a
Layer, instead of a Unit.

g(z)j =
ezj∑k
i=1 e

zi
, j = 1, . . . , k

∂gj
∂zj

=
ezj
∑

i 6=je
zi

(
∑k

i=1 e
zi)2

, j = 1, . . . , k

∂gj
∂zi

= − ezj+zi

(
∑k

i=1 e
zi)2

, j = 1, . . . , k; i 6= j

Assuming Sum Aggregation, this AcF gives rise to a Softmax Layer, which is always an OL.
Each Units’ output range is the open interval (0, 1), with the implied constraint that the total
output sums to unity.

f(x)j = g(q(x)j)j =
ew

T
j x+b∑k

i=1 e
wTi x+b

, j = 1, . . . , k (3.76)

k∑
j=1

f(x)j = 1 (3.77)

Hence, the output of a Softmax Layer can be thought of as modeling a random variable with
Categorical Distribution [4, p. 35], the multivariate analog of the Bernoulli Distribution. It
models a random event with k mutually exclusive outcomes, where the output of the kth Unit
represents the probability of the respective outcome.

Softmax Output Layers (SOLs) are therefore used in Multiclass Classification (MC) Problems2.
In fact, a ANN without HL, SOL, trained using the Cross Entropy (CE) CF3, is equivalent to
Multinomial LogR.4

3.2.3 Types of Architectures

One way of classifying Artificial Neural Networks (ANNs) is by type of architecture. This
subsection discusses types of ANNs in this context. Since there are far too many types of networks
to cover, the focus is on the most common ones in each category.

Directed Architectures

ANNs representable by directed graphs are characterized by unidirectional information flow
with respect to individual connections. Each directed edge represents a connection between two
Artificial Neurons (ANs) and has an associated adjustable weight. Networks of this type have
Input Units (IUs), Hidden Units (HUs)5 and Output Units (OUs). IUs are not computational
Units, they merely generate copies of the input, which then feeds into the computational Units.
Only HUs and OUs are true ANs.

1 compare 3.2.3, Undirected Architectures, Restricted Boltzmann Machine
2 compare 3.1.6, Classification
3 compare 3.1.5, Types of Cost Functions, Cross Entropy Cost Function
4 This is a generalization of the probabilistic interpretation of the SU as modeling a Bernoulli random variable,
to the multivariate case.
5 In these models HUs are optional.

42

ANNs in this category can be further classified by whether or not their connections form directed
cycles.

Feedforward Neural Networks In a Feedforward Neural Network (FNN) information flow
is unidirectional with respect to the network as a whole, i.e. information is only passed forward
between inputs and outputs. In particular, network connections do not form directed cycles.

The Perceptron [18, 19, 136, ch. 1] is the simplest example of an FNN, and is mainly of historical
interest. It is a degenerate network consisting of a single Binary Threshold OU1 connected to
multiple inputs. It thus computes the following function

ŷ = h(x;θ) = I(wTx+ b ≥ 0) (3.78)

with θ = {w, b}, where w is the Perceptron’s weight vector and b its bias term. I denotes the
indicator function. Figure 3.9 a) depicts a graphical representation of a Perceptron.

The Perceptron is a discriminative, deterministic2 model that is trained with a custom Learning
Algorithm (LA), the Perceptron Learning Algorithm (PLA)3. It is used exclusively for Binary
Classification (BC)4.

This architecture is fairly limited in its capabilities [23]. It can only learn linear Decision
Boundaries and, in case the Training Data is not linearly separable, Training does not even
converge to an approximate solution.

The Multilayer Perceptron (MLP) [136, ch. 4] is an ANN with one or more Hidden
Layers (HLs), and one or more OUs in its Output Layer (OL). It can be loosely regarded as
a generalization of the Perceptron, in which multiple individual Perceptrons are interconnected
hierarchically. However, instead of Binary Threshold Units (BTUs), other types of ANs are
typically used.

The HLs of an MLP are traditionally composed of Sigmoid Units (SUs) or Tanh Units (TUs)5,
while the characteristics of the OL depend on the type of problem at hand. For Regression6, the
OL is composed of Linear Units (LUs), for BC, SUs are employed, while MLPs for Multiclass
Classification (MC) feature a Softmax Output Layer (SOL)7. An MLP with L HLs, where the
lth HL contains nl HUs, computes the following function

ŷ = h(x;θ) = o(W T
L+1aL + bL+1)

al = g(W T
l al−1 + bl), l = L, . . . , 2

a1 = g(W T
1 x+ b1)

(3.79)

1 compare 3.2.2, Types of Activation Functions, Binary Activation
2 compare 3.1.7
3 compare 3.2.4, Perceptron Learning Algorithm
4 compare 3.1.6, Classification
5 compare 3.2.2, Types of Activation Functions, Sigmoid Activation and Hyperbolic Tangent Activation
6 compare 3.1.6, Regression
7 compare 3.2.2, Types of Activation Function, Softmax Activation

43

with θ = {W 1, . . . ,W L+1, b1, . . . , bL+1}, where W l, l = 1, . . . , L + 1, is an nl−1 × nl weight
matrix, whose ith row and jth column element wlij is the weight connecting Unit i in Layer
l− 1 to Unit j in Layer l. Analogously, bl is a nl-element vector whose ith element is the bias of
Unit i in Layer l. Furthermore, g and o are the transfer functions of the HLs and OL (applied
elementwise), and al is an nl-element vector whose ith element is the Activation of the ith HU
in Layer l. Evidently, the zeroth Layer is the Input Layer (IL).1 Figure 3.9 b) depicts a graphical
representation of an MLP.

Figure 3.9: a) Perceptron with three inputs b) MLP with three inputs, one HL, and two OUs

The MLP is a deterministic or probabilistic, discriminative model, trained using some version
of Gradient Descent (GD) in conjunction with Backpropagation (BP)2. It can be used for
Regression, Classification or (conditional, parametric) Density Estimation3. Incidentally, if the
HLs in an MLP are omitted, the network emulates Linear Regression (LinR) [89, p. 26], Logistic
Regression (LogR) [89, p. 128], and Multinomial LogR [137, p. 803] if trained with the Mean
Squared Error (MSE), Negative Log Likelihood (NLL) for BC, and Cross Entropy (CE) Cost
Function (CF)4, respectively. Therefore, MLPs constitute a direct generalization of these classical
methods. In fact, they have been shown to be Universal Function Approximators [27, 28], and
are thus inherently more powerful than Perceptrons.

An Autoencoder (AE) [32, 138] is a special type of FNN that predicts its own input, i.e. the
Training Set (TrS) consists of the input-target pairs Sm =

{
(x1,x1), ..., (xm,xm)

}
. Therefore, if

the xj are n-dimensional vectors, there must be n OUs. Furthermore, the AE has an odd number
L of HLs where the ((L+ 1)/2)th HL contains fewer HUs than there are OUs, thus creating an
information bottleneck. The lower Layers, including the Bottleneck Layer (BL), constitute the
Encoder, while the higher Layers, also including BL, are referred to as Decoder. Hence, an AE

1 Note that the matrix multiplications imply sum aggregation of the inputs (as opposed to product aggregation);
compare 3.2.2, Types of Aggregation Functions
2 compare 3.2.4, Gradient Descent with Backpropagation
3 compare 3.1.6, Density Estimation
4 compare 3.1.5, Types of Cost Functions

44

with L HLs computes the following function

x̂ = h(x;θ) = o(W T
L+1aL + bL+1)

al = g(W T
l al−1 + bl), l = L, . . . , l∗ + 1

al∗ = g∗(W T
l∗al∗−1 + bl∗)

al = g(W T
l al−1 + bl), l = l∗ − 1, . . . , 2

a1 = g(W T
1 x+ b1)

(3.80)

with θ = {W 1, . . . ,W L+1, b1, . . . , bL+1}, where the notation follows the same logic as before.
The BL forces the AE to discover compact encodings of the data. These code vectors al∗

are thus represented by fewer bits of information than required to describe the input, which
necessarily leads to a loss of information when reconstructing it. Figure 3.10 depicts a graphical
representation of an AE.

Figure 3.10: AE with four inputs and a BL with three HUs

AEs are Generative Models (GenMs) since they construct a full model of the data. While classical
AEs are deterministic, probabilistic versions exist, such as the Denoising Autoencoder (DAE)
[139], which adds noise to the inputs, thus eliminating the requirement for a bottleneck.1 AEs are
trained with GD in conjunction with BP, which, in this context, can be considered a Supervised
Learning (SL) method used to implement Unsupervised Learning (UL)2. Training an AE is
equivalent to minimizing the reconstruction error of a data compression model.

An AE with k Linear Units in its BL, trained using the MSE CF is roughly equivalent to Principal
Component Analysis (PCA) [62], in that the k extracted features span the same subspace as
the first k Principal Components [140]. Hence, an AE with nonlinear BL can be regarded as a
generalization of PCA.

1 If no noise was added, a regular AE could simply learn to copy the data, loss free.
2 compare 3.1.2

45

Convolution Neural Networks (CNNs) [141, 1, ch. 9] perform Convolutions instead of
general matrix multiplications.1 This is equivalent to a set of constraints on the connectivity
between Layers. Specifically, a particular HU is connected to only a subset of Units, such that
each HU connects to a different subset, and inputs to neighboring HUs are shifted by a constant
offset. Furthermore, the incoming weight vectors to each HU in a Layer are tied.

The HUs thus function as replicated feature detectors, with each HU acting on a particular
Receptive Field. Typically, multiple feature detectors are defined per Layer. Convolutional Layers
are followed by so-called Pooling Layers that perform downsampling operations, which average or
max the output of neighboring HUs reducing the size of the representation. Hence, Convolutional
Neural Networks (CNNs) are well-suited for data with grid-like structure, such as images, which
can be viewed as 2D grids, univariate time series, 1D grids, and videos, 3D grids.

The Weight Tying implemented by CNNs is a form of Regularization2, which helps generalization
and allows scaling the architecture. In fact, CNNs have been among the first deep networks to
perform well on problems of non-trivial size, such as Handwritten Digit Recognition (HDR)
[142], and helped win competitions in general Object Recognition (OR) [43].

CNNs are a large subject in and of itself. For a more in-depth discussion of the topic, refer to
[1, ch. 9].

Recurrent Neural Networks Connections between ANs in a Recurrent Neural Network
(RNN) [32] form directed cycles, allowing information flowing along those cycles to persist in
the network. Activations computed in a particular clock cycle3 influence computations in later
clock cycles. Hence, an RNN is a generalization of an FNN that includes feedback connections.

Inputs can be provided to, and outputs can be read from the network sequentially. Therefore,
RNNs are well-suited for processing Sequence Data, such as Time-Series Data. While FNNs
map input vectors to target vectors in a One-to-One manner, RNNs can be applied to problems
involving sequences of vectors associated with a large variety of temporal input-output patterns
[143], such as

• One-to-Many, i.e. an initial input followed by multiple outputs. An example for this is the
automatic generation of image captions, where an image is provided and a sequence of
words describing the contents is returned [144].

• Many-to-One, i.e. multiple inputs followed by a single output. This includes Sequence
Classification tasks, such as Sentiment Analysis (SA), where a sequence of word vectors,
representing a sentence, is mapped to a prediction of its sentiment [145].

• Many-to-Many Unsynced, i.e. multiple inputs followed by multiple outputs. For instance,
in Machine Translation (MT), where a sequence of word vectors is mapped to a sequence
of word vectors. The output sequence is produced after the entire input sequence has been
read [146].

• Many-to-Many Synced, i.e. multiple time steps of parallel inputs and outputs. An example
for this is predicting stock prices, one time step ahead, using the shifted input sequence as
target sequence.

1 These operations are not Convolutions in the precise mathematical sense.
2 compare 3.2.5
3 The term ”clock cycle” refers to a set of computations triggered sequentially. It does not refer to CPU clock
cycles, several of which could pass during one network clock cycle. In equations describing the dynamics of an
RNN, all computations performed during a clock cycle carry the same time index.

46

RNNs compare favorably to traditional models for Time Series analysis, such as Autoregressive
(AR) models. AR models are essentially LinR models, predicting values of a Time Series, given a
predetermined number of past values. However, they do not incorporate a Memory, i.e. a Hidden
State, and are unable to model nonlinear dependencies. Linear Dynamical Systems (LDSs) [147]
and Hidden Markov Models (HMMs) [148] are generalizations of AR models that incorporate
some form of Memory, and thus allow them to model long-term dependencies. In these models,
it is not necessary to decide in advance on the number of past values to be considered. RNNs,
in turn, are a generalization of both LDSs and HMMs with fewer restrictions on the Hidden
State. Unlike in HMMs, the Hidden State of an RNN, i.e. the state of its HUs, uses Distributed
Representations (DRs)1 and, unlike in LDSs, evolves according to nonlinear dynamics.

These features endow RNNs with great computational power. They can emulate circuits on a
microchip implementing Recursion and While Loops. In fact, they have been shown [123] to
be Turing Complete. Informally, this means that they are general computers able to simulate
arbitrary programs.

Like FNNs, RNNs are Discriminative Model (DisM) that can be deterministic or probabilistic,
depending on the characteristics of the OL.

RNNs unrolled in time2 can be viewed as Deep Feedforward Neural Networks (DFNNs). This
potentially infinite Depth in Time3 renders their Training difficult, mainly due to the Vanishing
and Exploding Gradient (VEG) Problem.4 RNNs have traditionally been trained with some form
of GD in conjunction with Backpropagation Through Time (BPTT)5. Recently, alternative LAs
based on Hessian-Free Optimization6 or Connectionist Temporal Classification (CTC) [149] have
been investigated.

Fully Connected RNNs (FCRNNs) [15] are the most general type of RNN, in which all
Units have connections to all non-IUs. An FCRNN is a Dynamical System described by the
following equations

ŷt = h(xt;θ) = o(W T
ioxt +W T

hoat +W T
ooŷt−1 + bo)

at = g(W T
ihxt +W T

hhat−1 +W T
ohŷt−1 + bh)

ŷ0 = y0

a0 = a0

(3.81)

with θ = {W ih,W io,W hh,W ho,W oh,W oo, bh, bo}, where the subscripts on the weight
matrices and bias vectors refer to the types of Units they connect. That is, i,h, and o denote
input, hidden, and output. For instance, the ith row and jth column of W ho is the weight whoij
connecting the ith HU to the jth OU. Furthermore, the subscript t denotes time. Lastly, y0 and
a0 are vectors of initial values of ŷt and at. Figure 3.11 a) depicts a graphical representation of
an FCRNN.

Elman Networks [150] are RNNs in which some of the connections are omitted. There exists
a distinct, fully recurrent HL in which every HU has a connection to every other HU, including
itself. However, there are no connections between OUs, no connections from IUs to OUs, and no
connections from OUs back to HUs.

1 compare 3.2.1, Principle of Distributed Representations
2 compare Figure 3.15
3 compare 3.3.1, Types of Depth
4 compare 3.3.2, Vanishing and Exploding Gradient Problem
5 compare 3.2.4, Gradient Descent with Backpropagation, Backpropagation Through Time
6 compare 3.3.3, Special Learning Algorithms, Hessian-Free Optimization

47

This architecture can be extended by stacking multiple recurrent HLs, which has the same
benefits as increasing depth in FNNs. What is obtained is essentially an MLP whose HLs are
fully recurrent, rendering it Deep in Representation as well as Deep in Time. A Stacked Elman
Network with L HLs is a Dynamical System computing the following function

ŷt = h(xt;θ) = o(W T
L+1aL,t + bL+1)

al,t = g(W T
l al−1,t +UT

l al,t−1 + bl), l = L, . . . , 2

a1,t = g(W T
1 xt +UT

1 a1,t−1 + b1)

al,0 = a0
l

(3.82)

with θ = {W 1, . . . ,W L+1,U1, . . . ,UL, b1, . . . , bL+1}, where U l denotes the recurrent weight
matrix of the lth HL. For instance, the ith row and jth column element of U l is the recurrent
weight ulij , connecting the ith HU in Layer l to the jth HU in Layer l. Furthermore, a0

l is the
vector of initial values of al,t, i.e. Layer L’s Initial State. Figure 3.11 b) depicts a graphical
representation of a Stacked Elman RNN.

Figure 3.11: a) Fully Connected RNN with two inputs, two HU, and one OU b) Stacked Elman
RNN with two inputs, two fully recurrent HLs with two HUs each, and one OU

Of course, the Layers are an artifact of omitting connections from an FCRNN. The advantage
of multiple stacked Layers over a single large Layer is a reduction in the number of parameters,
while enforcing hierarchical representations.

Mixture Density Networks Mixture Density Networks (MDNs) [151] are FNNs or RNNs
with a special OL. They are discriminative, probabilistic models used for parametric, conditional
Density Estimation (DE)1. As such, their outputs are not predictions of targets, but rather
parameters of the probability density of targets, conditional on inputs. The particular parametric
density modeled is a Mixture Distribution [4, ch. 11.2]. Hence, they generalize Mixture Models
by stacking them onto an ANN, thus conditioning the mixture density on input.

The choice of OUs depends on the Mixture Model chosen. A popular choice is the Gaussian
Mixture Model (GMM), which can asymptotically, i.e. with enough mixture components,

1 compare 3.1.6, Density Estimation

48

approximate any density arbitrarily well [92]. A k-component GMM is parameterized by the
distribution parameters ϕ = {µ1, . . . ,µk,Σ1, . . . ,Σk,α}, where µi is the ith component mean,
Σi is the ith component covariance matrix, and α is a k-component mixture weight vector,
whose elements sum to one. Hence, it’s density is defined by

p(y;ϕ) =

k∑
i=1

αiφ(y;µi,Σi) (3.83)

The mixture weights αi represent the prior probabilities that y is chosen from the ith component
density φi = φ(y;µi,Σi), where φ is the density of the Multivariate Normal Distribution

φ(y;µ,Σ) = (2π)−
k
2 |Σ|

1
2 e−

1
2

(y−µ)TΣ(y−µ) (3.84)

In the corresponding MDN, this distribution is conditioned on the output of an ANN,
parameterized by θ, that outputs estimators of the GMM parameters as functions of the input

p̂(y|x;θ) =
k∑
i=1

α̂i(x;θ)φ(y; µ̂i(x;θ), Σ̂i(x;θ)) (3.85)

Independence and a common variance can be assumed for the elements of y within each mixture
component. Then, Σi reduces to a diagonal matrix, where all diagonal elements are equal to
σi. This greatly reduces the number of parameters while still retaining the full generality of the
framework, i.e. asymptotic universal approximation.

Assuming y is an n-dimensional vector, then the OL must contain kn LUs (for k mean vectors),
k Units with a transfer function restricting its outputs to the positive reals (for k non-negative
standard deviation parameters), and a Softmax comprised of k individual Units. Therefore, a
Feedforward MDN with L HLs and k mixture components computes the following function

µ̂ = h1(x;θ) = W T
µaL + bµ

σ̂ = h2(x;θ) = exp(W T
σaL + bσ)

α̂ = h3(x;θ) = softmax(W T
αaL + bα)

(3.86)

The equations describing the HLs are the same as in the MLP case. The full set of parameters
θ = {W 1, . . . ,W L,W µ,W σ,W α, b1, . . . , bL, bµ, bσ, bα}, includes an nL × kn weight matrix
W µ, an nL × k weight matrix W σ, an nL × k weight matrix W α, as well as the corresponding
biases. The equations for a Recurrent MDN are completely analogous, except that the outputs
are also indexed by time.

MDNs are trained using GD with BP or BPTT, depending on whether it is an FNN or RNN.
Furthermore, this type of network requires the NLL CF, which drives the parameter estimates
to assume values, such that the GMM fits the observed Training Data well.

An interesting use case of MDNs is the solution of Inverse Problems. In this type of problem, the
inputs are effects of some process, while the targets represent causes. In situations where multiple
causes have similar effects, a regular FNN observing the effect wrongly predicts an average
cause.1 For instance, low and high traffic density cause low traffic flow. When observing low
traffic flow, average density is predicted even though average density corresponds to high flow.2

Hence, for Inverse Problems with multimodal conditional density, it is preferable to consider the
full distribution in order to avoid mode averaging.

1 if the MSE CF is used
2 compare 4.3

49

Undirected Architectures

ANNs representable by undirected graphs have Visible Units (VUs) and HUs.1 VUs are fully
computational ANs, used to provide input to, and read output from the network, while HUs
compute distributed representations of the data. Undirected models employ ANs, which are
inherently stochastic and can be understood as Probabilistic Graphical Models (PGMs) [11].

Undirected Models are fundamentally different from Directed Models. They can be thought of as
parameterized stochastic Dynamical Systems whose state is defined by their Units’ Activations.
Often, they are comprised of Stochastic Binary Units (SBUs)2. With n Units, the State Space
corresponds to the corners of an n-dimensional hypercube. The parameters, i.e. the weights,
determine the dynamics of the system as it traverses State Space.

A model is associated with an Energy Function (EF) that depends on the model’s current
state and parameters. High-energy states are unlikely to be traversed, and vice versa, i.e. when
running, the model will be in low-energy states most of the time. Hence, the model implicitly
defines a joint probability distribution over states that can be associated with concrete objects.
For instance, states can represent images, with pixels corresponding to individual Units, thus
defining a parameterized, and therefore learnable, distribution over images.

Undirected Model are probabilistic, generative models, trained using UL. They can be further
classified by whether or not they are fully connected.

A Boltzmann Machine (BM) [152] is a fully connected3 network of SBUs, some of which act
as VUs, other as HUs. It can be regarded as a stochastic generalization of Hopfield Nets (HNs)
[34] with HUs.

The negative EF of a BM with m VUs and n HUs, is given by

− E(v,h;θ) = vTW vvv + vTW vhh+ hTW hhh+ vTbv + hTbh (3.87)

where v and h are m and n-dimensional binary vectors representing the State of the VUs and
HUs. W vv and W hh are m × m and n × n weight matrices whose ith row and jth column
elements are the weights wvvij and whhjj if i < j and zero otherwise4, W vh is an m × n weight
matrix, and bv and bh are m and n-dimensional vectors of VU and HU biases.

The probability of a particular State (v,h) is related to its Energy and follows a Boltzmann
Distribution, also referred to as Gibbs Distribution [153]

p(v,h;θ) =
1

Z
p̄(v,h;θ) =

1

Z
e−E(v,h;θ) =

1∑
v′

∑
h′

p(v′,h′;θ)
e−E(v,h;θ) (3.88)

where Z is the Partition Function (PF), a normalization constant, summing the probabilities of
all 2n+m possible states. Since the PF contains exponentially many terms, computing the state
probabilities is intractable but for models of trivial size. However, the unnormalized probabilities,
p̄(v,h;θ), can be computed efficiently.

Defining the negative Energy Gap of VU i, −∆Evi , and HU j, −∆Ehj , as the increase in Energy

1 In these models, HUs are mandatory.
2 compare 3.2.2, Types of Activation Functions, Stochastic Binary Activation
3 Fully connected Undirected Models do not have self-connections, i.e. every Unit connects to every other Unit,
but not to itself.
4 in order to not count self-connections, and to not double count symmetric connections

50

when the respective Unit is turned on, compared to when it is turned of, everything else equal,

−∆Evi = E(vi = 1,v−i,h;θ)− E(vi = 0,v−i,h;θ)

=
∑
j<i

wvvji vj +
∑
j>i

wvvij vj +
∑
j

wvhij hj + bvi

−∆Ehj = E(hj = 1,v,h−j ;θ)− E(hj = 0,v,h−j ;θ)

=
∑
i

wvhij vi +
∑
i<j

whhji hi +
∑
i>j

whhij hi + bhj

(3.89)

where v−i and h−j denote the states of all VUs, except i, and all HU, except j, it can be shown
that the probability that VU i, and HU j, is on is given by

p(vi|v−i,h;θ) =
1

1 + e−∆Evi

p(hj |v,h−j ;θ) =
1

1 + e−∆Ehj

(3.90)

Hence, the probability that a Unit is on, is the larger, the more this decreases the system’s
Energy. This is precisely the probability that a SBU will turn on, since the Energy Gap is just
the weighted sum of all incoming Activations plus the Unit’s bias.1

A BM operates as follows. Starting in a random Initial State, every SBU computes its probability
of being on, conditional on the State of all other Units, according to (3.90). Subsequently, one
Unit is chosen at random, updates its state, and the process repeats. The BM thus transitions
State Space, updating one Unit at a time. Eventually, it reaches a dynamic equilibrium, referred
to as Thermal Equilibrium, where it traverses states according to the unchanging probability
distribution given by (3.88). The sequence of traversed states is an unbiased sample from this
analytically intractable distribution. This process is referred to as Gibbs Sampling, a particular
type of Markov Chain Monte Carlo (MCMC) sampling [154].

Hence, a BM trained on a TrS Sm =
{
x1, ...,xm

}
is an implicit2, parameterized estimator for

the density of the data, given by the marginal density over its Visible States

h(x;θ) = p̂(x;θ) = p(v;θ) =
∑
h′

p(v,h′;θ) (3.91)

with θ = {W vv,W vh,W hh, bv, bh}. Figure 3.12 a) depicts a representation of a BM.

Assuming a model trained on images, random samples from the distribution over images can be
collected by recording states of the VUs during runtime. One can condition on a particular partial
state by putting the corresponding VUs into the desired configuration and then preventing them
from updating. The model then generates likely completions of the partial image.

Training of BMs is extraordinarily difficult. Intuitively, the goal is to adjust the weights and
biases, such that the joint probability of the Training Data is maximized. This is accomplished
by minimizing the NLL Cost. Using a gradient-based optimization procedure, the gradient of the
Log Likelihood of a training example with respect to the parameters is required, for instance

∂ ln p(v;θ)

∂wvhij
=
∑
h′

p(h′|v;θ)vihj =
∑
v′

∑
h′

p(v′,h′;θ)vihj

= Ep(h′|v;θ)(vihj) = Ep(v′,h′;θ)(vihj)

(3.92)

1 The above formulas describe a simplified version of the original BM, which also incorporates the concept of a
Temperature.
2 Implicit, since no analytic expression can be obtained in general, however, samples from the distribution can
be obtained.

51

The gradients with respect to weights wvvij , whhij and biases bvi , b
h
j are largely analogous. The first

term, called the Positive Phase, is the expectation of vihj , conditional on the VUs being in state
v, i.e. the expectation with respect to the conditional distribution p(h|v;θ), while the second
term, called the Negative Phase, is the expectation with respect to the distribution p(v,h;θ).
Informally, changing the weight wvhij in the direction of this gradient has the effect of lowering
the energy of states where the VUs are set to v, making them more likely, while also raising the
energy of competing, naturally occurring low-energy States, making them less likely.

However, due to the intractability of the sums, running over exponentially many terms, this type
of exact Learning is infeasible. The expectations have to be approximated by sample averages
obtained by Gibbs Sampling. This approach is still unsatisfactory, mainly because only one Unit
at a time can be updated according to (3.90). As a result, it takes a long time until Thermal
Equilibrium is reached. While there are approaches to Training based on introducing even more
approximations, such as Mean Field Approximation [155], BMs have, due to this limitation, not
become practically relevant.

Recently, there has been research into using Quantum Computers1 to train BMs [156], an
approach that may eventually lead to a revival of interest in this architecture.

A Restricted Boltzmann Machine (RBM) [157] is a tractable version of the BM, where all
connections between HUs, and between VUs are omitted. Therefore, this network is represenable
by a bipartite graph. All Units are SBUs, although real-valued versions employing Rectified
Linear Units (ReLUs)2 exist [158].

The negative Energy Function of an RBM with m VUs and n HUs, is defined by

− E(v,h;θ) = vTWh+ vTbv + hTbh (3.93)

which is analogous to the BM case, except that W vv and W hh are set to zero, and W vh is
renamed to W . The probability of a particular state p(v,h;θ) is also analogous to the BM case.
The expressions for the negative Energy Gaps simplify to

−∆Evi = E(vi = 1,v−i,h;θ)− E(vi = 0,v−i,h;θ) =
∑
j

wvhij hj + bvi

−∆Ehj = E(hj = 1,v,h−j ;θ)− E(hj = 0,v,h−j ;θ) =
∑
i

wvhij vi + bhj

(3.94)

Due to the structure of the RBM as a bipartite graph, the VUs are conditionally independent
of each other, given the HUs, and vice versa, i.e. for i = 1, . . . ,m and j = 1, . . . , n

p(vi|v−i,h;θ) = p(vi|h;θ) =
1

1 + e−∆Evi

p(hj |v,h−j ;θ) = p(hj |v;θ) =
1

1 + e−∆Ehj

(3.95)

Hence, in contrast to the BM, there exist tractable expressions for the probability of a Visible

1 The company D-Wave Systems has been selling Quantum Annealers, a type of non-universal Quantum
Computer, with up to 2000 Qbits to companies such as Google and Lockheed Martin. However, at this point, it
has not been conclusively established that these machines provide a true advantage over classical computers, i.e.
”Quantum Supremacy”.
2 compare 3.3.3, Special Types of Activation Functions, Rectified Linear Activation

52

State conditional on a Hidden State, and vice versa

p(v|h;θ) =

m∏
i=1

p(vi|h;θ) =

m∏
i=1

1

1 + e−∆Evi

p(h|v;θ) =
n∏
j=1

p(hj |v;θ) =
n∏
j=1

1

1 + e−∆Ehj

(3.96)

An RBM operates in the following way. Starting in a random Initial State, a Hidden State is
sampled conditional on the Visible State. Subsequently, a Visible State is sampled conditional on
this Hidden State, and so forth. These alternating, parallel updates (3.96) of HUs and VUs are
possible due to the conditional independencies induced by the graph structure. Therefore, the
RBM reaches Thermal Equilibrium faster than a BM, which must update Units individually.
The sequence of traversed states represents an unbiased sample from (3.88). This process is
referred to as Block Gibbs Sampling [159].

Hence, an RBM trained on a TrS Sm =
{
x1, ...,xm

}
is an implicit, parameterized estimator for

the density of the data, given by the marginal density over its Visible States

h(x;θ) = p̂(x;θ) = p(v;θ) =
∑
h′

p(v,h′;θ) (3.97)

with θ = {W , bv, bh}. RBMs can be shown to be Universal Distribution Approximators [95].
Figure 3.12 b) depicts a representation of an RBM.

Figure 3.12: a) BM with two VU and three HUs b) RBM with three VUs and four HUs

RBMs are trained using GD with Contrastive Divergence (CD)1. Since exact Learning is still
infeasible, the gradient has to be estimated using Block Gibbs Sampling. The algorithm exploits
the inherent parallelism of the model when drawing those samples. Incidentally, during the
Positive Phase, Thermal Equilibrium is reached in a single iteration.

A Deep Boltzmann Machine (DBM) [160] is a generalization of the RBM, incorporating
additional HLs. Of course, a DBM is just a BM with missing connections. The negative Energy
of a DBM with m VUs, L HLs, and nl, l = 1, . . . , L, HUs in its lth HL, is defined by

E(v,h1, . . . ,hL;θ) = vTW 1h1 + . . .+ hTL−1W LhL + vTbv + . . .+ hTLb
L
h (3.98)

1 compare 3.2.4, Gradient Descent with Contrastive Divergence

53

with θ = {W 1, . . . ,W L, bv, b
1
h, . . . , b

L
h}. This model features a more structured Hidden State

than the RBM, which endows it with greater modeling capacity. Due to the layered structure,
all Units in odd Layers are conditionally independent of each other given all Units in even
Layers, and vice versa. Therefore, samples from the model are obtained by alternating parallel
updates of odd and even Layers, which allows for a tractable LA. Figure 3.13 depicts a graphical
representation of an DBM.

Figure 3.13: DBM with three HLs

Mixed Architectures

A Deep Belief Net (DBN) [41] is a probabilistic, generative model composed of SBUs. It
features multiple HLs and a Visible Layer (VL), without intra-Layer connections. The top two
HLs have undirected connectivity, i.e. form an RBM, while the other Layers are connected
top-down via directed connections, terminating in the VL.

Mathematically, this model can be obtained by successively stacking and training RBMs, while
restricting the upwards connectivity after Training, except for the top two Layers. DBNs are
important in Deep Learning (DL) as they can be transformed into a discriminative, pre-trained
MLP.1

3.2.4 Learning Algorithms

The set of parameters θ of an Artificial Neural Network (ANN) is the set of network weights and
biases. An ANN Learning Algorithm (LA) maps an Initial State θ0 and a Training Set (TrS)
Sm to an optimal2 configuration of network parameters θ∗ by minimizing a Cost Function (CF)
C(θ).3

Hence, a LA is an optimization algorithm for solving a problem of the form

minimize
θ∈Θ

C(θ) (3.99)

with solution
θ∗ = arg min

θ∈Θ
C(θ) (3.100)

1 compare 3.3.3, Special Initialization Schemes, Unsupervised Pre-Training
2 In general, a local optimum is sought, which is often also approximate.
3 compare 3.2.1 and 3.1.5

54

For clarity, all algorithms in this subsection are presented in informal pseudo code, abstracting
away implementation details, such as bounds of loops etc.

Perceptron Learning Algorithm

The Perceptron Learning Algorithm (PLA) [18] is intimately connected to the Perceptron1

architecture. It is mostly of historical interest.

The TrS consists of m input-target pairs, i.e. Sm =
{

(x1, y1), . . . , (xm, ym)
}

, with yj ∈ {0, 1},
j = 1, . . . ,m. The Perceptron computes class predictions ŷ = h(x;θ) = I(θTx+b ≥ 0). Without
loss of generality, bias terms are omitted henceforth for convenience.2 The associated CF is the
Indicator Cost counting the number of misclassified training samples.3

C(θ) =
m∑
j=1

I(ŷj 6= ŷj) =
m∑
j=1

I(I(θTxj ≥ 0) 6= yj) (3.101)

Using the above assumptions, Algorithm (1) outlines the PLA.

Algorithm 1 Perceptron Learning Algorithm

Input: Training Set Sm
Output: optimal parameters θ∗

1: θ0 = 0
2: cmt: cycle through Training Set till convergence
3: while θ changes do
4: for j = 1 : m do
5: cmt: update parameters if case is incorrectly classified
6: ŷj = I(θTxj ≥ 0)
7: θn+1 = θn − (ŷj − yj)xj

8: return θn

The geometric intuition behind the PLA is that the weight vector is the normal vector to
a separating hyperplane, the Decision Boundary. Each time a training example is incorrectly
classified, the feature vector is added or subtracted from the weight vector, shifting the associated
hyperplane in a direction that fixes the error.

By the Perceptron Convergence Theorem, if the TrS is linearly separable, the PLA is guaranteed
to converge to a solution in which all training examples are classified correctly in a finite number
of steps. Otherwise, the algorithm does not converge, not even to an approximate solution [19].

Gradient Descent with Backpropagation

Basic Framework Gradient Descent (GD) with Backpropagation (BP) refers to a class of
LAs combining the well-known GD Algorithm [161, ch. 2.3.1] with an algorithm to efficiently
compute gradients of complex compositions of functions, such as the error gradients in ANNs.
GD is a numerical, unconstrained First-Order Optimization algorithm based on the idea of
successively changing the parameters θ in the direction opposite to the error gradient ∇θC(θ).
The Learning Rate (LR) η > 0 determines the step size in this direction of steepest descent on
the CF C(θ).

1 compare 3.2.3, Directed Architectures, Feedforward Neural Networks, Perceptron
2 Biases can be viewed as weights connected to a feature that is always equal to one.
3 This Cost is not actually stated explicitly, however it is more intuitive to think about it in these terms.

55

An ANN represented by hypothesis1 h(x;θ) is trained using a TrS consisting of m input-target
pairs Sm =

{
(x1,y1), ..., (xm,ym)

}
. It is assumed here that the optimization objective is a

piecewise differentiable CF using Mean Aggregation2

C(θ) =
1

m

m∑
j=1

L(h(xj ;θ),yj) (3.102)

This sets up the discussion in the Supervised Learning (SL) context. The case of Unsupervised
Learning (UL) is completely analogous, except that no targets exist.3 In practice, gradient
calculations are performed in parallel for the entire TrS. Let X and Y denote m × n and
m× k matrices, such that their jth row is the transpose of xj and yj , respectively. Hence, the
TrS can be rewritten as Sm = {(X,Y)} and passed in its entirety to a BP subroutine that
performs matrix operations, thus taking advantage of GPU speedups [162, 163]. Using the above
assumptions, Algorithm (2) outlines the GD algorithm.

Algorithm 2 Batch Gradient Descent

Input: Training Set Sm, Initial State θ0

Output: optimal parameters θ∗

1: θ0 = θ0

2: cmt: cycle through Training Set till convergence
3: while not converged do
4: cmt: compute Cost grad and update params
5: ∇θC(θn) = BP(L, h,θn,Sm)
6: θn+1 = θn − η∇θC(θn)

7: return θn

For Recurrent Neural Networks (RNNs), the TrS has an additional time dimension, i.e. Sm,T =
{(Xt,Y t) : t = 1, . . . , T)}. In this case, the GD algorithm is analogous to Algorithm (2),
except that the BP(L, h,θn,Sm) subroutine is replaced by a subroutine BPTT(L, h,θn,Sm,T)
implementing Backpropagation Through Time (BPTT).

What constitutes convergence is a subject in itself. In general, it is not trivial to determine
whether GD has converged sufficiently. Incidentally, the actual Learning Problem4 is not to find
a function that minimizes Training Error (TrE), but to infer a function that generalizes well
from the TrS. Hence, during Training, the TrE and the Cost computed on a separate Validation
Set (VaS), the Validation Error (VaE), are monitored. Learning is stopped according to a specific
stopping criterion chosen to maximize Generalization Performance.5

Batch Gradient Descent (BGD) is the name of the elementary GD algorithm described
above. There are extensions to this basic framework addressing various of its shortcomings.

Extension with Stochastic Gradient If the Training Data is highly redundant, i.e. if a
small subset of it is representative of the entire TrS, then gradients computed based on this
subset are nearly exact. Hence, BGD wastes computational resources by processing the entire
TrS before making a parameter update.

1 compare 3.1.1 and 3.2.1
2 compare 3.1.5, Definition Cost Function, Mean Aggregation
3 compare 3.1.2
4 compare 3.1.1, Terminology
5 compare 3.2.5, Early Stopping

56

Stochastic Gradient Descent (SGD) [101] is an approximate method that performs a
parameter update after each individual training case, instead of looping through the entire
TrS and then computing the average gradient. The training samples are assumed to be shuffled
randomly. SGD thus estimates the average gradient based on a single training example, resulting
in a noisy gradient estimate ∇̃θC(θn). In expectation, the noise averages out over successive
training cases and the parameters move towards a local optimum. This stochasticity in the
gradient estimate is an advantage and a disadvantage at the same time.

SGD is usually much faster than BGD, particularly on large, redundant TrSs, since parameters
are updated in every iteration. Due to the noisy gradient, it is able to escape shallow local minima
in the error surface, and therefore, tends to find better solutions [164, 165]. Furthermore, SGD is
well-suited for Online Learning, where training examples are observed in the form of a continuous
stream of data. On the other hand, the stochastic gradient prevents full convergence. Instead, the
parameters end up fluctuating around the minimum, with the size of the fluctuations depending
on the LR.

Incidentally, the PLA (1), described earlier, is equivalent to SGD on the Mean Squared Error
(MSE) CF with a LR equal to 1.

Mini-Batch Stochastic Gradient Descent (MBSGD) [1, ch. 8.1.3, 166, chs. 3.4, 4.2] is
another approximate method that updates parameters after looking at a fixed number of training
cases. It is the de facto default for Deep Learning (DL) applications [1, ch. 8.3.1].

Let Sm,q:r = {(Xq:r,Y q:r)} denote the subset of the TrS including training samples q through
r− 1 corresponding to the respective rows in X and Y . These chunks of data are referred to as
Mini Batches (MBs) of size q− r. MBSGD processes non-overlapping MBs Sj:j+b of size b, thus
striking a compromise between fast parameter updates and exploitation of GPU parallelism [162,
163]. Note that SGD, described earlier, is a special case of MBSGD with b = 1. In MBSGD,
it is paramount to randomly shuffle the Training Data in order to make individual MBs as
representative of the TrS as possible. Using the above assumptions, Algorithm (3) outlines the
MBSGD algorithm.

Algorithm 3 Mini-Batch Stochasic Gradient Descent

Input: Training Set Sm, Initial State θ0

Output: optimal parameters θ∗

1: θ0 = θ0

2: cmt: cycle through Training Set till convergence
3: while not converged do
4: cmt: compute approx. Cost grad based current Mini-Batch; update params
5: for each non-overlapping chunk j : j + b do

6: ∇̃θC(θn) = BP(L, h,θn,Sm,j:j+b)

7: θn+1 = θn − η∇̃θC(θn)

8: return θn

Extension with Momentum GD may take a long time to converge if the error surface
is pathological. For example, assume a model with only two parameters whose error surface
is shaped like a tilted, elongated bowl with low curvature along the stretched axis and high
curvature along the other. Starting at a random initial point, the direction of steepest descent
is likely almost orthogonal to the vector pointing towards the minimum. Hence, with high LR,
GD oscillates across the ravine, advancing only slowly in the desirable direction. If the LR is
too high, these oscillations can result in divergence.

57

Gradient Descent with Momentum (GDwM) [167] accumulates past gradients in a velocity
vector, building up speed in directions of consistent error reduction, while oscillations along
directions of unstable gradient cancel. This is analogous to the movement of a ball dropped into
the error surface while under the influence of gravity and friction. Concretely, the parameter
update rule in the basic GD LA (2) changes to

vn+1 = µvn − η∇θC(θn)

θn+1 = θn + vn+1
(3.103)

where µ ∈ [0, 1) is the Momentum parameter, and vn is the velocity vector at iteration n with
v0 = 0. This update rule can be expressed in terms of an exponentially decaying sum of all
previous gradients.

θn+1 = θn − η
n∑
k=0

µk∇θC(θn−k) (3.104)

Momentum accelerates in directions of consistent gradient until a terminal velocity,
corresponding to a step size of 1/(1−µ)η, is reached. With µ = 0.9, a speedup by a factor of 10 is
possible. This acceleration in directions of low curvature is similar to the effect of Second-Order
Optimization algorithms, which weigh update directions by a factor related to the inverse of
the associated curvatures. It has been demonstrated that GDwM with µ = (

√
R− 1)/(

√
R+ 1)

converges considerably faster than regular GD, in O(1/
√
R) times the number of iterations [168].

In addition, it allows for higher LRs, since there is less risk of divergent oscillations.

Gradient Descent with Nesterov Momentum (GDwNM) [169, 170] is a variation of
GDwM, in which the gradient correction is performed after a step in the direction of the velocity
vector is taken. Its update rule is

vn+1 = µvn − η∇θC(θn + µvn)

θn+1 = θn + vn+1
(3.105)

Figure 3.14 illustrates the update rules of GDwM and GDwNM. The correspondence to the
notation used in this thesis is obvious.

Figure 3.14: GDwM (top) and GDwNM (bottom) update rule [170, Fig. 1].

If µvn happens to point into a direction of increased error, the post-gradient update
η∇θC(θn + µvn) provides a stronger and more immediate correction than the pre-gradient
update η∇θC(θn). In some cases, particularly for high µ, this leads to improved stability and
performance of GDwNM over GDwM.

58

Extension with varying Learning Rates The Performance of GD depends critically on
the LR. If it is too high, oscillations can occur that cause GD to diverge. On the other hand, if
the LR is too small, Learning progresses slowly.

Gradient Descent with Learning Rate Schedules Close to the local minimum, the LR
should be turned down in order to allow the algorithm to settle. This is particularly relevant
in SGD and MBSGD, where gradients are subject to random fluctuations due to heterogeneity
of the MBs [1, ch. 8.3.1]. To this end, LR Schedules [171] are introduced that make the LR a
deterministic function of the iteration number, e.g. ηn = O(n−1). This is referred to as Gradient
Descent with Learning Rate Schedule (GDwLRS). The update rule becomes

θn+1 = θn − ηn∇θC(θn) (3.106)

Gradient Descent with Adaptive Learning Rates In Multilayer ANNs, error gradients
with respect to weights in low Layers can be significantly smaller than those associated with
Layers close to the output. As a result, optimal LRs may vary widely for different weights.
Ideally, every parameter should have its own adaptive LR that automatically increases when the
associated component of the error gradient is small but consistent, and automatically decreases
when oscillations occur. Methods of this type are referred to as Gradient Descent with Adaptive
Learning Ratess (GDwALRs).

RProp1 [172] is an instance of GDwALRs. It is a full-batch method with the following update
equations

ηn = 1.2ηn−1 I(∇θC(θn) ◦ ∇θC(θn−1) > 0)

+ 0.5ηn−1 I(∇θC(θn) ◦ ∇θC(θn−1) ≤ 0)

θn+1 = θn − ηn ◦ 1

(3.107)

where ηn is a structure of LRs of the same dimensions as θn, with η0 = η1. The hyperparameter
η is a small base LR. I denotes the indicator function and all operations are applied elementwise.
This method ignores the size of the gradient, only considering its direction. This prevents
parameter updates from becoming small when the gradient is small, which helps Learning to
quickly escape from plateaus on the error surface. If the signs of the last two gradients agree,
the LR is increased, if they disagree, it is decreased more strongly so that step size can die down
quickly when oscillations occur. It is useful to limit the maximum step size to a value smaller
than 50.

RMSProp2 [173] is a MB version of RProp. Its update equations are

vn+1 = γvn + (1− γ)(∇θC(θn))2

ηn = η/
√
vn+1

θn+1 = θn − ηn ◦ ∇θC(θn)

(3.108)

1 Resilient Propagation
2 Root Mean Square Propagation

59

where vn is an Exponential Moving Average (EMA) of an estimate of the uncentered variance
of the gradient, with v0 = 0, and γ ∈ [0, 1] is a decay term. All operations are performed
elementwise. By multiplying with the LR, the gradient associated with each parameter is
effectively divided by a type of EMA of past gradients. The effect of this scheme is that,
similar to RProp, parameter updates are sensitive to the sign of the gradient, but relatively
insensitive to its magnitude. This way, Learning does not slow down on plateaus of the error
surface. For γ = 0, a simplified version of RProp is recovered that misses the explicit rule for
adapting individual LRs as a function of gradient sign consistency. By dividing by an average of
past squared gradients instead, updates are better averaged over successive MBs, using past and
current gradient magnitudes for weighing. However, RMSProp is not sensitive to sign consistency
of the gradient, i.e. LRs are not dampened if the gradients oscillate.

Adam1 [174] is an instance of GDwALR that combines properties of RMSProp and Momentum.
The simplified2 update equations are

mn+1 = β1mn + (1− β1)∇θC(θn)

vn+1 = β2vn + (1− β2)(∇θC(θn))2

ηn = η/
√
vn+1

θn+1 = θn − ηn ◦mn+1

(3.109)

where mn is an EMA of the first moment of the gradient, similar to the velocity vector in
GDwM, albeit different, since it is an average rather than a sum, with m0 = 0. The term
vn is an EMA of the second moment of the gradient, identical to the corresponding term in
RMSProp, with v0 = 0. Lastly, β1 and β2 ∈ [0, 1] are decay terms. In addition to the advantages
of RMSProp, Adam’s sensitivity to gradient sign consistency dampens updates in directions of
oscillations, although no acceleration can occur in directions of consistent gradient. Adam has
been successfully combined with Nesterov Momentum [175].

Backpropagation BP [32] is an algorithm used to efficiently compute error gradients in
the GD LA, and an instance of Dynamic Programming [103]. It is of extraordinary practical
significance as it renders Training of ANNs of non-trivial size feasible.

BP has two phases, a Forward Pass and a Backward Pass. In the Forward Pass, the network is
evaluated on input. In the Backward Pass, an error signal in the form of recursively accumulating
error gradients is propagated backwards through the architecture via iterative application of the
Chain Rule. Exact error gradients with respect to all model parameters are thus obtained in a
single Forward-Backward Pass.

This method of computing error gradients is far more efficient than naive approaches, such as
the Finite Difference Method (FDM), which requires evaluating the network twice for every
parameter, and only provides approximate gradients. If the time complexity of evaluating the
network is Onet, then the time complexity of BP is also Onet, while the time complexity of FDM
is O(pOnet), where p is the number of model parameters.3

1 Adaptive Moment estimation
2 The full equations contain terms addressing numerical issues and bias correction, which are omitted here for
clarity.
3 In this context, the number of model parameters refers to scalar parameters, i.e. each element in a weight
matrix counts as a model parameter. Hence, p can be very large, which renders the linear speedup of BP over
FDM significant.

60

In what follows, it is assumed that the network is a Multilayer Perceptron (MLP) with ni inputs,
L Hidden Layers (HLs) with nl Hidden Units (HUs) in its lth HL, and no Output Units (OUs).
Moreover, all HUs are equipped with transition function g, and all OUs are equipped with
transition function o. The general principle, however, carries over to any Feedforward Neural
Network (FNN) architecture. For notational convenience and without loss of generality, it is
further assumed that the network does not have biases, i.e. θ = {W 1, . . . ,W L+1}.

Furthermore, Z l and Al denote matrices of Net Input and Activations of the lth Layer.
Furthermore, ∇lW denotes the gradient of the CF with respect to W l, with all other gradients
following the same notational convention.1 All functions are applied elementwise, and ◦ denotes
elementwise multiplication. Using the above assumptions, Algorithm (4) outlines the BP
algorithm.2

Algorithm 4 Backpropagation

Input: Loss Fun. L, Hyp. Fun. h as in (3.79), params θ, Batch {(X,Y)} w. m samples
Output: average Loss grad over batch 1

m

∑m
j=1∇θl

j(θ)
1: cmt: 1. Forward Pass: recursively compute Activations
2: A0 = X
3: cmt: loop over Hidden Layers
4: for l = 1, . . . , L do
5: Z l = Al−1W l

6: Al = g(Z l)

7: ZL+1 = ALW L+1

8: Ŷ = o(ZL+1)
9: cmt: 2. Backward Pass: recursively compute Net Input grads, then compute

10: cmt: weight grads (summed over batch) by multiplying with Activations
11: ∇Ŷ = L′(Ŷ ,Y)

12: ∇L+1
Z = o′(ZL+1) ◦ ∇Ŷ

13: ∇L+1
W = AT

L∇L+1
Z

14: cmt: loop over Hidden Layers
15: for l = L, . . . , 1 do
16: ∇lZ = g′(Z l) ◦ ∇l+1

Z W T
l+1

17: ∇lW = AT
l−1∇lZ

18: cmt: Assemble structure of summed gradients
19: ∇θ = {∇1

W , . . . ,∇L+1
W }

20: return ∇θ/m

Backpropagation Through Time BPTT [176] is a generalized version of BP for RNNs.
RNNs can be unrolled in time and considered deep FNNs with tied weights, i.e. all time slices
share the same weights. Figure 3.15 depicts a schematic of a Stacked Elman RNN, unrolled in
time.

1 The term gradient is used loosely in this context. The quantity ∇lW is a matrix of the same dimensions as
W l, whose elements are the sums (over the batch of training examples passed to BP) of the respective partial
derivatives.
2 Biases can be easily accommodated by prepending them as a first row to all weight matrices, and by prepending
a column of ones to the input and all Activation matrices.

61

Figure 3.15: Stacked Elman RNN with two HLs, unrolled in time. Layers are represented by blocks
and each arrow represents full connectivity. The HL Activations at t = 0 are initialized to a0

1 and
a0
2, respectively. Incidentally, this is the unrolled representation of 3.11 b).

The output, and hence the error, is distributed through time. While t indexes the time component
of the error, a second time index τ ≤ t is introduced to reference quantities that can affect the
error component in t. BPTT pretends that different time slices contain different weights, and
computes gradients of error component t with respect to each weight in time slice τ ≤ t. In the
end, gradients are summed over both time indexes to account for the fact that there is only
one weight that affects multiple time components of the error, affecting each of them through
contributions from multiple clock cycles.

In what follows, it is assumed that the network is a Stacked Elman RNN with ni inputs, L fully
recursive HLs with nl HU in its lth HL, and no OUs. All HUs are equipped with transition
function g, and all OUs with transition function o. The general principle, however, carries over
to any RNN architecture.

In addition to the assumptions made for BP, it is assumed that inputs and targets are present
at every time step. The network parameters are θ = {W 1, . . . ,W L+1,U1, . . . ,UL}. If biases
are treated as weights, it is further necessary to prepend a row of zeros to each recurrent weight
matrix U and to return zero gradients for the respective elements. Using the above assumptions,
Algorithm (5) outlines the BPTT algorithm. Any uninitialized quantities are assumed to be
zero.1

1 The below algorithm can be extended to account for the more general case where inputs and targets are not
present at every time step by setting the respective elements of Xt and Y t to zero.

62

Algorithm 5 Backpropagation Through Time

Input: Loss Fun. L, Hyp. Fun. h as (3.82), params θ, Batch {(Xt,Y t)} w. m samples
Output: average Loss grad over batch 1

m

∑m
j=1∇θl

j(θ)
1: cmt: 0. initialize Hidden States
2: for l = 1, . . . , L do
3: Al,0 = A0

l

4: cmt: 1. Forward Pass: recursively compute Activations
5: cmt: loop over time steps
6: for t = 1, . . . , T do
7: A0,t = Xt

8: cmt: loop over Hidden Layers
9: for l = 1, . . . , L do

10: Z l,t = Al−1,tW l +Al,t−1U l

11: Al,t = g(Z l,t)

12: ZL+1,t = AL,tW L+1

13: Ŷ t = o(ZL+1,t)

14: cmt: 2. Backward Pass: recursively compute Net Input grads, then compute
15: cmt: weight grads (summed over batch) by multiplying with Activations
16: cmt: loop backwards over time components of the error indexed by t
17: for t = T, . . . , 1 do
18: cmt: loop backwards over time indexes τ that affect error in t
19: for τ = t, . . . , 1 do

20: ∇t,τ
Ŷ

= L′(Ŷ τ ,Y t)

21: ∇L+1,t,τ
Z = o′(ZL+1,τ) ◦ ∇t,τ

Ŷ

22: ∇L+1,t,τ
W = AT

L,τ∇
L+1,t,τ
Z

23: cmt: loop over Hidden Layers
24: for l = L, . . . , 1 do

25: ∇l,t,τZ = g′(Z l,τ) ◦ (∇l+1,t,τ
Z W T

l+1 +∇l,t,τ+1
Z UT

l)

26: ∇l,t,τW = AT
l−1,τ∇

l,t,τ
Z

27: ∇l,t,τU = AT
l,τ−1∇

l,t,τ
Z

28: cmt: 3. compute total gradients
29: ∇lW =

∑T
t=1

∑t
τ=1∇

l,t,τ
W

30: ∇lU =
∑T

t=1

∑t
τ=1∇

l,t,τ
U

31: cmt: Assemble structure of summed gradients
32: ∇θ = {∇1

W , . . . ,∇L+1
W ,∇1

U , . . . ,∇LU}
33: return ∇θ/m

This basic BPTT framework can be extended to learn the initial Hidden States A0
l , l = 1, . . . , L

by making it a parameter of the model.

Weight Initialization The GD LA is still underspecified. In particular, it has not been
addressed what initial parameters θ0 to use in line 1 of Algorithm (2).

63

Weights in a multilayer ANN have to be initialized to different values. This is known as Symmetry
Breaking. Were all weights initialized to the same value, e.g. to 0, some weights could never
become different from each other during Learning. For instance, in an MLP1, elements ofW 1<l≤L
would change from their initial value but never become different from each other. The same holds
for elements in any row i of W 1 and elements in any column j of W L+1. This is the case since
all HUs receive exactly the same Net Input, and therefore, produce the same output. Thus, error
gradients with respect to weights in Layer 1 < l ≤ L are identical, while gradients in Layer 1
are identical if they connect to the same input, and gradients in Layer L+ 1 are identical if they
connect to the same output.

Biases are commonly initialized to 0, which causes no problems if all weights have different
values. Since the weights are different from each other, the HU Activations break symmetry and
cause error gradients with respect to biases to differ. Bias initialization to 0 shall be assumed
henceforth.

A naive approach to Initialization is to set weights to small random values drawn from a Uniform
or Normal Distribution. Care should be taken in choosing an appropriate scale in order to avoid
premature saturation, which occurs in some types of Artificial Neurons (ANs)2. If for example,
the Net Input to a Sigmoid Unit (SU) or Tanh Unit (TU) is too large in absolute terms, it
operates deep within its nonlinear regime. Gradients backpropagated through these Units are
multiplied with a factor close to zero, which slows Learning in lower Layers. Inputs should always
be normalized for the same reason3, which is assumed henceforth.

LeCun Uniform Initialization (LUI) [101] assumes TUs4 and initializes weights to random
values drawn from a zero-mean Uniform Distribution with standard deviation

√
1/nin. This

corresponds to drawing uniformly from the interval [−
√

3/nin,
√

3/nin], where nin is the fan-in
of a Unit, i.e. the number of incoming weights. For a fully connected network, nin associated with
Layer l is equal to nl−1, the number of Units in Layer l− 1. Using this scheme, HU Activations
are close to zero on average with standard deviation equal to 1, causing Units to operate in their
linear regime. Thus, in early iterations of GD, the model learns a crude linear mapping. Later,
Units saturate, fine-tuning the mapping by augmenting it with a nonlinear component. This can
be viewed as successively increasing model capacity during Learning.

Glorot Uniform Initialization (GUI), He Normal Initialization (HNI), Orthogonal
Initialization (OI) and Unsupervised Pre-Trainining (UPT) are more sophisticated
Initialization Schemes discussed in detail in the ”Deep Learning” section5.

Gradient Descent with Contrastive Divergence

GD with Contrastive Divergence (CD) [177] is a popular LA for Restricted Boltzmann Machines
(RBMs)6 over binary data. CD refers to a subroutine returning an error gradient, comparable
to the BP subroutine. Since it is implicitly understood that GD is performed, the literature
sometimes refers to the whole LA as CD. Described below is a more general version of CD,
called CD-k, which reduces to CD for k = 1.

1 compare 3.2.3, Directed Architectures, Feedforward Neural Networks, Multilayer Perceptron
2 compare 3.2.2, Types of Activation Functions
3 compare 3.1.3, Data Pre-Processing
4 LeCun actually recommends this initialization based on scaled TUs with Activation Function g(z) =
1.7159 tanh(2

3
z).

5 compare 3.3.3, Special Initialization Schemes
6 compare 3.2.3, Undirected Architectures, Restricted Boltzmann Machine

64

Informally, CD creates an energy minimum at the data by (a) lowering the energy of states
associated with the data in a so-called Positive Phase, and (b) raising the energy of close-by
states in a Negative Phase. Learning stops when the model produces states from the same
distribution as the data, and the two phases offset.

In the Positive Phase, the Visible Units (VUs) are initialized to the data and the distribution
over Hidden States is computed. The energy of the associated states is then lowered. In the
Negative Phase, m parallel Markov Chains are started at the data, and k full steps of Block
Gibbs Sampling [159] are performed, producing a reconstruction of the data and their associated
Hidden States. When computing these reconstructions, the model drifts into likely close-by states
whose energy is then raised. Although for low k the Negative Phase does not set the model into
thermal equilibrium, Learning still works.

In what follows, an RBM is assumed with nv VUs and nh HUs, all of which are Stochastic Binary
Units (SBUs)1. As before, it is assumed that the network does not have biases, i.e. θ = {W }.
The TrS consists of the input matrix, i.e. Sm = {X}.

Let V and H denote m× nv and m× nh matrices of Visible and Hidden States. Furthermore,
let P v and P h denote matrices of the corresponding conditional state probabilities. Lastly,
let ber(P) denote a function, applied elementwise, returning a matrix of Bernoulli distributed
random variables with probability parameters P .

Since RBMs are Density Estimation (DE)2 models, their associated CF, minimized in the outer
GD procedure, is the Negative Log Likelihood (NLL) CF3. Its negative scaled gradient with
respect to the parameters evaluates to

−m∇θCnll(θn) = ∇θ`(θ|X) = ∇θ log p̂(X;θ) = ∇W log p(V ;W)

= Ep(h|v;W)(V
TH)− Ep(v,h;W)(V

TH)
(3.110)

Ep(h|v;W)(V
TH) = 〈V TH〉∞0 = V TEp(h|v;W)(H) = V TP h

Ep(v,h;W)(V
TH) = 〈V TH〉∞∞ ≈ 〈V TH〉∞k ≈ 〈V TH〉mk

(3.111)

where `(θ|X) is the Log Likelihood function of the parameters given the Training Data, and
log p̂(X;θ) denotes the scalar quantity

∏m
j=1p̂(x

j ;θ).4 Hence, the nv × nh gradient matrix

∇θ log p̂(X;θ) is the sum of m gradient matrices,
∑m

j=1∇θ log p̂(xj ;θ), associated with the
individual training cases. Since Cnll is defined as an average over training cases, the scaling
factor m in (3.110) is needed. Ep(h|v;W)(V

TH) and Ep(v,h;W)(V
TH) are sometimes referred to

as the Positive and Negative Gradient.

Lastly, 〈V TH〉nr is an appropriately scaled sample average over a sample of size n, obtained
after r steps of Block Gibbs Sampling. For r = 0, samples are drawn from p(h|v;W), where
the VUs are clamped to the data and never change. V TH represents exactly one sample for
each of the m training cases, implicitly summed over via the matrix multiplication. For r > 0,
samples are drawn from p(v,h;W) such that the Visible States themselves change. There is no
notion of training case. Rather, the rows of V and H contain samples, i.e. n Markov Chains
are initialized at the VUs and r steps of Gibbs Sampling are performed to arrive at V TH.
Therefore, a scaling factor m is needed to account for TrS size. Concretely, drawing n samples

1 compare 3.2.2, Types of Activation Function, Stochastic Binary Activation
2 compare 3.1.6, Density Estimation
3 compare 3.1.5, Types of Cost Functions, Negative Log Likelihood Cost Function
4 This holds since the training cases are i.i.d.

65

in each case, the expressions evaluate as follows

〈V TH〉n0 =
1

n

n∑
s=1

V T
sHs =

1

n

n∑
s=1

V THs =⇒ [〈V TH〉n0]ij =
m∑
l=1

1

n

n∑
s=1

vlih
l,s
j

〈V TH〉nr>0 = m
1

n
V TH =⇒ [〈V TH〉nr]ij = m

1

n

n∑
s=1

vsi h
s
j

(3.112)

where [A]ij denotes the ith row and jth column element of matrix A. In the basic version of CD
described here, the scaling factor and the number of samples in the Negative Phase coincide, i.e.
m = n. This is the case since the Markov Chains are initialized at the data.1

Hence, the CD subroutine is embedded in the outer GD procedure by changing line 6 in
Algorithm (2) to

∇θCnll(θn) = −CD(θn,Sm, k)/m (3.113)

where it returns the approximate gradient of the Log Likelihood of the data under the current
model

∇θ log p̂(X;θ) ≈ CD(θn,Sm, k) = 〈V TH〉∞0 − 〈V TH〉mk
= V TP h − 〈V TH〉mk

(3.114)

Using the above assumptions, Algorithm (6) outlines the CD subroutine.

Algorithm 6 Contrastive Divergence

Input: params θ, Batch {(X,Y)} w. m samples, hyperparam k
Output: sum of Log Likelihood Loss grad over batch

∑m
j=1∇θl

j(θ)
1: cmt: 1. Positive Phase
2: cmt: set Visible State to input, compute Positive Gradient Epos
3: V = X
4: P h = g(VW)
5: H = ber(P h)
6: Epos = V TP h

7: cmt: 2. Negative Phase
8: cmt: perform k steps of Block Gibbs Sampling, compute approx. Negative Gradient
9: for i = 1, . . . , k do

10: P v = g(HW T)
11: V = ber(P v)
12: P h = g(VW)
13: H = ber(P h)

14: Eneg = V TH
15: cmt: compute approx. gradient of Log Likelihood
16: ∇θ = ∇W = Epos −Eneg

17: return ∇θ

1 Observe that the Positive Gradient is given exactly by V TP h. This is equivalent to evaluating the sample
average over an infinitely large sample, 〈V TH〉∞0 . The Negative Gradient is approximated by 〈V TH〉mr , which
involves two layers of approximation. By only taking r steps of Block Gibbs Sampling, the sample V TH is
not drawn from the equilibrium distribution p(v,h;W), but rather from an approximation of it. Secondly, the
expectation is approximated by a sample average of a sample of size m.

66

While the outer GD loop is identical to Algorithm (2), it is not obvious that all extensions to
the basic framework can be applied with CD. The relevant papers assume exact gradients or,
in case of SGD and MBSGD, unbiased stochastic gradients. CD, however, returns approximate,
biased gradients. General guidelines [178] for training RBMs using GD with CD suggest that
MBs and Momentum can be used.

A shortcoming of CD-k is that, for small k, the Negative Phase does not reach high-energy
configurations that are far from the data points. This can be remedied by increasing k during
runtime. A further improvement is Persistent Contrastive Divergence (PCD) [179] that uses
persistent, negative Fantasy Particles that can reach high-energy states far from any data point.
In PCD, the Negative Phase is not initialized at the data but at the Fantasy States of the
previous GD loop.

Other Learning Algorithms

Second Order Methods (SOMs), such as Levenberg-Marquardt [180, 181] making use of
local curvature information, can be employed to train ANNs. Typically, the gradient is not
the direction of largest possible error reduction, provided steps of arbitrary size are allowed.
Rather, the optimal direction depends on the ratio of gradient to curvature. Directions with
small gradient can be optimal if the associated curvature is even smaller.

In SOMs, parameter updates in low curvature directions are amplified by reweighing them along
each eigendirection of the Hessian1 by the inverse of the associated curvature [170]. Momentum,
described earlier, achieves a similar amplification by accumulating past gradients. In general,
SOMs are computationally expensive since inversion of a Hessian is required. For sufficiently
large networks this becomes infeasible.

Hessian-Free Optimization (HFO) is LA that avoids construction and inversion of the
Hessian while still using curvature information to inform parameter updates. It is discussed in
more detail in the ”Deep Learning” section2.

Evolutionary Optimization Algoriths (EOAs) [182] have also been successfully used for
ANN Training [183, 184].

3.2.5 Improving Generalization

Generalization Error

In the context of Supervised Learning (SL)3, it is essential that the trained model generalize well
to unseen data. A model that makes good predictions for data not in the Training Set (TrS) is
said to have low Generalization Error (GE). Therefore, the primary goal of Learning is to find a
good model of the Data Generating Process, not to find a model with low Training Error (TrE)
[185, ch. 9].4

1 For a network with p parameters, the Hessian, i.e. curvature matrix, is the p× p matrix of second-order partial
derivatives of the CF.
2 compare 3.3.3
3 compare 3.1.2, Supervised Learning
4 compare 3.1.1, Terminology

67

High GE is caused by either Underfitting or Overfitting, phenomena that are best understood
in the context of the Bias-Variance Trade-off [121]. If model capacity1 is too low, the model is
unable to fit the true regularities in the data and is said to have high Bias. This situation is
often referred to as Underfitting, which leads to high Test Error (TeE) and poor generalization.
If, on the other hand, model capacity is too high, the model fits uncharacteristic, accidental
regularities in the TrS and is said to have high Variance. This scenario is called Overfitting
and characterized by low TrE but poor generalization. Bias and Variance can be traded off by
adjusting model complexity. Figure 3.16 illustrates Underfitting and Overfitting.

Figure 3.16: The thick, solid line is an 8th order polynomial that overfits the data and produces
implausible out-of-sample predictions. The thin, solid line is a first order polynomial that underfits
the data, thus also producing implausible out-of-sample predictions. A model of medium complexity,
such as the second order polynomial represented by the dashed line, sensibly trades off Bias and
Variance.

Methods to Prevent Underfitting

Underfitting is addressed by increasing model capacity, e.g. by adding more Layers or Hidden
Units (HUs). In case Training has not converged, a longer Training period can be considered.
However, training the model on more data cannot alleviate Underfitting, since a high-Bias model
already lacks the necessary capacity to represent the salient features of the data.

Methods to Prevent Overfitting

In practice, Overfitting is more difficult to address. Methods to combat it are often collectively
referred to as Regularization.

More Training Data The most effective way to prevent Overfitting is to train the model
on more data. This method is preferred over other Regularization techniques if enough
computational resources are available. The bigger the Data Set, the less likely it is that accidental
regularities persist.

1 compare 3.1.4, Growth Function and VC-Dimension

68

Early Stopping This method can be viewed as Regularization in time. When using an
iterative Learning Algorithm (LA), such as Gradient Descent (GD) with Backpropagation (BP)1,
TrE decreases over time, while GE first decreases, and then increases again when the model
begins to overfit. In Early Stopping (ES), part of the data is held out as a Validation Set (VaS)
that is used to compute a proxy for GE after each parameter update.2 Training is stopped after
Validation Error (VaE) has started to increase. The model with minimal VaE is then retained.
While Training is often stopped after a particular number of consecutive increases in VaE, other
stopping criteria have been investigated [186].

With Sigmoid Units (SUs) and Tanh Units (TUs)3, ES effectively limits model capacity by
stopping Training before HUs saturate, i.e. before the model becomes too nonlinear.

Weight Decay In Weight Decay (WD) [187], a term inhibiting weight growth is added to
the Objective Function. Therefore, it is another example of limiting model capacity. Ng [188]
showed that WD is particularly effective in the presence of a large number of irrelevant features.
Two types of Weight Decay are commonly used, L1 and L2 Regularization.

L1 Regularization, also referred to as LASSO4 [189], adds the `1-norm of the weight vector
to the unregularized Cost Function (CF)5 C̄(θ)

C(θ) = C̄(θ) + α‖θ‖1 = C̄(θ) + α
k∑
i=1

|θi| (3.115)

where α is a tunable Hyperparameter (HP)6 that controls Bias-Variance Trade-off. The larger
α, the stronger the Regularization effect, the higher the Bias, and the lower the Variance. The
contribution of the Regularization term to the gradient is always a constant with respect to θi
and equal in sign to it.

∂C

∂θi
=

∂

∂θi
(C̄(θ) + α‖θ‖1) =

∂C̄(θ)

∂θi
+ α sign(θi) (3.116)

This implies that during Training, L1 Regularization exerts the same constant shrinkage force
on all weights, regardless of their magnitude.7 Consequently, many of the irrelevant weights
are pushed to exactly zero, while the remaining weights grow larger, all magnitudes equally
penalized. In the lowest network Layer, this behavior is akin to Feature Selection where only a
small number of the most relevant input features is selected.

L2 Regularization [190], sometimes called Tikhonov Regularization, imposes a penalty on the
`2-norm, i.e. the (Euclidean) length, of the weight vector.

C(θ) = C̄(θ) + α‖θ‖22 = C̄(θ) + α
k∑
i=1

θ2
i (3.117)

While always equal in sign to θi, the contribution of the Regularization term to the gradient is
also proportional to θi.

∂C

∂θi
=

∂

∂θi
(C̄(θ) + α‖θ‖22) =

∂C̄

∂θi
+ 2α θi (3.118)

1 compare 3.2.4, Gradient Descent with Backpropagation
2 The VaS is completely separate from the TrS, and not used in gradient computation.
3 compare 3.2.2, Types of Activation Functions, Sigmoid Activation and Hyperbolic Tangent Activation
4 Least Absolute Shrinkage and Selection Operator
5 compare 3.1.5, Definition Cost Function
6 compare 3.1.8
7 This is the case because weight updates are proportional to this gradient with a proportionality factor equal to
the Learning Rate; compare 3.2.4

69

During Training, a proportionally stronger force towards zero is exerted on large weights than
on small weights. Compared to L1 Regularization, a stronger shrinkage force is thus exercised
on large weights, while weights close to zero are less affected. This favors diffuse weight vectors
with small elements, over sparse and peaky weight vectors, giving rise to robust models whose
outputs vary smoothly in their inputs.

Elastic Net Regularization (ENR) is a method combining L1 and L2 Regularization. Both
error terms described above are added to the Objective Function. ENR has been shown [191] to
outperform L1 Regularization, producing a similar feature selection effect in the lowest Layer.
Apart from this, it achieves a grouping effect where sets of correlated features tend to get selected
together.

L0 Regularization refers to directly limiting the number of Artificial Neurons (ANs). In
this case, a penalty on the `0-”norm” of the weight vector is imposed. The corresponding
Regularization term is limp→∞ ‖θ‖p, counting the number of nonzero weights [192]. Whenever
all incoming or outgoing weights of a Unit are equal to zero, the Unit is effectively removed from
the network.

Weight Constraints Apart from imposing penalties on the norm of the weight vector, i.e.
penalizing the size of each weight in the network separately, weight constraints on the incoming
weight vectors of each Unit can be considered. In this approach, the penalties incurred by
individual weights are no longer independent.

In Max-Norm Regularization (MNR) [193, 194] the length of the incoming weight vector
θ of each Unit is upper bounded by some value c

‖θ‖22 < c (3.119)

which is a tunable HP. If after a parameter update the constraint is violated, the entire vector
is scaled down by projecting θ onto the surface of a ball of radius c.

The advantage of MNR over WD is that the constraint has no effect unless it is violated. When
weights become too large, the constraint causes them to compete with each other. Over time,
irrelevant weights are pushed to zero, solely as a result of relevant weights growing.

Weight Sharing In Weight Sharing (WS), groups of weights are tied together and thereby
forced to have identical values at all times. This method is one of the basic ideas underlying
Convolutional Neural Networks (CNNs)1. Often, weights are tied in order to build replicated
feature detectors, e.g. receptive fields in the context of CNNs. In this manner, the number of
model parameters can be decreased substantially, allowing for smaller TrSs [185, ch. 8.7.3].2

Adding Noise Injecting noise into an Artificial Neural Network (ANN) can improve
Generalization Performance.

Adding Noise to Inputs forces the network to learn robust representations of the data. For
instance, in Denoising Autoencoders (DAEs)3, some fraction of the input variables is randomly
omitted for each training case. Adding zero-mean Gaussian noise to the inputs of an ANN
without Hidden Layer (HL), Linear Output Unit (OU), and trained on the Mean Squared
Error (MSE) CF is equivalent to L2 Regularization with HP α equal to the noise variance [195].

1 compare 3.2.3, Directed Models, Feedforward Neural Networks, Convolutional Neural Networks
2 compare 4.5
3 compare 3.2.3, Directed Models, Feedforward Neural Networks, Autoencoders

70

Adding Noise to Weights in multilayer ANNs is not exactly equivalent to L2 WD. However,
it has been shown [196, 197] to improve convergence and generalization in Recurrent Neural
Networks (RNNs)1.

Model Averaging Average predictions from multiple models are typically superior to
predictions from an individual model. High-capacity models with low Bias and high Variance
may overfit individually, but when averaging their predictions, Variance decreases as their
errors average out [121, ch. 7.2]. The more diverse the component models, i.e. the more the
predictions disagree, the more effective is Model Averaging (MA) [198, 199]. However, strongly
biased component models are detrimental to MA. Hence, disagreement between models is
encouraged, while also requiring individual unbiasedness. This is achieved by employing different
architectures, different Activation Functions (AcFs), and so forth.

Bayesian Methods The Learning Problem can be viewed in a Bayesian context [200, 201].
In this framework, the model parameters θ are considered random variables and are assigned
a prior probability density p(θ) reflecting an a priori belief in their distribution.2 Let S ={

(x1,y1), ..., (xm,ym)
}

= (X,Y) denote the observed Training Data. A likelihood function
p(S|θ) specifies how likely the observed TrS is under the model. Since X is assumed to be
independent from θ, the likelihood function can be expressed as

p(S|θ) = p(X,Y |θ) = p(Y |X;θ)p(X|θ) = p(Y |X;θ)p(X) (3.120)

Using Bayes’ Theorem and (3.120), the following relationship holds

p(θ|S) =
p(S|θ)p(θ)

p(S)
=

1

Z
p(Y |X;θ)p(θ) (3.121)

Hence, the posterior density p(θ|S) is proportional to the product of the likelihood p(S|θ) and
the prior p(θ). It reflects the prior beliefs about the parameters, modified by the evidence of how
consistent different weight configurations are with the observed data. The normalizing constant
Z = p(Y |X) ensures that the posterior is a valid density, i.e. that it integrates to unity.

In non-Bayesian Learning, when maximizing the Log Likelihood function, or equivalently, when
minimizing the Negative Log Likelihood (NLL) CF3, one seeks the weight vector

θML = arg max
θ∈Θ

p(S|θ) = arg min
θ∈Θ

− log p(S|θ)

= arg min
θ∈Θ

− log p(Y |X;θ) = arg min
θ∈Θ

Cnll(θ)
(3.122)

without consideration of the prior.4

Maximum A Posteriori (MAP) Learning [187] makes predictions using the model with
the parameter setting θMAP corresponding to the mode of the posterior, i.e. the most probable

1 compare 3.2.3, Directed Architectures, Recurrent Neural Networks
2 Often, it is assumed that parameters are normally distributed with mean zero to express the prior belief that
weights in a sensible model tend to be small.
3 compare 3.1.5, Types of Cost Functions, Negative Log Likelihood Cost Function
4 The last equality uses the fact that (a) the targets are conditionally independent given the input, i.e.
p(Y |X;θ) =

∏m
j=1p(y

j |X;θ), (b) for all i 6= j, yj is conditionally independent of xi given xj , i.e. p(yj |X;θ) =

p(yj |xj ;θ), and (c) for all c ∈ R, arg minx f(x) = arg minx(c f(x)).

71

weight vector given the Training Data.

θMAP = arg max
θ∈Θ

p(θ|S) = arg min
θ∈Θ

(− log p(Y |X;θ)− log p(θ))

= arg min
θ∈Θ

(
Cnll(θ)− 1

m
log p(θ)

) (3.123)

This is similar to (3.122), with the exception that the additional − 1
m log p(θ) term is considered.

This model can be learned using GD in conjunction with BP1. Once the MAP estimator2 θ̂∗MAP

is found, predictions can be obtained from ŷ = h(x; θ̂∗MAP). In conditional Density Estimation
problems3, it leads to the predictive density p̂(y|x; θ̂∗MAP).

Incidentally, in a model predicting the mean of a Gaussian, and assuming a Gaussian prior p(θ),
MAP Learning is equivalent to minimizing a MSE CF plus an L2 weight penalty. Hence, the
term − 1

m log p(θ) manifests itself as an L2 penalty. This is intuitive since under the prior large
weights are improbable.

Full Bayesian Learning (FBL) takes advantage of the full posterior distribution instead of
only considering the most likely parameter setting. In this paradigm, predictions are derived
from the predictive density p̂(y|x,S), which is an average of p̂(y|x;θ) over all parameter
configurations weighted by their posterior probabilities

p̂(y|x,S) =

∫
Θ
p̂(y|x;θ)p(θ|S) dθ (3.124)

Hence, FBL is an instance of MA where the average is taken over all possible configurations of the
same model, as opposed to averaging over different models. A popular method for approximately
solving (3.124) is Markov Chain Monte Carlo (MCMC) sampling [202].

The main advantage of FBL is applicability of high-capacity models when little Training Data
is available. In this framework, Overfitting is essentially impossible [201]. In case of a small Data
Set, the posterior may be multimodal or smeared out. Picking one set of parameters means
ignoring all other plausible configurations, resulting in poor generalization.4 However, when
taking a posterior-weighted average over all configurations, the predictive density reflects this
uncertainty. Predictions derived from it are then akin to predictions of a low-capacity model.

Dropout Dropout (DO) [193, 194] is a Regularization method that helped set records on
important benchmark problems [43] and is now used ubiquitously.

During Training, a fraction p of the Units is randomly omitted for each training case. The
Activations of the respective Units are zeroed out by multiplying them elementwise with a
binary masking vector m whose components are drawn from a Bernoulli Distribution. Consider
a fully connected Layer composed of n Units, Transition Function g, and Activations a, receiving
input from an m-Unit Layer

a = m ◦ g(W Tx) with mi ∼ Ber(p) iid (3.125)

Frequently, AcFs are applied that satisfy g(0) = 0. In this case, DO can be viewed as an
operation on the weight matrix. Hence, (3.125) can then be transformed, such that the m × n
1 compare 3.2.4, Gradient Descent with Backpropagation
2 compare 3.1.4, Empirical Risk Minimization
3 compare 3.1.6, Density Estimation
4 In contrast, if lots of Training Data is available, the posterior is sharply spiked around some value θpeak, and
(3.124) is approximately equal to p(Y |X;θpeak) ≈ (Y |X;θMAP).

72

weight matrix W is multiplied with a binary masking matrix M whose columns are randomly
set to zero vectors.

a = g((M ◦W)Tx) with m·i = mi 1m×1 and mi ∼ Ber(p) iid (3.126)

The random omission of Units implies that for each training case a separate model is randomly
sampled from the set of 2H possible distinct models, where H is the number of HUs in the
network. Although, on average, each of the sampled models is trained on only a single training
case, Learning succeeds due to extensive WS between models.1

To make predictions on unseen test data the model containing all available Units is employed.
To account for the larger number of Units in this full model, all weights are scaled by a factor
of 1− p. This can be considered an adequate and fast approximation to averaging all 2H model
outputs.

DO works because it prevents individual Units from relying on complex co-adaptations that
may not be robust to changes in the data. Instead of being able to rely on the same connected
Units being present at all times, each Unit is forced to learn a transformation that is useful by
itself, as well as complementary to the computations performed by an exponentially large set
of models it contributes to. Furthermore, unlike L1 and L2 Regularization, which pull weights
towards zero, the WS between models in DO provides a strong impetus for weights to be pulled
towards their correct values. Lastly, DO can be viewed as an extreme instance of MA using an
exponential number of models.

Unsupervised Pre-Training Unsupervised Pre-Trainining (UPT), also called Generative
Pre-Training, refers to using Unsupervised Learning (UL) techniques to aid SL2. This method is
believed to act as a Regularizer, and is discussed in the ”Deep Learning” section3 of this thesis.

1 WS exists since a Unit possesses the same incoming and outgoing weights in all models containing it.
2 compare 3.1.2
3 compare 3.3.3, Special Initialization Schemes, Unsupervised Pre-Training

73

3.3 Deep Learning

3.3.1 Theoretical Justification

Types of Depth

For the purpose of this thesis, Deep Learning (DL) refers to Deep Neural Networks (DNNs).
There are two types of depth. Depth in Representation in Feedforward Neural Networks
(FNNs)1 is related to the number of transformations between input and output. FNNs with more
than two Hidden Layers (HLs) are called Deep Feedforward Neural Networks (DFNNs). Depth
in Time, on the other hand, is a natural property of Recurrent Neural Networks (RNNs)2 where
inputs and outputs are separated by multiple transformations along the time dimension. Depth
in Time is qualitatively equivalent to Depth in Representation when the RNN is unrolled in
time and viewed as a DFNN.3 If stacked into Layers, RNNs can additionally possess Depth in
Representation, thus becoming Deep Recurrent Neural Networks (DRNNs).

Comparison to Conventional Methods

Depth in Representation is what sets DL apart from other Machine Learning (ML) approaches.
Figure 3.17 depicts the relationship between DL and conventional methods.

Figure 3.17: Comparison of DL to Conventional Methods. Shaded boxes represent model
components that are able to learn from data [1, Fig. 1.5].

1 compare 3.2.2, Directed Architectures, Feedforward Neural Networks
2 compare 3.2.2, Directed Architectures, Recurrent Neural Networks
3 compare 3.2.4, Gradient Descent with Backpropagation, Backpropagation Through Time

74

Artificial Neural Networks (ANNs) with HLs automate Feature Learning and use the Principle
of Distributed Representations (DRs)1, which allows for exponential gains in representational
efficiency over Symbolic Representations (SRs). DL automatically learns multiple levels of
representations corresponding to multiple levels of abstraction. This representational depth
corresponds to the additional Principle of Deep Compositions (DCs) allowing for a further
exponential gain in representational efficiency over shallow ANNs [1, chs. 6.4.1, 15.5].

Principle of Deep Compositions

The Principle of DCs reflects the assumption that the data was generated by a composition
of hierarchical factors. This assumption is made in addition to the Smoothness Assumption2

of most ML methods, and in addition to the implicit assumption of ANNs that the data is
representable in a distributed manner.

DL encourages the automatic discovery of a hierarchy of features, such that intermediate-level
representations are shared across tasks. This is analogous to subroutines being shared in
high-level programs. For instance, in case of image data, the lowest level in the hierarchy
represents edge detectors, the subsequent levels represent simple shapes, such as squares and
circles, while the highest levels represent complex abstractions, such as cats or whether a person
wears a jacket [2, ch. 1].

One major advantage of DCs is that it helps deal with the Curse of Dimensionality [1, ch. 5.1],
which refers to the fact that the number of variable configurations grows exponentially in the
number of variables. The difficulty is how to generalize to all possible configurations when almost
none of them is represented in the Training Set (TrS). Under the Smoothness Assumption of
conventional ML methods, this type of Generalization corresponds to local template matching,
e.g. in Classification3 the k-Nearest Neighbor algorithm [203] predicts the class of the closest4

training example. However, this only works well, if there are roughly as many training examples
as regions of the input space that need to be distinguished, and if those training examples
cover the entire input space. In high dimensions, almost none of the possible configurations are
represented in the TrS. DCs, on the other hand, allow for an exponential number of regions to
be distinguished using only a linear number of training cases. It is thus no longer necessary for
the TrS to cover the entire input space.

Another advantage of DCs is that it makes the task of disentangling the factors of variation in
the data more efficient. According to the Manifold Hypothesis [1, ch. 5.11.3], d-dimensional data
is often concentrated near lower-dimensional manifolds5 embedded in input space. The local
manifold coordinates represent the main factors of variation in the data. Interesting variations
in output only occur along local coordinate directions on the manifold, or when moving from
one manifold to other. There is evidence [204] that the Manifold Hypothesis is valid for a large
number of common Data Sets.

1 compare 3.2.1, Principle of Distributed Representations
2 similar model inputs generate similar outputs
3 compare 3.1.6, Classification
4 by some distance measure in Feature Space
5 connected regions in input space

75

An ANN with HLs disentangles underlying factors of variation by representing them as high-level
features that are linearly combined in the Output Layer (OL). Varying individual output weights
corresponds to moving along the local coordinates of the data manifold. Although FNNs with one
HL are Universal Function Approximators, an exponential number of Hidden Units (HUs) [205]
may be required. DCs make the representation of arbitrary functions more efficient. It has been
demonstrated that there exists a family of functions that can be approximated efficiently by an
architecture of depth d, but that cannot be efficiently approximated by an architecture of depth
< d. Montufar [206] shows that the number of regions distinguishable by a fully connected
DFNN with Rectified Linear Units (ReLUs)1 with d inputs, l Layers and n HUs per HL is
O(
(
n
d

)
d(l−1)nd). Hence, a deep, narrow architecture can distinguish exponentially more regions

than a shallow network with the same number of parameters given the same number of inputs.

These advantages, i.e. alleviating the Curse of Dimensionality and increasing the efficiency of
disentangling factors of variation, are the basis for improved Generalization of DCs. Instead of
only informing the model how to generalize in a single neighborhood, each training example is
used to generalize non-locally [207, 208]. Furthermore, Generalization is helped by the fact that
high-capacity models can be constructed with relatively few parameters, thus greatly reducing
the risk of overfitting2. There is ample empirical evidence confirming that greater depth indeed
corresponds to better Generalization [209, 210, 43, 211].

3.3.2 Challenges in Training Deep Neural Networks

The literature provides extensive evidence that training Deep Neural Networks (DNNs) is more
difficult than training shallow Artificial Neural Networks (ANNs) [209, 210].

Vanishing and Exploding Gradient Problem

The Vanishing and Exploding Gradient (VEG) Problem [35] was originally identified as an
obstacle to training Recurrent Neural Network (RNN)3.

The dynamics of an RNN are characterized by repeated application of the same recurrent weight
matrix U to the previous time step’s Activations. If no intermediate inputs are present, this is
equivalent to multiplying the Initial State with U t. If U has Eigenvalue Decomposition QΛQ−1,
such that Λ is a diagonal matrix whose elements are the eigenvalues of U , it follows that

U t = (QΛQ−1)t = (QΛQ−1)(QΛQ−1)(QΛQ−1)t−2

= QΛ(Q−1Q)ΛQ−1(QΛQ−1)t−2 = QΛ2Q−1(QΛQ−1)t−2

. . .

= QΛtQ−1

(3.127)

Evidently, any eigenvalue λi = [Λ]ii smaller than 1 in absolute terms vanishes, while any
eigenvalue greater than 1 in absolute terms explodes for large t, since limt→∞ λ

t
i = 0 if |λi| < 1,

and limt→∞ λ
t
i =∞ if |λi| > 1 [1, ch. 8.2.5].

1 compare 3.3.3, Special Types of Activation Functions, Rectified Linear Activation
2 compare 3.2.5, Generalization Error
3 compare 3.2.2, Directed Architectures, Recurrent Neural Networks

76

In Gradient Descent (GD) with Backpropagation Through Time (BPTT)1, a vanishing gradient
prevents an effective error correction signal to travel back through a large number of time
steps. As a result, the RNN is unable to learn long-term dependencies, i.e. cannot adapt its
parameters to adjust its output in response to events occurring many time steps earlier. On
the other hand, an exploding gradient makes Learning unstable. In Deep Feedforward Neural
Networks (DFNNs), a qualitatively similar problem occurs, except that multiple weight matrices
associated with different Layers are involved.

VEG in RNNs is addressed by using special types of Units, such as Long Short-Term
Memory (LSTM) Units or Gated Recurrent Units (GRUs)2, special Initialization Schemes,
such as Orthogonal Initialization (OI)3, as well as special Learning Algorithms (LAs), such
as Hessian-Free Optimization (HFO)4. In DFNN, VEG is addressed by employing special
Activation Functions (AcFs), such as the Rectified Linear AcF5, special Units, such as Maxout
Units (MOUs)6, as well as special Initialization Schemes, such as Glorot Uniform Initialization
(GUI), He Normal Initialization (HNI), and Unsupervised Pre-Trainining (UPT)7.

Asynchronous Saturation Behavior

Asynchronous Saturation Behavior (ASB) is caused by poor weight initialization [135]. The
following analysis assumes that network input is properly standardized to have zero mean.

Network weights initialized to values that are too small cause the standard deviation of Tanh
Hidden Unit (HU) Activations to be small as well. This effect increases with depth, i.e. the
higher the Layer, the smaller the standard deviation of its Activations.8 When training using
GD with Backpropagation (BP), weights of higher Layers receive smaller weight updates than
weights in lower Layers. As a result, lower Layers in Tanh networks saturate early. The precise
mechanisms behind this behavior are not well understood.9

Conversely, if weights are initialized to values that are too large, Sigmoid HUs in high network
Layers tend to saturate quickly, i.e. become either close to 0 or 1 after a few updates. This
effect increases with depth.10 Backpropagated gradients are thus multiplied with small numbers,
leading to a vanishing error gradient in lower Layers.11 In this scenario, weight updates are
smaller for Layers closer to the input. As a result, higher Layers in Sigmoid networks saturate
early, which considerably slows down Learning in lower Layers.

Ways to address ASB include special Initialization Schemes such as GUI and HNI, as well as
UPT.

1 compare 3.2.4, Gradient Descent with Backpropagation, Backpropagation Through Time
2 compare 3.3.3, Special Types of Units
3 compare 3.3.3, Special Initialization Schemes
4 compare 3.3.3, Special Learning Algorithms
5 compare 3.3.3, Special Activation Functions
6 compare 3.3.3, Special Units
7 compare 3.3.3, Special Initialization Schemes
8 Recall that Activations of Tanh Units are symmetric around zero.
9 Naively, one could hypothesize it to be a phenomenon associated with BP. The error gradient with respect to
the weights in Layer l is computed by multiplying the gradient with respect to the Net Input to Layer l by the
Activations of Layer l − 1. Hence, one may be led to believe that the closer these Activations are to zero, the
smaller the error gradient with respect to the weights, the smaller the weight update. However, when properly
accounting for the changes in gradient with respect to Net Input between Layers, this effect is offset.

10 Recall, that Activations of Sigmoid Units (SUs) are symmetrical around 0.5
11 This can be seen from the BP equations. Computation of the error gradient with respect to Net Input of Layer
l involves multiplication by gradient of the AcF with respect to Net Input.

77

Internal Covariate Shift

One of the central challenges in training DNNs is dealing with the strong dependencies that exist
between parameters of different Layers. Training must simultaneously (a) adapt the weights of
the lower Layers to provide adequate input to the final setting of the higher Layers, and (b)
adapt the weights of the higher Layers to make use of the final settings of the lower Layers. The
final Layer settings, however, are not know until after Training [53].

In Training with GD1, the error gradient indicates how each parameter should change assuming
the other parameters do not change. However, the parameters of all Layers are updated in
parallel, which can lead to the destruction of existing function compositions [1, p. 317]. As
a result of Deep Compositions (DCs)2 in DNNs, small parameter updates in low Layers can
cause large changes in the distribution of Net Inputs to higher Layers. This effect increases
with network depth and is referred to as Internal Covariate Shift (ICS) [212]. Consequently,
parameters in higher Layers need to adapt constantly to account for these changes and may get
pushed into saturation, which slows down Learning.

Batch Normlization (BaN)3 is a method to address ICS.

Large Number of Local Minima

One of the reasons ANNs fell out of favor in the late 1980s was the belief that their associated
Cost Functions (CFs)4 exhibited a Large Number of Local Minima (LNLM), many of them
corresponding to a much higher error than the global minimum [2, ch. 4.2].

It has since been demonstrated that, from an optimization perspective, Local Minima are not a
major concern for DNNs. Recent theoretical results [213] suggest that, in high dimensions, most
critical points are saddle points rather than local minima. In fact, for random functions in n
dimensions, the probability that a critical point is a local minimum with high error relative to
the global minimum is exponentially small in n. Stochastic Gradient Descent (SGD)5 typically
escapes from these saddle points, although this process can be slow. Hence, saddle points had
been mistaken for local minima [214].

There is evidence [215] that for large DFNNs, local minima are essentially all equivalent in terms
of Generalization Performance6, and that recovering the global minimum is of no practical
relevance as it often corresponds to Overfitting. SGD tends to converge to high-quality local
minima as measured by Training Error (TrE), while for small scale networks of earlier decades,
the probability of convergence to poor local minima was not negligible.

However, this leaves open the possibility that there exist Local Minima with better
Generalization Error (GE) that SGD is unlikely to converge to. Therefore, the problem of LNLM
still exists, albeit not in an optimization sense. Rather, it refers to the fact that SGD likely
converges to one of many local minima that is close to the global minimum in terms of TrE, but
far from it in terms of Test Error (TeE).

1 compare 3.2.4, Gradient Descent with Backpropagation
2 compare 3.3.1, Principle of Deep Compositions
3 compare 3.3.3, Batch Normalization
4 compare 3.1.5, Definition Cost Function
5 compare 3.2.4, Gradient Descent with Backpropagation, Extension with Stochastic Gradient, Stochastic
Gradient Descent
6 compare 3.2.5, Generalization Error

78

3.3.3 Solutions to Challenges

Special Types of Activation Functions

Rectified Linear Activation The Rectified Linear Activation Function (AcF) applies a hard
nonlinearity to its inputs. It computes

g(z) = max(0, z)

∂g

∂z
= I(z ≥ 0)

(3.128)

and gives rise to Rectified Linear Units (ReLUs) computing

f(x) = g(q(x)) = max

(
0,

k∑
i=1

wixi + b

)
= max(0,wTx+ b) (3.129)

where the notational conventions defined earlier1 were used. Figure 3.18 depicts a plot of the
Rectified Linear AcF.

Figure 3.18: Rectified Linear Activation Function

First proposed for real-valued Restricted Boltzmann Machines (RBMs)2 [158], ReLUs are now
among the most popular Units for Deep Feedforward Neural Networks (DFNNs). They have
been shown [216] to outperform Tanh Units (TUs). In fact, they helped set records on several
benchmarks across various domains [43, 217, 218].

ReLUs train faster since no exponentials must be computed and, more importantly, the derivative
of the Rectified Linear AcF is simply zero or one, which prevents the gradient from vanishing
in deep networks. Hence, the Rectified Linear AcF addresses the Vanishing and Exploding
Gradient (VEG) Problem3 in DFNNs.

Generalizations to this AcF exist that fix various of its shortcomings, giving rise to Leaky
ReLUs [219], Parametric Rectified Linear Units (PReLUs) [220], and S-Shaped Rectified Linear
Units (SReLUs) [221].

1 compare 3.2.2, Types of Activation Functions
2 compare 3.2.3, Undirected Architectures, Restricted Boltzmann Machines
3 compare 3.3.2, Vanishing and Exploding Gradient Problem

79

Special Types of Units

Maxout Unit Maxout Units (MOUs) [222] generalize ReLUs and have similar benefits in
terms of overcoming VEG in DFNNs. They output the maximum taken over k Net Inputs,
where each Net Input is associated with its own weight matrix. Figure 3.19 depicts a MOU with
three components.

Figure 3.19: Maxout Unit

The equations associated with a Layer of MOUs are

a = max
j=1,...,k

zj

zj = W T
j x+ bj

(3.130)

where the max is applied elementwise, such that ai = maxj=1,...,k zji, and j indexes the MOU
components, not the Layer, whose index has been dropped for clarity.

A single MOU with k components can approximate any k-component, piecewise linear function,
and asymptotically, any convex function of the input x. For instance, a 2-component MOU can
emulate a ReLU, Leaky ReLU, PReLU, and any other Unit with 2-component piecewise linear
AcF. It is sometimes claimed that therefore, MOUs can be viewed as learning their AcF.1

MOUs works well in conjunction with Dropout (DO)2 since the model averaging induced by DO
becomes exact when using MOUs.3

1 This is misleading given the definition of AcF used in this thesis. The AcF of a MOU is fixed and depends on k
inputs, i.e. g(z1, . . . , zk), just as the Rectified Linear AcF is fixed but depends on only one input g(z). What can
be learned is the Activation viewed as a function of the input x, i.e. g(x) = g(z1(x), . . . , zk(x)). However, this is
also true for any other AcF, so MOUs are not special in that sense.
2 compare 3.2.5, Dropout
3 With TUs, the averaging is only approximate.

80

Long Short-Term Memory Unit Long Short-Term Memory (LSTM) Units [39] address
VEG in Recurrent Neural Networks (RNNs). LSTM-RNNs are able to learn dependencies over
time lags of thousands of discrete time steps. This is achieved by introducing an explicit long-term
Memory that can be written to and read from. In particular, a Memory Cell is controlled by three
Logistic1 Gating Units that represent continuous approximations to binary Logic Gates. These
Gating Cells interact multiplicatively with the Memory, and when in a particular configuration,
allow the error gradient to flow backwards through the Memory Cell unattenuated.

Figure 3.20 displays an LSTM Unit. A candidate value ct is computed from the current input
xt and the previous Activations at−1.2 The state of the Forget Gate ft determines whether the
previous Memory state mt−1 is retained or erased. If the Forget Gate is open, i.e. close to 1 in
value, the Memory State persists, if it is closed, i.e. close to 0 in value, it is wiped.3 The Input
Gate it controls write access to the Memory Cell. If it is open, the candidate value is written
into Memory, i.e. added to what has persisted from the previous Memory State, producing the
current Memory State mt. Lastly, the Output Gate ot controls read access. If open, the Memory
content flows through a tanh nonlinearity and becomes the Unit’s current Activation at. If the
Output Gate is closed, the Unit has 0 Activation.

Figure 3.20: Long Short-Term Memory Unit

1 compare 3.2.2, Types of Activation Functions, Sigmoid Activation
2 Assuming there are multiple LSTM Units in this Layer, the Unit receives input from all of them, hence at−1 is
a vector.
3 The Forget Gate should be more aptly named Keep Gate.

81

The equations describing the dynamics of the (first) Hidden Layer (HL) in an LSTM-RNN are

ct = tanh(W T
c x+UT

c at−1 + bc)

f t = σ(W T
f x+UT

f at−1 + bf)

it = σ(W T
i x+UT

i at−1 + bi)

ot = σ(W T
o x+UT

o at−1 + bo)

mt = f t ◦mt−1 + it ◦ ct
at = ot ◦ tanh(mt)

(3.131)

where the above-defined quantities are written as vectors1, σ is the Logistic Function, all
functions are applied elementwise, and ◦ denotes elementwise multiplication. These equations
replace the corresponding equation in (3.82) of conventional RNNs, where the Layer index has
been dropped for clarity. Schmidhuber [223] points out that there is no evidence that the second
tanh squashing function in (3.131) is needed. In fact, if it is omitted, an LSTM Unit reduces to
a regular recurrent Hidden Unit (HU), provided that the Input and Output Gates are open and
the Forget Gate is closed. An LSTM-RNN can then exactly emulate a regular RNN.

Backpropagation Through Time (BPTT)2 requires error gradients with respect to the Layer’s
Net Inputs zc,t = W T

c x + UT
c at−1 + bc, zf,t, zi,t, zo,t, and zm,t = mt−1. These quantities are

defined recursively in terms of error gradients with respect to the Layer’s Activations ∇ta and
Memory States ∇tm.

∇c,tz = ct ◦ σ′(zc,t) ◦ (vt ◦ ∇ta +∇tm)

∇f,tz = mt−1 ◦ σ′(zf,t) ◦ (vt ◦ ∇ta +∇tm)

∇i,tz = ct ◦ σ′(zi,t) ◦ (vt ◦ ∇ta +∇tm)

∇o,tz = σ′(zo,t) ◦ tanh′(mt) ◦ (vt ◦ ∇ta +∇tm)

∇m,tz = f t ◦ (vt ◦ ∇ta +∇tm)

(3.132)

with vt = ot ◦ tanh′(mt), σ
′(z) = (1 − σ(z))σ(z), tanh′(z) = 1 − tanh2(z), all gradients being

vectors. The corresponding matrix equations for batch processing are analogous to the equations
in Algorithm (5).

As per (3.131), each Memory Cell has a recurrent self-connection via an identity transformation
that allows information to circle in Memory indefinitely. Likewise, error signals can be
backpropagated through potentially infinitely many time steps without change in magnitude. It
is this mechanism that allows LSTM-RNNs to overcome VEG.

LSTM networks have been successfully applied in a large variety of sequence processing
tasks, such as Connected Handwriting Recognition (CHR) [224], where they have won several
competitions [225], and Machine Translation (MT) [226, 146]. Furthermore, they are now widely
used in Automatic Speech Recognition (ASR) applications [46, 227].

There are various extensions to the basic LSTM framework. For instance, Peephole-LSTM Units
[223] introduce connections from the Memory Cell to the Gating Cells. This addresses the
limitation of conventional LSTM Units that, when their Output Gate is closed, none of the
gates can access the Memory State they control. Peephole connections help the network make
better use of information conveyed in the distance between events.

1 since all LSTM Units in the Layer are computed in parallel
2 compare 3.2.4, Gradient Descent with Backpropagation, Backpropagation Through Time

82

Gated Recurrent Unit Gated Recurrent Units (GRUs) [228] are another type of Gated Unit
used to combat VEG, similar to LSTM. GRUs essentially merge the Hidden and Memory State,
and combine the Forget and Input Gate, such that new memories can only be formed when old
memories are forgotten. These simplifications reduce the number of parameters compared to
LSTM Units.

Special Initialization Schemes

Glorot Uniform Initialization Glorot Uniform Initialization (GUI) [135], also called Xavier
Initialization, assumes TUs. It initializes the weights of Layer l of a Feedforward Neural Network
(FNN) to random values drawn from a zero-mean Uniform Distribution with standard deviation√

2/(nl−1 + nl), i.e. uniformly from the interval [−
√

6/(nl−1 + nl),
√

6/(nl−1 + nl)], where nl−1

and nl are the number of Units in Layer l−1 and l.1 When using TUs, this Initialization scheme
ensures that the variance of Activations as well as the variance of backpropagated error gradients
with respect to Net Inputs is approximately constant between Layers. Furthermore, as Training
progresses, the variance of the error gradients with respect to the weights remains similar between
different Layers. These effects help remedy Asynchronous Saturation Behavior (ASB)2, and
indirectly VEG, in DFNNs, which occur with naive Initialization Schemes.

He Normal Initialization He Normal Initialization (HNI) [220] initializes the weights of
Layer l of an FNN to random values drawn from a zero-mean Normal Distribution with standard
deviation

√
2/nl−1, where nl−1 is the number of Units in Layer l − 1.3 The derivation of this

particular standard deviation is based on similar arguments to those for deriving GUI, albeit
using less restrictive assumption. This Initialization Scheme outperforms GUI for very deep
networks of ReLUs and PReLUs. In fact, the assumptions made by GUI are not justified in
ReLU networks. Like GUI, HNI helps remedy ASB, and indirectly VEG, in DFNNs.

Orthogonal Initialization Orthogonal Initialization (OI) for RNNs [229] initializes the n×n
recurrent weight matrix U to the random orthogonal matrix4 A, where AΣAT is the Singular
Value Decomposition of the n×n matrix N whose elements are drawn from a Standard Normal
Distribution. This Initialization ensures that all eigenvalues of U have absolute value equal
to one. Informally, if the largest eigenvalue is greater than one in absolute terms, gradients
explode, if it is smaller than one, gradients vanish during Backpropagation (BP). Therefore, this
Initialization Scheme is useful in Training RNNs if long-term dependencies in the data exist. OI
thus addresses VEG in RNNs.

Unsupervised Pre-Training Unsupervised Pre-Trainining (UPT) [41], also referred to
as Generative Pre-Training, is a weight Initialization method used for DFNNs, based on
Unsupervised Learning (UL)5. Weights found by UPT can serve as a starting point for further
supervised fine-tuning, facilitating convergence to local minima with better generalization. UPT
thus addresses the problem of the existence of a Large Number of Local Minima (LNLM) in
DFNNs.

1 The original paper reports the interval [−
√

6/(nl + nl+1),
√

6/(nl + nl+1)], which is due to a different Layer
numbering convention.
2 compare 3.3.2, Asynchronous Saturation Behavior
3 The original paper reports

√
2/nl, which is due to a different Layer numbering convention.

4 A matrix A is orthogonal if ATA = AAT = I. Moreover, orthogonal matrices preserve the norm of vectors
‖Av‖2 = ‖v‖2.
5 compare 3.1.2, Unsupervised Learning

83

Specifically, a stack of RBMs1 is trained in a greedy, layer-wise fashion, such that the HU
Activations of each RBM are used as input to the Visible Units (VUs) of the next Layer’s RBM.
Each Layer is trained separately using Gradient Descent (GD) with Contrastive Divergence
(CD)2, starting with an RBM whose VUs connect to the input data [41]. Subsequently, all
trained RBMs are stacked, and either converted into a generative3 Deep Belief Net (DBN)4 or
into a discriminative DFNN. The DFNN can then be fine-tuned in a supervised manner using
GD with BP. Alternatively, stacks of Autoencoder (AE)5 variants can be used instead of RBMs
[230, 209].

Figure 3.21 provides a visualization of empirical evidence that DFNNs initialized by UPT are
superior to models initialized randomly.

Figure 3.21: Performance of models initialized randomly (left) and models initialized with UPT
(right) as a function of model depth [53, Fig 1]. Evidently, deep pre-trained networks do not suffer
from Overfitting. Furthermore, pre-trained networks converge to lower TeE, irrespective of depth.

There is evidence [53] that the benefits of UPT stem from it acting as a Regularizer6. It
has been hypothesized that, in case of DFNNs whose error surfaces are highly non-convex,
setting a particular starting point imposes constraints on the parameter configurations reachable
during optimization. UPT appears to initialize weights in high-quality basins of attraction whose
associated local minima correspond to solutions with low Generalization Error (GE). Evidence
that UPT helps optimization itself, i.e. helps find solution with lower Training Error (TrE) [209],
has been disputed on the grounds of methodological flaws [53].

UPT is of mayor historical significance as it demonstrated how very deep models could be trained
efficiently, which had previously been deemed infeasible, thus igniting the Deep Learning (DL)
revolution.7

Special Learning Algorithms

1 compare 3.2.2, Undirected Architectures, Restricted Boltzmann Machine
2 compare 3.2.4, Gradient Descent with Contrastive Divergence
3 compare 3.1.7, Discriminative vs. Generative
4 compare 3.2.2, Mixed Architectures, Deep Belief Network
5 compare 3.2.2, Directed Models, Feedforward Neural Networks, Autoencoder
6 compare 3.2.5
7 compare 2.2

84

Hessian-Free Optimization Hessian-Free Optimization (HFO) [231] is a Learning Algorithm
(LA) that entirely avoids construction and inversion of the Hessian, while still using curvature
information to derive parameter updates. It achieves this by constructing local quadratic
approximations of the error surface and performing Conjugate GD [161, ch. 2.3.2] on the
approximations. HFO has been shown to be very effective for training RNNs if significant
long-term dependencies in the data exist [232], thus addressing the challenge of VEG in RNNs.

Batch Normalization

Batch Normlization (BaN) [212, 1, p. 317] is an adaptive reparametrization method that
addresses the problem of Internal Covariate Shift (ICS)1 and indirectly ASB and VEG. It
is applicable whenever Training is done in batches, as in Mini-Batch Stochastic Gradient
Descent (MBSGD)2.

BaN significantly reduces the problem of coordinating updates across Layers by fixing aspects
of the Net Input distribution of each Layer. Consequently, weight updates no longer have to
compensate for changes in this distribution.

For a particular HL, the following normalization update is performed

Z̄ =
Z − µ
σ

(3.133)

where Z and Z̄ are the m× n matrices of unnormalized and normalized Net Inputs (excluding
biases), and µ and σ are the mean and standard deviation matrices for the current Mini-Batch
(MB) obtained by stacking m identical mean and standard deviation row-vectors into a matrix.
Futhermore, m is the number of training examples in the MB, n is the number of HUs, and all
operations in (3.133) are performed elementwise. The result of this transformation is that every
Net Input of each HU in the Layer has zero mean and unit standard deviation with respect
to the current batch. However, depending on the AcF used, this transformation may decrease
network capacity. For instance, in case of Sigmoid Units (SUs)3, scaling the standard deviation
of Net Inputs to 1 restricts the Units to their linear regime. Therefore, a second transformation
is applied

Z̃ = Z̄ ◦ γ + β (3.134)

where γ and β are learnable scale and shift parameters. This allows the LA to reverse the
normalization, if necessary. In fact, for γ = σ and β = µ, the normalization step is reversed
exactly.

At first glance, applying a reverse transformation seems counterintuitive. However, the result
of applying both transformations is that (a) the network retains its full expressive power and
(b) the learning dynamics are changed favorably. While the mean of Z depends on complex
interactions of parameters in lower Layers through a deep composition of functions, the mean
of Z̃ only depends on a single parameter β. This reparametrization is more easily learnable by
GD.

In summary, BaN replaces the Net Input (including biases) of each HL with the transformed Net
Input Z̃. It thereby retains the capacity of the model since it only affects mean and standard
deviation of each Unit, but allows the relationships between Units and the nonlinear statistics
of an individual Unit to change. When the trained model is used on test data, µ and σ are
replaced by running averages collected during Training.

1 compare 3.3.2, Internal Covariate Shift
2 compare 3.2.4, Gradient Descent with Backpropagation, Extension with Stochastic Gradient, Mini Batch
Stochastic Gradient Descent
3 compare 3.2.2, Types of Activation Functions, Sigmoid Activation

85

BaN allows higher Learning Rates (LRs)1, acts as a Regularizer2, and achieves competitive
results in Object Recognition (OR) with fewer training samples [212]. There is evidence that
BaN is also beneficial in training RNNs [233].

3.3.4 New Developments

Attention Mechanisms

In Artificial Neural Networks (ANNs), computation scales with input size, since all input
is considered at once. Humans, on the other hand, build up a representation over time by
successively focusing on parts of the input. For instance, when looking at an image, humans
perform a series of glimpses determining where to look next, using an Attentional Process.

Recurrent Neural Networks (RNNs)3 can model a similar Attentional Process capable of
extracting information by adaptively selecting parts of the data. In that manner, the amount
of computation is controlled independently of input size. There are variations on how this is
implemented, depending on the task at hand. In [234], instead of learning a Hidden State ht
directly from the input, a recurrent Attention model fα produces an Attention Vector

αt = fα(W T
αxt +UT

ααt−1 + bα) (3.135)

which is normalized, such that it sums to one. It is then used to generate a glimpse

gt = αTt xt (3.136)

a compressed, Attention-weighted representation of the input. This glimpse, rather than the full
input, is subsequently used to inform the Hidden State.

ht = fh(wggt +UT
hαt−1 + bh) (3.137)

where fh is the Hidden Layer (HL) Activation Function (AcF).

This recurrent model is used to sequentially process image data. Larger images can thus be
processed without the need to scale the model. Apart from visual recognition tasks, Attention
has been successfully used for Automatic Speech Recognition (ASR) [235], Machine Translation
(MT) [226], Handwriting Synthesis (HS) [197], and Textual Entailment Recognition (TER) [236].

External Addressable Memory

One way to extend the capabilities of an ANN is to provide it with interfaces allowing it to
interact with external programs, such as Databases (DBs), Search Engines, Theorem verifiers,
or Memory.

The Neural Turing Machine (NTM) [237] is an RNN connected to an external addressable
Memory that can be written to and read from. It can be viewed as an end-to-end differentiable
computer. Specifically, the NTM consists of a Controller, implemented as an RNN, that receives
inputs, emits outputs, and uses an Attentional Process to control a Read and a Write Head
that interact with an external Memory. The Controller is the equivalent of a differentiable CPU
whose operations are learned via Gradient Descent (GD)4, while the Memory, a set of addresses
storing vectors of information, is analogous to RAM.

1 compare 3.2.4
2 compare 3.2.5
3 compare 3.2.2, Directed Architectures, Recurrent Neural Networks
4 compare 3.2.4, Gradient Descent with Backpropagation, Basic Framework

86

Hence, a NTM is capable of treating Memory contents as variables and to use them in algorithms
learned by the Controller. This effectively separates computation and Memory as in a modern
computer. In contrast, computational and Memory resources of conventional ANN are blended
together in the network weights and Unit Activations. As Memory requirements of a task
increase, conventional networks cannot dynamically allocate new memory, nor easily learn
algorithms that act independently of the particular variable values. In NTMs, variable values can
be written to Memory, freeing the Controller to focus on learning global regularities. In contrast
to LSTM-RNNs, the behavior of the Controller is independent of Memory size, provided the
Memory is not completely filled.

The NTM has been shown to infer simple algorithms, such as copying and sorting. Using its
explicit Memory storage and retrieval capabilities, it outperforms [237] LSTM-RNNs, which
need to store Memory via weight adjustment.

Recently, the Differentiable Neural Computer (DNC) [238] has been developed that
generalizes the NTM by adding a mechanism preventing allocated blocks of memory to interfere
with each other. This is accomplished by freeing Memory when necessary and by tracking the
order of Memory writes with pointers.

Generative Adversarial Networks

Generative Adversarial Networks (GANs) [94] are models consisting of two competing ANNs,
trained with a form of Adversarial Learning. GANs are based on ideas from Game Theory [239].
Specifically, learning GANs is equivalent to finding Nash Equilibria [240] of non-cooperative
two-player games.

A GAN consists of a generative network, the Generator G, and a discriminative network, the
Discriminator D, competing with each other. G learns to produce samples from distribution Pg,
matching the characteristics of the data distribution1 P , while D learns to predict the probability
pd that a given sample comes from P rather than Pg. Simply put, G learns to produce convincing
fake data, while D learns to recognize real data. Of course, the overall goal of the method is
to learn an implicit model of the data pg = p̂(x;θg), i.e. to solve a Density Estimation (DE)
Problem2. D is merely constructed to help achieve this goal.

Both networks are Multilayer Perceptrons (MLPs)3, which renders the whole system trainable
by GD with Backpropagation (BP). Hence, there is no need for Markov Chain Monte Carlo
(MCMC) sampling, as in training Restricted Boltzmann Machines (RBMs)4. Samples from Pg
are generated by passing input noise Z, drawn from prior Pz, through the generator MLP. G
implicitly defines Pg through its learned mapping hg(z;θg). D, on the other hand, learns a scalar
function pd = hd(x;θd).

D is trained to maximize the predicted probability that a sample originated from the data
distribution, if this is actually the case, i.e. to minimize − log hd(X;θd). G is simultaneously
trained to maximize the probability that D assigns high probability to its outputs coming from
the data distribution, i.e. to minimize log(1− hd(hg(Z;θg))). In principle, this corresponds to a

1 This is a slight abuse of terminology, since the true data distribution P (x) is unknown. The TrS contains an
unbiased sample from it, inducing an empirical distribution, which is an estimator for P (x). In what follows this
empirical distribution is referred to as ”data distribution” for convenience; compare 3.1.1, Terminology
2 compare 3.1.6, Density Estimation
3 compare 3.2.2, Directed Architectures, Feedforward Neural Networks, Multilayer Perceptron
4 compare 3.2.3, Undirected Architectures, Restricted Boltzmann Machine

87

Cost Function (CF)1 of the form

C(θg,θd) =
1

m

m∑
j=1

(log(1− hd(hg(zj ;θg);θd)− log hd(x
j ;θd)) (3.138)

where the xj are drawn from the Training Set (TrS), i.e. are realizations from the data
distribution P , and the zj are realization from the prior Pz. It can be shown [94] that there is a
unique equilibrium where Pg = P and pd = 1/2, at which point Learning stops. In practice, this
CF is not minimized jointly in θg and θd, but rather in an alternating fashion by performing k
steps of optimizing hd, followed by one step of optimizing hg. Furthermore, for numerical reasons,
G is trained to maximize log(hd(hg(Z;θg))), rather than to minimize log(1−hd(hg(Z;θg))). This
change does not affect the optimal solution.

Recently, GANs have achieved astonishing results in Image Synthesis tasks [241, 242].

1 compare 3.1.5, Definition Cost Function

88

3.4 Big Data

Definition

Big Data (BD) is a recent, loosely defined term that refers to Data Sets whose large size and
complexity render their management and analysis using traditional tools, such as Relational
Database Management Systems (RDBMSs) and standard Statistics Software, challenging [243].

The challenges posed by BD have been categorized into the ”3Vs” [244]:

• Volume refers to the large quantity of data and poses a challenge in terms of data storage.

• Velocity refers to the high rate at which data is produced and must be processed, often
in real time. This poses a challenge in terms of computational resources.

• Variety refers to the many different types of data that have to be dealt with, e.g. video,
audio, text, etc. This poses a challenge in terms of data Pre-Processing and Database (DB)
management.

Based on the ”3Vs”, the following definition of BD has been proposed [245]:

Big Data represents the Information assets characterized by such a High Volume,
Velocity and Variety to require specific Technology and Analytical Methods for its
transformation into Value.

There is no generally accepted data volume cutoff to classify what counts as BD. Presently,
anything from several gigabytes (GB) to hundreds of petabytes (PB) could fall under this
definition [246], while these bounds are constantly increasing. In fact, whether a particular
application is labeled BD, not only depends on the amount of data but also on the user’s
capability.

Types of Data

Structured Data (SD) refers to information having some predefined organization, e.g.
a data model1. It often resides in RDBMSs or spreadsheets, making search and querying
straightforward.

Unstructured Data (UD) refers to information with no predefined organization, e.g. a data
model such as raw text, audio, or video [247]. Sometimes, the term is taken to apply to all data
not stored in a RDBMS. SD can be regarded as UD if its structure is irrelevant to a particular
analysis task, e.g. in case of HTML documents. Often, BD applications deal with UD. This poses
a challenge with respect to data storage and processing when using traditional systems, since
UD cannot be easily stored in a RDBMS. It is estimated that UD accounts for approximately
80 percent of all data and is growing at a faster rate than SD [248].

Semi-Structured Data (SSD) is data without the formal structure associated with RDBMSs,
that nevertheless contain some degree of structure to separate data elements, such as markup
[249]. Due to the lack of detailed organization, SSD is often considered UD. XML files and Email
can be viewed as examples of SSD.

1 A data model is a particular organization of the elements of the data, representing the relationships between
them, as well as their relationships to other data.

89

Historical Trends and Underlying Drivers

Data Set sizes have increased exponentially over the last decades. While in the early 1900s Data
Sets comprising hundreds to thousands of manually compiled measurements were common, the
period between the 1950s and the 1980s saw small synthetic Data Sets of tens of thousands
of samples. Data Sets in the 1990s routinely consisted of up to hundreds of thousands of
training examples, whereas today, Data Sets composed of tens of millions of training examples
are common [1, Introduction]. The reason for the growth of Data Sets is twofold.

(1) There has been an exponential increase in the number of entities generating data, as well as
in the generated data volume itself, including

• data generated by an increasing number of sensors, e.g. in mobile devices, weather sensors,
traffic sensors, etc. It has been predicted that the Internet of Things (IoT)1 will lead to
the existence of a trillion sensors worldwide within a decade [250].

• data passively generated by an increasing amount of human activity, e.g. financial
transactions in High-Frequency Trading and credit card payments [251, p. 4].

• data actively generated by an increasing number of users of digital technology [252],
including posts to Social Media, Blogs and Wikies.

IBM estimates that, as of 2012, 2.5 exabytes (EB) of data were generated daily, while 90 percent
of the data in existence that year had been created in the two previous years [253, 254].

(2) There has been an exponential decrease in the price of data storage [255], with the average
cost for one GB of storage halving every 16 months, falling from $437 500 per GB in 1980 to
roughly $0.02 per GB in 2016 [256]. This makes it possible to store the massive amounts of data
generated at almost no cost.

In essence, the above trends can be viewed as direct results of the, as yet unfolding, Digital
Revolution and the associated interconnection of the world via the internet. These phenomena
are, in turn, driven by Moore’s Law [257] and boarder technological progress in general.

Examples of Big Data

Large Data Sets can be found in a variety of domains. Examples include:

• Enterprise Customer Data, e.g. in 2006, Netflix published a Data Set of several GB,
representing part of its customer database, in the context of a competition to better predict
movie ratings [258].

• Social Media Data, e.g. as of 2010, Facebook stores 140 billion photos, which requires 14
PB of storage [255].

• Healthcare Analytics Data, e.g. Optum Labs collected more than 30 million Electronic
Health Records in order create a database for a predictive analytics tools aimed at
improving patient care [259].

• Financial Transaction Data, e.g. as of 2013, the New York Stock Exchange records and
stores about 5 terabytes (TB) of data per day [260].

• Science and Research Data, e.g. the Large Hadron Collider at CERN generates around 15
PB of data per year [255].

1 IoT refers to the connection of a large variety of ”smart” devices, such as refrigerators, thermostats and vehicles
etc. to the internet, in order to endow them with the ability to collect and exchange data.

90

• Genomics Data, e.g. it is projected that, within a decade, up to 2 billion human genomes
will have been sequenced, requiring 40 EB of data storage [261].

• Traffic Sensor Data, e.g. the California Department of Transportation (CDoT) records real
time traffic data from 39,000 traffic sensors, requiring several GB of storage daily.1

Importance of Big Data

The main benefit of BD is that it provides a basis for replacing and supporting human decision
making with automated systems leveraging large Data Sets. Analysis of these Data Sets, i.e.
BD Analytics, can reveal valuable insights in the form of hidden patterns that may otherwise
be overlooked due to limited human cognitive capacity2.

According to a 2011 McKinsey report [263], BD has the potential of driving new waves of
productivity, innovation and growth throughout every sector of the global economy, while data
are becoming, apart from human capital and hard assets, an essential factor of production. BD
could create substantial value for retail businesses, with an estimated 60 percent unrealized
increase in operating margins by allowing organizations to better tailor products to specific
customer segments. McKinsey further estimates that BD holds a potential annual value of
$300 billion for the US healthcare system3, mainly in the form of productivity increases and
improvements in pricing practices. Moreover, the report finds that, by preventing tax and welfare
fraud, BD could unlock savings of $250 billion in European government administration.

Lastly, BD is relevant in science, since automatically extracting information from vast amounts
of data accelerates scientific discovery and innovation. It has been suggested that this data-driven
approach to science is a new and distinct scientific paradigm, apart from the theoretical, empirical
and computational paradigms [264]. Sometimes it is claimed that Data Science, the study of the
generalizable extraction of knowledge from data [265], is emerging as a field in its own right,
although this is disputed.

Technologies to address Big Data challenges

The ”3Vs” discussed earlier relate to a broader set of challenges posed by the management of
large Data Sets. The main concerns include how to store, organize, query and analyze data.

In terms of storage, single hard drives with a capacity of hundreds of PB are not available.
A possible remedy are Distributed Storage solutions, such as Distributed Data Stores and
Distributed File Systems, which, apart from capacity gains, achieve (a) higher read speeds,
since reading from multiple small stores is faster than reading from a single large store [255],
and (b) higher reliability due to data redundancy [266].

1 compare 4
2 Miller’s Law [262] states that the number of objects in working memory is approximately limited to seven, plus
or minus two.
3 total US healthcare spending in 2010 was $2.6 trillion

91

As for data organization and querying, conventional SQL-based RDBMSs are inadequate for UD,
since they are based on Codd’s relational data model [267], requiring SD. On the other hand,
traditional DBs do not scale well to BD, i.e. sequentially processed workloads resulting from
complex queries on very large tables can become prohibitively expensive. Distributed NoSQL1

and NewSQL2 DBs that making use of parallel query processing, are possible solutions. However,
their better scalability and performance comes at the cost of functionality, e.g. no support for
join operations or constraints. Furthermore, the capabilities of distributed DBs are limited by
Brewer’s CAP Theorem3 [270].

In terms of data analysis, traditional statistics approaches, developed with small sample sizes in
mind, are often inappropriate for BD, since they

(1) typically do not scale well to large Data Set, e.g. methods can require long run times and
may not be easily parallelizable [271].

(2) often cannot deal with UD.

(3) run the risk of discovering accidental regularities when applied to high-dimensional data.
For instance, a naive exhaustive search for statistically significant correlations will likely
turn up mostly spurious correlations [272].

Deep Learning (DL)4, on the other hand, is aptly suited for extracting knowledge from BD,
since it

(1) scales well to large Data Sets, e.g. algorithms are parallelizable and can leverage GPU
speedup [162, 163].

(2) extracts high-level, hierarchical, semantic representations from possibly UD5. These
representations are better suited than raw data for common tasks, such as Classification
and Regression6.

(3) is equipped to infer a generalizable7 model of the, possibly highly nonlinear, multivariate,
Data Generating Process8. This constitutes a more robust data analysis approach than a
naive, large-scale application of simple statistical methods.

1 NoSQL originally stands for ”Non SQL” but is often translated to ”Not only SQL” to express that SQL-like query
languages are supported. Various types of NoSQL DBs exist, however, all are usually non-relational, distributed
and horizontally scalable to clusters. They do not, in general, provide the full ACID, i.e. Atomicity, Consistency,
Isolation and Durability, guarantees of traditional DBs [268].
2 NewSQL is appropriate for SD. It is a new type of RDBMS, which aims at providing the same performance
and scalability as NoSQL DBs, while maintaining the full ACID guarantees of traditional DBs. Various types of
NewSQL DBs exist, all of which support the relational data model, use SQL as query language, and horizontally
scale into clusters [269].
3 The CAP theorem states that it is impossible to simultaneously achieve Consistency, Availability and Partition
tolerance in a distributed system
4 compare 3.3
5 compare 3.3.1
6 compare 3.1.6, Regression and Classification
7 compare 3.1.1 and 3.2.5, Generalization Error
8 compare 3.1.1

92

Above BD solutions are implemented on computer clusters, effectively parallelizing storage and
workload across multiple machines. Apache Hadoop [273] is an example of a popular software
framework, often used to tackle BD problems. In essence, Hadoop consists of a distributed
storage solution, called Hadoop Distributed File System (HDFS), as well as an implementation
of MapReduce [274], an execution engine for parallel processing.1

In general, large Hadoop clusters are difficult to set up and manage. Servers and storage hardware
must be purchased and provisioned. Furthermore, software must be deployed and managed.
Cloud services such as Amazon Web Services (AWS) [275] provide a straightforward way of
outsourcing these difficulties. For instance, Amazon Elastic Map Reduce (EMR) [276] is a fully
managed, dynamically scalable Hadoop framework accessible in the Cloud in a pay on demand
manner.

1 MapReduce is a programming model for processing large Data Sets with a parallel, distributed algorithm on a
cluster. A Map method creates or processes the input data stored in a distributed manner, producing an arbitrary
number of intermediate outputs. Subsequently, a Reduce method that performs a summary operation on the
outputs of the Map method creates final outputs and saves them into distributed storage.

93

Chapter 4

Application to Traffic Prediction

4.1 Problem Description

As a practical application of Deep Learning (DL)1, the problem of Traffic Modeling (TM) and
the derived problem of Congestion Prediction (CP) are considered.

CP is of particular interest in Civil Engineering. It is estimated [277] that in 2014, the economic
cost of Congestion was $ 160 billion ($ 960 per auto commuter) in the United States, up from
$ 42 billion ($ 400) in 1982. In particular, 6.9 billion (42) hours and 3.1 billion (19) gallons of
fuel were wasted, compared to 1.8 billion (18) hours and 0.5 billion (4) gallons in 1982. These
economic costs are projected to increase to $ 192 billion ($ 1, 100) in 2020, with projected time
and fuel wastage of 8.3 billion (47) hours and 3.8 billion (21) gallons, respectively.

A useful Traffic Model should be able to help prevent Congestion, a situation where demand for
transportation capacity exceeds its supply. In particular, predictions obtained from a capable
Traffic Model can be used (a) to inform road work scheduling and estimate its impact on travel
times, (b) as input for Traffic Management Systems, and (c) to help determine possible locations
of new roads.

This thesis discusses the design, training, and evaluation of a Deep Recurrent Neural Network
(DRNN)2 for TM. Specifically, the network models the joint probability density of Traffic Speeds,
multiple time steps into the future, at multiple locations across Los Angeles, conditional on past
and current values of traffic variables at these locations, Traffic Incident Data, Weather Data,
and Date-Time Indicator variables.3

This is a more general objective than direct CP. Instead of predicting whether or not there is
Congestion, i.e. instead of solving a Binary Classification (BC) Problem4, the model produces
continuous, probabilistic predictions of Traffic Speeds, i.e. solves a Density Estimation (DE)
Problem5. The model can be viewed as a completely general, probabilistic Traffic Simulator
that can be employed to answer Congestion queries, such as:

• What is the probability that Congestion6 will occur at a particular location?

• Given Congestion at a particular location, what is probability that it will dissolve within
one hour?

• Assuming a 30 minute partial road closure, in 10 minutes, what are the locations where
Congestion will occur with probability greater than 0.9?

CP is just one application of the model. In principle, it can be used to address arbitrary queries
whose answer can be derived either analytically from the conditional joint density, or empirically
via simulation.

1 compare 3.3
2 compare 3.2.3, Undirected Models and 3.3.1, Types of Depth
3 compare 4.4
4 compare 3.1.6, Classification
5 compare 3.1.6, Density Estimation
6 What Traffic Speed constitutes Congestion is fully general in this framework.

94

The problem of TM in all its complexity, taking into account Incident Reports, Weather Data
and other auxiliary variables can hardly be formalized explicitly. Casting the issue as a Big
Data (BD) problem1 and using supervised2 DL, to extract relevant relationships from large
amounts of Traffic Data, is a promising alternative. To the best of the author’s knowledge, no
comparable DL Traffic Model exists at the time of writing this thesis.

4.2 Related Research

Traditional approaches to TM and CP rely on (a) Partial Differential or Difference Equation
models, such as the Simple Continuum Model [278], the Higher Order Continuum Model [279],
or the Cell Transition Model [280], (b) Network Theory [281], and (c) Simulation [282]. However,
these classical methods are limited due to their overly simplistic assumptions necessary to retain
tractability. Moreover, models may involve a tedious parameter calibration process. With the
availability of large amounts of traffic sensor data, the application of Machine Learning (ML)
methods to TM and CP became possible. Learning relevant relationships directly from data
effectively outsources the cognitive overhead involved in deciding which aspects of a particular
Traffic Network should be represented at what level of detail [283, 284, 285].

This project takes inspiration from Horvitz et al. [286], who study Congestion prediction in
the Seattle Metropolitan Area using a Probabilistic Graphical Model (PGM) [11]. Their model
attempts to predict time until traffic at certain hot spots congests given it flows freely, and vice
versa. The model takes Traffic Sensor Data, Incident Data, Weather Data and Indicator Data
as input.

It is unclear how well their model actually performs. The used performance measures seem
somewhat arbitrary and no comparison with simpler models is made. It may well be the case
that their results could be matched by a naive model that simply predicts (conditional) historical
averages.

The model presented in this thesis3 is more general in many respects. It considers a larger
number of locations, constructs a full probabilistic model of Traffic Speeds, not just predictions
of Congestion duration, and, in the spirit of DL, learns all features from the ground up4, while
their model involves Feature Engineering. Due to its greater generality, the model described in
this thesis can, in principle, replicate any prediction made by their model.

Further inspiration is taken from Ma et al. [287] who use a combination of a DRNN5 and
a Restricted Boltzmann Machine (RBM)6, for Congestion prediction. They train their model
on a GPS Data Set collected by 4 000 taxies in Ningbo, China over a one-month period. The
RNN-RBM architecture learns the spatiotemporal distribution of Congestion events across 515
locations and across time steps of various lengths.

Their results indicate that large-scale, network-wide Congestion pattern modeling using DL is
feasible and may outperform conventional models. In particular, they report an 88% accuracy
in Congestion prediction. However, insufficient specifics on Test Run execution and evaluation
are provided to conclusively assess this result. Depending on the prediction horizon and other
details, it may be possible to outperform this result using a Random Walk model that simply
predicts the last know Congestion state.7

1 compare 3.4
2 compare 3.1.2, Supervised Learning
3 compare 4.5
4 compare 3.3.1
5 compare 3.2.3, Directed Models, Recurrent Neural Networks
6 compare 3.2.3, Undirected Models, Restricted Boltzmann Machine
7 compare 4.8, Model Evaluation, Test Results

95

While their model produces binary Congestion predictions, the model described in this thesis is
a more general, continuous density estimator modeling a larger number of locations, trained
on a Data Set spanning a 30 times longer time period. While using an RBM as top-layer
density estimator is compelling, since it is inherently more powerful than a Gaussian Mixture
Model (GMM), it adds a fair amount of complexity to the Training process [288]. In particular,
the architecture cannot be trained end-to-end with Gradient Descent (GD)1, and is therefore
currently infeasible for the Data Set considered in this thesis.

4.3 Traffic Research Basics

In Traffic Research, three fundamental quantities are of interest, Traffic Speed V , Traffic Density
D, and Traffic Flow Q. These variables are related by the Fundamental Equation of Traffic Flow

Q = DV (4.1)

Figure 4.1 illustrates the Fundamental Diagram of Traffic Flow, which is a consequence of
equation (4.1).

Figure 4.1: Fundamental Diagram of Traffic Flow

1 compare 3.2.4, Gradient Descent With Backpropagation, Basic Framework

96

4.4 Data and Data Pre-Processing

Raw Data Description

Sensor Data

The majority of the data used in this project is Traffic Sensor Data, including Speed, Flow,
and Occupancy1 measurements, published in daily files by the California Department of
Transportation (CDoT) [289].

The data consist of 5-minute aggregates of measurements taken at 30-second intervals by close
to 5 000 Traffic Stations. After Pre-Processing2, 100 Traffic Stations remain under consideration,
covering 18 mayor freeways in the Los Angeles Metropolitan Area. The data span a period of
two and a half years, from Jan 1st 2014 to June 30th 2016 (the Data Period), for a total of
261 192 usable time points3 (the Time Grid).

Traffic sensors are mainly single lane, single loop detectors4. For each lane, Flow in number
of vehicles per 30 seconds, and Occupancy in percent, is measured at 30-second intervals.
Occupancy is defined as the fraction of the interval in which the presence of a vehicle is
detected and is proportional to Traffic Density. CDoT then compiles this raw data into 5-minute
aggregates, summing 30-second Flows and averaging 30-second Occupancy. Speed is inferred
using a sophisticated algorithm [290]. Lastly, CDoT aggregates the data to freeway level by
summing Flow, taking the arithmetic mean of Occupancy, and taking the harmonic mean of
Speed over lanes. Figures 4.2 to 4.4 display log frequency plots of the data collected by a randomly
selected sensor. Evidently, the data reflect many of the characteristics expected theoretically.

Figure 4.2: Occupancy vs. Flow Figure 4.3: Speed vs. Flow Figure 4.4: Occupancy vs. Speed

Incident Data

Traffic Incident Reports are invaluable for predicting traffic, since accidents and other traffic
hazards, can directly lead to Congestion. CDoT distributes monthly files, containing information
about Time, Location, Duration and Type of Traffic Incident that occurred during the respective
month. The most frequent Traffic Incidents are unspecified traffic hazards and accidents, but also
encompass road closures and animal hazards. The hope is that the model learns a relationship
of Incidents and their coordinates to Traffic Speeds at nearby sensors. Which sensors are located
near particular coordinates has to be inferred from the Training Data. Files for each month
corresponding to at least one Time Grid point were downloaded for further processing.

1 compare 4.3
2 compare 4.4, Sensor Data
3 This number takes into account missing data and the fact that 2016 was a leap year.
4 This type of sensor is an induction loop detecting the presence of vehicles.

97

Weather Data

It is hypothesized that Visibility, Precipitation Rate, and Wind Speed can significantly
impact traffic. The Los Angeles Metro Area covers 12 500 square kilometers, spanning multiple
microclimates. 8 Weather Stations were selected whose locations best overlay the area covered
by the Traffic Stations. Figure 4.5 displays the location of all Traffic and Weather Stations under
consideration.

Figure 4.5: Map of the Los Angeles Metro Area. Small red dots represent traffic sensors, while
large blue dots represent Weather Stations. No suitable Weather Station exists around the Rosemead
area.

Data from these Weather Stations is readily available from Wolfram Alpha through Mathematica
[291]. All available measurements during the Data Period of Visibility in km, Precipitation Rate
in cm/h, and Wind Speed in km/h, are thus queried for further processing.

Indicator Data

Traffic patterns differ throughout the day, week and year. For instance, on a business day one
expects traffic to be heavier during rush hour than at night. Traffic on Saturdays is typically
lighter than on business days. Over the course of a year, traffic is generally lighter on holidays and
school holidays. The remaining variation emerges from aggregation of countless micro patterns,
where each driver contributes with their own, idiosyncratic behavior.1 It is hypothesized that
these differences manifest themselves in learnable variations in local relationships.

1 The last point is speculative.

98

Five binary variables reflecting Day of the Week, twelve binary variables for Month of the
Year, as well as two binary variables for Holiday and School Holiday, are generated for each
Time Grid point.1 Furthermore, two real-valued variables are included to encode Time of Day
information.2 For every Time Grid point, these variables are generated as sin(T) and cos(T),
where T is a periodic function defined over the Time Grid domain, taking value 0 at midnights,
and linearly approaching 2π as time approaches the following midnight point.

Holiday and School Holiday data were obtained from [292] and [293], respectively. In slight abuse
of terminology, the set of variables described above will be referred to as Indicator Variables.

Data Pre-Processing

The total size of the unprocessed Traffic Data Set is 150 gigabytes (GB).

Sensor Data

Most of the necessary Pre-Processing3 of the Sensor Data is done prior to publishing. Specifically,
CDoT employs a sophisticated diagnostics routine to identify bad data points. Subsequently, in
a process called imputation, missing data points are filled in. This method is largely based on
Chen et. al. [294]. Full details are available on CDoT’s website [295].

Nevertheless, some Pre-Processing is still necessary. First, the daily raw data files are aggregated
into monthly files. Subsequently, relevant attributes are uploaded into a database where the data
are processed on a month by month basis using SQL queries. At this point, no BD tools are
required since the files are less than 5 GB in size and can be dealt with in memory.

The raw data contains measurements from close to 5 000 sensors, many of which are low quality.
To ensure the model is learned primarily from actual measurements, only those stations are
retained for which (a) on average over the Data Period, less than one third of the data was
imputed, and (b) no individual month exists where all measurements were imputed. After this
Pre-Processing step, a final set of 946 stations remains under consideration. Of the remaining
sensors, 100 are selected at random in order to keep model size in line with the number of
available training samples.

Lastly, a variety of common sense sanity check queries are run. This includes inspecting minimum
and maximum values of Speed, Flow and Occupancy variables, as well as double checking for
missing or implausible values. Problems discovered in this process are fixed in an ad hoc manner.4

Incident Data

As a first step, the Incident raw data files are filtered for events that occurred in the region
covered by the final set of Traffic Stations. Entries with missing or implausible data, such as
negative values for Incident Duration are dropped. After this stage, the data contain 362 993
plausible Incident reports.

Events are recorded at points in time that do not necessarily correspond to Time Grid points.
Therefore, all Incident Times are rounded up to the next full 5 minutes.5

1 These binary Indicator variables are equal to one if the condition is true and zero otherwise. For instance, the
Monday variable is equal to one whenever the corresponding Time Grid point falls on a Monday.
2 Due to the circular nature of time, two variables are needed to encode this information unambiguously.
3 compare 3.1.3, Data Pre-Processing
4 The number of problematic data points discovered this way is negligible. Hence, a discussion of the methods
for finding and fixing them is omitted.
5 Rounding down would mean the Training Data contained information about future events that should not be
available to the model. Training on this data could lead to overly optimistic evaluation of model performance.

99

In total, 48 different Incident Types are recorded, 31 of which occur with non-negligible
frequency, and are therefore retained. Different types of Incidents should be distinguishable
by the model, since they impact traffic in different ways. Hence, Incident Type is encoded as
a distributed binary pattern, such that five binary variables are sufficient to encode 25 = 32
different incidents.1 Thus, a pattern p 1, ... ,p 5 is assigned to each of the events under
consideration. The pattern of all zeros is reserved for the non-event.

Incident Location information is used to construct two properly normalized real-valued variables,
latitude and longitude. To express Incident Duration, two records are generated for every
Incident, one marking the start, and another the end of an event. The point in time where an
event ends is defined as the starting point plus Duration, rounded up to the next full 5 minutes.
Consequently, a variable, start flag with domain {−1, 0, 1} is included, distinguishing beginning
(1), end (−1), as well as the non-event (0).

Multiple events can co-occur at different locations. For instance, in case of very short Duration
events, start and end may fall on the same time point. In order to be able to feed simultaneous
events, ten independent copies of the above variables, i.e. ten ”macro fields”, are added.2

Incident times are aligned with the Time Grid, filling in zeros for incident-free Grid points.
Lastly, events are randomly distributed across the 10 macro fields, such that each contains
roughly the same number of events.3 Figure 4.6 displays a screenshot of the final Incident Data
table, cut off after the second macro field.

Figure 4.6: Incident Data

Weather Data

Most Weather Stations record measurements at regular 1 hour intervals, others at irregular
points in time with lower or higher frequency. For each station, every measurement time point is
rounded up to the next full 5-minutes, and aligned with the Time Grid. Missing data is treated
by repeating the last available measurement.4

1 In principle, an integer variable with domain {0, 31} could be fed to the network. While this is the most
parsimonious encoding of the data, it imparts an unjustified ordinal property to the variable. Alternatively,
Incident Type could be modeled using a One-Hot Encoding. While this allows the network to model different
Incident Types completely independently, it requires 32 additional variables; compare 3.1.3, Types of Variables
2 The cutoff ten is reasonable as in only 0.34 percent of all cases, more than ten events co-occur.
3 The variances of the respective variables would otherwise differ, which would slow down Training.
4 Interpolation between measurements would mean the Training Data contained information about future time
points that should not be available to the model.

100

Indicator Data

No further Pre-Processing is required for the Indicator variables.

Final Data Set

The final Data Set contains the following variables recorded at each of the 261 192 Time Grid
points.

• speed1, flow1, occupancy1, ... , speed100, flow100, occupancy100

• p 11, ... , p 51, start flag1, latitude1, longitude1, ... , p 110, ... , p 510, start flag10,
latitude10, longitude10

• visibility1, precipitation rate1, wind speed1, ... ,visibility8, precipitation rate8,
wind speed8

• time of day sin, time of day cos, monday, ... ,sunday, january, ... ,december, holiday,
school holiday

4.5 Model

Input and Output

The model solves a parametric conditional DE problem1, i.e. it produces an estimate p̂(y|x;θ)
of the density of the targets y, conditional on the inputs x, where θ are model parameters.

The model’s input comprises past and current values of all variables of the final Data Set as
described in the Data section2, where each variable is properly standardized, unless it is a Binary
Indicator variable3. That is, at time t the model input is

x = (xt,xt−1, . . . ,xt−b) (4.2)

where b is the number of time steps in the Look-Back Period, and where all t refer to a point on
the Time Grid as defined in the Data section4. The targets y are the differences, i.e. changes,
in Traffic Speed at all ms sensor locations5 from one Time Grid point to the next, based on the
current and f future time points. That is, at time t the targets are

y = (yt,yt+1, . . . ,yt+f) (4.3)

where f+1 is the number of time steps in the Look-Forward Period, and yt = (y1,t y2,t . . . yms,t)
T ,

with yl,t = vl,t+1 − vl,t, where vl,t is Traffic Speed at location l and time point t.6 The reason
why differences, as opposed to levels, are modeled is that Traffic Speeds have a non trivial
autoregressive component. Informally, this means that Traffic Speeds in t+ 1 are typically close
to Traffic Speeds in t. By considering changes, no time is spent learning this obvious relationship.

The conditional density p̂(y|x;θ) is represented implicitly. By repeated application of Bayes’
Theorem, it can written as a product of factors

p̂(y|x;θ) = p̂(yt,yt+1, . . . ,yt+f |x≤t;θ) =

t+f∏
τ=t

p̂(yτ |y<τ ,x≤t;θ) (4.4)

1 compare 3.1.6, Density Estimation
2 compare 4.4, Final Data Set
3 compare 3.1.3, Data Pre-Processing
4 compare 4.4, Raw Data Description
5 for this project ms = 100
6 The time indexing of y aligns input and output by clock cycle of the network, i.e. yt is computed from xt in the
same clock cycle. However, yt contains a prediction about changes of Traffic Speed to the next time step t+ 1.

101

with x≤t = (xt,xt−1, . . . ,xt−b) and y<τ = (yτ−1,yτ−2, . . . ,yt). The model produces, at each
time step τ = t, . . . , t + f , an estimate of the density of the targets yτ , conditional on all
previous realizations of y<τ and all inputs x≤t. The realizations of y<τ are realizations of model
predictions ŷ<τ . For each time step, the prediction ŷτ becomes part of the next time step’s
input1 x̂τ+1. Hence, (4.4) can be written as

p̂(y|x;θ) =

t+f∏
τ=t

p̂(yτ |x̂τ ;θ) (4.5)

This is a generalization of parametric conditional DE to sequence data, however, the main
principle remains unchanged. The true density of the targets in τ is assumed to have a known,
parametric form p̂(yτ ;ϕτ), where ϕτ are the respective distribution parameters. Thus, the
model’s output comprises estimates of these distribution parameters for each time point

ϕ̂ = (ϕ̂t, ϕ̂t+1, . . . , ϕ̂t+f) (4.6)

modeled as functions of the respective time step’s inputs, i.e. ϕ̂τ = h(x̂τ ;θ). Hence, the estimate
of the conditional density of the targets p̂(yτ |x̂τ ;θ) is expressed indirectly as p̂(yτ ; ϕ̂τ) =
p̂(yτ ;h(x̂τ ;θ)).2

The density of Traffic Speed changes implies a density in Traffic Speed levels. Thus, the network
implicitly models the joint density of Traffic Speeds at ms sensor locations, f + 1 steps into the
future, conditional on current and b past values of all input variables

p̂(v1,t+1, . . . , vms,t+1, . . . , v1,t+f+1, . . . , vms,t+f+1|xt,xt−1, . . . ,xt−b;θ) (4.7)

Samples from this distribution, i.e. joint realizations of the underlying random variables
V1,t+1, . . . , Vms,t+1, . . . , V1,t+f+1, . . . , Vms,t+f+1 can be obtained by computing the cumulative
sum of sequentially sampled differences. Samples from the model, differences as well as derived
levels, will also be referred to as model outputs.

Type of Model

The model under consideration is discriminative and probabilistic.3 Modeling a conditional
density is strictly more general than modeling a derived quantity, such as the conditional
expectation or the conditional mode, as in certain types of Regression and Classification
Problems4. In particular, a Probabilistic Model (ProM) can answer all the questions a
Deterministic Model (DetM) can answer, and more.

For instance, modeling the conditional expectation of future Traffic Speeds is a special case
of modeling its conditional density, since the expectation can either be obtained directly from
the density, or estimated based on samples drawn from it. In fact, samples from the model
can be used to answer queries about arbitrary events.5 Furthermore, in case of a ProM, any
point prediction obtained either analytically or through sampling, conveys a measure of its own
uncertainty. This is valuable information if actions are taken based on these predictions.

Although, by the earlier definition, the model is discriminative, it nevertheless has a strong
generative flavor.6 Were its input limited to Traffic Speeds, it would be classified as generative,
since its output would be a model of entire input.

1 compare 4.5, Model Architecture
2 Note the difference between the distribution parameters ϕ that fully specify the assumed data distribution, and
the model parameters θ, i.e. the network weights.
3 compare 3.1.7
4 compare 3.1.6, Deterministic vs. Probabilistic
5 compare 4.5, Use Cases
6 compare 3.1.7, Discriminative vs. Generative

102

Model Architecture

The model is a Deep Recurrent Mixture Density Network (DRMDN)1 using Long Short-Term
Memory (LSTM) Units2 (LSTM-DRMDN), whose lowest Layers consist of replicated feature
detectors, analogous to Convolutional Layers in Convolutional Neural Networks (CNNs)3. The
architecture comprises C hidden Convolutional Layers, L fully recurrent hidden LSTM Layers,
and k Gaussian Mixture Components in its Output Layer (OL). Figure 4.7 depicts a schematic
of the architecture unrolled in time.

Figure 4.7: Model Architecture, unrolled in time

At time t, the model is fed all inputs xτ for τ = t − b, . . . , t = ts, . . . , t in chronological order.
No outputs are produced during this Encoding Phase. Rather, the model builds up an internal
representation of the past and current traffic situation in its Hidden State. In the Decoding
Phase τ = t, . . . , t + f = t, . . . , te, this internal representation is unraveled. For each τ , the
model output4 ϕ̂τ = (µ̂τ , λ̂τ , α̂τ) is produced, fully parameterizing p̂(yτ ; ϕ̂τ). A sample ŷτ is
drawn from this Gaussian Mixture Density, which is then, along with the most recent input,
appropriately converted to generate the input for the next time step, i.e. x̂τ+1 = convert(ŷτ , x̂τ).

The conversion function convert takes the last known inputs x̂τ and, based on the predicted
changes ŷτ , updates the Traffic Speed variables. Hence, the network represents a recurrent
model of Traffic Speeds only, while remaining agnostic about all other non-deterministic inputs.
In constructing x̂τ+1, the last known values of Flow, Occupancy, Visibility, Precipitation Rate
and Wind Speed are repeated, Incident Variables are set to zero, and Indicator Variables are
rolled forward deterministically.

1 compare 3.2.3, Directed Models, Recurrent Neural Networks and Mixture Density Networks
2 compare 3.3.3, Special Types of Units, Long Short-Term Memory Unit
3 compare 3.2.3, Directed Models, Feedforward Neural Networks, Convolutional Neural Networks
4 µ̂τ and λ̂τ are themselves sets of k vectors, one for each mixture component; compare 4.5, Model Equations.

103

Alternatively, one could construct a fully Generative Model (GenM), whose output parameterizes
the joint density of all non-deterministic variables. However, this would dramatically increase
the number of model parameters. Furthermore, model capacity would be wasted on learning
irrelevant relationships, e.g. a complete model of the weather. Another alternative is to feed zero
inputs for all unknown variables in the Decoding Phase. However, this would mean imposing
a significant input change between the Encoding and Decoding phase. Since the same input
weight matrix is used, additional computational resources would have to be spent on learning
how to discard this change. Further research is needed to explore possible downsides of the
chosen approach.

Model Equations

For τ = t, . . . , te, sampling is done using

yτ = sample(µ̂τ , λ̂τ , α̂τ ,Q) (4.8)

where sample draws from a k-component GMM with mean vector parameters µ̂τ =
(µ̂1,τ , . . . , µ̂k,τ), covariance matrix parameters Σ̂τ = (Σ̂1,τ , . . . , Σ̂k,τ), and mixture probability

parameter vector α̂τ = (α̂1,τ , . . . , α̂k,τ)T such that
∑k

i=1α̂i,τ = 1. The covariance matrices are

constructed from the predicted eigenvalues λ̂τ = (λ̂1,τ , . . . , λ̂k,τ) as

Σ̂τ,i = QiΛ̂τ,iQ
T
i = Qidiag(λ̂τ,i)Q

T
i , i = 1, . . . , k (4.9)

where diag maps a vector to the corresponding diagonal matrix, and Q = (Q1, . . . ,Qk) are
hard-coded, orthogonal matrices associated with the k mixture components. The reasons for
this design choice are explained in subchapter ”Parameterization of Covarianz Matrices”. The
sample function is described in the subchapter ”Sampling”.

For τ = t, . . . , te, the OL is described by

µ̂τ , λ̂τ , α̂τ = gmm(aC+L,τ ;θgmm) (4.10)

where gmm is a function outputting distribution parameters of a GMM, aC+L,τ

denotes the Activations of the highest Hidden Layer (HL), and θgmm = WC+L+1 =
(W µ,W λ,W α, bµ, bλ, bα) are the parameters associated with the OL. W µ and W λ are
nC+L ×msk matrices, W α is a nC+L × k matrix, bµ and bλ are msk-element vectors, bα is a
k-element vector, and nC+L is the number of Units in the highest HL.1 The equations underlying
gmm are identical to those describing the OL of a Mixture Density Network (MDN)2, with
standard deviations interpreted as eigenvalues.

For τ = t, . . . , te the dynamics of the Recurrent LSTM Layers are described by

al,τ ,ml,τ = lstm(al−1,τ ,al,τ−1,ml,τ−1;θlstm,l) l = C + L, . . . , C + 1 (4.11)

where al,τ and ml,τ denote the Activations and Memory States of the associated LSTM
Units with Initial States al,t−b−1 = a0

l and ml,t−b−1 = m0
l . Furthermore3, θlstm,l =

(W l,U l,a
0
l ,m

0
l) = (W c,l, W f,l, W i,l, W o,l, U c,l, U f,l, U i,l, U o,l, bc,l, bf,l, bi,l, bo,l, a

0
l , m

0
l)

denote the associated model parameters, including the learnable initial Hidden and Memory
States. The equations underlying lstm are detailed in an earlier chapter.4

1 For brevity, dimensions of matrices and vectors are henceforth no longer stated. They are implied by the
dimension of the Training Data and by the conventions used in earlier chapters.
2 compare 3.2.3, Directed Models, Mixture Density Networks
3 W l comprises W c,l,W f,l,W i,l,W o,l,bc,l,bf,l,bi,l, and bo,l, while U l comprises U c,l,Uf,l,U i,l, and Uo,l
4 compare 3.3.3, Special Types of Units, Long Short-Term Memory Unit

104

For τ = ts, . . . , te the Convolutional Layers are described by

al,τ = conv(al−1,τ ;θconv,l) l = C, . . . , 1 (4.12)

a0,τ = x̂τ = I(τ ≤ t)xτ + I(τ > t) convert(ŷτ−1, x̂τ−1) (4.13)

where θconv,l = W l = (W sensor,l, W incident,l, Wweather,l, W indicator,l, bsensor,l, bincident,l,
bweather,l, bindicator,l) are the associated model parameters, and I is the indicator function. Note
that x̂τ is identical to the input xτ during the Encoding Phase τ = ts, . . . , t, but constructed from
sampled output and previous input during the Decoding Phase τ = t+ 1, . . . , te. The equations
underlying the functions convl, l = C, . . . , 1, are described in subchapter ”Convolutional Layers”.

Thus, the complete set of learnable model parameters is

θ = {θconv,1, . . . ,θconv,C ,θlstm,C+1, . . . ,θlstm,C+L,θgmm} (4.14)

The above equations trivially generalize to matrix equations when m training cases are processed
in parallel.

Parametrization of Covariance Matrices

When dealing with GMM-MDNs, the question of how to parameterize the component covariance
matrices Σi, i = 1, . . . , k arises. In what follows, it is assumed that the covariance matrices are
of dimension n× n.

Typically, the literature suggests setting Σi = Iσ2
i , where I is an n × n identity matrix and

σi is a scalar [151]. Alternatively, it is sometimes proposed to set Σi = diag(σ2
i), where σi is

an n-element vector of standard deviations. The k covariance matrices thus contain k or kn
independent parameters in total. Asymptotically, any distribution can be modeled arbitrarily
well by a GMM, using only diagonal component covariance matrices [92]. However, there is a
concern that too many components may be needed in order to capture all relevant features of
the data.

In particular, preliminary analysis of the Data Set indicates that Traffic Speed changes at
different sensors can be highly correlated. Figure 4.8 displays a matrix indicating which
correlations of Traffic Speed changes are significant at 99 % confidence level, all sensors
considered. Figure 4.9 the corresponding correlation matrix.

Figure 4.8: Corr. Significance Matrix
94.65 % significant (94.53 % positive)

Figure 4.9: Correlation Matrix

105

This shows that most sensor correlations are significant and positive, albeit small in absolute
terms, while large, positive and negative, significant correlations exist. If the covariance matrices
are assumed to be diagonal, these correlations can not be modeled directly. On the other hand,
fully parameterizing a covariance matrix requires n(n + 1)/2, i.e. O(n2) parameters1, which is
prohibitively expensive for large n.2

If Q is an orthogonal matrix, and Λ a diagonal matrix with non-negative elements, then QΛQT

is a symmetric, positive semidefinite matrix, and hence a covariance matrix, whose eigenvalues
are the elements of Λ. Therefore, n independent numbers suffice to parameterize a densely
populated covariance matrix, i.e. a covariance matrix with non-zero off-diagonal elements that
can be used to directly model correlations between variables. Evidently, only a small subset of the
space of all possible covariance matrices is spanned by this parametrization. This decomposition
method is chosen for the model and expressed by equation (4.9).

The orthogonal matrices Qi, i = 1, . . . , k are hard-coded. They are derived by performing
Singular Value Decompositions on the sample covariance matrices of different subsets of the
Training Data3,4. Specifically5, QSV = Σ̂s with6 [Σ̂s]ij = 1

ns−1

∑
t∈T (di,t− d̄i)(dj,t− d̄j), where

d̄i = 1
ns

∑
t∈T (di,t), and T denotes the set of Time Grid points in the sub-sample. It is thus

ensured that the space of covariance matrices spanned by QΛQT contains sensible elements,
such as Σ̂s.

By choosing different sub-samples of the Training Data, e.g. all weekends, or all weekdays during
morning rush hour7, Learning is biased towards discovering mixture components that correspond
to the respective traffic regimes. Hard-coding the Qi amounts to pre-wiring knowledge into the
model, thus reducing Learning latency.

Sampling

Sampling from a k-component GMM based on (4.9) is performed in two steps. First, one out
of the k mixture components is picked at random, such that each component has probability
α̂i of being selected.8 This corresponds to drawing a sample from a k-component Categorical
Distribution with probability vector α̂, and can be accomplished using the Gumbel-Max method
[296]. First, a vector u of k independent, uniformly distributed random variables in [0, 1] is
drawn. This vector is converted into a vector g of k independent random variables with Gumbel
Distribution via the transformation g = − log(− log(u)). Finally, a sample c from the Categorical
Distribution can be drawn by selecting

c = arg max
i

(log α̂i + gi) (4.15)

Secondly, ŷ is drawn from the Multivariate Normal Distribution corresponding to the selected
mixture component N (µ̂c, Σ̂c). It is a well known fact that if z is a vector of independent
Standard Normals, i.e. z ∼ N (0, I), then Lz ∼ N (0,LLT) and Lz + µ ∼ N (µ,LLT). Hence,

1 A covariance matrix is symmetric and therefore has n(n+1)/2 independent parameters, n variances as diagonal
elements and n(n− 1)/2 off-diagonal covariances.
2 in this project, n = 100
3 compare 4.7
4 Data in the Validation and Test Set are not included in order to avoid leaking unknowable information into the
training process.
5 For covariance matrices, a Singular Value Decomposition is equivalent to an Eigenvalue Decomposition. In
particular, S is a diagonal matrix of the eigenvalues of Σ̂s and V = QT .
6 This is an unbiased estimator for the covariance.
7 compare 4.7
8 In this section, the time index is dropped for clarity.

106

a vector of n independent Standard Normals z is generated1, and one must then find L, such
that Σ̂c = LLT . Since the covariance matrix is modeled as an Eigenvalue Decomposition,
Σ̂c = QcΛ̂cQ

T
c = QcΛ̂

1/2
c Λ̂T/2

c QT
c = (QcΛ̂

1/2
c)(QcΛ̂

1/2
c)T holds, and therefore, L = QcΛ̂

1/2
c .

Consequently, a sample ŷ is obtained by letting

ŷ = QcΛ̂
1/2
c z + µ̂c (4.16)

Convolutional Layers

Let [] define a stacking operator on column vectors, i.e. [v1 v2 . . .vn] = (vT1 v
T
2 . . .v

T
n)T , where

vTj , j = 1, . . . , n are vectors of possibly different size. In what follows, indicies s, r, w, and i
reference variables associated with Traffic Station Data, Incident Report Data, Weather Data
and Indicator Data, respectively. Recall2 that

xτ = [xsτ x
r
τ x

w
τ x

i
τ] = [[xs1,τ . . .x

s
ms,τ], [xr1,τ . . .x

r
mr,τ], [xw1,τ . . .x

w
mw,τ], [xi1,τ]] (4.17)

xsj,τ = [speedj,τ , occupancyj,τ , f lowj,τ], j = 1, . . . ,ms

xrj,τ = [p 1j,τ , . . . , p 5j,τ , latitudej,τ , longitudej,τ , start flagj,τ], j = 1, . . . ,mr

xwj,τ = [visibilityj,τ , precipitation ratej,τ , wind speedj,τ], j = 1, . . . ,mw

xij,τ = [time of day sinj,τ , . . . , school holidayj,τ], j = 1, . . . ,mi

(4.18)

where ms = 100 is the number of Traffic Stations, mr = 10 is the number of macro fields
recording incident data, mw = 8 is the number of Weather Stations, and mi = 1.3,4 The
equations implemented by convl, l = C, . . . , 1 are5

al,τ = [asl,τ a
r
l,τ a

w
l,τ a

i
l,τ] = [W̃ T

s,l a
s
l−1,τ W̃

T
r,l a

r
l−1,τ W̃

T
w,l a

w
l−1,τ W̃

T
i,l a

i
l−1,τ] (4.19)

W̃ s,l =

W s,l . . . 0
...

. . .
...

0 . . . W s,l

 (4.20)

with W s,l an ns,l−1 × ns,l matrix, where ns,l−1, and ns,l is the number of features which relate
to Traffic Station Data, in Convolutional Layer l − 1 and l, respectively. Incidentally, ns,0 = 3,

counting features Speed, Occupancy, and Flow. W̃ s,l is a msns,l−1 ×msns,l matrix containing

ms copies of W s,l along its diagonal6, while all other elements are equal to zero. W̃ r,l, W̃w,l, and

W̃ i,l are constructed analogously to W̃ s,l from W r,l, Ww,l, and W i,l, with nr,0 = 8, nw,0 = 3,
and ni,0 = 23.7 The quantities ns,l, nr,l, nw,l, and ni,l, l = 1, . . . , C are model parameters that
will be specified later.

Using Covolutional Layers as low-level feature extractors instead of fully connected Layers,
reduces the number of the associated model parameters θconv,l = {W s,l,W r,l,Ww,l,W i,l},
l = C, . . . , 1 by orders of magnitude.

1 There are several ways of doing this based on a vector u of uniformly distributed random variables in [0, 1].
For instance z = Φ−1(u), where Φ is the distribution function of the Standard Normal Distribution, applied
elementwise. Alternatively, the Box Muller method [297] can be used.
2 compare 4.4, Final Data Set
3 compare 4.4, Data Pre-Processing
4 Of course, there is no inherent repetition in the indicator data, hence mi = 1. For convenience, this part of the
data is treated like the others.
5 compare 4.5, Model Architecture, Model Equations
6 For performance reasons, the Convolutional Layers are actually implemented in a more efficient, mathematically
equivalent, albeit less intuitive way; compare 4.7, Improving Computational Efficiency
7 compare 4.4, Final Data Set

107

Use Cases

After Training1, the model can be used to answer the following types of questions.2

(1) What is the expected Traffic Speed, r time steps into the future at sensor
location l? This is equivalent to making a point prediction using a network which models
the conditional expectation of the targets. The conditional expectation can be approximated by
averaging N samples and becomes exact as N tends to infinity.

v̄Nl,t+r =
1

N

N∑
i=i

v̂l,t+r,i (4.21)

E(vl,t+r|x≤t) = lim
N→∞

v̄Nl,t+r (4.22)

Since the expected value of a GMM is equal to the weighted sum of its component means, the
special case r = 1 can be obtained without sampling directly from the model output.3

E(yl,t|x≤t) = E(vl,t+1 − vl,t|x≤t) =

k∑
i=i

α̂i,tµ̂i,l,t (4.23)

In order to approximate the case r > 1, predicted means can be successively fed to the next time
step. However, it is not clear how poor the resulting approximation can be. Further research
should be undertaken to examine this question.

(2) What is the most likely evolution of Traffic Speed at a particular sensor? This is
equivalent to predicting the mode of the conditional marginal density of the respective targets,
and different from predicting their mean, unless the density is symmetric. Analytically, finding
the mode corresponds to the following computation

mode(yl) = arg max
yl

p̂(yl; ϕ̂) = arg max
yl

∫
yl−

p̂(y, ϕ̂) dyl− (4.24)

where yl = (yl,t, . . . , yl,t+f), and the integration is with respect to all variables corresponding
to sensor locations other than l. However, the above expression is in general intractable.4

Furthermore, these densities are typically multi-modal, in which case the highest mode is sought.

In practice, samples from the model can be binned with the required resolution. The bin
containing most samples serves as an approximation of the mode. This method is only feasible
if a small subsets of targets is considered, otherwise a more sophisticated mode hunting scheme
[298] must be applied.

1 compare 4.7
2 This list is not exhaustive.
3 Note that yl,t+r = vl,t+r+1− vl,t+r, for r > 1 is only Gaussian, conditional on information available in t+ r− 1,
i.e. given y<t+r and x≤t. Conditional on information available in t, the quantity yl,t+r is no longer normally
distributed.
4 A closed-form expression for p̂(y, ϕ̂) is not available. Rather, this density is represented implicitly as a product
of factors; compare 4.5, Input and Output

108

(3) What is the probability of an arbitrary event A? In this case, N samples are drawn
from the model. The frequency with which A occurs is a Monte Carlo estimate for its probability
p(A), i.e.

p̂N (A) =
1

N

N∑
i=i

IA(ŷi) (4.25)

p(A) = lim
N→∞

p̂N (A) (4.26)

where IA is the indicator function, which is equal to 1 if its argument makes A true, and 0
otherwise. Examples for A include:

• Congestion develops at sensor location 34 within the next 15 minutes, where Congestion
is defined as Traffic Speed lower than 15 mph.

• Congestion develops at sensor locations 1 and 2, and lasts longer than 30 minutes, where
Congestion is defined as Traffic Speed lower than 20 mph.

(4) What is the probability of an arbitrary event A, conditional on an arbitrary
event B? By Bayes Theorem, p(A|B) = p(A,B)/p(B) holds. Monte Carlo estimates can be
computed for both terms. However, if B has low probability it may take a large number of
samples to obtain reasonable accuracy. In this case, p(A|B) can be approximated by fixing the
input to the model so as to make B true, and then estimating p(A). It thus becomes possible to
answer queries, such as:

• Assuming Traffic is congested at sensor location 3, what is the probability that it will last
for more than 15 minutes?

• Assuming in 15 minutes, at location 22, Traffic comes to a halt for 10 minutes, what are the
probabilities that Congestion will develop at every other sensor location? This is relevant
in gauging the effect of temporary road closures in the context of road work scheduling.

In this way, the switching of lane directions can be simulated and evaluated. For Instance, as
a result of Congestion in the southbound direction of a highway, a Traffic Management System
may consider reversing the direction of a northbound lane. However, it may not be clear how this
would impact traffic elsewhere in the highway network. Conditioning the model on this scenario
corresponds to conditioning on proportionally increased Occupancy in the North direction and
proportionally decreased Occupancy in the South direction. Furthermore, using the Fundamental
Equation of Traffic Flow1 an educated guess about Flow and Speed in both directions along the
switched segment can be obtained.

Similarly, a planned highway would introduce a connection between two sensor locations. To
simulate its impact on the entire traffic network, one could condition the model on estimates of
Occupancy, Flow and Speed at sensor locations near start and end of the planned highway. For
instance, Occupancy likely reduces at locations along the existing highway, downstream of the
new exit.

4.6 Implementation

The model is implemented in the Python 3 programming language, using the DL library Keras
1.0.2 [299] with a Theano 0.9.0 [48] backend.

1 compare 4.3

109

In essence, Theano is a Python library for Automatic Differentiation. It has been developed
to facilitate implementation of DL models. Backpropagation (BP)1 involves computation of
error gradients, i.e. gradients of the Cost Function (CF) with respect to all model parameters.
Analytical expressions for these gradients need to be derived, which quickly becomes unwieldy
for large models. Theano automates this process for arbitrary compositions of piecewise
differentiable functions.

Specifically, Theano expresses computation of C(θ) as a directed, acyclic computational
graph whose nodes correspond to elementary tensor operations. Each node encapsulates the
computation of its output from its inputs as well as the computation of the gradients of its output
with respect to its inputs. This enables computation of the gradients ∇θC(θ) by Reverse-Mode
Differentiation, i.e the recursive accumulation of node gradients as dictated by the Chain Rule.
The computational graph associated with a model is a symbolic representation of a numerical
computation. Theano applies a variety of graph optimizations to this data structure, yielding
a semantically equivalent but computationally more efficient and potentially more numerically
stable graph. Lastly, many expressions are complied down to low-level C code for speed.

Keras is built on top of Theano and provides a straightforward API to stack various types
of Artificial Neural Network (ANN) Layers. However, the model presented in this thesis is
non-standard in the sense that outputs in a particular time step are fed as input to the next
time step2, which is not natively supported. Furthermore, the GMM OL is not supported in
Keras. Hence, it was necessary to rewrite and extend some of the Keras classes. In particular,
the following modules were modified

• backend/theano backend.py

• engine/training.py

• layers/recurrent.py

• utils/generic utils.py

• objectives.py

• optimizers.py

All modified files are submitted along with the zipped version of this thesis, in the folder
code/python/keras.

4.7 Training

Model Setup

The model3 is initialized with 2 Convolutional Layers, 2 LSTM Layers, and 5 mixture
components. Table 4.1 lists all, as yet unspecified, model Hyperparameters (HPs).

Hyperparameter Value

Nbr. Time Steps in Look-Back Period b 24
Nbr. Time Steps in Look-Forward Period f + 1 12
Nbr. Feature Detectors in Conv Layers s = [4, 3], r = [5, 3], w = [4, 2], i = [5, 3]
Nbr. HUs in all LSTM Layers 128

Table 4.1: Model Hyperparameters

1 compare 3.2.4, Gradient Descent with Backpropagation, Backpropagation
2 compare 4.5, Model Architecture
3 compare 4.5, Model Architecture

110

The number of Time Steps in the Look-Back Period covers current observations of all input
variables along with their most recent 2-hour history. The Look-Forward Period represents a
1-hour modeling horizon. Given the sensor counts ns = 100, nr = 10, nw = 8, ni = 1, the
number of Feature Detectors results in a number of HUs of 487 and 349 for Conv Layers 1
and 2, respectively.1 In this configuration, the model contains 505 967 independent, learnable
parameters, namely 373 093 weights, 1 290 biases, and 512 initial hidden and memory states.

Corresponding to the 5 mixture components, 5 traffic regimes were identified and used to prepare
the orthogonal matriciesQ, as described earlier2. Table 4.2 details the considered traffic regimes.

Regime Description Applicable

1 Weekday Morning Rush Hour Mo-Fr 6:30AM-9:55AM
2 Weekday Day Traffic Mo-Fr 10:00AM-3:25PM
3 Weekday Afternoon Rush Hour Mo-Fr 3:30PM-7:55PM
4 Weekend Day Traffic Sa-Su 10:00AM-9:55PM
5 Night Traffic otherwise

Table 4.2: Traffic Regimes

Training Setup

The Data Set is split into a Training Set (TrS), a Validation Set (VaS), and a Test Set (TeS)
in proportions [24 : 3 : 3]. Hence, the TrS comprises 2 years of data, while the VaS and the TeS
both comprise 3 months of data.

As Learning Algorithm (LA), Adam3 in conjunction with Backpropagation Through Time
(BPTT)4 is employed. All non-recurrent weight matrices use Glorot Uniform Initialization
(GUI)5, while all recurrent weight matrices use Orthogonal Initialization (OI)6. Table 4.3 lists
all, as yet unspecified, LA HPs.

Hyperparameter Value

Mini Batch size 512
Base Learning Rate η 0.00729
Adam decay parameter β1 0.64110
Adam decay parameter β2 0.91620

Table 4.3: Learning Algorithm Hyperparameters

Given the large number of model parameters relative to the number of training samples,
Regularization is required in order to prevent Overfitting and to obtain good Generalization
Performance.7 Table 4.4 lists all, as yet unspecified, regularization HPs.8

1 compare 4.5, Convolutional Layers.
2 compare 4.5, Parametrization of Covarianz Matrices
3 compare 3.2.4, Gradient Descent with Backpropagation, Extensions with Adaptive Learning Rate, Adam
4 compare 3.2.4, Gradient Descent with Backpropagation, Backpropagation Through Time
5 compare 3.3.3, Special Initialization Schemes, Glorot Uniform Initialization
6 compare 3.3.3, Special Initialization Schemes, Orthogonal Initialization
7 compare 3.2.5, Generalization Error
8 compare 3.2.5, Methods to Prevent Overfitting, Dropout and Weight Decay

111

Hyperparameter Value

Dropout Conv Layers [0, 0]
Dropout LSTM Layers [0.25, 0.25]
`1 penalty (all weight matrices) 0
`2 penalty (all weight matrices) 0

Table 4.4: Regularization Hyperparameters

Choice of Hyperparamters

All model HPs, shown in Table 4.1, as well as Mini-Batch (MB) size were determined by Manual
Search (MS)1. MB size can be optimized independently of all other HPs. The larger the MB size,
the greater the benefit of GPU parallelism [162, 163], i.e. the more multiply-add operations per
second are performed. On the other hand, as MB size increases, the number of parameter updates
per Epoch decreases. Since each Epoch requires a fixed number of operations to complete,
and a parameter update at a particular iteration on average causes a fixed reduction in error,
independent of MB size, these two effects are opposing in terms of average error reduction per
second [300]. For this project, optimal MB size was determined to be such that GPU load is
maximized at all times.

The remaining LA HPs, shown in Table 4.3, i.e. the Base Learning Rate (LR) η and decay
parameters β1 and β2, as well as all Regularization HPs, shown in Table 4.4, were found by
applying Bayesian Hyperparameter Optimization (BHPO)2 to a reduced model. Specifically,
BHPO was executed for 15 iterations on a model with only 1 mixture component, in which
LSTM Layers had been replaced by regular recurrent Layers, as used in Elman Networks.3

Upper Confidence Bound with parameter κ = 2 was used as Acquisition Function. It is hoped
that the thus-found HPs are also suitable for the full model, to which applying BHPO would be
prohibitively expensive. The optimized HPs were tested on the reduced model with the LSTM
Layers swapped back in, resulting in a far better Validation Error (VaE) than all previously
tried configurations. This result strengthens the hypothesis that good HPs are valid across
similar models. Ideally, BHPO should be applied to the full model, which should be considered
in future research.4

1 compare 3.1.8, Types of Hyperparameter Optimization, Manual Search
2 compare 3.1.8, Types of Hyperparameter Optimization, Bayesian Hyperparameter Optimization
3 compare 3.2.3, Directed Architectures, Recurrent Neural Networks, Elman Networks
4 GPU technology, geared towards DL is currently progressing at a fantastic rate. NVIDIA recently announced
the Tesla V100 with special instructions for tensor operations. This GPU is capable of 100 TFLOPS, an order of
magnitude improvement over the GPU used for this project. Once these cards become accessible in the cloud,
applying BHPO to the full model should be feasible.

112

On first thought, it may seem surprising that the optimal Dropout (DO) fraction is zero for both
Conv Layers. However, due to extensive Weight Sharing (WS)1 and sparse connectivity, these
Layers are already heavily regularized. In fact, the Conv Layers consist of a large number of small
replicated Feature Detectors that, by themselves, do not have enough capacity to overfit. Hence,
each Unit in a Conv Layer represents an essential feature, akin to an input feature. Dropping
any one of these features constitutes a significant information loss. In contrast to fully connected
Layers without Weight Sharing, other Units cannot learn to compensate for this information loss
as they receive entirely different input. The fact that `1 Weight Decay (WD)2 acts as a Feature
Selector explains why no `1 penalty is appropriate for weight matrices in Conv Layers, or for
the non-recurrent weight matrices of the first LSTM Layer. All other weight matrices connect
to or from Layers that are relatively small compared to the network input and output. Hence,
every attribute of their heavily compressed Distributed Representation (DR)3 is likely essential.

Cost Function

The model is trained using the Negative Log Likelihood (NLL) CF4. Using (3.31), (3.33), (3.24),
and (4.5) it can be expressed as

C(θ) =
1

m

m∑
j=1

Lnll(h(xj ;θ),yj) = − 1

m

m∑
j=1

log p̂(yj |xj ;θ)

= − 1

m

m∑
j=1

log
T∏
t=1

p̂(yjt |x̂
j
t ;θ) =

1

m

m∑
j=1

T∑
t=1

− log p̂(yjt |x̂
j
t ;θ)

=
1

m

m∑
j=1

T∑
t=1

nllGMM(yjt ; ϕ̂(x̂jt ;θ))

(4.27)

where nllGMM(yjt ;ϕ(x̂jt ;θ)) is the NLL of yjt under a GMM paramererized by ϕ(x̂jt ;θ), m is
the number of training samples, and T = f + 1 is the number of time steps in the Look-Forward
Period5.

Improving Computational Efficiency

Considering the summands in the last term of (4.27) and dropping the dependency on x̂jt , for
any particular y = yjt , the following relationship holds

nllGMM(y;θ) = − logLGMM(y;θ) = − log
k∑
i=1

αiLN (y;µi,Σi) (4.28)

with θ = {α,µ1, . . . ,µk,Σ1, . . . ,Σk} and LGMM and LN denoting the Likelihood of y under
a GMM and Normal Distribution. The latter is given by

LN (y;µ,Σ) = φ(y;µ,Σ) = (2π)−
n
2 |Σ|e−

1
2

(y−µ)TΣ−1(y−µ) (4.29)

where φ(y,µ,Σ) is the density of a Multivariate Normal y with mean vector µ and covariance
matrix Σ. Furthermore, using (4.9) and the fact that Q is orthogonal, it follows that Σ−1 =
Q−TΛ−1Q−1 = QΛQT , and log |Σ| = log |QΛQT | = log |Q|2|Λ| = log |Λ| = tr(log Λ).

1 compare 3.2.5, Methods to Prevent Overfitting, Weight Sharing
2 compare 3.2.5, Methods to Prevent Overfitting, Weight Decay, L1 Regularization
3 compare 3.2.1, Principle of Distributed Representations
4 compare 3.1.5, Types of Cost Functions, Negative Log Likelihood Cost
5 compare 4.5, Model Input and Output

113

Therefore,

nllN (y;µ,Σ) = − log φ(y;µ,Σ)

=
1

2
((y − µ)TQΛ−1QT (y − µ) + tr(log Λ)) +

n

2
log(2π)

=
1

2
(g1(y,µ,Λ,Q) + g2(Λ)) + cnst

= mnllN (y;µ,λ,Q) + cnst

(4.30)

Where mnllN (y,µ,λ,Q) is the main part of the NLL of y under a Multivariate Normal
Distribution. Rewriting (4.28) as a function of the main parts of its component NLLs
mnllN (y;µi,λi,Qi), i = 1, . . . , k using (4.29) and (4.30)

LGMM(y;θ) =

k∑
i=1

αiφ(y;µi,Σi) =

k∑
i=1

αiφ(y;µi,λi,Qi)

=
k∑
i=1

αie
log φ(y;µi,λi,Qi) =

k∑
i=1

αie
−nllN (y;µi,λi,Qi)

(4.31)

nllGMM(y;θ) = − log

(
k∑
i=1

αie
−mnllN (y;µi,λi,Qi)

)
+ cnst (4.32)

where θ = {α,µ1, . . . ,µk,λ1, . . . ,λk} now reflects the alternative parametrization of the
component covariance matrices.

Hence, when training with Mini-Batch Stochastic Gradient Descent (MBSGD)1, a naive
implementation of (4.27) requires a triple loop over batch samples, time steps and mixture
components, where at each iteration matrix multiplications must be performed to compute the
function g1 in (4.30). Owing to the diagonal structure of Λ, it is possible to parallelize this
computation into k large matrix multiplies, thus removing the two outer loops and exploiting
GPU speedups [162, 163].

Let nllGMM and mnlliN denote m × T matrices whose jth row and tth column elements are
nllGMM(yjt ;θ) and mnllN (yjt ;µi,λi,Qi) respectively2, then

nllGMM = − log

(
k∑
i=1

αie
−mnlliN

)
+ cnst (4.33)

Evidently, (4.27) can be equivalently computed by summing nllGMM over columns and
averaging over rows. Let further rshv(v, (a, b)) and rsht(T̃ , (a, b)) define reshape operators taking
a vector v and a tensor T̃ and reshaping it into a a× b -matrix. Lastly, rd(T̃) defines a reduce
operator that sums a matrix or a 3-tensor T̃ along its last dimension. Instead of performing a
double loop to populate mnlliN , the computation can be performed in parallel as follows

mnlliN =
1

2
(gi1 + gi2) (4.34)

gi1 = rshv

(
rd

(
1

Li
◦ (DiQi)

2

)
, (m,T)

)
(4.35)

gi2 = rd(logLi) (4.36)

1 compare 3.2.4, Gradient Descent with Backpropagation, Extensions with Stochastic Gradient, Mini Batch
Stochastic Gradient Descent
2 Other matrix quantities are defined analogously

114

Li = rsht(L̃i, (mT, n)) (4.37)

Di = rsht(D̃i, (mT, n)) (4.38)

where L̃i and D̃i are 3-dimensional tensors of dimensions m× T × n, with n the model output
dimension, i.e. the number of sensors. Furthermore, [L̃i]j,t,l = λjt,l and [D̃i]j,t,l = yjt,l − µ

j
t,l. The

division, outer multiplication as well as the squaring in (4.35) are performed elementwise. This
optimization achieves an order of magnitude speedup in calculating the CF.

A similar optimization is performed in order to parallelize the drawing of m samples1 from the
model, which is needed during Training and Testing2. A sample from a GMM with multivariate
components is an n-element vector that can be obtained according to (4.16). When processing
a batch of m training examples naively, m matrix multiplications have to be carried out. These
operations can be executed in parallel by replacing the m diagonal marices Λ by a dense matrix
L and introducing elementwise multiplication

Ŷ = (L1/2 ◦Z)Q+M (4.39)

where Z is an m× n matrix of Standard Normals, L and M are m× n matrices whose ith row
and jth column elements contain λji and µji , and Ŷ is an m × n matrix whose rows contain m
samples of the GMM.

Lastly, obvious optimizations of the LSTM Layers3 are implemented whereby matrix
multiplications involving W f ,W i,W g,W o and U f ,U i,U g,U o are performed in parallel via
horizontal concatenation, thereby replacing eight small matrix multiplies by two large multiplies.
Implementation of the latter two optimizations can be inspected by consulting files objectives.py
and layers/recurrent.py.

Training Run

The model was trained with the above specifications for 100 Epochs.4 During Training, the VaE
was computed after each Epoch. The model with the overall lowest VaE was then retained. This
final model is referred to as Trained Model throughout the rest of this thesis.

Amazon Web Services (AWS) [275] Cloud Computing resources were leveraged for performance.
In particular, the Training run was executed on a p2.xlarge EC2 instance comprising 4 Intel
Xeon E5-2686v4 CPUs, one half NVIDIA K80 GPU with 2 496 CUDA cores, 61GB of RAM,
and 12GB of GPU-RAM.

Training took 21 hours, resulting in a Training Error (TrE) of 194.24 and a VaE of 188.92.5

Figure 4.10 displays a plot of the TrE and VaE over time.

1 compare 4.5, Sampling
2 compare 4.5, Model Architecture
3 compare 3.3.3, Special Types of Units, Long Short-Term Memory Unit
4 An Epoch is a full pass over the TrS.
5 Errors represent values of the NLL CF (4.27).

115

Figure 4.10: Training and Validation Error

4.8 Model Evaluation

Trained Model

Figure 4.11 displays plots of the Feature Detectors, i.e. the Conv Layer weight matrices of
the Trained Model. It appears that all Feature Detectors learn different, linearly independent
features, confirming that their size is not too large. Only detector L w 0 maps all incoming signals
to 0 for its forth output feature, suggesting that three weather feature suffice in the lowest layer.
This zeroing out of signals can be interpreted as a form of learned self-regularization.

The Indicator Feature Detector L i 0 contains some large weights in its first two rows, indicating
that the time of day variables1 are deemed useful. Inspection of rows 8, 9, and 22 reveals that
the model has learned to make use of the fact that Saturdays, Sundays and Holidays are different
from regular business days. It is hard to say, what precise effects these relatively large weights
have but it is clear that their influence will be stronger compared to other weights. Furthermore,
the model seems to have understood that all weekdays are similar except Friday, when people
tend to leave work early.

Overall, these observations indicate that the low-level Feature Detectors in the Conv Layers
indeed learn useful features. The presence of large weight in all Detectors of the first Conv Layer
shows that all types of input variables, i.e. Sensor, Incident, Weather and Indicator variables,
were in fact relevant for learning a model of traffic.

1 compare 4.4, Final Dataset

116

Figure 4.11: Trained Feature Detectors, Conv Layer 0 (bottom, Conv Layer 1(top), from left to
right: Traffic, Incident, Weather, Indicator

Figure 4.12 shows plots of weight matrices W 1
g and U1

g of the highest LSTM Layer, along
with histograms of the corresponding weight distributions. These plots illustrate that the model
indeed learns as expected. Some weights grow fairly large while most remain small. The diagonal
structure in the recurrent weight matrix is due to the Orthogonal Initialization scheme that was
used.

117

Figure 4.12: Trained Weights W 1
g, U

1
g

Lastly, the learned mixture distribution is analyzed. Figure 4.13 displays a plot of the Mixture
Component probabilities over time as seen in the first week of the TeS. It is apparent, that the
model indeed learned to use the components as intended. Presumably, this is a direct result of
hard-coding the Q matrices. The first two days in this week are Saturday and Sunday. During
this period, the mixture components corresponding to Weekend Day Traffic (Regime 4) and
Night Traffic (Regime 5) have high probabilities. During business days, the probability of the
component corresponding to Morning Rush Hour (Regime 1) peaks in early mornings, while the
component modeling Weekday Afternoon Rush Hour (Regime 3) peaks in the afternoon. Only
the component Weekday Day Traffic (Regime 2) is not used, instead the model shows a spike in
the probability of Regime 4. This week is typical for the entire TrS. Therefore, computational
resources might be saved by learning a 4-component model omitting Regime 2.

118

Figure 4.13: Mixture Component Probabilities

Test Results

The Trained Model, referred to as ”LSTM”, is evaluated on the TeS and compared to a naive
Random Walk model, referred to as ”Trivial”, that always predicts a zero change in Traffic
Speed. The Trained Model is also compared to a simpler Recurrent Neural Network (RNN),
referred to as ”RNN”, with just 1 Conv Layer and 1 standard Recurrent Layer, i.e. no LSTM
Units are used1.

Comparison with the Random Walk model is useful to establish that the Trained Model has
value at all. Often, researchers commit the error of training a model to predict levels (instead
of changes) of time series that have a Unit Root2. They then overlay predictions and targets
or compute R2 to show that their predictions are highly accurate. However, this high accuracy
is entirely explained by methodological flaws. These types of time series have to be differenced
before training a model.

Comparison with the simpler RNN model should confirm whether representational depth3 and
long-term memory capabilities4, are really beneficial for learning a model of traffic. Added model
complexity should always be paid for by improved performance.

Comparisons are performed in two ways, namely in terms of Mean Absolute Error (MAE)
and Mean Squared Error (MSE)5 of predicted Traffic Speed levels (derived from predicted
differences), and in terms of Accuracy, Precision and Recall6 of binary Congestion Prediction,
where Congestion is defined as Traffic Speed slower than 25mph.

1 For a fair comparison, Layer size of the ”RNN” model was increased to match the number of parameters of the
”LSTM” model. Both models were trained using the same HP settings.
2 Informally, this means values do not change much from time step to time step. For these time series, ”excellent”
predictions can be obtained by simply predicting the last known value.
3 compare 3.3.1, Types of Depth
4 compare 3.3.3, Special Types of Units, Long Short-Term Memory Unit
5 compare 3.1.5, Types of Cost Functions, Mean Absolute Error and Mean Squared Error
6 compare 3.1.9, Performance Metrics

119

Tables 4.5 and 4.6 display the respective Performance Metric (PM)s side by side for all three
models, broken down by prediction horizon. The best result in each row is highlighted. For MAE,
MSE, and Accuracy, the Trained Model outperforms both competitor models. The ”RNN” model
wins overall in terms of Precision, while the ”Trivial” model achieves the best Recall.

MAE MSE
t Trivial RNN LSTM Trivial RNN LSTM

5 1.53 1.54 1.51 6.62 6.54 6.24
10 2.21 2.21 2.15 15.66 15.13 14.13
15 2.71 2.71 2.61 25.38 23.99 22.02
20 3.13 3.10 2.96 35.15 32.40 29.32
25 3.48 3.44 3.26 44.69 40.12 35.85
30 3.80 3.73 3.51 53.87 47.05 41.55
35 4.09 3.99 3.72 62.70 53.23 46.51
40 4.35 4.22 3.90 71.18 58.70 50.78
45 4.60 4.42 4.06 79.38 63.58 54.49
50 4.84 4.61 4.21 87.35 67.98 57.74
55 5.06 4.79 4.34 95.13 71.98 60.60
60 5.28 4.95 4.45 102.76 75.72 63.18
all 3.76 3.64 3.39 56.66 46.37 40.20

Table 4.5: Results MAE and MSE

ACC PRE REC
t Trivial RNN LSTM Trivial RNN LSTM Trivial RNN LSTM

5 98.82 98.81 98.83 88.29 89.05 88.92 88.29 87.19 87.89
10 98.26 98.28 98.32 82.79 84.88 84.45 82.80 80.39 81.87
15 97.84 97.91 97.97 78.65 82.07 81.55 78.66 75.07 77.41
20 97.49 97.60 97.70 75.20 79.90 79.39 75.21 70.36 73.60
25 97.19 97.36 97.48 72.25 78.32 77.75 72.27 66.13 70.35
30 96.92 97.14 97.29 69.53 76.83 76.35 69.55 62.22 67.33
35 96.65 96.94 97.13 66.92 75.47 75.23 66.94 58.58 64.56
40 96.42 96.78 97.00 64.58 74.42 74.29 64.60 55.24 62.15
45 96.19 96.62 96.87 62.33 73.36 73.33 62.35 52.11 59.85
50 95.96 96.48 96.75 60.09 72.31 72.35 60.11 49.28 57.72
55 95.75 96.35 96.65 57.98 71.33 71.59 58.00 46.70 55.92
60 95.54 96.25 96.56 55.95 70.40 70.83 55.96 44.49 54.24
all 96.92 97.21 97.38 69.55 77.36 77.17 69.56 62.31 67.74

Table 4.6: Results ACC: Accuracy [%], PRE: Precision [%], REC: Recall [%]

In order to disambiguate the above results, pairwise comparisons are performed using Statistical
Tests. For MAE and MSE, a Two-Sample T-Test is performed, while model comparison of
Congestion Classification capabilities is done using a McNemar Test1. Tables 4.7 and 4.8 show a
comparison between the ”LSTM” and the ”Trivial” model. Tables 4.9 and 4.10 compare ”LSTM”
with ”RNN”. Results that are significant at high confidence level are highlighted.

These results show that the Trained Model significantly outperforms both competitor models in
all categories. This is not a contradiction to the results in Table 4.6. Even though the Trained
model is outperformed in terms of Recall and Precision by simpler models, it is a better model
overall.

1 compare 3.1.9, Comparing Models

120

MAE MSE
t diff r. adv p. diff t-stat p-val diff r. adv p. diff t-stat p-val

5 0.02 1.31 0.02 75.40 <10e-6 0.38 5.74 0.39 117.60 <10e-6
10 0.06 2.71 0.06 99.22 <10e-6 1.53 9.77 1.52 142.07 <10e-6
15 0.10 3.69 0.11 121.02 <10e-6 3.36 13.24 3.36 161.04 <10e-6
20 0.17 5.43 0.16 140.88 <10e-6 5.83 16.59 5.83 177.48 <10e-6
25 0.22 6.32 0.22 158.41 <10e-6 8.84 19.78 8.84 192.44 <10e-6
30 0.29 7.63 0.29 174.90 <10e-6 12.32 22.87 12.32 206.50 <10e-6
35 0.37 9.05 0.37 191.37 <10e-6 16.19 25.82 16.19 219.92 <10e-6
40 0.45 10.34 0.45 206.76 <10e-6 20.40 28.66 20.40 232.73 <10e-6
45 0.54 11.74 0.54 221.88 <10e-6 24.89 31.36 24.89 244.90 <10e-6
50 0.63 13.02 0.63 236.28 <10e-6 29.61 33.90 29.62 256.68 <10e-6
55 0.72 14.23 0.73 250.80 <10e-6 34.53 36.30 34.53 268.16 <10e-6
60 0.83 15.72 0.83 264.69 <10e-6 39.58 38.52 39.58 279.31 <10e-6
all 0.37 9.76 0.37 641.05 <10e-6 16.46 29.04 16.46 691.71 <10e-6

Table 4.7: Model Comparison LSTM vs. Trivial - Paired T-Test - diff: difference, r. adv: relative
advantage [%], p. diff: paired difference, t-stat: t-statistic, p-val: p-value

t mr cr mw cw mr cw mw cr diff r. adv chi sqr p-val

5 2 475 841 26 039 3 688 3 232 456 14.11 30.05 <10e-6
10 2 458 893 35 916 7 768 6 223 1 545 24.83 170.61 <10e-6
15 2 445 831 42 115 12 069 8 785 3 284 37.38 517.15 <10e-6
20 2 434 667 46 557 16 379 11 197 5 182 46.28 973.79 <10e-6
25 2 425 073 49 866 20 555 13 306 7 249 54.48 1 551.87 <10e-6
30 2 416 150 52 600 24 717 15 333 9 384 61.20 2 198.74 <10e-6
35 2 407 956 55 053 28 894 16 897 11 997 71.00 3 143.15 <10e-6
40 2 400 631 57 052 32 836 18 281 14 555 79.62 4 144.38 <10e-6
45 2 393 719 59 087 36 514 19 480 17 034 87.44 5 181.93 <10e-6
50 2 387 056 61 183 40 093 20 468 19 625 95.88 6 359.55 <10e-6
55 2 380 873 62 817 43 822 21 288 22 534 105.85 7 798.82 <10e-6
60 2 375 038 64 453 47 351 21 958 25 393 115.64 9 303.33 <10e-6
all 29 001 728 612 738 314 686 176 448 138 238 78.34 38 909.43 <10e-6

Table 4.8: Model Comparison LSTM vs. Trivial - McNemar Test - mr: Model right, mw: Model
wrong, cr: Competing Model right, cw: Competing Model wrong, diff: difference, r. adv: relative
advantage [%], chi sqr: Chi-Squared statistic, p-val: p-value

MAE MSE
t diff r. adv p. diff t-stat p-val diff r. adv p. diff t-stat p-val

5 0.03 1.95 0.03 106.03 <10e-6 0.30 4.59 0.30 121.56 <10e-6
10 0.06 2.71 0.06 123.81 <10e-6 1.00 6.61 1.00 132.16 <10e-6
15 0.10 3.69 0.10 140.21 <10e-6 1.97 8.21 1.96 139.81 <10e-6
20 0.14 4.52 0.14 154.13 <10e-6 3.08 9.51 3.08 145.86 <10e-6
25 0.18 5.23 0.18 165.99 <10e-6 4.27 10.64 4.28 151.10 <10e-6
30 0.22 5.90 0.23 177.96 <10e-6 5.50 11.69 5.51 156.09 <10e-6
35 0.27 6.77 0.27 189.07 <10e-6 6.72 12.62 6.73 160.67 <10e-6
40 0.32 7.58 0.32 199.60 <10e-6 7.92 13.49 7.93 164.57 <10e-6
45 0.36 8.14 0.36 209.49 <10e-6 9.09 14.30 9.10 167.85 <10e-6
50 0.40 8.68 0.41 218.36 <10e-6 10.24 15.06 10.25 170.80 <10e-6
55 0.45 9.39 0.45 226.73 <10e-6 11.38 15.81 11.39 173.59 <10e-6
60 0.50 10.10 0.50 234.36 <10e-6 12.54 16.56 12.54 176.38 <10e-6
all 0.25 6.93 0.25 619.80 <10e-6 6.17 13.30 6.17 490.52 <10e-6

Table 4.9: Model Comparison LSTM vs. RNN - Paired T-Test - diff: difference, r. adv: relative
advantage [%], p. diff: paired difference, t-stat: t-statistic, p-val: p-value

121

t mr cr mw cw mr cw mw cr diff r. adv chi sqr p-val

5 2 476 129 26 463 3 400 2 808 529 21.08 56.45 <10e-6
10 2 460 409 36 803 6 269 5 319 950 17.86 77.88 <10e-6
15 2 448 721 43 268 9 189 7 622 1 567 20.56 146.06 <10e-6
20 2 439 074 48 115 11 974 9 637 2 337 24.25 252.72 <10e-6
25 2 431 116 51 678 14 548 11 458 3 090 26.97 367.15 <10e-6
30 2 423 858 54 749 17 006 13 187 3 819 28.96 483.05 <10e-6
35 2 417 425 57 336 19 385 14 654 4 731 32.28 657.55 <10e-6
40 2 411 926 59 325 21 571 15 978 5 593 35.00 833.09 <10e-6
45 2 406 738 61 260 23 530 17 272 6 258 36.23 959.82 <10e-6
50 2 401 981 63 143 25 173 18 503 6 670 36.05 1 018.61 <10e-6
55 2 397 837 64 616 26 841 19 506 7 335 37.60 1 160.86 <10e-6
60 2 394 161 65 867 28 308 20 464 7 844 38.33 1 261.55 <10e-6
all 29 109 375 632 623 207 194 156 408 50 786 32.47 7 093.52 <10e-6

Table 4.10: Model Comparison LSTM vs. RNN - McNemar Test - mr: Model right, mw: Model
wrong, cr: Competing Model right, cw: Competing Model wrong, diff: difference, r. adv: relative
advantage [%], chi sqr: Chi-Squared statistic, p-val: p-value

The above results suggest that the Trained Model has explanatory value and that all its
complexity is in fact justified. In particular, it largely outperforms a competitor model lacking
representational depth and long-term memory capabilities, showing that these features are
essential for modeling traffic.

4.9 Possible Improvements and Future Research

The model discussed in this thesis represents an iteration at an early stage of model development.
Many modifications are conceivable that would likely improve performance. For instance, instead
of using a GMM as OL, a less restrictive, more powerful density estimator could be employed.
While the GMM can asymptotically model any density to arbitrary accuracy [92], many
components may be necessary, which increases the number of model outputs.

A real-valued RBM1 could be used as OL. However, this would render Training more difficult
since a combination of GD2 and Contrastive Divergence (CD)3 would have to be employed
[288]. A Real-Valued Neural Autoregressive Distribution Estimator (RNADE) [301], which is
the real-valued analog of a NADE [302], a tractable density estimator performing comparably to
an RBM, should be tried instead. The resulting architecture would be trainable end-to-end by
GD with BP. Lastly, it should be investigated whether the model can benefit from incorporating
a Generative Adversarial Network (GAN)4 [94], an architecture that has been shown to act as
a powerful conditional density estimator [241, 242].

Model Performance reported earlier5, would likely improve further if predictions were derived
from large Monte-Carlo samples drawn from the trained model.6 Alternatively, the model’s OL
could be replaced with a Layer of Linear Units (LUs) or Sigmoid Units (SUs)7 to directly model
Traffic Speed or Congestion conditions. It would be interesting to determine what degree of
prediction accuracy can be gained by switching to these special purpose model instances.

1 compare 3.2.3, Undirected Models, Restricted Boltzmann Machine
2 compare 3.2.4, Gradient Descent with Backpropagation
3 compare 3.2.4, Gradient Descent with Contrastive Divergence
4 compare 3.3.4, Generative Adversarial Networks
5 compare 4.8, Test Results
6 compare 4.5, Sampling and Use Cases
7 compare 3.2.2, Types of Activation Functions, Linear Activation and Sigmoid Activation

122

Furthermore, future research should be undertaken to compare model predictions directly with
those produced by classical models1. While it is expected that, owing to its less restrictive
assumptions, the DL approach decisively outperforms classical models, this advantage should
be rigorously quantified. However, generating large-scale Test results using classical models is
computationally expensive since all their knowledge is encoded in local rules, i.e. differential
equations would need to be solved over the entire traffic network for every single sample in the
TeS.

In order to further substantiate the validity of the model, future research should investigate ways
of visualizing the learned model dynamics. This would provide a means of confirming whether
the model understands how congestion shock waves propagate through the traffic network. It is
expected that visualization would reveal that DL indeed learns to infer the local rules encoded
in the PDEs of classical models. Visualization could be accomplished by plotting predictions on
a GIS2 -based map platform [287].

4.10 Other Applications in Civil Engineering

Historically, ANNs have been used in various domains of Civil Engineering, most notably
Hydraulic Engineering and Structural Engineering.

For instance, in Hydraulic Engineering, ANNs have been applied to Runoff Prediction [303, 304]
and Tidal Forecasting [305]. Runoff Predictions of peak flow, time of peak, base flow etc. serve
as input for the design of hydraulic structures, while Tidal Forecasting is relevant for structure
installation in marine environments. In these areas ANNs are often a cost effective alternative
to mathematical models requiring extensive calibration.

In Structural Engineering, ANNs have, among others, been applied to Wall Deflection Estimation
[306] and Pile Capacity Estimation [307]. These use cases establish ANNs as a time saving
alternative to the Finite Element Method (FEM). Pile Capacity Estimation is a particularly
difficult problem due to the large number of parameters involved and their complex relationships.

DL could augment above-mentioned ANN models in both Hydraulic and Structural Engineering
with Depth in Representation3, potentially resulting in increased forecasting accuracy. These
problem settings are special cases of the more general problem of inferring a function from
sensor data. With the increasing number of sensors coming online4, DL could, in principle, be
applied to any particular instance of this general problem.

Another application for DL in Civil Engineering is the inference of very accurate and cheap to
compute approximation functions that can be used as subroutines in higher-level simulation or
optimization procedures.

Assume a bridge is being optimized, e.g. the cost of a bridge is minimized with respect to a set
of parameters, such as overall height, dimensions of beams, etc. under a set of constraints, e.g.
maximum forces in particular joints given different load scenarios. A detailed, parameterized
computer model of the bridge can be implemented, such that different load scenarios can be
simulated. Each scenario evaluation is expensive, i.e. in order to determine the forces acting on
the joints under a particular load scenario, FEM has to be performed.

1 compare 4.2
2 Geographic Information System
3 compare 3.3.1, Types of Depth
4 compare 3.4

123

A TrS of input-target pairs can now be generated, where inputs are bridge and load scenario
parameters, whereas outputs are FEM-derived joint forces. This TrS effectively contains samples
from a complicated function joint forces = f(bridge params, load params). While generation
of this TrS is computationally expensive, a DL model can infer from it a highly accurate
interpolation function fapprox. The thus-derived function fapprox is cheaper to evaluate since it
only involves a few matrix multiplies, as opposed to solving a system of PDEs over a large region.
Moreover, it is likely far more accurate than approximation functions derived using simplified
static models of the bridge. Hence, fapprox can be evaluated billions of times in the inner loop
of any arbitrary optimization or simulation procedure, without sacrificing much accuracy.

4.11 Conclusion

It has been conclusively demonstrated1 that a sophisticated DL model2 can produce significantly
better Traffic Speed and Congestion predictions than more elementary competitor models. This
outperformance is achieved using only naive predictions from a probabilistic general-purpose
model, without any task-specific fine-tuning.

The comparison with alternative models provides strong indications that the inherent advantages
of deep architectures3, as well as the application of methods facilitating long-term memory4 in
temporal models, are in fact beneficial for TM.

In light of the various costs associated with Congestion5, the model presented in this thesis
carries substantial economic and environmental value for the Los Angeles Metro Area and any
other sensor-equipped location for which it could be replicated.

These results confirm that DL can successfully infer high-quality models from vast Data Sets,
thus further substantiating its role as a well-suited approach to address the most difficult BD
problems, and as a method holding the potential to confer considerable societal benefit.

1 compare 4.8, Test Results
2 compare 4.5, Model Architecture
3 compare 3.3.1, Principle of Deep Compositions
4 compare 3.3.3, Special Types of Units, Long Short-Term Memory Unit
5 compare 4.1, Problem Description

124

References

Books

[1] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.

deeplearningbook.org. MIT Press, 2016.
[4] Kevin P Murphy. Machine learning: A Probabilistic Perspective. MIT press, 2012.
[5] Stuart Jonathan Russell and Peter Norvig. Artificial intelligence: a modern approach (3rd

edition). Prentice Hall, 2009. isbn: 978-0136042594.
[6] Richard Bellman. An introduction to artificial intelligence: Can computers think?

Thomson Course Technology, 1978.
[7] P Winston. Learning by building identification trees. Boston: Addison-Wesley Publishing

Company, 1992.
[8] David Lynton Poole, Alan K Mackworth, and Randy Goebel. Computational intelligence:

a logical approach. Vol. 1. Oxford University Press New York, 1998.
[10] Rajendra Akerkar and Priti Sajja. Knowledge-based systems. Jones & Bartlett Publishers,

2010.
[11] Judea Pearl. Morgan Kaufmann series in representation and reasoning. Probabilistic

reasoning in intelligent systems: Networks of plausible inference. San Mateo, CA: Morgan
Kaufmann, 1988.

[13] Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts and techniques.
Elsevier, 2011.

[14] William W Lytton. From computer to brain: foundations of computational neuroscience.
Springer Science & Business Media, 2007.

[25] Peter Jackson. Introduction to expert systems. Addison-Wesley Pub. Co., Reading, MA,
1986.

[37] Vladimir Vapnik. The nature of statistical learning theory. Springer science & business
media, 2013.

[38] Michael Irwin Jordan. Learning in graphical models. Vol. 89. Springer Science & Business
Media, 1998.

[51] Ryszard S Michalski, Jaime G Carbonell, and Tom M Mitchell. Machine learning: An
artificial intelligence approach. Springer Science & Business Media, 2013.

[52] Vladimir Naumovich Vapnik and Vlamimir Vapnik. Statistical learning theory. Vol. 1.
Wiley New York, 1998.

[60] Craig K Enders. Applied Missing Data Analysis. Guilford Press, 2010.
[61] Joel Grus. Data Science from Scratch: First Principles with Python. ” O’Reilly Media,

Inc.”, 2015.
[63] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The Elements of Statistical

Learning. Vol. 1. Springer series in statistics Springer, Berlin, 2001.
[66] Erich Leo Lehmann and George Casella. Theory of point estimation. Springer Science &

Business Media, 2006.
[82] Timmermann A. Graham E. Economic Forecasting. Princeton University Press, 2016.
[83] Roger Koenker. Quantile Regression. 38. Cambridge university press, 2005.
[84] Peter Flach. Machine Learning: The Art and Science of Algorithms that Make Sense of

Data. Cambridge University Press, 2012.
[85] Brian S Everitt. The Cambridge Dictionary of Statistics. Cambridge University Press,

2006.
[86] Sandra Arlinghaus. Practical Handbook of Curve Fitting. CRC press, 1994.
[88] David G Luenberger. Optimization by vector space methods. John Wiley & Sons, 1969.
[89] David A Freedman. Statistical models: theory and practice. cambridge university press,

2009.

125

http://www.deeplearningbook.org
http://www.deeplearningbook.org

[92] Geoffrey J McLachlan and Kaye E Basford. Mixture Models: Inference and Applications
to Clustering. Vol. 84. Marcel Dekker, 1988.

[93] Vladimir Naumovich Vapnik and Samuel Kotz. Estimation of Dependences based on
Empirical Data. Vol. 40. Springer-Verlag New York, 1982.

[96] Russell B Millar. Maximum Likelihood Estimation and Inference: With Examples in R,
SAS and ADMB. Vol. 111. John Wiley & Sons, 2011.

[105] Jonas Mockus. Bayesian approach to global optimization: theory and applications. Vol. 37.
Springer Science & Business Media, 2012.

[116] Jay L Devore and Kenneth N Berk. Modern Mathematical Statistics with Applications.
Cengage Learning, 2007.

[118] Ronald Aylmer Fisher. Statistical Methods for Research Workers. Genesis Publishing Pvt
Ltd, 1925.

[121] Simon Haykin. Neural Networks: A comprehensive Foundation. Vol. 2. 2004. 2004, p. 41.
[124] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.

Cambridge University Press, 2009.
[136] Simon S Haykin et al. Neural networks and Learning Machines. Vol. 3. Pearson Upper

Saddle River, NJ, USA: 2009.
[153] J Willard Gibbs. Elementary Principles in Statistical Mechanics. Courier Corporation,

2014.
[161] Jan Snyman. Practical Mathematical Optimization: An Introduction to Basic

Optimization Theory and Classical and New Gradient-Based Algorithms. Vol. 97. Springer
Science & Business Media, 2005.

[182] John H Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis
with Applications to Biology, Control, and Artificial Intelligence. MIT press, 1992.

[185] Christopher M Bishop. Neural Networks for Pattern Recognition. Oxford university press,
1995.

[200] Andrew Gelman et al. Bayesian Data Analysis. Vol. 2. Chapman & Hall/CRC Boca
Raton, FL, USA, 2014.

[201] Radford M Neal. Bayesian Learning for Neural Networks. Vol. 118. Springer Science &
Business Media, 2012.

[264] Tony Hey, Stewart Tansley, Kristin M Tolle, et al. The fourth paradigm: data-intensive
scientific discovery. Vol. 1. Microsoft research Redmond, WA, 2009.

[291] Inc. Wolfram Research. Mathematica; Edition: Version 10.1. Wolfram Research, Inc.,
2015.

Articles

[2] Yoshua Bengio et al. “Learning deep architectures for AI”. In: Foundations and trends
in Machine Learning 2.1 (2009), pp. 1–127.

[3] Yoshua Bengio, Aaron Courville, and Pascal Vincent. “Representation learning: A
review and new perspectives”. In: IEEE transactions on pattern analysis and machine
intelligence 35.8 (2013), pp. 1798–1828.

[9] David Evans. “Introduction to Computing Explorations in Language, Logic, and
Machines”. In: (2009).

[12] Ben Goertzel. “Human-level artificial general intelligence and the possibility of a
technological singularity: A reaction to Ray Kurzweil’s The Singularity Is Near,
and McDermott’s critique of Kurzweil”. In: Artificial Intelligence 171.18 (2007),
pp. 1161–1173.

[15] Jürgen Schmidhuber. “Deep learning in neural networks: An overview”. In: Neural
networks 61 (2015), pp. 85–117.

126

[16] Warren S McCulloch and Walter Pitts. “A logical calculus of the ideas immanent in
nervous activity”. In: The bulletin of mathematical biophysics 5.4 (1943), pp. 115–133.

[17] DO Hebb. “The organisation of behavior Wiley”. In: New York (1949).
[18] Frank Rosenblatt. “The perceptron: A probabilistic model for information storage and

organization in the brain.” In: Psychological review 65.6 (1958), p. 386.
[19] F Rosenblatt. “Principles of Neurodynamics (Spartan, New York, 1962)”. In: Google

Scholar ().
[20] Bernard Widrow, Marcian E Hoff, et al. “Adaptive switching circuits”. In: IRE WESCON

convention record. Vol. 4. 1. New York. 1960, pp. 96–104.
[22] Alexey Grigorevich Ivakhnenko. “Polynomial theory of complex systems”. In: IEEE

transactions on Systems, Man, and Cybernetics 1.4 (1971), pp. 364–378.
[23] ML Minsky, SA Papert, and First Perceptrons. “The MIT Press: Cambridge”. In:

Mass.(Rev. Edition, 1988) (1969).
[24] J Lighthill et al. “Artificial Intelligence: A Paper Symposium”. In: Science Research

Council, London (1973).
[26] Geoffrey E Hinton and Terrence J Sejnowski. “Learning and releaming in Boltzmann

machines”. In: Parallel Distrilmted Processing 1 (1986).
[27] George Cybenko. “Approximation by superpositions of a sigmoidal function”. In:

Mathematics of Control, Signals, and Systems (MCSS) 2.4 (1989), pp. 303–314.
[28] Kurt Hornik. “Approximation Capabilities of Multilayer Feedforward Networks”. In:

Neural networks 4.2 (1991), pp. 251–257.
[29] Kunihiko Fukushima. “Cognitron: A self-organizing multilayered neural network”. In:

Biological Cybernetics 20.3-4 (1975), pp. 121–136.
[30] Kunihiko Fukushima. “Neocognitron: A self-organizing neural network model for a

mechanism of pattern recognition”. In: Biological Cybernetics 36 (1980), pp. 192–202.
[31] Paul J Werbos. “Applications of advances in nonlinear sensitivity analysis”. In: System

modeling and optimization. Springer, 1982, pp. 762–770.
[32] G. E. Rumelhart D. E. Hinton and R. J. Williams. “Learning Internal Representations

by Error Propagation”. In: Parallel Distributed Processing 1 (1986), pp. 318–362.
[33] Yann LeCun et al. “Backpropagation applied to handwritten zip code recognition”. In:

Neural computation 1.4 (1989), pp. 541–551.
[34] John J Hopfield. “Neural networks and physical systems with emergent collective

computational abilities”. In: Proceedings of the national academy of sciences 79.8 (1982),
pp. 2554–2558.

[36] Philip Leith. “The rise and fall of the legal expert system”. In: European Journal of Law
and Technology 1.1 (2010), pp. 179–201.

[39] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural
computation 9.8 (1997), pp. 1735–1780.

[40] Jürgen Schmidhuber. “Learning complex, extended sequences using the principle of
history compression”. In: Neural Computation 4.2 (1992), pp. 234–242.

[41] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. “A fast learning algorithm for
deep belief nets”. In: Neural computation 18.7 (2006), pp. 1527–1554.

[42] Johannes Stallkamp et al. “The German traffic sign recognition benchmark: a multi-class
classification competition”. In: Neural Networks (IJCNN), The 2011 International Joint
Conference on. IEEE. 2011, pp. 1453–1460.

[43] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with
deep convolutional neural networks”. In: Advances in neural information processing
systems. 2012, pp. 1097–1105.

[44] Olga Russakovsky et al. “Imagenet large scale visual recognition challenge”. In:
International Journal of Computer Vision 115.3 (2015), pp. 211–252.

127

[45] Abdel-rahman Mohamed and Geoffrey Hinton. “Phone recognition using restricted
boltzmann machines”. In: Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE
International Conference on. IEEE. 2010, pp. 4354–4357.

[46] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. “Speech recognition with
deep recurrent neural networks”. In: Acoustics, speech and signal processing (icassp),
2013 ieee international conference on. IEEE. 2013, pp. 6645–6649.

[48] The Theano Development Team et al. “Theano: A Python framework for fast
computation of mathematical expressions”. In: arXiv preprint arXiv:1605.02688 (2016).

[49] Mart́ın Abadi et al. “Tensorflow: Large-scale machine learning on heterogeneous
distributed systems”. In: arXiv preprint arXiv:1603.04467 (2016).

[50] R. Collobert, K. Kavukcuoglu, and C. Farabet. “Torch7: A Matlab-like Environment for
Machine Learning”. In: BigLearn, NIPS Workshop. 2011.

[53] Dumitru Erhan et al. “Why does unsupervised pre-training help deep learning?” In:
Journal of Machine Learning Research 11.Feb (2010), pp. 625–660.

[54] Xiaojin Zhu. “Semi-supervised learning literature survey”. In: (2005).
[55] Volodymyr Mnih et al. “Playing atari with deep reinforcement learning”. In: arXiv

preprint arXiv:1312.5602 (2013).
[56] Stanley Smith Stevens. “On the Theory of Scales of Measurement”. In: (1946).
[57] SB Kotsiantis, D Kanellopoulos, and PE Pintelas. “Data Preprocessing for Supervised

Learning”. In: International Journal of Computer Science 1.2 (2006), pp. 111–117.
[58] J. Ross Quinlan. “Induction of Decision Trees”. In: Machine learning 1.1 (1986),

pp. 81–106.
[59] Victoria J Hodge and Jim Austin. “A survey of outlier detection methodologies”. In:

Artificial intelligence review 22.2 (2004), pp. 85–126.
[62] K Peason. “On Lines and Planes of Closest Fit to Systems of Point in Space”. In:

Philosophical Magazine 2.11 (1901), pp. 559–572.
[64] Olivier Bousquet and André Elisseeff. “Stability and generalization”. In: Journal of

Machine Learning Research 2.Mar (2002), pp. 499–526.
[65] Vladimir N Vapnik. “An overview of statistical learning theory”. In: IEEE transactions

on neural networks 10.5 (1999), pp. 988–999.
[67] Vladimir N Vapnik and A Ja Chervonenkis. “The necessary and sufficient conditions for

consistency of the method of empirical risk”. In: Pattern Recognition and Image Analysis
1.3 (1991), pp. 284–305.

[68] Vladimir Vapnik. “Principles of risk minimization for learning theory”. In: NIPS. 1991,
pp. 831–838.

[69] Corinna Cortes and Vladimir Vapnik. “Support-vector networks”. In: Machine learning
20.3 (1995), pp. 273–297.

[70] Wolfgang Maass. “Vapnik-Chervonenkis dimension of neural nets”. In: The handbook of
brain theory and neural networks (1995), pp. 1000–1003.

[71] Clive WJ Granger. “Outline of Forecast Theory using Generalized Cost Functions”. In:
Spanish Economic Review 1.2 (1999), pp. 161–173.

[72] Lorenzo Rosasco et al. “Are Loss Functions All the Same?” In: Neural Computation 16.5
(2004), pp. 1063–1076.

[74] Peter J Huber et al. “Robust Estimation of a Location Parameter”. In: The Annals of
Mathematical Statistics 35.1 (1964), pp. 73–101.

[75] Vladimir Vapnik, Steven E Golowich, Alex Smola, et al. “Support Vector Method for
Function Approximation, Regression Estimation, and Signal Processing”. In: Advances
in neural information processing systems (1997), pp. 281–287.

[76] S Lee and Alessandro Verri. “Pattern Recognition with Support Vector Machines”. In:
SVM 2002 (2002).

128

[77] Tan Nguyen and Scott Sanner. “Algorithms for Direct 0–1 Loss Optimization in Binary
Classification.” In: ICML (3). 2013, pp. 1085–1093.

[78] Andreas Buja, Werner Stuetzle, and Yi Shen. “Loss Functions for Binary Class
Probability Estimation and Classification: Structure and Applications”. In: Working
draft, November (2005).

[79] Charles Elkan. “Maximum likelihood, Logistic Regression, and Stochastic Gradient
Training”. In: (2013).

[80] Rob J Hyndman and Anne B Koehler. “Another Look at Measures of Forecast Accuracy”.
In: International journal of forecasting 22.4 (2006), pp. 679–688.

[81] Sergio Verdu and H Poor. “On Minimax Robustness: A General Approach and
Applications”. In: IEEE Transactions on Information Theory 30.2 (1984), pp. 328–340.

[87] Weixin Yao and Longhai Li. “A new regression model: modal linear regression”. In:
Scandinavian Journal of Statistics 41.3 (2014), pp. 656–671.

[90] Laurent Bordes, Stéphane Mottelet, Pierre Vandekerkhove, et al. “Semiparametric
Estimation of a Two-Component Mixture Model”. In: The Annals of Statistics 34.3
(2006), pp. 1204–1232.

[94] Ian Goodfellow et al. “Generative Adversarial Nets”. In: Advances in neural information
processing systems. 2014, pp. 2672–2680.

[95] Nicolas Le Roux and Yoshua Bengio. “Representational Power of Restricted Boltzmann
Machines and Deep Belief Networks”. In: Neural computation 20.6 (2008), pp. 1631–1649.

[97] JM Bernardo et al. “Generative or Discriminative? Getting the Best of Both Worlds”.
In: Bayesian statistics 8 (2007), pp. 3–24.

[98] Andrew Y Ng and Michael I Jordan. “On Discriminative vs. Generative classifiers: A
comparison of logistic regression and naive Bayes”. In: Advances in neural information
processing systems 2 (2002), pp. 841–848.

[99] David J Hand and Keming Yu. “Idiot’s Bayes–Not So Stupid After All?” In: International
statistical review 69.3 (2001), pp. 385–398.

[100] James Bergstra and Yoshua Bengio. “Random Search for Hyper-Parameter
Optimization”. In: Journal of Machine Learning Research 13.Feb (2012), pp. 281–305.

[101] Yann A LeCun et al. “Efficient BackProp”. In: Neural networks: Tricks of the Trade.
Springer, 1998, pp. 9–48.

[102] Hugo Larochelle et al. “An Empirical Evaluation of Deep Architectures on Problems
with many Factors of Variation”. In: Proceedings of the 24th international conference on
Machine learning. ACM. 2007, pp. 473–480.

[103] Richard Bellman. “Dynamic Programming (DP)”. In: (1957).
[104] J Močkus. “On Bayesian methods for seeking the extremum”. In: Optimization Techniques

IFIP Technical Conference. Springer. 1975, pp. 400–404.
[106] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. “Practical Bayesian Optimization of

Machine Learning Algorithms”. In: Advances in neural information processing systems.
2012, pp. 2951–2959.

[107] James S Bergstra et al. “Algorithms for Hyper-Parameter Optimization”. In: Advances
in Neural Information Processing Systems. 2011, pp. 2546–2554.

[108] Christopher KI Williams and Carl Edward Rasmussen. “Gaussian Processes for Machine
Learning”. In: the MIT Press 2.3 (2006), p. 4.

[109] Harold J Kushner. “A new Method of Locating the Maximum Point of an Arbitrary
Multipeak Curve in the Presence of Noise”. In: Journal of Basic Engineering 86.1 (1964),
pp. 97–106.

[110] Niranjan Srinivas et al. “Gaussian Process Optimization in the Bandit Setting: No regret
and Experimental Design”. In: arXiv preprint arXiv:0912.3995 (2009).

[111] Yoshua Bengio. “Gradient-Based Optimization of Hyperparameters”. In: Neural
computation 12.8 (2000), pp. 1889–1900.

129

[112] Justin Domke. “Generic Methods for Optimization-Based Modeling”. In: AISTATS.
Vol. 22. 2012, pp. 318–326.

[113] Dougal Maclaurin, David K Duvenaud, and Ryan P Adams. “Gradient-based
Hyperparameter Optimization through Reversible Learning.” In: ICML. 2015,
pp. 2113–2122.

[115] Steven L Salzberg. “On Comparing Classifiers: Pitfalls to Avoid and a Recommended
Approach”. In: Data mining and knowledge discovery 1.3 (1997), pp. 317–328.

[117] Quinn McNemar. “Note on the Sampling Error of the Sifference between Correlated
Proportions or Percentages”. In: Psychometrika 12.2 (1947), pp. 153–157.

[120] Andrew Trask, David Gilmore, and Matthew Russell. “Modeling Order in Neural Word
Embeddings at Scale.” In: ICML. 2015, pp. 2266–2275.

[122] G Gybenko. “Approximation by Superposition of Sigmoidal Functions”. In: Mathematics
of Control, Signals and Systems 2.4 (1989), pp. 303–314.

[123] Hava T Siegelmann and Eduardo D Sontag. “Turing Computability with Neural Nets”.
In: Applied Mathematics Letters 4.6 (1991), pp. 77–80.

[125] Hava T Siegelmann and Eduardo D Sontag. “Analog Computation via Neural Networks”.
In: Theoretical Computer Science 131.2 (1994), pp. 331–360.

[126] José L Balcázar, Ricard Gavalda, and Hava T Siegelmann. “Computational Power of
Neural Networks: A Characterization in Terms of Kolmogorov Complexity”. In: IEEE
Transactions on Information Theory 43.4 (1997), pp. 1175–1183.

[127] Quoc V Le. “Building high-level Features using large scale Unsupervised Learning”. In:
Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference
on. IEEE. 2013, pp. 8595–8598.

[128] Tameru Hailesilassie. “Rule Extraction Algorithm for Deep Neural Networks: A Review”.
In: arXiv preprint arXiv:1610.05267 (2016).

[130] Razvan Pascanu, Guido Montufar, and Yoshua Bengio. “On The Number of Response
Regions of Deep Feed Forward Networks with Piece-Wise Linear Activations”. In: arXiv
preprint arXiv:1312.6098 (2013).

[131] Eduardo D Sontag and Héctor J Sussmann. “Backpropagation can give Rise to Spurious
Local Minima even for Networks without Hidden Layers”. In: Complex Systems 3.1
(1989), pp. 91–106.

[133] Richard Durbin and David E Rumelhart. “Product Units: A Computationally Powerful
and Biologically Plausible Extension to Backpropagation Networks”. In: Neural
computation 1.1 (1989), pp. 133–142.

[134] Russell Eberhart and James Kennedy. “”Particle Swarm Optimization”. In: Proceedings
of IEEE International Conference on Neural Networks. IV. IEEE. 1995, pp. 1942–1948.

[135] Xavier Glorot and Yoshua Bengio. “Understanding the Difficulty of Training Deep
Feedforward Neural Networks.” In: Aistats. Vol. 9. 2010, pp. 249–256.

[137] William H Greene. “Econometric analysis 7th edition”. In: Boston: Pearson Education
(2012).

[138] Pierre Baldi. “Autoencoders, Unsupervised Learning, and Deep Architectures.” In: ICML
unsupervised and transfer learning 27.37-50 (2012), p. 1.

[139] Pascal Vincent et al. “Stacked Denoising Autoencoders: Learning Useful Representations
in a Deep Network with a Local Denoising Criterion”. In: Journal of Machine Learning
Research 11.Dec (2010), pp. 3371–3408.

[140] Pierre Baldi and Kurt Hornik. “Neural Networks and Principal Component Analysis:
Learning from Examples without Local Minima”. In: Neural networks 2.1 (1989),
pp. 53–58.

[141] Yann LeCun et al. “Generalization and Network Design Strategies”. In: Connectionism
in perspective (1989), pp. 143–155.

130

[142] Yann LeCun et al. “Gradient-based Learning Applied to Document Recognition”. In:
Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[144] Oriol Vinyals et al. “Show and Tell: A Neural Image Caption Generator”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015,
pp. 3156–3164.

[145] Aditya Timmaraju and Vikesh Khanna. “Sentiment Analysis on Movie Reviews using
Recursive and Recurrent Neural Network Architectures”. In: Semantic Scholar (2015).

[146] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to Sequence Learning
with Neural Networks”. In: Advances in neural information processing systems. 2014,
pp. 3104–3112.

[148] Lawrence Rabiner and B Juang. “An Introduction to Hidden Markov Models”. In: ieee
assp magazine 3.1 (1986), pp. 4–16.

[149] Alex Graves et al. “Connectionist Temporal Classification: Labelling Unsegmented
Sequence Data with Recurrent Neural Networks”. In: Proceedings of the 23rd
international conference on Machine learning. ACM. 2006, pp. 369–376.

[150] Jeffrey L Elman. “Finding Structure in Time”. In: Cognitive science 14.2 (1990),
pp. 179–211.

[151] Christopher M Bishop. “Mixture Density Networks”. In: (1994).
[152] David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. “A Learning Algorithm

for Boltzmann Machines”. In: Cognitive science 9.1 (1985), pp. 147–169.
[154] Christophe Andrieu et al. “An Introduction to MCMC for Machine Learning”. In:

Machine learning 50.1 (2003), pp. 5–43.
[155] Hilbert J Kappen and FB Rodriguez. “Boltzmann Machine Learning using Mean Field

Theory and Linear Response Correction”. In: Advances in neural information processing
systems (1998), pp. 280–286.

[156] Misha Denil and Nando De Freitas. “Toward the Implementation of a Quantum RBM”.
In: NIPS Deep Learning and Unsupervised Feature Learning Workshop. Vol. 5. 2. 2011.

[158] Vinod Nair and Geoffrey E Hinton. “Rectified Linear Units Improve Restricted
Boltzmann Machines”. In: Proceedings of the 27th international conference on machine
learning (ICML-10). 2010, pp. 807–814.

[159] Asja Fischer and Christian Igel. “An Introduction to Restricted Boltzmann Machines”.
In: Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications
(2012), pp. 14–36.

[160] Ruslan Salakhutdinov and Geoffrey E Hinton. “Deep Boltzmann Machines.” In:
AISTATS. Vol. 1. 2009, p. 3.

[162] Vishakh Hegde and Sheema Usmani. “Parallel and Distributed Deep Learning”. In:
(2016).

[163] Dan Ciregan, Ueli Meier, and Jürgen Schmidhuber. “Multi-Column Deep Neural
Networks for Image Classification”. In: Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on. IEEE. 2012, pp. 3642–3649.

[164] Tom M Heskes and Bert Kappen. “On-line Learning Processes in Artificial Neural
Networks”. In: North-Holland Mathematical Library 51 (1993), pp. 199–233.

[165] Olivier Bousquet and Léon Bottou. “The Tradeoffs of Large Scale Learning”. In: Advances
in neural information processing systems. 2008, pp. 161–168.

[166] Léon Bottou, Frank E Curtis, and Jorge Nocedal. “Optimization Methods for Large-Scale
Machine Learning”. In: arXiv preprint arXiv:1606.04838 (2016).

[167] Ning Qian. “On the Momentum Term in Gradient Descent Learning Algorithms”. In:
Neural networks 12.1 (1999), pp. 145–151.

[168] Boris T Polyak. “Some Methods of Speeding up the Convergence of Iteration Methods”.
In: USSR Computational Mathematics and Mathematical Physics 4.5 (1964), pp. 1–17.

131

[169] Yurii Nesterov. “A Method of Solving a Convex Programming Problem with Convergence
Rate O(1/sqr(k))”. In: Soviet Mathematics Doklady. Vol. 27. 2. 1983, pp. 372–376.

[170] Ilya Sutskever et al. “On the Importance of Initialization and Momentum in Deep
Learning.” In: ICML (3) 28 (2013), pp. 1139–1147.

[171] Herbert Robbins and Sutton Monro. “A Stochastic Approximation Method”. In: The
annals of mathematical statistics (1951), pp. 400–407.

[172] Martin Riedmiller and Heinrich Braun. “RPROP-A Fast Adaptive Learning Algorithm”.
In: Proc. of ISCIS VII), Universitat. Citeseer. 1992.

[174] Diederik Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”. In:
arXiv preprint arXiv:1412.6980 (2014).

[176] Paul J Werbos. “Generalization of Backpropagation with Application to a Recurrent Gas
Market Model”. In: Neural networks 1.4 (1988), pp. 339–356.

[177] Geoffrey E Hinton. “Training Products of Experts by Minimizing Contrastive
Divergence”. In: Neural computation 14.8 (2002), pp. 1771–1800.

[178] Geoffrey Hinton. “A Practical Guide to Training Restricted Boltzmann Machines”. In:
Momentum 9.1 (2010), p. 926.

[179] Tijmen Tieleman. “Training Restricted Boltzmann Machines using Approximations to the
Likelihood Gradient”. In: Proceedings of the 25th international conference on Machine
learning. ACM. 2008, pp. 1064–1071.

[180] Kenneth Levenberg. “A Method for the Solution of Certain Non-Linear Problems in Least
Squares”. In: Quarterly of applied mathematics 2.2 (1944), pp. 164–168.

[181] Donald W Marquardt. “An Algorithm for Least-Squares Estimation of Nonlinear
Parameters”. In: Journal of the society for Industrial and Applied Mathematics 11.2
(1963), pp. 431–441.

[183] Xin Yao. “Evolving Artificial Neural Networks”. In: Proceedings of the IEEE 87.9 (1999),
pp. 1423–1447.

[184] Jürgen Schmidhuber, Daan Wierstra, and Faustino Gomez. “Evolino: Hybrid
Neuroevolution/Optimal Linear Search for Sequence Learning”. In: Proceedings of
the 19th international joint conference on Artificial intelligence. Morgan Kaufmann
Publishers Inc. 2005, pp. 853–858.

[186] Lutz Prechelt. “Early Stopping–But When?” In: Neural Networks: Tricks of the trade.
Springer, 1998, pp. 55–69.

[188] Andrew Y Ng. “Feature Selection, L1 vs. L2 Regularization, and Rotational Invariance”.
In: Proceedings of the twenty-first international conference on Machine learning. ACM.
2004, p. 78.

[189] Robert Tibshirani. “Regression Shrinkage and Selection via the Lasso”. In: Journal of
the Royal Statistical Society. Series B (Methodological) (1996), pp. 267–288.

[190] Geoffrey E Hinton. “Learning Translation Invariant Recognition in a Massively Parallel
Networks”. In: International Conference on Parallel Architectures and Languages Europe.
Springer. 1987, pp. 1–13.

[191] Hui Zou and Trevor Hastie. “Regularization and Variable Selection via the Elastic Net”.
In: Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67.2 (2005),
pp. 301–320.

[192] Maxwell D Collins and Pushmeet Kohli. “Memory Bounded Deep Convolutional
Networks”. In: arXiv preprint arXiv:1412.1442 (2014).

[193] Geoffrey E Hinton et al. “Improving Neural Networks by Preventing Co-Adaptation of
Feature Detectors”. In: arXiv preprint arXiv:1207.0580 (2012).

[194] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting.” In: Journal of Machine Learning Research 15.1 (2014), pp. 1929–1958.

[195] Chris M Bishop. “Training with Noise is Equivalent to Tikhonov Regularization”. In:
Neural computation 7.1 (1995), pp. 108–116.

132

[196] Kam-Chuen Jim, C Lee Giles, and Bill G Horne. “An Analysis of Noise in Recurrent
Neural Networks: Convergence and Generalization”. In: IEEE Transactions on neural
networks 7.6 (1996), pp. 1424–1438.

[197] Alex Graves. “Generating Sequences with Recurrent Neural Networks”. In: arXiv preprint
arXiv:1308.0850 (2013).

[198] Ludmila I Kuncheva and Christopher J Whitaker. “Measures of Diversity in Classifier
Ensembles and their Relationship with the Ensemble Accuracy”. In: Machine learning
51.2 (2003), pp. 181–207.

[199] Peter Sollich and Anders Krogh. “Learning with Ensembles: How Overfitting can be
Useful”. In: Advances in neural information processing systems (1996), pp. 190–196.

[202] Sungjin Ahn, Anoop Korattikara Balan, and Max Welling. “Bayesian Posterior Sampling
via Stochastic Gradient Fisher Scoring.” In: ICML. 2012.

[203] Naomi S Altman. “An Introduction to Kernel and Nearest-Neighbor nonparametric
Regression”. In: The American Statistician 46.3 (1992), pp. 175–185.

[204] Lawrence Cayton. “Algorithms for Manifold Learning”. In: Univ. of California at San
Diego Tech. Rep (2005), pp. 1–17.

[205] Andrew R Barron. “Universal Approximation Bounds for Superpositions of a Sigmoidal
Function”. In: IEEE Transactions on Information theory 39.3 (1993), pp. 930–945.

[206] Guido F Montufar et al. “On the Number of Linear Regions of Deep Neural Networks”.
In: Advances in neural information processing systems. 2014, pp. 2924–2932.

[207] Yoshua Bengio and Martin Monperrus. “Non-Local Manifold Tangent Learning.” In:
NIPS. 2004, pp. 129–136.

[208] Yoshua Bengio, Hugo Larochelle, and Pascal Vincent. “Non-local Manifold Parzen
Windows”. In: NIPS. Vol. 18. 2005, pp. 115–122.

[209] Yoshua Bengio et al. “Greedy Layer-Wise Training of Deep Networks”. In: Advances in
neural information processing systems 19 (2007), p. 153.

[210] Dumitru Erhan et al. “The Difficulty of Training Deep Architectures and the Effect of
Unsupervised Pre-Training.” In: AISTATS. Vol. 5. 2009, pp. 153–160.

[211] Ian J Goodfellow et al. “Multi-Digit Number Recognition from Street View Imagery Using
Deep Convolutional Neural Networks”. In: arXiv preprint arXiv:1312.6082 (2013).

[212] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift”. In: arXiv preprint arXiv:1502.03167
(2015).

[213] Alan J Bray and David S Dean. “Statistics of critical points of gaussian fields on
large-dimensional spaces”. In: Physical review letters 98.15 (2007), p. 150201.

[214] Yann N Dauphin et al. “Identifying and attacking the saddle point problem
in high-dimensional non-convex optimization”. In: Advances in neural information
processing systems. 2014, pp. 2933–2941.

[215] Anna Choromanska et al. “The Loss Surfaces of Multilayer Networks.” In: AISTATS.
2015.

[216] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep Sparse Rectifier Neural
Networks.” In: Aistats. Vol. 15. 106. 2011, p. 275.

[217] Matthew D Zeiler and Rob Fergus. “Visualizing and Understanding Convolutional
Networks”. In: European conference on computer vision. Springer. 2014, pp. 818–833.

[218] George E Dahl, Tara N Sainath, and Geoffrey E Hinton. “Improving Deep Neural
Networks for LVCSR using Rectified Linear Units and Dropout”. In: Acoustics, Speech
and Signal Processing (ICASSP), 2013 IEEE International Conference on. IEEE. 2013,
pp. 8609–8613.

[219] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. “Rectifier Nonlinearities Improve
Neural Network Scoustic Models”. In: Proc. ICML. Vol. 30. 1. 2013.

133

[220] Kaiming He et al. “Delving Deep into Rectifiers: Surpassing Human-level Performance
on Imagenet Classification”. In: Proceedings of the IEEE international conference on
computer vision. 2015, pp. 1026–1034.

[221] Xiaojie Jin et al. “Deep Learning with S-shaped Rectified Linear Activation Units”. In:
arXiv preprint arXiv:1512.07030 (2015).

[222] Ian J Goodfellow et al. “Maxout Networks.” In: ICML (3) 28 (2013), pp. 1319–1327.
[223] Felix A Gers, Nicol N Schraudolph, and Jürgen Schmidhuber. “Learning Precise Timing

with LSTM Recurrent Networks”. In: Journal of machine learning research 3.Aug (2002),
pp. 115–143.

[224] Alex Graves et al. “A Novel Connectionist System for Unconstrained Handwriting
Recognition”. In: IEEE transactions on pattern analysis and machine intelligence 31.5
(2009), pp. 855–868.

[226] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural Machine Translation
by jointly Learning to Align and Translate”. In: arXiv preprint arXiv:1409.0473 (2014).

[227] Alex Graves and Navdeep Jaitly. “Towards End-To-End Speech Recognition with
Recurrent Neural Networks.” In: ICML. Vol. 14. 2014, pp. 1764–1772.

[228] Kyunghyun Cho et al. “On the Properties of Neural Machine Translation:
Encoder-Decoder Approaches”. In: arXiv preprint arXiv:1409.1259 (2014).

[229] Andrew M Saxe, James L McClelland, and Surya Ganguli. “Exact solutions to the
nonlinear dynamics of learning in deep linear neural networks”. In: arXiv preprint
arXiv:1312.6120 (2013).

[230] Marc’Aurelio Ranzato et al. “Efficient Learning of Sparse Representations with an
Energy-based Model”. In: Proceedings of the 19th International Conference on Neural
Information Processing Systems. MIT Press. 2006, pp. 1137–1144.

[231] James Martens. “Deep learning via Hessian-free optimization”. In: Proceedings of the
27th International Conference on Machine Learning (ICML-10). 2010, pp. 735–742.

[232] James Martens and Ilya Sutskever. “Learning recurrent neural networks with hessian-free
optimization”. In: Proceedings of the 28th International Conference on Machine Learning
(ICML-11). 2011, pp. 1033–1040.

[233] Tim Cooijmans et al. “Recurrent Batch Normalization”. In: arXiv preprint
arXiv:1603.09025 (2016).

[234] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. “Recurrent Models of Visual
Attention”. In: Advances in neural information processing systems. 2014, pp. 2204–2212.

[235] Jan K Chorowski et al. “Attention-based Models for Speech Recognition”. In: Advances
in Neural Information Processing Systems. 2015, pp. 577–585.

[236] Tim Rocktäschel, Edward Grefenstette, et al. “Reasoning about Entailment with Neural
Attention”. In: arXiv preprint arXiv:1509.06664 (2015).

[237] Alex Graves, Greg Wayne, and Ivo Danihelka. “Neural Turing Machines”. In: arXiv
preprint arXiv:1410.5401 (2014).

[238] Alex Graves, Greg Wayne, et al. “Hybrid Computing using a Neural Network with
Dynamic External Memory”. In: Nature 538.7626 (2016), pp. 471–476.

[239] Drew Fudenberg and Jean Tirole. “Game Theory”. In: Cambridge, MA (1991).
[240] John Nash. “Non-Cooperative Games”. In: Annals of mathematics (1951), pp. 286–295.
[241] Alec Radford, Luke Metz, and Soumith Chintala. “Unsupervised Representation

Learning with Deep Convolutional Generative Adversarial Networks”. In: arXiv preprint
arXiv:1511.06434 (2015).

[242] Scott Reed et al. “Generative Adversarial Text to Image Synthesis”. In: Proceedings of
The 33rd International Conference on Machine Learning. Vol. 3. 2016.

[243] Chris Snijders, Uwe Matzat, and Ulf-Dietrich Reips. “” Big Data”: big gaps of knowledge
in the field of internet science”. In: International Journal of Internet Science 7.1 (2012),
pp. 1–5.

134

[244] Doug Laney. “3D data management: Controlling data volume, velocity and variety”. In:
META Group Research Note 6 (2001), p. 70.

[245] Andrea De Mauro, Marco Greco, and Michele Grimaldi. “A formal definition of Big Data
based on its essential features”. In: Library Review 65.3 (2016), pp. 122–135.

[248] Goutam Chakraborty and Murali Krishna Pagolu. “Analysis of unstructured data:
Applications of text analytics and sentiment mining”. In: SAS global forum. 2014,
pp. 1288–2014.

[250] Janusz Bryzek. “Roadmap for the trillion sensor universe”. In: Berkeley, CA, April 2
(2013).

[251] Federal Reserve. “The Federal Reserve Payments Study 2016”. In: (Dec. 22, 2016). url:
https://www.federalreserve.gov/paymentsystems/files/2016-payments-study-

20161222.pdf.
[255] Catalin Boja, Adrian Pocovnicu, and Lorena Batagan. “Distributed Parallel Architecture

for” Big Data””. In: Informatica Economica 16.2 (2012), p. 116.
[257] Gordon E Moore et al. “Cramming more components onto integrated circuits”. In:

Proceedings of the IEEE 86.1 (1998), pp. 82–85.
[261] Zachary D Stephens et al. “Big data: astronomical or genomical?” In: PLoS Biol 13.7

(2015), e1002195.
[262] George A Miller. “The magical number seven, plus or minus two: some limits on our

capacity for processing information.” In: Psychological review 63.2 (1956), p. 81.
[263] James Manyika et al. “Big data: The next frontier for innovation, competition, and

productivity”. In: (2011).
[265] Vasant Dhar. “Data science and prediction”. In: Communications of the ACM 56.12

(2013), pp. 64–73.
[266] Pietro Gonizzi et al. “Redundant Distributed Data Storage”. In: ().
[267] Edgar F Codd. “A relational model of data for large shared data banks”. In:

Communications of the ACM 13.6 (1970), pp. 377–387.
[269] Katarina Grolinger et al. “Data management in cloud environments: NoSQL and NewSQL

data stores”. In: Journal of Cloud Computing: Advances, Systems and Applications 2.1
(2013), p. 22.

[270] Seth Gilbert and Nancy Lynch. “Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services”. In: Acm Sigact News 33.2 (2002), pp. 51–59.

[271] Michael I Jordan et al. “On statistics, computation and scalability”. In: Bernoulli 19.4
(2013), pp. 1378–1390.

[272] Cristian S Calude and Giuseppe Longo. “The deluge of spurious correlations in big data”.
In: Foundations of science (2016), pp. 1–18.

[274] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data processing on large
clusters”. In: Communications of the ACM 51.1 (2008), pp. 107–113.

[277] David Schrank et al. “2015 Urban Mobility Scorecard”. In: (2015). url: http : / /

d2dtl5nnlpfr0r.cloudfront.net/tti.tamu.edu/documents/mobility-scorecard-

2015-wappx.pdf.
[278] Michael J Lighthill and Gerald Beresford Whitham. “On kinematic waves. II. A theory

of traffic flow on long crowded roads”. In: Proceedings of the Royal Society of London
A: Mathematical, Physical and Engineering Sciences. Vol. 229. 1178. The Royal Society.
1955, pp. 317–345.

[279] Harold J Payne. “Models of freeway traffic and control.” In: Mathematical models of
public systems (1971).

[280] Carlos F Daganzo. “The cell transmission model: A dynamic representation of highway
traffic consistent with the hydrodynamic theory”. In: Transportation Research Part B:
Methodological 28.4 (1994), pp. 269–287.

135

https://www.federalreserve.gov/paymentsystems/files/2016-payments-study-20161222.pdf
https://www.federalreserve.gov/paymentsystems/files/2016-payments-study-20161222.pdf
http://d2dtl5nnlpfr0r.cloudfront.net/tti.tamu.edu/documents/mobility-scorecard-2015-wappx.pdf
http://d2dtl5nnlpfr0r.cloudfront.net/tti.tamu.edu/documents/mobility-scorecard-2015-wappx.pdf
http://d2dtl5nnlpfr0r.cloudfront.net/tti.tamu.edu/documents/mobility-scorecard-2015-wappx.pdf

[281] Jian Wang and Ling Wang. “Congestion analysis of traffic networks with
direction-dependant heterogeneity”. In: Physica A: Statistical Mechanics and its
Applications 392.2 (2013), pp. 392–399.

[282] Chen Liu, Qing-pu Zhang, and Xue Zhang. “Emergence and disappearance of traffic
congestion in weight-evolving networks”. In: Simulation Modelling Practice and Theory
17.10 (2009), pp. 1566–1574.

[283] Corinne Ledoux. “An urban traffic flow model integrating neural networks”. In:
Transportation Research Part C: Emerging Technologies 5.5 (1997), pp. 287–300.

[284] Mark S Dougherty and Mark R Cobbett. “Short-term inter-urban traffic forecasts using
neural networks”. In: International journal of forecasting 13.1 (1997), pp. 21–31.

[285] Kit Yan Chan et al. “Neural-network-based models for short-term traffic flow forecasting
using a hybrid exponential smoothing and Levenberg–Marquardt algorithm”. In: IEEE
Transactions on Intelligent Transportation Systems 13.2 (2012), pp. 644–654.

[286] Eric J Horvitz et al. “Prediction, Expectation, and Surprise: Methods, Designs, and Study
of a Deployed Traffic Forecasting Service”. In: arXiv preprint arXiv:1207.1352 (2012).

[287] Xiaolei Ma et al. “Large-Scale Transportation Network Congestion Evolution Prediction
using Deep Learning Theory”. In: PloS one 10.3 (2015), e0119044.

[288] Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pascal Vincent. “Modeling
temporal dependencies in high-dimensional sequences: Application to polyphonic music
generation and transcription”. In: arXiv preprint arXiv:1206.6392 (2012).

[294] Chao Chen et al. “Detecting Errors and Imputing Missing Data for Single-Loop
Surveillance Systems”. In: Transportation Research Record: Journal of the Transportation
Research Board 1855 (2003), pp. 160–167.

[296] Emil Julius Gumbel and Julius Lieblein. “Statistical Theory of Extreme Values and some
Practical Applications: A Series of Lectures”. In: (1954).

[297] George EP Box, Mervin E Muller, et al. “A Note on the Generation of Random Normal
Deviates”. In: The annals of mathematical statistics 29.2 (1958), pp. 610–611.

[298] Prabir Burman and Wolfgang Polonik. “Multivariate Mode Hunting: Data Analytic
Tools with Measures of Significance”. In: Journal of Multivariate Analysis 100.6 (2009),
pp. 1198–1218.

[300] Yoshua Bengio. “Practical recommendations for gradient-based training of deep
architectures”. In: (2012), pp. 437–478.

[301] Benigno Uria, Iain Murray, and Hugo Larochelle. “RNADE: The Real-Valued Neural
Autoregressive Density-Estimator”. In: Advances in Neural Information Processing
Systems. 2013, pp. 2175–2183.

[302] Hugo Larochelle and Iain Murray. “The Neural Autoregressive Distribution Estimator.”
In: AISTATS. Vol. 1. 2011, p. 2.

[303] Sajjad Ahmad and Slobodan P Simonovic. “Developing Runoff Hydrograph using
Artificial Neural Networks”. In: (2001), pp. 1–17.

[304] Konda Thirumalaiah and Makarand C Deo. “Hydrological Forecasting using Neural
Networks”. In: Journal of Hydrologic Engineering 5.2 (2000), pp. 180–189.

[305] Ching-Piao Tsai and Tsong-Lin Lee. “Back-propagation Neural Network in Tidal-Level
Forecasting”. In: Journal of Waterway, Port, Coastal, and Ocean Engineering 125.4
(1999), pp. 195–202.

[306] Anthony TC Goh, KS Wong, and BB Broms. “Estimation of Lateral Wall Movements
in Braced Excavations using Neural Networks”. In: Canadian Geotechnical Journal 32.6
(1995), pp. 1059–1064.

[307] HI Park and CW Cho. “Neural Network Model for Predicting the Resistance of Driven
Piles”. In: Marine Georesources and Geotechnology 28.4 (2010), pp. 324–344.

136

URLs

[47] url: http://www.iclr.cc/doku.php?id=ICLR2017:main&redirect=1.
[73] url: http://www2.stat.duke.edu/~sayan/statlearn.pdf.
[91] url: http://nic.schraudolph.org/teach/ml03/ML_Class4.pdf.

[114] url: https://en.wikipedia.org/wiki/F1_score.
[119] url: https://www.cs.toronto.edu/~hinton/csc2535/notes/lec6a.pdf.
[129] url: https://www.top500.org/lists/2016/11/.
[132] url: https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-

networks/Neuron/index.html.
[143] url: http://karpathy.github.io/2015/05/21/rnn-effectiveness/.
[173] url: http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.

pdf.
[187] url: http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec9.

pdf.
[225] url: http://www.cvc.uab.es/icdar2009/competitions.html.
[246] url: http://www.kdnuggets.com/2016/10/new-poll-largest-dataset-analyzed-

data-mined.html.
[247] url: https://en.wikipedia.org/wiki/Unstructured_data.
[249] url: https://en.wikipedia.org/wiki/Semi-structured_data.
[252] url: http://www.internetlivestats.com/internet-users/.
[253] url: http://www.fsn.co.uk/channel_bi_bpm_cpm/mastering_big_data_cfo_

strategies_to_transform_insight_into_opportunity#.WNLHGG_ytyx.
[254] url: https://www-01.ibm.com/software/in/data/bigdata/.
[256] url: http://www.statisticbrain.com/average-cost-of-hard-drive-storage/.
[258] url: http://www.netflixprize.com.
[259] url: https : / / www . optum . com / content / dam / optum / Landing % 20Page / ls /

OptumDay2015/1_OptumLabs_P.Wallace.pdf.
[260] url: http://www.forbes.com/sites/tomgroenfeldt/2013/02/14/at-nyse-the-

data-deluge-overwhelms-traditional-databases/#5deb6a2e2eb7.
[268] url: http://nosql-database.org/.
[273] url: http://hadoop.apache.org/.
[275] url: https://aws.amazon.com/.
[276] url: https://aws.amazon.com/emr/.
[289] url: http://pems.dot.ca.gov.
[290] url: http://pems.dot.ca.gov/?dnode=Help&content=help_calc#Speeds.
[292] url: http://www.officeholidays.com.
[293] url: http://achieve.lausd.net/domain/36.
[295] url: http://pems.dot.ca.gov/?dnode=Help&content=help_calc#diag.
[299] url: https://github.com/fchollet/keras.

137

http://www.iclr.cc/doku.php?id=ICLR2017:main&redirect=1
http://www2.stat.duke.edu/~sayan/statlearn.pdf
http://nic.schraudolph.org/teach/ml03/ML_Class4.pdf
https://en.wikipedia.org/wiki/F1_score
https://www.cs.toronto.edu/~hinton/csc2535/notes/lec6a.pdf
https://www.top500.org/lists/2016/11/
https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/Neuron/index.html
https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/Neuron/index.html
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec9.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec9.pdf
http://www.cvc.uab.es/icdar2009/competitions.html
http://www.kdnuggets.com/2016/10/new-poll-largest-dataset-analyzed-data-mined.html
http://www.kdnuggets.com/2016/10/new-poll-largest-dataset-analyzed-data-mined.html
https://en.wikipedia.org/wiki/Unstructured_data
https://en.wikipedia.org/wiki/Semi-structured_data
http://www.internetlivestats.com/internet-users/
http://www.fsn.co.uk/channel_bi_bpm_cpm/mastering_big_data_cfo_strategies_to_transform_insight_into_opportunity#.WNLHGG_ytyx
http://www.fsn.co.uk/channel_bi_bpm_cpm/mastering_big_data_cfo_strategies_to_transform_insight_into_opportunity#.WNLHGG_ytyx
https://www-01.ibm.com/software/in/data/bigdata/
http://www.statisticbrain.com/average-cost-of-hard-drive-storage/
http://www.netflixprize.com
https://www.optum.com/content/dam/optum/Landing%20Page/ls/OptumDay2015/1_OptumLabs_P.Wallace.pdf
https://www.optum.com/content/dam/optum/Landing%20Page/ls/OptumDay2015/1_OptumLabs_P.Wallace.pdf
http://www.forbes.com/sites/tomgroenfeldt/2013/02/14/at-nyse-the-data-deluge-overwhelms-traditional-databases/#5deb6a2e2eb7
http://www.forbes.com/sites/tomgroenfeldt/2013/02/14/at-nyse-the-data-deluge-overwhelms-traditional-databases/#5deb6a2e2eb7
http://nosql-database.org/
http://hadoop.apache.org/
https://aws.amazon.com/
https://aws.amazon.com/emr/
http://pems.dot.ca.gov
http://pems.dot.ca.gov/?dnode=Help&content=help_calc#Speeds
http://www.officeholidays.com
http://achieve.lausd.net/domain/36
http://pems.dot.ca.gov/?dnode=Help&content=help_calc#diag
https://github.com/fchollet/keras

Acronyms

AbsL Absolute Loss

AcF Activation Function

AE Autoencoder

AgF Aggregation Function

AGI Artificial General Intelligence

AI Artificial Intelligence

AN Artificial Neuron

ANN Artificial Neural Network

AR Autoregressive

ASB Asynchronous Saturation Behavior

ASR Automatic Speech Recognition

AWS Amazon Web Services

BaN Batch Normlization

BC Binary Classification

BD Big Data

BGD Batch Gradient Descent

BHPO Bayesian Hyperparameter Optimization

BL Bottleneck Layer

BM Boltzmann Machine

BN Biological Neuron

BNN Biological Neural Network

BO Bayesian Optimization

BP Backpropagation

BPTT Backpropagation Through Time

BTU Binary Threshold Unit

CD Contrastive Divergence

CDoT California Department of Transportation

CE Cross Entropy

CF Cost Function

CHR Connected Handwriting Recognition

CNN Convolutional Neural Network

CNS Computational Neuroscience

CP Congestion Prediction

138

CS Computer Science

CTC Connectionist Temporal Classification

CV Computer Vision

DAE Denoising Autoencoder

DB Database

DBM Deep Boltzmann Machine

DBN Deep Belief Net

DC Deep Composition

DE Density Estimation

DetM Deterministic Model

DFNN Deep Feedforward Neural Network

DisM Discriminative Model

DL Deep Learning

DM Data Mining

DNC Differentiable Neural Computer

DNN Deep Neural Network

DO Dropout

DR Distributed Representation

DRMDN Deep Recurrent Mixture Density Network

DRNN Deep Recurrent Neural Network

EB ExaByte

EF Energy Function

EMA Exponential Moving Average

EMR Elastic Map Reduce

ENR Elastic Net Regularization

EOA Evolutionary Optimization Algorith

ER Empirical Risk

ERM Empirical Risk Minimzation

ES Early Stopping

ExS Expert System

FBL Full Bayesian Learning

FCRNN Fully Connected RNN

FDM Finite Difference Method

FEM Finite Element Method

139

FNN Feedforward Neural Network

GAN Generative Adversarial Network

GB GigaByte

GD Gradient Descent

GDwALR Gradient Descent with Adaptive Learning Rates

GDwLRS Gradient Descent with Learning Rate Schedule

GDwM Gradient Descent with Momentum

GDwNM Gradient Descent with Nesterov Momentum

GE Generalization Error

GenM Generative Model

GF Growth Function

GHPO Gradient-Based Hyperparameter Optimization

GMM Gaussian Mixture Model

GP Gaussian Process

GRU Gated Recurrent Unit

GS Grid Search

GUI Glorot Uniform Initialization

HDFS Hadoop Distributed File System

HDR Handwritten Digit Recognition

HFO Hessian-Free Optimization

HL Hidden Layer

HMM Hidden Markov Model

HN Hopfield Net

HNI He Normal Initialization

HP Hyperparameter

HPO Hyperparameter Optimization

HS Handwriting Synthesis

HU Hidden Unit

ICS Internal Covariate Shift

IL Input Layer

IndL Indicator Loss

IoT Internet of Things

IU Input Unit

KBS Knowledge-Based System

140

LA Learning Algorithm

LDS Linear Dynamical System

LF Loss Function

LinOU Linear Output Unit

LinR Linear Regression

LNLM Large Number of Local Minima

LogR Logistic Regression

LR Learning Rate

LSTM Long Short-Term Memory

LU Linear Unit

LUI LeCun Uniform Initialization

MA Model Averaging

MAE Mean Absolute Error

MAP Maximum A Posteriori

MB Mini-Batch

MBSGD Mini-Batch Stochastic Gradient Descent

MC Multiclass Classification

MCMC Markov Chain Monte Carlo

MDN Mixture Density Network

ML Machine Learning

MLP Multilayer Perceptron

MNR Max-Norm Regularization

MOU Maxout Unit

MS Manual Search

MSE Mean Squared Error

MT Machine Translation

NADE Neural Autoregressive Distribution Estimator

NLL Negative Log Likelihood

NLP Natural Language Processing

NTM Neural Turing Machine

OI Orthogonal Initialization

OL Output Layer

OR Object Recognition

OU Output Unit

141

PB PetaByte

PCA Principal Component Analysis

PCD Persistent Contrastive Divergence

PF Partition Function

PGM Probabilistic Graphical Model

PLA Perceptron Learning Algorithm

PM Performance Metric

PReLU Parametric Rectified Linear Unit

ProM Probabilistic Model

PU Product Unit

PUN Product Unit Network

RBM Restricted Boltzmann Machine

RDBMS Relational Database Management System

ReLU Rectified Linear Unit

RiL Reinforcement Learning

RNADE Real-Valued Neural Autoregressive Distribution Estimator

RNN Recurrent Neural Network

RpL Representation Learning

RS Random Search

RW Random Walk

SA Sentiment Analysis

SBU Stochastic Binary Unit

SD Structured Data

SGD Stochastic Gradient Descent

SL Supervised Learning

SLT Statistical Learning Theory

SOL Softmax Output Layer

SOM Second Order Method

SqrL Squared Loss

SR Symbolic Representation

SReLU S-Shaped Rectified Linear Unit

SRM Structural Risk Minimization

SSD Semi-Structured Data

SU Sigmoid Unit

142

SVM Support Vector Machine

TB TeraByte

TeE Test Error

TER Textual Entailment Recognition

TeS Test Set

TM Traffic Modeling

TrE Training Error

TrS Training Set

TU Tanh Unit

UD Unstructured Data

UL Unsupervised Learning

UPT Unsupervised Pre-Trainining

VaE Validation Error

VaS Validation Set

VEG Vanishing and Exploding Gradient

VL Visible Layer

VU Visible Unit

WD Weight Decay

WS Weight Sharing

143

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Subject and Goals
	Structure

	Academic and Historical Context
	Academic Context
	Historical Context

	Theory
	Machine Learning
	Basics
	Learning Paradigms
	Data in Machine Learning
	Statistical Learning Theory
	Loss and Cost Functions
	Types of Problems
	Types of Models
	Hyperparameter Optimization
	Assessing Performance

	Artificial Neural Networks
	Basics
	Artificial Neurons
	Types of Architectures
	Learning Algorithms
	Improving Generalization

	Deep Learning
	Theoretical Justification
	Challenges in Training Deep Neural Networks
	Solutions to Challenges
	New Developments

	Big Data

	Application to Traffic Prediction
	Problem Description
	Related Research
	Traffic Research Basics
	Data and Data Pre-Processing
	Model
	Implementation
	Training
	Model Evaluation
	Possible Improvements and Future Research
	Other Applications in Civil Engineering
	Conclusion

	References
	Acronyms

