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Abstract  

As the construction industry grapples with escalating labor costs and increasing 
demands for construction efficiency and quality, the integration of advanced 
technologies, including Artificial Intelligence (AI) and robotics, offers promising 
solutions. This paper proposes a novel workflow that empowers robotic arms to 
recognize and install irregularly shaped slabs, an essential process in the 
construction industry. The proposed workflow design comprises various stages, 
including image segmentation, feature extraction, shape matching, and final 
instructions for robotic arm movements. This method effectively tackles critical 
issues inherent in each stage, yielding promising results in terms of accuracy, 
flexibility, and robustness. Furthermore, the developed application has excellent 
portability, allowing operation on standard industrial robotic arms, and includes a 
graphical user interface for ease of adaptation to different construction 
environments. The proposed system was validated through simulations and real-
world experiments, demonstrating high performance in terms of accuracy and 
stability, hence promising significant enhancements in construction efficiency, 
labor cost reduction, and safety improvement. This research paves the way for a 
broader application of robotics in the construction industry, with the potential to 
revolutionize traditional construction processes. 

Keywords: Construction robot; Artificial Intelligence (AI); object detection; 
Automation; Shape Matching; Irregular Shape Recognition 
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1 Introduction 

In light of the accelerated advancements in technology, Artificial Intelligence (AI) 
and robotics have attained groundbreaking progress across various domains. In 
the construction industry, AI and robotic technologies have demonstrated 
immense potential for enhancing construction efficiency, reducing labor costs, 
and ensuring construction quality (Yue Pan and Limao Zhang 2021). 

Concurrently, as modern construction projects continuously demand higher 
standards for construction environments and accuracy, the construction industry 
faces unprecedented challenges. Under these circumstances, the technology for 
robotic slab installation has become increasingly critical, as it offers effective 
solutions to these issues. Utilizing robots in the production process can 
substantially shorten production cycles and elevate efficiency while 
simultaneously reducing error rates and ensuring construction quality. This can 
be attributed to the high precision and stability of robots, which can circumvent 
human-induced errors. In on-site construction tasks, employing robots can 
alleviate repetitive labor and manual labor intensity, thereby improving workers' 
efficiency. Robots are also capable of completing a multitude of tasks within short 
periods, significantly reducing project durations and saving time and costs for 
enterprises. Moreover, robots possess the ability to work for extended periods in 
complex, harsh construction environments, meaning they can continuously 
operate under adverse conditions such as high altitudes, high temperatures, and 
high humidity, thus diminishing the risk of personnel injuries. In comparison to 
humans, robots are better equipped to adapt to these stringent environments 
while maintaining stable working conditions. Researching how to utilize robots for 
replacing manual labor in floor slab installations has emerged as a crucial 
development trend in the construction industry. Various advanced AI and robotic 
technologies are gradually being integrated into the construction industry, 
providing construction enterprises with an efficient, low-cost, and safe 
construction scheme (Bock 2007). 

At present, top-down processes are predominantly employed in the field of 
construction robots, owing to their simplicity, minimal requirement for complex 
sensory programs (such as computer vision), and execution of minimal specialized 
knowledge (Parascho 2023). Although this process is highly effective for certain 
construction techniques, unexpected issues frequently arise during the 
manufacturing process, particularly considering the complexities of construction 
sites. Material tolerances may accumulate, minor errors in robot settings may 
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likewise result in significant discrepancies between designs and actual structures, 
and changes in structural environments may lead to unforeseen collisions or 
inaccuracies. By entirely predefining processes, people cannot respond to any 
variations (Parascho 2023). Current market slab installation robots are primarily 
limited to performing repetitive labor, with weaker capabilities for recognizing and 
installing irregularly shaped slabs. This hinders the promotion and application of 
robots in broader contexts. Therefore, designing a workflow that enables robotic 
arms to recognize and install irregularly shaped slabs is of paramount necessity 
(Parascho 2023). 

In order to address this issue, several aspects warrant further research and 
exploration, which are delineated as follows: firstly, the design of a workflow is 
essential to ascertain the tasks that need to be accomplished. Subsequently, the 
selection of appropriate computer vision algorithms is required, based on the 
tasks, to guide the robotic arm in grasping and installing floor slabs. Following the 
selection of suitable algorithms, the development of corresponding applications 
should be undertaken to fulfill construction requirements. These applications 
should possess a graphical user interface, allowing for convenient fine-tuning 
according to varying construction environments, and exhibit excellent portability, 
enabling operation on established industrial robotic arms. Lastly, the accuracy and 
robustness of the developed applications should be verified through simulations 
and experiments. 

By implementing this innovative workflow, the advantages of robots in the 
construction domain can be fully exploited, improving construction efficiency, 
reducing labor costs, minimizing safety hazards, and satisfying the requirements 
for high-quality construction. This will usher in new opportunities for the 
development of the construction industry, creating greater value for society. 

2 State of the art 

2.1 Construction Robotic Arm 

The construction industry accounts for 10-20% of the Gross Domestic Product in 
most countries, making it the largest sector of the economy in terms of 
employment; Construction work is labor-intensive and often carried out under 
hazardous conditions, with frequent changes in tasks and materials. Robotic arms, 
however, can contribute to improved work efficiency, reduced work errors, 
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diminished risk of worker injury, lower labor costs, and environmental protection 
(Gharbia et al. 2020). Consequently, the technology of robotic arms in construction 
represents a significant shift from traditional construction methods. The 
utilization of robots may present a range of opportunities that can alter the way 
we design and construct buildings. 

To better understand the trends and trajectory of robotic arm applications in on-
site construction, Marwan Gharbia and colleagues conducted a systematic review 
of 52 articles identified through the PRISMA protocol and meta-analysis (Gharbia 
et al. 2020). The results indicate that the technology of robotic arms in on-site 
construction is a continuously evolving application field, with additive 
manufacturing (AM), automated installation systems, automated robot assembly 
systems, autonomous robot assembly, and robotic bricklaying appearing to be the 
most researched subjects, and potentially influencing the development of 
research on construction robotic arms (Gharbia et al. 2020). 

In the field of robotic arm construction, the current approach is predominantly 
through human-machine collaborative mode (Gharbia et al. 2020). For example, 
the glass ceiling installation robot, composed of a mobile platform and a robotic 
arm, includes hardware and software such as human-machine interaction 
interface devices, designed to tackle the challenges encountered when installing 
glass panels at high altitudes (Lee et al. 2008). Another example is an automated 
facade installation system for construction sites, combining a multi-degree-of-
freedom robotic arm with a small excavator (Lee et al. 2007). Moreover, there are 
studies utilizing the flexibility of robotic arms, creating complex walls composed 
of 3D printed materials using mobile and multi-jointed robots (Furet et al. 2019). 

Hence, there currently exists a research gap regarding the automated installation 
of traditional construction materials. This paper will design a workflow for 
identifying and installing irregular construction objects such as roof panel with a 
combination of semantic segmentation method and conventional computer vision 
methods, and develop an application based on VisionPro that can be used with 
KUKA robotic arms. This will achieve basic irregular model recognition and 
matching and output the pose of the robotic arm. 

The task of the robotic arm to automatically identify irregular plate-shaped objects 
and install them according to the preset template can be decomposed into four 
parts: 1) Camera and Hand-Eye Calibration; 2) Foreground segmentation; 3) Object 
detection; 4) Compare the object with the template and output the mechanical the 
position of the arm grabbing and placing, and the five parts will be introduced 
separately next. 
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2.2 Camera and Hand-Eye Calibration 

Camera calibration and hand-eye calibration for robotic arms are two key 
processes that play vital roles in ensuring accurate operations when visual 
systems are employed. The objectives of these processes are to align the 
movements of the robotic arm with the image data acquired by the vision system, 
thus enabling the robotic arm to accurately position itself and interact with the 
target object. 

Camera calibration is aimed at determining the intrinsic and extrinsic parameters 
of the camera. The intrinsic parameters include factors such as focal length and 
image center, which reflect the camera's own properties, while the extrinsic 
parameters include rotation and translation parameters, reflecting the camera's 
position and orientation with respect to the world coordinate system. Through 
camera calibration, we can convert image coordinates to camera coordinates, 
thus understanding the position of an object in the camera's coordinate system 
(Remondino and Fraser 2006). 

Hand-eye calibration is the process of determining the relative position and 
orientation between the end of the robotic arm (the "hand") and the camera (the 
"eye"). The crux of this process lies in finding a transformation matrix that can 
convert points in the camera coordinate system to the robotic arm coordinate 
system. Therefore, when the robotic arm moves, we can understand the position 
of the object observed by the camera in the robotic arm coordinate system, 
allowing the robotic arm to accurately move to the target position (Enebuse et al. 
2022). 

Therefore, the relationship between camera calibration and hand-eye calibration 
is that both are designed to solve the problem of spatial correspondence in the 
visual system of the robotic arm. Specifically, we first need to use camera 
calibration to determine the position of an object in the camera coordinate system, 
then use hand-eye calibration to convert this position to the robotic arm 
coordinate system, so that the robotic arm can accurately execute tasks. 
Consequently, these two steps are often conducted together; they depend on 
each other and jointly ensure the accurate operation of the robotic arm. 

 

Fig 1 The relationship between coordinaes (Enebuse et al. 2022) 
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2.2.1 Camera Calibration 

Currently, the commonly used camera calibration algorithms include Tsai's 
method, Heikkila & Silven's method, and Zhang's method. Next, we will introduce 
their principles, application scenarios, as well as advantages and limitations 
respectively. 

a) Tsai Camera Calibration Method 
Tsai Camera Calibration Method is a well-established technique for 
determining the parameters of a pinhole camera model, which has been 
widely used due to its efficiency and accuracy. It is proposed by Roger Y. Tsai 
in 1987 (Tsai 1987) and it is a two-step procedure.  

First, it decouples the intrinsic and extrinsic parameters by using the 
perspective projection's properties, allowing the radial lens distortion to be 
ignored initially. Second, it estimates the lens distortion parameters. Tsai's 
method models the camera as a combination of a linear perspective projection 
followed by a nonlinear radial distortion. The method first establishes the 
linear part using a set of control points with known 3D positions, and their 
corresponding 2D projections in the image. This model includes the camera's 
internal parameters (such as focal length, principal point, and aspect ratio), as 
well as its external parameters (rotation and translation). Once the linear 
model is established, the method estimates the radial distortion parameters 
using the residuals (i.e., the difference between the projected 2D positions and 
the measured 2D positions). 

Tsai's method is useful in situations where the camera setup is static, the radial 
distortion is not extreme, and you have a control object with known geometry 
to calibrate against. It's also beneficial when you need a fast, relatively accurate 
calibration without user intervention. 

However, there are a few limitations to Tsai's method: 

1. It assumes a pinhole camera model, which might not be accurate for wide-
angle lenses with significant distortion. 

2. It assumes the radial distortion is symmetrical around the principal point, 
which may not be the case if the lens is not correctly aligned with the image 
sensor. 

3. It might not provide the most accurate results if the scene depth variation 
is significant, as the camera's perspective distortion might not be 
accurately modeled with a single set of parameters. 

4. The accuracy of Tsai's method depends heavily on the control points' 
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quality. If these points are not accurately chosen, the calibration results 
can be significantly off. 

5. It assumes that the image plane (sensor) is not skewed, which might not 
be accurate for all cameras, especially older ones. 

6. It is sensitive to measurement noise. Small errors in the control point 
coordinates can lead to significant errors in the estimated camera 
parameters. 

7. It assumes a single viewpoint for all control points. If there are occlusions, 
or the control points are not all visible from the same viewpoint, the 
method cannot be applied. Despite these limitations, Tsai's method 
remains a useful tool for quick and efficient camera calibration in many 
practical situations. 

b) Heikkila & Silven Calibration Method 
Heikkila and Silven Camera Calibration Method is another prominent 
approach for camera calibration, which considers a wider range of distortions 
and achieves more accurate results in many cases. It is proposed by Janne 
Heikkila and Olli Silven in 1997 and it is an effective camera calibration method. 
It handles both radial and tangential distortions, making it more suitable for 
wide-angle lenses and other lenses where the radial and tangential distortions 
are significant (J. Heikkila and O. Silven 1997). 

This method is applicable to various machine vision applications, but it is most 
beneficial in camera-based 3D measurement and robot vision because high-
precision geometric accuracy is required. The program uses an empirical 
inversion model for image correction, which can accurately compensate for 
radial and tangential distortion. Finally, the author also provides a Matlab 
toolbox for performing this calibration process, which can be obtained through 
the internet (J. Heikkila and O. Silven 1997). 

Heikkila and Silven’s method models the camera by an extended pinhole 
model, which includes five distortion parameters: two radial distortion 
parameters and three tangential distortion parameters. The calibration is 
achieved through a non-linear optimization process that minimizes the sum of 
squared differences between the observed and predicted image points (J. 
Heikkila and O. Silven 1997). 

The method starts by initializing the parameters with an approximation based 
on a direct linear transformation (DLT) from control points with known 3D 
positions and their corresponding 2D projections in the image. Then, the 
method iteratively refines the parameters by minimizing the residuals, that is, 
the difference between the predicted and measured 2D positions (Heikkila and 
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Silvén). 

The Heikkila and Silven method is particularly useful for cameras with 
significant radial and tangential distortions, such as wide-angle lenses, fisheye 
lenses, and lenses that might not be perfectly aligned with the image sensor. 
It can provide more accurate results than methods that only consider radial 
distortion, such as Tsai's method. 

However, the Heikkila and Silven method also has some limitations: 1)It 
requires a non-linear optimization process, which can be more 
computationally intensive and slower than methods that only involve linear 
operations. 2) It might be sensitive to the initial approximation of the 
parameters. If the initial approximation is too far from the true parameters, 
the optimization process might not converge to the optimal solution. 3)The 
accuracy of the method still depends on the quality of the control points. If 
these points are not accurately chosen, the calibration results can be 
significantly off. The method assumes that the image plane (sensor) is not 
skewed, which might not be accurate for all cameras, especially older ones. 

c) Zhang’s Calibration Method 
Zhang’s Calibration Method is a well-known camera calibration method 
proposed by Zhengyou Zhang in 1998 (Zhang 2000). This method is widely 
adopted due to its simplicity, efficiency, and high precision. It’s a versatile 
approach that requires the camera to observe a planar pattern from at least 
two different orientations. The pattern does not need to be manufactured with 
high precision, allowing for great flexibility in practical use. It can be a 
chessboard pattern, dot pattern, or any other planar pattern with discernible 
features. 

The key idea behind Zhang's method is to use a planar homography to relate 
the image points with the model points. By observing the planar pattern from 
at least two different orientations, the homography between the image points 
and the model points can be estimated. This homography can then be used to 
extract the camera's intrinsic and extrinsic parameters, including focal length, 
principal point, skew coefficient, and distortion coefficients (Zhang 2000). 

Zhang's method is essentially a two-step process. The first step is the 
calibration, where the homographies are estimated and the camera 
parameters are extracted. The second step is the refinement, where the 
parameters are further refined using non-linear optimization to minimize the 
re-projection error (Zhang 2000). 

Zhang's method is a very flexible and robust calibration method that can be 
used in a variety of situations. It's particularly suitable when the camera's 
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distortion is significant, or when the camera is observing a scene from multiple 
orientations. It is widely used in computer vision applications, including 3D 
reconstruction, image-based rendering, and robotic vision. 

However, Zhang's method also has some limitations: 1) It assumes that the 
lens distortion is radially symmetric, which may not be accurate for all cameras. 
2) The precision of the calibration depends on the number and distribution of 
the control points. If these points are not uniformly distributed across the 
image, the calibration results can be inaccurate. 3) The method requires the 
observation of a planar pattern from at least two different orientations. If this 
condition is not met, the method cannot accurately calibrate the camera. 

Based on the preceding discussion, it can be deduced that Zhang's calibration 
methodology exhibits robustness to a diverse range of positions and orientations 
for chessboard captures. This implies that Zhang's method can still provide 
relatively accurate calibration results even under suboptimal capture conditions 
such as limited chessboard mobility or minor alterations in the chessboard's 
attitude. In contrast, the methods proposed by Tsai and Heikkila & Silven might 
necessitate broader movements and attitude changes for the chessboard to 
achieve precise outcomes. Moreover, Zhang's approach requires only a single 
chessboard calibration plate, making it exceptionally convenient for users. The 
calibration process merely entails photographing the chessboard at different 
locations and attitudes, without requiring precise knowledge of the chessboard's 
position and orientation. This is a clear departure from Tsai's and Heikkila & 
Silven's methods, which might demand complicated setup and meticulous 
measurements. Practically speaking, Zhang's method often results in a superior 
level of calibration precision. The method considers all internal parameters, 
including radial and tangential lens distortion, and uses a more intricate 
optimization process to ascertain these parameters. In contrast, Tsai's approach 
accounts only for radial lens distortion, while Heikkila & Silven's method, despite 
considering tangential distortion, employs a relatively simplistic optimization 
procedure. Therefore, considering potential variations in illumination conditions 
on construction sites and the possibility of uneven terrain leading to uncertainty 
in the calibration board's position and attitude, the camera calibration for the 
workflow will be based on Zhang's calibration algorithm.  

The RCNN, as the earliest deep learning-based detector, operates as a two-stage 
object detection framework. It leverages region proposal methods to generate 
potential bounding boxes within an image and subsequently employs a classifier 
to analyze and classify these proposed boxes (Girshick, R., Donahue, J., Darrell, T., 
& Malik, J. 2014, 2015). The architecture of RCNN can be conceptually divided into 
two distinct stages. 
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Stage 1: Feature Extraction from Region Proposals: By utilizing selective search, 
2000 to 3000 region proposals are generated for images (Van de Sande, K. E., 
Uijlings, J. R., Gevers, T., & Smeulders, A. W. 2011, November). These candidate 
region proposals undergo a rescaling process and are subsequently passed 
through a CNN model, resulting in the extraction of a high-dimensional feature 
vector of 4096 dimensions. 

Stage 2: Classification and localization: Linear SVM classifiers are employed within 
the RCNN framework to predict the presence of objects within each region 
proposal and perform object category recognition tasks (Chang, Y. W., & Lin, C. J. 
2008, December). 

As the pioneer in two-stage detectors, RCNN demonstrated a substantial 
improvement in mean Average Precision (mAP), elevating it from 33.7% (achieved 
by DPM-v5) to a notable 58.5%. (Ren, X., & Ramanan, D. 2013). However, owing to 
the extensive number of region proposals and the involved training process of 
RCNN, this method necessitates substantial time and storage memory resources. 

In order to overcome these inherent limitations, SPP-Net effectively mitigated the 
challenges by incorporating the principles of Spatial Pyramid Matching (SPM) and 
introducing a novel CNN architecture to solve the problem of content losses and 
unwanted geometric distortions due to the cropping or warping operation during 
feature extraction process of RCNN (He, K., Zhang, X., Ren, S., & Sun, J. 2015; 
Lazebnik, S., Schmid, C., & Ponce, J. 2006, June). SPP-Net achieves superior 
outcomes by accurately estimating region proposals at various scales, and 
concurrently enhances detection efficiency during the testing phase through 
shared computation cost among different proposals before the SPP layer.  

While SPP-Net has successfully enhanced the detection speed, it is not devoid of 
certain limitations. Firstly, its speed is still limited by the two-stage architecture. 
Secondly, in the case of SPP-Net, the fine-tuning process is exclusively applied to 
its fully connected layers, neglecting any adjustments to the preceding layers. 
Similar to SPP-Net, Fast RCNN also processes the entire image using convolutional 
layers to generate feature maps. (Girshick 2015). In the Fast R-CNN framework, 
both the image and multiple regions of interest (RoIs) are fed into a fully 
convolutional network for processing and subsequent analysis. (Moghaddam, B., 
Biermann, H., & Margaritis, D. 1999, June). Every region of RoI within the Fast R-
CNN framework undergoes pooling operations to generate fixed-size feature 
maps. Then these feature maps are subsequently mapped to feature vectors 
through fully connected layers. The network produces two distinct output vectors 
for each RoI: SoftMax probabilities indicating class probabilities and bounding-box 
regression offsets specific to each class. (Rottmann, M., Colling, P., Hack, T. P., Chan, 
R., Hüger, F., Schlicht, P., & Gottschalk, H. 2020, July; Dickerson 2017). Fast R-CNN 
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facilitates end-to-end training of all network layers by employing a multitask loss 
function. It effectively addresses the need for additional storage space while 
enhancing both accuracy and efficiency through the adoption of more rationalized 
training schemes. However, the speed of detection is still constrained by the 
proposal detection phase, which imposes limitations on overall performance. 

Faster-RCNN solved the above problem by changing extraction method of region 
proposals (Ren, S., He, K., Girshick, R., & Sun, J. 2015), the selective search in Fast-
RCNN is replaced by region proposal network (RPN). The introduction of Faster R-
CNN signifies a significant breakthrough in the field of object detection, as it 
enables the training of region proposal-based CNN architectures in an end-to-end 
manner, which enables Faster-RCNN to be capable of achieving near-real-time 
performance. Meanwhile, a remarkable frame rate of 5 frames per second on a 
GPU is achieved, while concurrently delivering state-of-the-art object detection 
accuracy as demonstrated by impressive mAP scores of 73.2% on PASCAL VOC07 
and 70.4% on VOC12 datasets. (Zeiler, M. D., & Fergus, R. 2014). Nevertheless, it is 
important to note that the training algorithm of Faster R-CNN remains 
computationally intensive, and the RPN tends to generate object-like regions that 
encompass both objects and backgrounds, rather than specifically identifying 
individual object instances, or confronting with objects exhibiting extreme scales 
or unconventional shapes.  

More advanced detectors, such as R-FCN (Dai, J., Li, Y., He, K., & Sun, J. 2016; Li, Z., 
Peng, C., Yu, G., Zhang, X., Deng, Y., & Sun, J. 2017) and Feature Pyramid Networks 
(FPN) (Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. 2017), 
but they are more or less limited in the detection speed because of their inherent 
two-stage framework. Region proposal-based frameworks typically consist of 
multiple interrelated stages, encompassing region proposal generation, CNN-
based feature extraction, classification, and bounding box regression. These 
stages are commonly trained as separate entities. Despite advancements such as 
Faster R-CNN, the need for alternative training methods persists to achieve shared 
convolutional parameters between the Region Proposal Network (RPN) and the 
detection network. Consequently, the time required to handle these distinct 
components becomes a limiting factor in real-time applications. To ameliorate this 
circumstance, one-stage detectors have been proposed.  

2.2.2 HAND-EYE CALIBRATION 

After performing camera calibration, it is necessary to perform hand-eye 
calibration for the robotic arm. In the multifaceted field of robot control guided by 
machine vision, the process of hand-eye calibration occupies a significant position. 
Hand-eye calibration is aimed at precisely estimating the relative position and 



  11 

orientation between the robot's end effector—referred to as the "hand"—and the 
vision system, or the "eye". This calibration process is paramount for a myriad of 
applications such as part assembly, bin picking, and inspection operations, as it 
enables the robot to accurately obtain environmental information for precise task 
execution (Enebuse et al. 2022). 

This chapter will commence with a comprehensive exploration of the importance 
and applications of hand-eye calibration, elucidating its role in robot control 
guided by machine vision. Subsequently, we will introduce the calibration 
procedure for an "eye-in-hand" setup, which involves estimating the position and 
orientation of the camera within the robot's end effector through a sequence of 
steps. This process involves complex mathematical calculations, such as solving 
homogeneous transformation equations, which may involve rotational and 
translational noise that needs to be rectified through appropriate calibration 
processes. 

Following this, we will focus on the principles and procedure of "eye-to-hand" 
calibration, where the camera is positioned external to the robot arm, and the 
robot performs operations within the field of view. We will investigate the 
characteristics of hand-eye calibration in this configuration, including its 
advantages and challenges in application. This process also presents several 
challenges, including how to deal with rotational and translational noise, and how 
to consider the impact of the robot's motion range on calibration accuracy. 

a) eye-in-hand 
"Eye-in-hand" calibration refers to a setup where a camera is attached directly 
to the robot's end-effector, essentially being the "eye" in the robot's "hand". 
This setup allows the robot to perceive the environment directly from its point 
of action, providing a close-up view of the tasks it is performing, such as object 
manipulation or precise assembly tasks (Enebuse et al. 2022). 

The calibration process of this setup is crucial as it aims to accurately estimate 
the pose (position and orientation) of the camera relative to the robot's end-
effector. This pose is typically represented by a homogeneous transformation 
matrix that describes the rotation and translation of the camera relative to the 
end-effector (Enebuse et al. 2022). 

The calibration process involves capturing images of a calibration object with 
known geometry from different poses of the robot. The 2D-3D 
correspondences between the image points and the known object points are 
then used to compute the camera poses. Simultaneously, the robot poses are 
obtained from the robot's joint encoders. With pairs of camera and robot 
poses, the hand-eye calibration problem becomes solving a homogeneous 
transformation equation, which can be more challenging due to the noise 
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present in rotation and translation components of the pose (Enebuse et al. 
2022). 

Various methods have been proposed to solve this problem, broadly classified 
into two categories: separate and simultaneous methods (Enebuse et al. 2022). 
The separate methods first estimate the rotation component and then the 
translation component, based on the estimated rotation. However, errors 
from rotation estimates directly propagate to the translation estimates in 
these methods, and they also lose the inherent coupling between rotation and 
translation. Therefore, simultaneous methods were proposed that estimate 
both components at the same time, providing more accurate results in the 
presence of noise. 

The Separated Methods (Shiu and Ahmad 1989; Tsai and Lenz 1989) is a 
common approach to addressing the hand-eye calibration problem in robot 
vision guidance systems. In this method, the rotation and translation 
parameters are estimated separately. Here are the basic steps of the 
Separated Methods: 

1. Estimation of Rotation Parameters: First, the rotation parameter is 
estimated from the relationship between the movements of the robot arm and 
the camera. This is typically done by comparing the relative rotations of the 
arm and the camera recorded at two different points in time. 

2. Estimation of Translation Parameters: After estimating the rotation 
parameters, these parameters are then used to estimate the translation 
parameters. This step is done by applying the rotation parameters to the 
relative movement between the robot arm and the camera, and then 
comparing the relative translations recorded at two different points in time. 

It's important to note that in the Separated Methods, errors in the rotation 
estimates directly affect the estimation of translation parameters, so in 
practical applications, the rotation parameters need to be estimated as 
accurately as possible. Furthermore, since the Separated Methods treat 
rotation and translation parameters separately, this method may lose the 
inherent coupling between these two parameters. Therefore, in some 
applications that require a high degree of accuracy, the Simultaneous Methods 
might need to be considered, which deals with rotation and translation 
parameters at the same time (Enebuse et al. 2022). 

The Simultaneous Methods (H. Chen 1991) is another approach for addressing 
the hand-eye calibration problem in robot vision guidance systems. Unlike the 
Separated Methods, the Simultaneous Methods estimates the rotation and 
translation parameters at the same time. Here are the basic steps of the 
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Simultaneous Methods: 

1. Simultaneous Estimation of Rotation and Translation Parameters: In this 
step, both the rotation and translation parameters are estimated 
simultaneously from the relationship between the movements of the robot 
arm and the camera. This is typically done by comparing the relative 
transformations (both rotation and translation) of the arm and the camera 
recorded at two different points in time. 

The Simultaneous Methods can be more complex to implement than the 
Separated Methods, but they have the advantage of preserving the inherent 
coupling between rotation and translation parameters. This means that they 
can be more accurate in applications where this coupling is significant. 
Additionally, because the rotation and translation parameters are estimated 
simultaneously, errors in the rotation estimates are not directly propagated to 
the translation estimates, potentially making the Simultaneous Methods more 
robust to errors in rotation estimation. Some examples of the Simultaneous 
Methods include the screw motion approach and the dual quaternion method, 
among others (Enebuse et al. 2022). 

b) Eye-on-base 
The "eye-on-base" or "eye-to-hand" calibration procedure refers to the process 
where the camera (eye) is positioned externally or away from the robot arm 
(hand). The robot operates within the field of view of the camera (Jiang et al. 
2022).  

 

Fig 2 Schematic diagram of eye-to-hand calibration 

The KUKA educate ready2 was used for simulation and experimentation in this 
project. The camera position was fixed on a base, so the eye-on-base calibration 
method was used to obtain the positional relationship between the robotic arm 
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and the camera.  

By affixing a calibration board at the end of the robotic arm actuator, we maneuver 
the arm to present the board in two distinct positions and orientations within the 
camera's field of view, capturing images at each point. Utilizing these captured 
images for camera calibration, we derive the internal parameters of the camera 
and correct for lens distortions. Following this, the images of the calibration board 
at two locations, combined with the angles of each joint of the robotic arm, allow 
for the calculation of two homogeneous transformation matrices from the camera 
coordinates to the calibration board's pose: 𝑇ோ௢௕௢௧ଵ

ா௡ௗ  and 𝑇ோ௢௕௢௧ଶ
ா௡ௗ . Additionally, 

while setting the end-effector positions, we can also compute the homogeneous 
transformation matrices from the robot base to the calibration board: 𝑇ோ௢௕௢௧ଵ

ா௡ௗ  
and 𝑇ோ௢௕௢௧ଶ

ா௡ௗ . The aforementioned four known quantities maintain the following 
relationship: 

𝑇ோ௢௕௢௧ଵ
ா௡ௗ ∗ 𝑇 ∗ 𝑇௢௕௝௘௖௧

஼௔௠௘௥௔ଵ ൌ஼௔௠௘௥௔ଵ
ோ௢௕௢௧ଵ 𝑇ோ௢௕௢௧ଶ

ா௡ௗ ∗ 𝑇 ∗ 𝑇௢௕௝௘௖௧
஼௔௠௘௥௔ଶ

஼௔௠௘௥௔ଶ
ோ௢௕௢௧ଶ ൫1.൯ 

This can be further simplified as:： 

𝑇ோ௢௕௢௧ଶ
ா௡ௗ ିଵ ∗ 𝑇ோ௢௕௢௧ଵ

ா௡ௗ ∗ 𝑇 ൌ஼௔௠௘௥௔ଵ
ோ௢௕௢௧ଵ 𝑇 ∗ 𝑇௢௕௝௘௖௧

஼௔௠௘௥௔ଶ ∗ 𝑇௢௕௝௘௖௧
஼௔௠௘௥௔ଵ ିଵ

஼௔௠௘௥௔ଶ
ோ௢௕௢௧ଶ ൫2.൯ 

Where 𝑇஼௔௠௘௥௔ଵ
ோ௢௕௢௧ଵ  and 𝑇஼௔௠௘௥௔ଶ

ோ௢௕௢௧ଶ  represent the transformation matrices from camera 
coordinates to the base coordinates, which are the precise matrices we seek to 
determine through the hand-eye calibration process. 

2.3 Foreground Segmentation 

This section is dedicated to an in-depth examination of concepts and 
methodologies pertaining to Foreground Segmentation, a fundamental technique 
within the domain of computer vision and image processing. The objective of 
foreground segmentation is to segregate foreground objects from the 
background milieu within an image. This facilitates a concentrated focus on 
objects of interest, thereby enabling a comprehensive analysis and interpretation. 

We shall commence with an exploration of the theoretical underpinnings, 
expounding upon the nature of foreground segmentation and the imperatives 
driving its application. Subsequently, we will present a survey of prevalent 
foreground segmentation algorithms, including but not limited to threshold-based 
segmentation, cluster-based segmentation, and edge detection-based 
segmentation, while concurrently discussing their respective strengths, limitations, 
and appropriate application scenarios. 



  15 

Proceeding further, informed by the specific requirements of our project, we will 
elucidate our rationale for selecting a particular foreground segmentation 
algorithm, and its practical implementation and efficacy within the project's 
context.  

2.3.1 Threshold-based segmentation 

Threshold segmentation represents one of the ubiquitous methods employed in 
image processing. This technique differentiates foreground from the background 
by comparing image grayscale values with a predetermined threshold (Pare et al. 
2020). Following are the commonly employed variations of threshold 
segmentation: 

a) Global threshold-based segmentation: This method treats the entire image as 
a holistic entity, segmenting the image into foreground and background 
through the application of a uniform global threshold. This method 
demonstrates efficacy when there are distinct disparities in grayscale values 
between the foreground and the background. 

b) Local threshold-based segmentation: This approach subdivides the image into 
numerous smaller regions, each associated with a corresponding local 
threshold. Such an approach is particularly adept at handling images with 
uneven illumination or complex backgrounds. It is primarily applicable when 
the image is characterized by uneven lighting or a complex backdrop. 

c) Adaptive threshold-based segmentation: This technique adaptively selects 
varying thresholds for segmentation, contingent upon the grayscale 
characteristics of different regions within the image. It exhibits superior 
handling of illumination changes and noise. The primary applicability of this 
method arises when the image is subject to changes in illumination, noise, and 
similar problems. 

d) Multi-threshold segmentation: This methodology applies multiple distinct 
thresholds to carry out multiple segmentation iterations, thereby achieving 
more refined results. It is most suitably employed when there is a requirement 
for a higher degree of detail in the results. 

e) Cluster-based segmentation: This approach clusters similar pixel points within 
the image, thereby achieving effective segmentation. It is best suited for 
scenarios where the image requires effective segmentation and contains 
similar pixel points. 

In the experiment of this project, we have adopted a specialized adaptive 
thresholding technique known as the Dynamic Soft Thresholding Method. With 
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this approach, the threshold is no longer a fixed value but is dynamically adjusted 
according to the local characteristics of the image. This method is particularly 
suitable for handling situations where the threshold is difficult to determine due 
to factors such as changes in illumination and noise. However, it should be noted 
that the term "soft threshold" may imply a degree of flexibility or ambiguity in the 
selection of the threshold. For instance, rather than simply classifying pixels as 
foreground or background, a "membership score" may be assigned based on the 
proximity of the pixel value to the threshold. This can allow the model to better 
handle pixels that are close to the threshold (Pare et al. 2020). 

By coordinating with controlled ambient lighting and background conditions, this 
method has achieved satisfactory results in the segmentation of the foreground. 

2.3.2 Semantic segmentation 

However, in a construction environment, there are often interferences such as 
background and lighting. Using threshold segmentation for foreground 
segmentation is clearly insufficient. To eliminate the effects of factors like lighting 
and background, semantic segmentation can be used. Semantic segmentation is 
a task within computer vision that seeks to understand images at a pixel level, 
determining to which category or object each pixel belongs. Specifically, semantic 
segmentation divides an image into multiple regions, each representing an object 
or background with specific semantics (Guo et al. 2018). Semantic segmentation 
has a wide range of applications in numerous fields. For instance, in autonomous 
driving, semantic segmentation can identify different objects, such as roads, 
pedestrians, and vehicles, helping autonomous vehicles understand their 
surroundings (Yurtsever et al. 2020). In medical image analysis, semantic 
segmentation can identify and separate lesion areas in images, assisting 
physicians in making diagnoses (Shen et al. 2017). In remote sensing image 
processing, semantic segmentation can identify different types of ground covers, 
such as buildings, bodies of water, and vegetation from satellite images (Yuan et 
al. 2021). The three main methods of semantic segmentation are region-based 
semantic segmentation (Uijlings et al. 2013b), semantic segmentation based on 
fully convolutional neural networks (Long et al. 2015) and weakly supervised 
semantic segmentation (Pathak et al. 2016). 

Fully convolutional neural networks (FCNs) typically outperform many other 
methods in semantic segmentation tasks for several reasons (Pathak et al. 2016): 

a) End-to-end training and prediction: Compared to some region-based or sliding 
window methods, FCNs can process an entire image at once, classifying pixels 
across the whole image. This not only reduces computational requirements 
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but also mitigates boundary effect issues that arise from partitioning or sliding 
windows. 

b) Efficiency: FCNs complete predictions by learning a specific feature hierarchy, 
providing more efficient computation than other methods that require 
repeated calculations of the same features. 

c) Preservation of spatial information: After conducting convolution operations, 
FCNs typically use up-sampling (deconvolution) operations to restore the 
original resolution, thereby preserving spatial information throughout the 
network, a critical factor in pixel-level tasks such as semantic segmentation. 

d) Scalability: By adding more convolution layers or employing more complex 
structures (such as skip architectures and residual connections), FCNs can 
enhance their performance, making them more adaptable to complex 
semantic segmentation tasks. 

e) Rich feature learning: Owing to the characteristics of deep learning, FCNs can 
learn more complex and rich image features, enabling superior performance 
in complex tasks compared to traditional methods based on manual features. 

However, FCNs also have their limitations. For instance, they require a large 
number of annotated data for training, the acquisition of which can pose a 
challenge. Furthermore, although FCNs can process an entire image, high-
resolution images may require significant computational resources. Due to these 
limitations, there is a need for appropriate annotation and training for different 
segmentation objects in engineering applications.  

However, the Segment Anything Model (SAM) substantially addresses this issue, 
proposing a new image segmentation task, model, and dataset. This model, based 
on the FCN architecture, supports real-time segmentation mask output and can 
perform zero-sample transfer to new image distributions and tasks via hints. The 
dataset includes over 100 million masks and 11 million images, making it one of 
the largest image segmentation datasets to date (Kirillov et al. 2023). 

Researchers used two experiments to evaluate this model: segmentation quality 
assessment and zero-sample transfer experiments. In the segmentation quality 
assessment experiment, researchers conducted extensive evaluations of SAM 
using 23 different segmentation datasets. The results showed that SAM could 
generate high-quality masks from a single foreground point, with the 
segmentation quality often only slightly lower than the manually annotated 
standard. Additionally, human studies were conducted to evaluate the similarity 
between the masks generated by SAM and those generated by humans. The 
results indicated a high degree of similarity between the two (Kirillov et al. 2023), 
demonstrating that SAM could effectively mimic human segmentation behavior. 

In the zero-sample transfer experiment, researchers utilized multiple downstream 
tasks, including edge detection, object proposal generation, instance 
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segmentation, and text-to-mask prediction. The results showed that, through the 
use of hints, SAM could be directly used to solve these tasks without any additional 
training (Kirillov et al. 2023). Furthermore, some exploratory experiments were 
conducted to assess SAM's representation learning capabilities. The results 
demonstrated that SAM's representation could be used for multiple purposes 
such as data annotation, dataset content understanding, and feature extraction 
for downstream tasks. 

Therefore, in this project, SAM could be applied to segment images captured by 
the camera, yielding masks of irregular graphics to be grabbed. Fig 3 compares 
the segmentation effects of the threshold segmentation method and the SAM 
model on irregular polygons in images under conditions of shadow. Fig 4 presents 
the masks obtained by applying SAM to segment the objects to be grabbed in the 
robotic arm simulation software, after removing the pure black background. It is 
evident that using this model can effectively eliminate the impact of illumination 
and background on image segmentation, and it demonstrates good transferability. 

 

Fig 3 Threshold Segmentation Method and SAM Applied to Objects with Uneven Illumination 

 

Fig 4 SAM Segmentation of Objects Against Complex Backgrounds. 

 

2.4 Object detection 

The history of object detection methods can be divided into three stages (Zou et 
al. 2023): traditional methods, machine learning-based methods, and deep 
learning-based methods; 1) Traditional methods: In the early days of computer 
vision, object detection mainly relied on hand-crafted feature extraction 
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algorithms and simple classifiers. Representatives of traditional methods include 
sliding window-based methods, region extraction-based methods, and 
segmentation-based methods. The advantages of traditional methods are their 
relative simplicity and lower computational complexity, but they tend to have 
lower accuracy and robustness; 2) Machine learning-based methods: With the 
development of machine learning technology, object detection methods began to 
employ machine learning algorithms for classification. These methods still use 
hand-crafted features, but the performance of classifiers has been significantly 
improved. Representatives of machine learning-based methods include Support 
Vector Machines (SVMs) and Random Forests. The advantages of these methods 
are their relatively higher accuracy and robustness, but feature extraction relies 
on manual design, and their generalization ability is limited; 3) Deep learning-
based methods: With the breakthroughs in deep learning technology, particularly 
the emergence of Convolutional Neural Networks (CNNs), object detection 
methods have undergone revolutionary changes. Deep learning-based methods 
can automatically learn high-level features of images, improving the accuracy and 
robustness of object detection; Representatives of this class of methods include 
the R-CNN series, YOLO series, and SSD. The advantages of deep learning methods 
are high accuracy and real-time performance, suitable for various complex 
scenarios, but they have higher computational complexity and require strong 
hardware support (Zou et al. 2023). 

In the following sections, this chapter will introduce the general principles and 
applica-tions of various object detection methods and select the most suitable 
object detection method for detecting irregular shapes. We will conduct a detailed 
comparison and analysis of these methods to provide an appropriate solution for 
the irregular panel detection task. 

2.4.1 Sliding window detection 

Sliding window is a conventional detection method in computer vision. The basic 
idea of sliding window is to slide a fixed-size window over the image and classify 
each sub-image within the window as object or non-object. The size of the window 
and the stride (the amount by which the window moves) can be adjusted to detect 
objects of different sizes. The advantage of sliding window is that it can detect 
objects at different scales and locations in an image. It is also a simple and intuitive 
method that can be easily implemented. However, it can be computationally 
expensive, especially when dealing with large images or searching for objects at 
multiple scales. To address this issue, researchers have developed various 
techniques to speed up sliding window detection, such as using feature pyramids 
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to reduce the number of windows to be evaluated, or using deep learning models 
to learn more efficient representations of images (Amit et al. 2020). 

Based on this approach, two typical and far-reaching methods have been invented. 
These two methods are the Histogram of Oriented Gradients (HOG) and the 
Deformable Part Model (DPM). The Histogram of Oriented Gradients (HOG) is a 
feature descriptor used for object detection in computer vision. It extracts 
features by calculating the gradient direction and magnitude of each pixel in the 
image and combines this information into a histogram (Dalal and Triggs 2005). 
HOG detectors use multiple scaling of the input image to detect objects of 
different sizes and have become an important foundation for many object 
detectors and computer vision applications. The HOG detector employs a sliding 
window to move through the image, calculating feature vectors at each position, 
and then using a classifier to classify the vector to determine whether an object is 
present (Dalal and Triggs 2005). 

The Deformable Part Model (DPM) is a traditional object detection method that 
uses deformable parts to describe an object's shape and appearance. DPM is 
considered one of the paradigms of traditional object detection methods. It 
represents an object as a collection composed of multiple parts and uses a 
Support Vector Machine (SVM) classifier to classify each part (Felzenszwalb et al. 
2008). It utilizes a sliding window to search for objects in the image and represents 
them as collections of multiple parts. DPM has been widely applied to various 
computer vision tasks, such as pedestrian detection and vehicle detection (Hsiao 
et al. 2009). 

2.4.2 CNN-Based detection 

Traditional object detection methods typically employ hand-crafted features to 
represent images, which are often a combination of low-level information such as 
edges, colors, and textures. However, this approach presents several issues, such 
as the tedious process of manual feature design requiring specialized knowledge 
and the difficulty in representing higher-level semantic information of objects 
(Yamashita et al. 2018). 

In contrast, object detection algorithms based on deep Convolutional Neural 
Networks (CNNs) possess superior feature representation capabilities. CNNs can 
automatically learn image features and better represent information such as the 
shape and texture of objects (Yamashita et al. 2018). Additionally, CNNs can 
extract higher-level semantic information through multi-level abstraction. Ross 
Girshick and colleagues proposed a simple and scalable detection algorithm 
(Girshick et al. 2014) that utilizes deep Convolutional Neural Networks (CNNs) to 
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extract image features and employs these features for object detection. 
Experimental results demonstrate that, on the PASCAL VOC 2012 dataset, this 
algorithm improves the mean Average Precision (mAP) by more than 30%, 
reaching 53.3%. Compared to previous best results, this algorithm exhibits higher 
detection accuracy and better scalability. 

Based on CNN, the RCNN (Regions with Convolutional Neural Networks method) 
was proposed to further improve detection accuracy. RCNN, a convolutional 
neural network-based object detection algorithm, is one of the first methods to 
apply deep learning to object detection. It mainly consists of two stages: candidate 
region generation and feature extraction and classification. In the candidate 
region generation stage, RCNN employs the Selective Search algorithm to 
generate candidate regions that may contain target objects. Selective Search is an 
image segmentation-based algorithm that can divide an image into multiple 
regions and merge them into candidate regions that may contain target objects 
based on the similarity between these regions. In the feature extraction and 
classification stage, RCNN uses a convolutional neural network (CNN) to extract 
features from each candidate region and classifies them using a support vector 
machine (SVM). Specifically, RCNN first scales each candidate region to a fixed size 
and extracts its features through a CNN model (such as AlexNet). Then, for each 
category, a binary SVM classifier is trained to determine whether the category is 
present in the current candidate region (Zou et al. 2023). 

Support Vector Machine (SVM) is a binary and multi-classification algorithm used 
to identify which category a data point belongs to among two categories. It is 
achieved by finding an optimal separating hyperplane that maximally disperses 
samples of the two categories. SVM implements classification by finding an 
optimal hyperplane in a given dataset. The hyperplane is a decision boundary that 
divides data points into two categories in some sense. SVM requires the decision 
boundary to be as far away from data points as possible, resulting in better 
classification performance. An important concept in support vector machines is 
the "support vector." Support vectors are data points with the shortest distance to 
the decision boundary. These points are used to determine the position of the 
decision boundary and are therefore referred to as anchor points of the decision 
boundary. SVM constructs the decision boundary by solving a convex optimization 
problem. This convex optimization problem requires finding a hyperplane that 
maximizes the distance between the decision boundary and support vectors. This 
is the core idea of support vector machines and the reason they are called 
"support vector machines" (Evgeniou and Pontil 2001). 

Jasper R. R. Uijlings and colleagues proposed an object detection algorithm called 
Selective Search (Uijlings et al. 2013a). This algorithm is an image segmentation-
based method that generates a large number of candidate regions potentially 
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containing target objects for subsequent feature extraction and classification. 
Specifically, Selective Search employs multiple complementary image 
segmentation strategies to generate candidate regions and combines these 
regions into hierarchical region sets. This method can capture various types of 
objects, including rigid, non-rigid, and amorphous objects. The advantage of the 
Selective Search algorithm is its ability to generate high-quality, data-driven, class-
independent target locations, and it can improve the performance of machine 
learning techniques and appearance models in object recognition by reducing the 
number of candidate locations. Moreover, Selective Search can be combined with 
powerful bag-of-words models to further enhance object recognition 
performance. Finally, the algorithm has been publicly released and widely applied 
in the computer vision field. 

RCNN performs well in detection accuracy, but it is relatively slow. Subsequently, 
algorithms such as Fast RCNN and Faster RCNN have improved upon it, achieving 
improvements in both speed and accuracy (Arulprakash and Aruldoss 2022). 

In practical applications, object detectors may encounter varying backgrounds, 
dataset discrepancies, insufficient generalization to new datasets, and threats 
from adversarial examples. This implies that when the object detector operates in 
a novel environment, it may fail to accurately recognize targets or generate false 
alarms. Moreover, adversarial examples may deceive the object detector by 
introducing subtle modifications to the images. Some object detection algorithms 
necessitate the use of region proposal methods, which could result in high 
computational costs and lengthy processing times. Region proposal methods are 
techniques for generating candidate object locations within an image. However, 
these methods require multiple iterations over the entire image, thus incurring 
high computational costs and extended processing times. Some algorithms 
struggle with the localization of small objects. Due to the limited number of pixels 
small objects occupy in an image, they are often challenging to accurately locate 
and identify. This is because many object detection algorithms rely on feature 
maps for object detection and may fail to generate sufficient feature maps for 
small objects. Certain algorithms require a sequential training framework for 
classification and bounding box regression, which may lead to extended training 
times. These algorithms necessitate classification and bounding box regression 
for each object, potentially consuming considerable computational resources and 
time. Additionally, since these algorithms employ sequential training, they may 
require longer training durations (Arulprakash and Aruldoss 2022). 

For irregular panel laying tasks, the dimensions and locations of each panel are 
given in advance. When there are no interfering factors in the background, after 
performing foreground segmentation, the foreground becomes the target of the 
robotic arm operation. Moreover, when detecting targets, if a neural network-
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based object detection method is adopted, a large dataset is required for training 
due to the diversity of panel materials.  

Irregular panels can be abstracted as irregular polygons, and the features of 
polygons, such as centroids and areas, can be extracted using conventional object 
detection methods with sufficient accuracy. Therefore, after segmenting the 
foreground, this project will use the blob analysis algorithm to extract the 
geometric features of the foreground. Then, by comparing the geometric features 
with the template (Template matching), we will determine the target of a single 
operation of the robotic arm. 

2.5 Template Matching 

Template matching finds wide application in the fields of image processing, 
computer vision, medical image analysis, and brain imaging. It is a classic and 
fundamental method used to evaluate the similarity between different objects or 
images. Template matching can be used in conjunction with other object 
recognition methods as a preprocessing or postprocessing step to enhance the 
accuracy of target detection and recognition. Template matching can be divided 
into region-based methods and feature-based methods (Hashemi et al. 2016). 

Region-based template matching methods are commonly referred to as 
correlation methods or template matching, originally developed by Fonseca et al 
(Fonseca and Manjunath 1996). This approach performs well when there are no 
strong features between the template and the image, as it directly operates on 
pixel values. The matching is measured by computing the intensity values of the 
image and the template. Matching scores are extracted using methods such as 
squared difference, correlation-based approaches, optimization techniques, and 
mutual information. In some template matching problems, direct matching of the 
template to the target image is not feasible. Region-based methods are suitable 
for images with no evident details but have distinct feature information, such as 
color/grayscale rather than shape/size (Fonseca and Manjunath 1996). 

On the other hand, feature-based methods are applicable in situations where 
matching is based on structural information rather than intensity information. 
Feature-based template matching methods are suitable for structural information 
matching rather than intensity-based matching. This approach typically employs 
feature detection algorithms to extract key points and descriptors from the image, 
which are then matched with key points and descriptors from the template. These 
descriptors can be extracted using algorithms such as SIFT(scale-Invariant Feature 
Transform) (Lowe 2004), SURF(Speeded Up Robust Features) (Herbert Bay et al. 
2008), ORB(Oriented FAST and Rotated BRIEF) (Rublee et al. 2011), etc. During the 
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matching process, distance metrics such as Euclidean distance, Hamming distance, 
etc., are commonly used to calculate similarity scores between two descriptors. 
Finally, by comparing all scores and selecting the highest scoring match, the best 
match is determined. Feature-based template matching methods perform well 
when dealing with images that have complex textures and shape variations, 
exhibiting higher robustness and accuracy (Hashemi et al. 2016). 

In this project, Hu moments is used as a feature of the object to compare with the 
template. Hu moments are seven moment invariants generated from the raw 
moments of an image, also known as Hu Moment Invariants. They were first 
proposed by Ming-Kuei Hu in his 1962 paper "Visual Pattern Recognition by 
Moment Invariants" (Hu 1962). These seven invariants remain constant with 
respect to image translation, scaling, and rotation, thereby possessing significant 
application value in the field of computer vision and image analysis. For instance, 
Hu moments are widely employed in image processing, with the most common 
applications being object recognition and image matching. In the context of object 
recognition, Hu moments can be used to identify specific objects within an image. 
For image matching, Hu moments are used to compare the similarity between two 
images (Yang et al. 2013). Hence, Hu Moment Invariants can represent the 
geometric information of a polygon, and then be utilized for matching the polygon 
with a template. 

Before delving further into Hu moments, it is crucial to first understand the 
concept of image moments. In a two-dimensional function, a moment is obtained 
by multiplying the pixel intensity with a specific function of pixel coordinates and 
then summing up the results. Image moments can be divided into zero-order 
moments, first-order moments, second-order moments, etc., based on their order. 
Specifically, the zero-order moment represents the total pixel intensity of the 
image, the first-order moment is related to the image's centroid, while the second-
order moments and higher are related to the shape of the image (Hu 1962). The 
seven invariants of Hu moments can be derived from Eqs. (3-9) (Yang et al. 2013): 

 
∅ଵ ൌ  𝜂ଶ଴ ൅  𝜂଴ଶ ൫3.൯ 

 
∅ଶ ൌ  ሺ𝜂ଶ଴  െ  𝜂଴ଶሻ² ൅  4𝜂ଵଵ

ଶ ൫4.൯ 
 

∅ଷ ൌ  ሺ𝜂ଷ଴  െ  3𝜂ଵଶሻ² ൅  ሺ𝜂ଶଵ  െ  3𝜂଴ଷሻ² ൫5.൯ 
 

∅ସ ൌ  ሺ𝜂ଷ଴  െ  𝜂ଵଶሻ² ൅  ሺ𝜂ଶଵ  െ  𝜂଴ଷሻ² ൫6.൯ 
 

∅ହ ൌ  ሺ𝜂ଷ଴  െ  3𝜂ଵଶሻሺ𝜂ଷ଴  െ  𝜂ଵଶሻሾሺ𝜂ଷ଴  ൅  𝜂ଵଶሻଶ െ  3ሺ𝜂ଶଵ  ൅  𝜂଴ଷሻଶሿ

 ൅ ሺ3𝜂ଶଵ  െ  𝜂଴ଷሻሺ𝜂ଶଵ  ൅  𝜂଴ଷሻሾ3ሺ𝜂ଷ଴  ൅  𝜂ଵଶሻ² െ  ሺ𝜂ଶଵ  ൅  𝜂଴ଷሻ²ሿ ൫7.൯
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∅଺ ൌ  ሺ𝜂ଶ଴  െ  𝜂଴ଶሻሾሺ𝜂ଷ଴  ൅  𝜂ଵଶሻଶ െ  ሺ𝜂ଶଵ  ൅  𝜂଴ଷሻଶሿ
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Among them, ηpq is the normalized version of the central moment, which is 

defined as follows: 
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Upq is the center distance. 

2.6 COMPUTER VISION LIBRARY 

Upon determining the appropriate object detection algorithm, the subsequent 
step involves developing computer vision applications. To develop efficient and 
reliable computer vision applications, it is crucial to comprehend mainstream 
computer vision libraries. Computer vision libraries consist of a series of pre-
written code modules that provide developers with various functionalities for 
image processing, object detection, and other machine vision tasks. By utilizing 
these libraries, developers can expedite the development process while ensuring 
code quality and stability. 

Numerous mainstream computer vision libraries currently exist in the market, 
including but not limited to OpenCV, VisionPro, TensorFlow, and PyTorch. These 
libraries offer a wealth of tools and functions, encompassing various aspects of 
the computer vision field, such as image processing, feature extraction, object 
detection, and tracking. 

2.6.1 OpenCV 

OpenCV is a computer vision library that provides various image processing 
functions, including image pre-processing, feature extraction, image analysis, and 
recognition (Bradski and Kaehler 2008). In the field of robotic arms, OpenCV's 
image processing functions can be used in various application scenarios to 
enhance the intelligence and operation efficiency of the robotic arms. For example, 
the pre-processing function of OpenCV can be used to pre-process image data to 
make it have better features, so that the control program of the robotic arm can 
more effectively identify targets (Pásztó and Hubinský 2010). 
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Upon completion of image pre-processing, the application of OpenCV for the 
recognition of irregular polygons, and subsequent guidance for robotic arm 
manipulation, becomes feasible. This process primarily leverages two 
functionalities offered by OpenCV, namely edge detection and polygon 
approximation. These two algorithms, which are foundational to the operation of 
OpenCV in this context, will be briefly outlined as follows: 

a) Edge detection is a technique in the field of image processing, aiming to identify 
the edges and contours in an image. The fundamental idea is to calculate the 
second derivative, or the gradient, of the image to pinpoint significant transitions 
within it. To be more specific, convolution is applied to the image, wherein the 
convolution kernel calculates the image gradient, yielding information regarding 
the direction of the image edges, gradient intensity, and the position of pixels on 
the edges. Subsequently, a threshold is selected based on gradient strength and 
direction to eliminate noise within the image that does not contribute to the edge 
information. Finally, the identification of the edges in the image is achieved 
through noise suppression. The Canny edge detection algorithm, a commonly 
used image processing approach, is proficient in extracting edge information from 
an image. The implementation process of this algorithm can be broadly divided 
into the following stages: Gaussian Smoothing: The image noise is eliminated 
using a Gaussian filter, smoothing the image. Gradient Calculation: The Sobel 
operator is applied to the image, resulting in the gradient magnitude and direction 
of the image. Non-Maximum Suppression: Redundant information in the gradient 
magnitude image is removed by performing non-maximum suppression. Double 
Thresholding: The gradient magnitude image undergoes processing based on two 
preset thresholds, retaining only the edges with higher intensity. Edge Linking: The 
edges with high intensity are linked, resulting in the final edge image (Bradski and 
Kaehler 2008). 

b) The polygon fitting algorithm in OpenCV is a method used to fit curves and 
contours in input images. Polygon fitting usually requires edge detection on the 
input image, with continuity constraints applied to eliminate irrelevant edges. 
There are many algorithms for polygon fitting, including RANSAC (random sample 
consensus), Hough transform, and bilinear interpolation. These algorithms have 
different principles and implementation processes but generally have some 
robustness that can adapt to noise and deformation in the image. In OpenCV, 
cv2.fitLine() function can be used to fit line segments in an image, 
cv2.approxPolyDP() function can be used to fit curves in an image, 
cv2.minEnclosingCircle() function can be used to fit circles in an image, etc. The 
usage and parameter configuration of these functions need adjustment based on 
specific tasks and image features. Through polygon fitting, we can obtain the 
geometric shape of target objects in the image which enables us to achieve tasks 
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such as positioning recognition segmentation etc. In robotic arm control systems, 
polygon fitting technology can be utilized for identifying object shapes and 
positions while determining end-effector position accordingly (Bradski and 
Kaehler 2008). 

2.6.2 VisionPro 

VisionPro is a machine vision software developed by Cognex. It aims to provide a 
simple and efficient way to solve various machine vision tasks. VisionPro provides 
a range of powerful tools and features, including image analysis, feature 
extraction, object recognition, detection and positioning, as well as support for 
various machine vision hardware devices. VisionPro uses an object-based 
development environment which allows users to quickly create and test complex 
visual detection programs through drag-and-drop configuration of visual tools. 
This enables developers to focus more on solving actual visual detection problems 
rather than writing low-level code. In addition, VisionPro also supports 
programming languages such as C# and VB.NET which allows users to develop 
custom visual solutions flexibly. Furthermore, VisionPro provides a series of 
professional vision libraries that include various specialized tools for processing 
different types of visual tasks such as PmAlign (Pattern Matching Alignment), Blob 
(region analysis or connected component analysis), 1D/2D barcode reading, color 
processing, machine learning etc. Additionally, VisionPro supports various 

common industrial camera interfaces including GigE、USB、CameraLink etc., 

making it easy to integrate with different types of visual hardware devices. The 
following will introduce the visionpro algorithms mainly used in the design 
workflow of this article: 

a) PMAlign 

PMAlign is a tool used for image alignment and positioning in Cognex VisionPro 
software, whose full name is Pattern Matching Alignment. It is based on Cognex's 
patented pattern matching technology, also known as PatMax. This technology 
can be used to find and locate specific patterns or features in an image, regardless 
of whether these features are difficult to recognize due to rotation, scaling or slight 
deformation. The core function of PMAlign is to locate objects in the image by 
comparing the current image with a predefined pattern (Pattern). This predefined 
pattern can be an image fragment or a model that describes a specific shape or 
feature. When PMAlign finds an area in the current image that matches the preset 
pattern, it can generate a result describing the position and direction of that area, 
which can be used for image alignment and positioning. PMAlign has strong 
robustness and can handle various changes in images including rotation, scaling, 
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deformation and lighting changes. This makes it very useful in many practical 
industrial applications such as machine vision inspection, automatic assembly and 
robot positioning. For example, PmAlign can be used to design a visual positioning 
system for placing machines, utilizing machine vision technology to achieve high-
speed and precise component placement (Wei and Jiao 2008). 

b) Blob Analysis 

The Blob (Binary Large OBjects) tool in VisionPro is a crucial module for image 
analysis and processing. It is a tool designed for handling and analyzing connected 
regions (referred to as "blobs" or "regions") in binary images. The Blob tool can 
extract individual connected regions from binary images and perform a variety of 
analyses and measurements on these regions. For instance, the Blob tool can 
calculate various geometric and shape features of each connected region, such as 
area, perimeter, centroid location, orientation, rectangularity, roundness, 
symmetry, and more. For example, in manufacturing, parts on the assembly line 
need to undergo visual inspection to ensure the accuracy of their shape and size. 
These parts have diverse shapes, indeterminate positions, and multiple parts may 
even appear in the field of view simultaneously. In this case, the Blob tool in 
VisionPro plays a vital role. Initially, by capturing and binarizing images from the 
assembly line, the Blob tool can identify and extract each connected region. 
Subsequently, the Blob tool computes geometric and shape features of each 
connected region, such as area, perimeter, centroid location, and orientation. 
Based on these features, we can infer the likely type of part that each connected 
region corresponds to. For example, features related to area and shape can assist 
us in determining whether the part is circular or rectangular, while the centroid 
location and orientation can help us ascertain the part's position and direction. As 
such, the Blob tool can enable automatic visual inspection of parts on the 
assembly line, thereby enhancing production efficiency and quality (Moeslund 
2012). 

Moreover, Cognex has entered into a collaboration with KUKA, a manufacturer of 
industrial robotic arms. The vision application used by KUKA robotic arms, known 
as VisionTech, is developed based on VisionPro. To enable the portability of tools 
to KUKA's robotic arm teach pendants, this paper will provide a detailed 
explanation of how to develop a program based on VisionPro for identifying and 
installing irregular roof panels. This program will leverage the precise control of 
KUKA robotic arms and the visual recognition capabilities of VisionPro to achieve 
automated installation of irregular roof panels. 
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3 Methodology 

Through preceding discussions, the preliminary design of the workflow can be 
outlined as follows: 

a) Initially, we affix the Cognex industrial camera at a predetermined position, 
establish a network setting, and connect it with the host computer. Throughout 
this process, it is critical to ensure the camera is installed securely and its field 
of view fully covers all possible working areas. In practical applications, issues 
such as disconnection of the camera or obstruction in its field of view might 
arise. If these situations occur, the program should issue error alerts, and 
operators should promptly inspect and restore the connection between the 
camera and the host computer while also ensuring an unobstructed view. 

b) Subsequently, we proceed with camera calibration to determine the 
coordinate transformation relations and the conversion relationship between 
pixel space and actual space. During this stage, the precision of calibration is 
paramount, as any discrepancy can directly impact the effectiveness of all 
subsequent steps. If calibration results are found to be inaccurate, 
recalibration is necessary until satisfactory outcomes are achieved. 

c) Next, we apply a dynamic soft thresholding or Segment Anything Model to pre-
process the captured image to segment the foreground. 

d) We then extract geometric features of the irregular target shapes from the pre-
processed image. Precise feature extraction algorithms are required in this 
step to prevent influencing the shape matching results in later stages. If 
feature extraction fails or yields inaccurate results, the image quality and 
feature extraction algorithms need to be examined and adjusted accordingly. 

e) Afterward, we read the vertices of template polygons from a CSV file and 
calculate the geometric features of irregular shapes in the template. This is 
because the CSV format, a simple text file format, can be readily opened and 
edited with various text editors and spreadsheet software, such as Microsoft 
Excel. This facilitates efficient management and reading of these files without 
requiring specific software or library support. If there are file errors, the 
program should issue alerts. 

f) Having completed the feature extraction, we traverse through the features of 
different target irregular shapes, comparing them with the geometric features 
of shapes in the template to identify the most compatible template. This 
process necessitates precise matching algorithms, or it may lead to erroneous 
matching outcomes. 
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g) Upon identifying a compatible template, we compute the centroids and the 
principal axis direction of the paired shapes. The results of this step are crucial 
as they directly influence the subsequent robotic arm movement. If there are 
errors in the calculation of the centroid or principal axis direction, a detailed 
examination of the computational process and parameters is required to 
ensure accuracy. 

h) We then calculate the translation and rotation angles of the target shape 
relative to the template. This step also demands precise computation, as any 
error could impact the performance of the robotic arm in terms of picking up 
and placing objects.  

i) Finally, based on the calculated translation and rotation angles, we control the 
robotic arm to execute precise pick-and-place movements. 

           

Fig 5 Preliminary design of the workflow 

3.1 Camera Calibration 

Given that the images captured by the camera are partitioned into small squares, 
each square referred to as a pixel. Each pixel has a unique coordinate, indicating 
its position in the image. On the other hand, the robotic arm's positioning uses 
actual coordinates. Therefore, it is necessary to calibrate the camera before 
undertaking vision-guided robotic arm movement tasks to establish the 
conversion relationship from pixel coordinates to actual coordinates, and to 
correct the camera's distortion. 

In this study, we employ Zhang's calibration method for camera calibration. In this 
method, we first capture multiple images using a calibration board with a known 
plane. Next, we detect the feature points on the calibration board in these images, 
acquiring the positional information of these feature points. Subsequently, an 
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enclosed form of solution is utilized to estimate the camera's five intrinsic 
parameters and all extrinsic parameters. This solution is based on the geometric 
constraints of the known planar calibration board and matches the feature points 
in multiple images to yield the camera's intrinsic and extrinsic parameters. To 
enhance the accuracy of parameter estimation, the algorithm further optimizes all 
parameters, including lens distortion parameters, by minimizing an error function. 
This error function is defined by comparing the disparity between the projection 
positions of feature points on the calibration board in different images and their 
positions in the real world (Zhang 2000). 

In VisionPro, camera calibration has been encapsulated into a tool block object 
called CogCalibCheckerboardTool. After completing the calibration steps in the 
graphical interface of the tool block, the image collected by the camera can be 
used as input. The tool block processes this input image and outputs an image 
that has corrected camera distortions, as well as a transformation matrix that 
converts pixel coordinates to real-world coordinates. 

During calibration, the calibration board is first placed within the camera's field of 
view. Then, within the tool block, the Calibration Mode is set to linear, and in the 
Calibration Plate, the size of each grid of the calibration board chessboard is set 
in "Tile Size X" and "Tile Size Y". After these settings are completed, clicking "Run" 
completes the camera calibration. 

 

Fig 6 The graphical interface of the CogCalibCheckerboardTool 
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3.2 Image Preprocessing 

In order to extract geometric information of irregular objects using an algorithm, 
it is necessary to pre-process the images captured by the camera. This includes 
binary image processing to separate the foreground and the background, 
reducing noise, emphasizing the geometric features such as the shape edges of 
the object, and simplifying image data. These steps make the Blob analysis more 
accurate. 

The primary component used in this project is the Blob tool from VisionPro, which 
is responsible for the analysis and extraction of geometric feature information 
from irregular figures. Within the Blob analysis tool of VisionPro, a preprocessing 
step using threshold segmentation is already included. The tool employs a 
threshold method to differentiate objects (foreground) from the rest of the image 
(background), converting pixels below the threshold into white (representing 
objects), and pixels above the threshold into black (representing the background). 
This generates a binary image that serves as the foundation for further Blob 
analysis to extract geometric characteristics of the object. The process entails 
several preprocessing steps, including: 
a) Image Cropping: The images are cropped to encompass the area of interest (in 

this case, the black background area). This procedure aids in diminishing 
irrelevant background information, thereby enhancing the precision of Blob 
analysis. 

b) Binarization: As Blob tools typically handle binary images, the input images 
need to be binarized. The selection of the threshold for binarization can 
significantly affect the outcome of Blob analysis. In this context, we employed 
the 'Hard Threshold (Dynamic)' method for image binarization. 

c) Morphological Operations: After the binary images have been processed, 
some morphological operations might be necessary. These operations, such 
as dilation, erosion, opening, and closing, can improve the shape 
characteristics of the image, allowing the Blob analysis to identify target 
objects more accurately. In this case, we used a filter to exclude noise by 
discarding spots with an area smaller than one hundred pixels. 
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Fig 7 Image Cropping in Blob Toolblock 

However, for scenarios with complex backgrounds and lighting, the built-in 
threshold segmentation method of the blob tool may not process the image 
accurately. In this case, the previously introduced Sagment Anything Model can be 
employed to preprocess the image under complex lighting and background 
conditions, separating the foreground and background to generate a mask image. 
This mask image can then be fed into VisionPro for further processing. The image 
below contrasts the foreground segmentation results of irregular objects in a 
complex background simulated by KUKA.simpro, using both Otsu's threshold 
segmentation method and the Sagment Anything Model. As can be observed, the 
Sagment Anything Model effectively distinguishes the foreground from the 
background in the case of irregular objects within complex backgrounds. 
 

   

 

Fig 8 Otsu's threshold segmentation and SAM Segmentation of Objects Against Complex Backgrounds. 

3.3 Irregular Objects Detection and Matching 
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After segmenting the foreground, interfering factors caused by illumination and 
background have been eliminated. The task now is to identify the objects to be 
grasped from the segmented images and assemble them according to the 
template. To accomplish this task, an algorithm needs to be selected to determine 
the suction point when the robotic arm grasps a single object with a suction cup, 
and place the object in the corresponding position in the template. 

In a 2D scenario, irregular building boards can be abstracted as polygons of 
varying shapes and sizes. Therefore, the recognition and matching of irregular 
objects fundamentally involve identifying polygonal sections from images 
captured by the camera, extracting feature information of these polygons, and 
comparing it with the feature information of polygons in the templates. Upon 
locating the matching target polygon, the translation and rotation from the actual 
polygon to the target one are calculated to guide the robotic arm for picking and 
placement.  

In the process of addressing this problem, three key issues need to be resolved: 

1. How to extract target polygon information such as boundaries and vertices. 

2. In the presence of multiple targets of different shapes, which algorithm should 
be used to match polygons and output the corresponding translation and rotation. 

3. How to convert the output translation and rotation into a data type that the 
robotic arm can utilize and write the corresponding robotic arm motion program. 

Given these three issues, this section first compares two target detection methods: 
Patmax and Blob Analysis, ultimately selecting Blob Analysis for the target 
detection task. Subsequently, it selects a shape matching algorithm based on Hu 
moments and develops the program.  

3.3.1 Irregular Objects Detection 

Following the discussions in section 2.1, this project adopts conventional 
Computer Vision (CV) techniques for irregular object detection tasks. In the realm 
of machine vision, there are principally two algorithms utilized for object detection: 
PatMax and Blob Analysis. The upcoming discussions will individually analyze 
these two methodologies, eventually leading to a selection between the two as per 
the task requirements for irregular object detection. 

a) PatMax 
Section 2.2.2 introduced the pmAlign tool in the VisionPro software package, 
the core algorithm of which is PatMax. PatMax is a sophisticated geometric 
pattern matching or object positioning technology launched by Cognex in 1997. 
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It was developed to resolve object localization issues in image processing, 
particularly demonstrating high robustness in scenarios requiring handling of 
perspective changes, partial occlusion of the object, or variable distance 
between the object and the camera (Connolly 2003). 
The core philosophy of the PatMax algorithm starkly contrasts traditional pixel-
based model matching techniques. Rather than directly comparing pixel 
correlation with pixels in the training model, it extracts a set of boundary 
curves from the training model as features and then searches for these similar 
shapes in the image under processing. By such means, even if the target object 
undergoes rotation, scaling, or partial occlusion, as long as its boundary curves 
are still captured by the camera, PatMax can successfully localize the object. 
Another notable characteristic of PatMax is its high precision. It can locate the 
direction of an object with an accuracy of 0.028 degrees (Connolly 2003).  
The process of using PatMax for image matching generally involves the 
following steps: 
1. Model Creation: First, an area is selected in the known reference image as 

a model. This model contains the main geometric features of the object, 
i.e., the features used for matching. 

2. Feature Extraction: PatMax extracts a set of boundary curves from the 
selected model as geometric features. These features not only contain the 
shape information of the object but also the texture or detail information 
of the object. 

3. Image Search: In the new image, PatMax uses the previously extracted 
features to search for objects similar to the model in the image. Because 
PatMax is based on geometric features, it can find objects in different 
directions and scales and can work effectively even when the object is 
partially occluded. 

4. Result Reporting: Once an object matching the model is found, PatMax will 
report the position, size, and direction of the found object. In multi-object 
recognition scenarios, PatMax will report the information of all matching 
objects. 

Therefore, if the PatMax algorithm is used as the algorithm for irregular target 
detection tasks, a reference image must be given in advance to extract features 
for detection. Therefore, PatMax can only perform single target detection. In 
this project, it is necessary to detect multiple targets with different shapes 
simultaneously, so PatMax may not be applicable. 
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Fig 9 Positioning with PMAlign's Pattern 

 
b) Blob Analysis 
Blob analysis is an image processing technique utilized for detecting and 
measuring "blobs" (or connected regions) within an image. Composed of a series 
of processing operations and analytic functions, it facilitates the extraction of 
information from any 2D shape present in the image (Pandit and Rangole 2014). 

The application of a Blob analysis algorithm typically commences with the 
calculation of adjustable lower and upper thresholds, which are then employed 
for segmenting objects from the background. This process often encompasses the 
computation of histogram information to identify suitable thresholds. The 
thresholding process is of utmost importance as it ensures appropriate distinction 
between regions of interest (blobs) and the background. 

Following the thresholding process, the Floodfill method is typically used to 
populate the object areas, marking or separating regions within the image. The 
Floodfill method is a seed-based region filling algorithm that starts from a seed 
point and spreads outward, marking all pixels connected to this point as the same 
region. In situations where there are distinct, separable blobs in the image post-
thresholding, this method proves particularly useful. The fundamental idea of 
Floodfill is to start from a seed pixel and progressively fill the connected region of 
this pixel with the same color or label (Nisha and Varshney 2017). 

Here are the basic steps of the Floodfill algorithm: 

1. Select a seed point: Firstly, select a point in the image as the seed point. This 
seed point is usually a point within the area where you wish to start filling. 

2. Set the target and replacement colors: Determine the target color you wish to 
fill (usually the color of the seed point) and the new color you want to fill with. 

3. Check the seed point: Examine if the color of the seed point is the target color. 
If it's not, end the algorithm as there is no area needing filling. If it is, change 
the color of the seed point to the replacement color. 
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4. Inspect the neighbors: Next, look at the four or eight neighborhoods of the 
seed point (different neighborhoods can be chosen based on the specific 
application) and apply the previous steps to each neighbor. In other words, for 
each neighbor, you will check if its color is the target color. If it is, change its 
color to the replacement color and consider this neighbor as the new seed 
point, applying the Floodfill algorithm recursively. 

5. Recursive filling: By recursively applying this process, you can fill the connected 
region of the seed point. This process will continue until no more pixels can be 
filled. 

After using the Floodfill algorithm to fill the target areas, the Blob analysis 
algorithm is used to detect and measure blobs. Blobs are regions composed of 
neighboring pixels with the same logical state (such as foreground or background). 
The Blob analysis algorithm can extract information about the blob's size, shape, 
location, etc. It assigns labels to each individual blob and calculates attributes such 
as area, centroid, bounding box, etc., providing important insights into the nature 
and location of the detected objects.  

For this project, Blob analysis has the following advantages compared to the 
PatMax algorithm: 

1. Multi-target detection: Blob analysis can simultaneously detect multiple 
targets in the image, while PatMax is typically used for the recognition and 
location of a single target. This makes Blob analysis more advantageous in 
scenarios requiring detection of multiple objects in an image. Therefore, for 
irregular shapes that differ from each other, the Blob analysis algorithm is 
more applicable for target detection. 

2. Computational efficiency: For processing large volumes of data, Blob analysis 
is usually faster than PatMax. This is because the computational complexity of 
Blob analysis typically increases linearly with the number of pixels, whereas 
the computational complexity of PatMax may increase exponentially as the 
search area enlarges. 

3. Shape insensitivity: Blob analysis does not depend on the specific shape of the 
target; as long as there is connectivity between pixels, it can recognize and 
measure. This enables it to handle objects of various shapes. Conversely, 
PatMax requires a pre-defined pattern, which may limit its ability to handle 
different shapes. 

4. measuring capabilities: Blob analysis can provide many measurements about 
the detected objects, such as area, perimeter, centroid, orientation, etc. These 
metrics are helpful for understanding the properties and location of objects, 
and can be used for matching with the shapes in the template. PatMax, on the 
other hand, primarily provides information about the object's location and 
orientation. 
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5. Flexible processing capability: Blob analysis can adjust methods like threshold 
processing and blob segmentation to adapt to various application scenarios. 
On the other hand, PatMax tends to rely on clear, high-contrast images, and 
might not handle low-quality or complex images ideally. Furthermore, in 
situations with complex backgrounds and lighting that cannot be handled by 
threshold segmentation, semantic segmentation models like "Segment 
Anything" can be used to preprocess the image, transforming it into a binary 
image containing only the foreground and background, after which Blob 
analysis can be performed. 

Therefore, this project employs the Blob tool in the VisionPro software package to 
implement multi-target detection and develops a secondary script in C# for the 
tool to output irregular shape information such as centroid and geometric 
moments for subsequent shape-matching tasks. Below are the steps for target 
detection using VisionPro's Blob tool: 

1. Load the image: The output image from the camera calibration tool block in 
section 3.1 is used as the input for the blob tool block. 

2. Set the threshold: To distinguish between the target and the background, you 
need to set one or more thresholds. The Blob tool will determine whether each 
pixel belongs to the target object based on whether the pixel value is within 
the threshold range. Typically, you can determine an appropriate threshold by 
observing the grayscale histogram of the image. 

3. Execute Blob analysis: Run the Blob tool for analysis. The Blob tool will identify 
all the connected regions (Blobs) in the image that meet the threshold 
conditions, and calculate a series of attributes for each region, such as area, 
centroid location, bounding box, etc. 

4. Filter and sort: Set a numerical value to filter blobs based on the connected 
area, eliminating noise caused by lighting or the background. In this case, you 
can set a filter condition so that the Blob tool only reports the Blobs that meet 
the conditions. Additionally, you can specify a sorting rule so that the reported 
Blobs are sorted according to attributes such as area, location, etc. 

5. Check the results: Finally, check the output results of the Blob tool to confirm 
whether the detected objects meet expectations. If the results are 
unsatisfactory, you can return to the previous steps, adjust parameters, and 
run the Blob tool again. 

Upon configuring the Blob tool, it can be incorporated into the program. The Blob 
tool facilitates the acquisition of the x and y coordinates of each pixel within the 
Blob in the image. By averaging these coordinates, we can obtain the centroid 
coordinates of the irregular object. Within the script, one can utilize the command 
'blobResults.GetBoundary()' to garner the boundary information of the irregular 
object. The acquired boundary corresponds to a CogPolygon object. By utilizing 
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'CogPolygon.CenterOfMassX' and 'CogPolygon.CenterOfMassY', we can ascertain 
the x and y coordinates of the irregular shape's centroid. 

 

Fig 10 Extraction of Geometric Features of an Object using the Blob Tool 

 

3.3.2 Template Matching 

Following the acquisition of geometric information for each polygon in the image 
through blob analysis, it is necessary to utilize this information to perform 
matching with the polygons within the template. Consequently, the translation 
and rotation required for the polygons to move to the target position specified by 
the template can be computed, which guides the robotic arm for grasping and 
placement tasks. For the task of template matching, two algorithms are employed. 
The first one is based on polygon fitting and properties of the polygon including 
vertex angles and side lengths. The second algorithm operates on the principles 
of Hu Moment Invariants, as introduced in Section 2.5. 

a) Polygon Matching Algorithm Basedon Edge Lengths and Angles 
Irregular shapes can be abstracted into individual polygons, with the 
fundamental characteristics of a polygon being its vertices, edge lengths, and 
interior angles. It is widely recognized that given the interior angles at each 
vertex and the lengths of each side, a polygon can be uniquely determined. 
Therefore, theoretically, an algorithm can be designed to calculate the interior 
angles at each vertex and the corresponding side lengths using the 
coordinates of the polygon vertices. Then, by comparing these with the 
polygons in the template, it is possible to compute the translation and rotation 
necessary to move the polygons to the target positions specified in the 
template. 

This algorithm can be broken down into three general steps: 

1. Use the set of all pixel points that constitute the polygon boundary 
provided by blob analysis to fit the polygon and obtain the coordinates of 
the polygon vertices. 
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2. Compare the vertex information of the polygon with the vertex information 
of each polygon provided by the template, and obtain a one-to-one 
correspondence of vertices for matching polygons. 

3. Calculate the translation and rotation of the polygons in the image to the 
target positions using the corresponding vertices. 

For the first task, the cv2.approxPolyDP() method from OpenCV can be used to 
extract the vertex coordinates from the large set of points describing the edges 
of the polygon. cv2.approxPolyDP() is a function in OpenCV that is used to 
approximate contours. It takes two parameters: the contour itself, and the 
approximation accuracy. The latter represents the ratio of the approximation 
accuracy to the original contour's perimeter. This value typically lies between 
1-5% (Poda and Qirici 2018). The function returns a set of points approximating 
the polygon, which can be used in applications for shape detection and 
classification. Furthermore, this algorithm is based on the assumption that 
curves can be approximated by a series of short line segments, and the 
resulting approximate curve is composed of a subset of points defined by the 
original curve. This operator is developed based on the Ramer-Douglas-
Peucker algorithm, a method widely used in computer graphics and 
computational geometry to reduce the number of points in a curve 
approximated by a series of points (Douglas and Peucker 1973). This is known 
as curve simplification or line simplification. The aim of the algorithm is to find 
a similar curve with fewer points. The algorithm cannot guarantee that the 
simplified curve is the best approximation, but it provides a trade-off between 
simplicity and proximity to the original curve. 

 

 

Fig 11 Ramer-Douglas-Peucker algorithm flow chart 

The detailed steps of the Ramer-Douglas-Peucker algorithm are as follows: 

1. Begin with a curve: The algorithm takes a curve composed of continuous 
points connected by line segments and a tolerance value ε as input. 
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2. Mark the endpoints: Mark the first and last points of the curve as 
"important" and consider all other points as "unimportant". 

3. Find the point furthest from the line segment: For each line segment drawn 
between every pair of "important" points, consider all "unimportant" points 
between them. Find the point that is the furthest from the line segment. 

4. Check the relationship between the point furthest from the line segment 
and the tolerance: If the distance from the point furthest from the line 
segment to the line segment is greater than ε, mark this point as 
"important". 

5. Repeat this process: Repeat steps 3 and 4 for the line segments generated 
by the points newly marked as "important". 

6. End when no more points can be marked: Repeat this process until no 
additional points can be marked as "important". 

The result of the algorithm is a simplified version of the original curve, 
containing only the "important" points. This algorithm is particularly useful in 
Geographic Information Systems (GIS), computer graphics, and data 
compression, as it helps to reduce the amount of data required to represent a 
curve without significantly compromising the quality of the representation. 
Therefore, the edge point set of the polygon obtained by blob analysis can be 
used as input for cv2.approxPolyDP() to obtain the vertex coordinates of the 
polygon for subsequent matching. 

Upon obtaining the vertex information of the polygons in the pixel image using 
cv2.approxPolyDP(), it is necessary to perform template matching based on the 
coordinates of the vertices of the polygons. As the polygons in the template 
are also given by vertex coordinates, a preliminary selection can be carried out 
first by comparing the number of vertices. The polygons in the template that 
have the same number of vertices as the polygons in the camera image are 
selected in this first round of screening. Subsequently, the lengths of the sides 
for all polygons are calculated and arranged in ascending order. The ascending 
sequence of side lengths of the target polygon is compared with the side 
lengths of the polygons obtained from the first round of screening. If the 
difference in all side lengths is smaller than a predetermined threshold, it is 
recognized that the target polygon matches the respective polygon in the 
template. This process is repeated until all polygons are paired with polygons 
in the template. 

For two paired polygons, it is also necessary to calculate the rotation angle and 
translation of the target polygon to the position of the corresponding paired 
polygon in the template. The translation can be determined by the vector 
formed by the centroids of the two polygons, while the rotation angle needs 
to be calculated by first determining the corresponding relationship between 
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the vertices of the two paired polygons and then calculating the angle between 
a pair of side lengths.  

However, this method has certain limitations. The number of fitted polygon 
vertices obtained when using the cv2.approxPolyDP() function to fit the 
polygon may vary from the original polygon due to the influence of lighting or 
background, which can affect the matching of the polygon with the template. 
Therefore, there is a need for a matching method that does not rely on polygon 
side lengths and vertices. As a result, the matching algorithm based on Hu 
moments is introduced. 

b) Polygon Matching Algorithm Based on Hu Moment Invariant 
Hu moments are seven moment invariants generated from the raw moments 
of an image, also known as Hu Moment Invariants. They were first proposed 
by Ming-Kuei Hu in his 1962 paper "Visual Pattern Recognition by Moment 
Invariants" (Hu 1962). These seven invariants remain constant with respect to 
image translation, scaling, and rotation, thereby possessing significant 
application value in the field of computer vision and image analysis. For 
instance, Hu moments are widely employed in image processing, with the 
most common applications being object recognition and image matching. In 
the context of object recognition, Hu moments can be used to identify specific 
objects within an image. For image matching, Hu moments are used to 
compare the similarity between two images (Yang et al. 2013). Hence, Hu 
Moment Invariants can represent the geometric information of a polygon, and 
then be utilized for matching the polygon with a template. 
According to eq.3-10, the polygon matching steps based on the Hu moment 
invariant are as follows: 
1. Obtain the geometric moments of the objects: Using blob analysis, the raw 

moments (mpq) are calculated. Blob analysis helps us to identify distinct 
regions in an image that are separated by a background. 

2. Obtain the geometric moments of the templates: Creating a list of polygons 
with the verticies read form the template file and calculate the geometric 
moments of them. 

3. Compute the centroid of the objects and templates: The centroid (x', y') is 
calculated using the raw moments. Typically, this would be done using the 
equations: x' = m10/m00 and y' = m01/m00, where m00 is the zeroth moment 
(essentially, the total mass of the blob), m10 is the sum of the x coordinates 
of all pixels, and m01 is the sum of the y coordinates. 

4. Compute the central moments of the objects and templates: The central 
moments (Upq) are computed using the raw moments and the centroid of 
the image. The central moments are translation invariant, i.e., they don't 
change if the image is moved around in space. 
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5. Compute scale invariant moments of the objects and templates: These are 
also known as normalized central moments (ηpq), and are calculated from 
the central moments. The scale invariant moments don't change if the 
object in the image is scaled up or down. 

6. Compute the seven Hu moments of the objects and templates: Finally, the 
seven Hu moments are computed from the scale invariant moments with 
Eqs.(3-10). The Hu moments are invariant to translation, scale, and rotation. 

7. Select a polygon in the image and calculate the Euclidean distance between 
its Hu moment and the Hu moments of polygons in the template. The one 
with the smallest distance is considered as the matching polygon in the 
template.  

8. Repeat step 7 until all polygons are matched. 
This methodology does not necessitate the approximation of the polygon, 
thereby eliminating matching errors caused by inaccurate fitting. Furthermore, 
according to the logic of this approach, it is only required to identify the 
polygon in the template that has the shortest Euclidean distance to the Hu 
moments of the target polygon. 

Within the software environment of VisionPro, I developed a tool block called 
"ReadTemplate" which was specifically designed to read CSV files to provide 
templates.  

This tool block uses the CSV file path as its input and reads the UTF-8 encoded CSV 
file located at the specified path. It iterates through each line of the CSV file, with 
each line representing a polygon. The polygon coordinates are read in an "x-y-x-
y..." sequence, storing vertex coordinates in two separate lists that respectively 
hold the x and y coordinates of the vertices in an ordered fashion. After 
completing the read for each line, a new CogPolygon object is created using the 
lists containing the vertex coordinates. 
The CogPolygon, a construct within the VisionPro software environment, 
represents polygons and describes planar figures constituted by a closed chain or 
polygonal loop formed by a finite number of line segments. This process is 
repeated until all lines in the CSV file have been read. Ultimately, these CogPolygon 
objects are stored in the 'TemplatePolygons' list for output. 
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Fig 12 ReadTemplate.vpp 

 

 

Upon completing the template reading, it becomes necessary to extract graphical 
information from the images collected by the camera. By employing the method 
'blobResults.GetBoundary()', we sequentially acquire the edges of each irregular 
shape in the image, with the edges presented in the form of CogPolygon objects. 
Subsequently, the function 'ShapeMatcher(List<Cogpolygon>, Cogpolygon)' is 
invoked, taking as input the list of CogPolygons output from 'ReadTemplate.vpp' 
and the edge of an individual blob. Through the method of Hu Moment Invariants 
Matching, it identifies the polygon from the list that is most similar to the edge 
shape of the blob and outputs its index in the list. 

The centroid coordinates and primary axis angle of both this blob edge shape and 
the polygon in the template that is most similar to it are then calculated using 
'CogPolygon.CenterOfMassX', 'CogPolygon.CenterOfMassY', and 
'CogPolygon.Angle' respectively. 

The 'ShapeMatcher(List<Cogpolygon>, Cogpolygon)' function iterates through the 
input list of CogPolygons. In each iteration, it calculates geometric moments using 
the 'CogPolygon.AreaMoments2' method, then computes the central moments of 
the polygon. Thereafter, it calculates the normalized central moments based on 
these central moments. Following this, it calculates Hu moments using these 
normalized central moments, and then computes the Euclidean distance between 
the Hu moments of the two polygons. 

If this Euclidean distance happens to be the current minimum value, it temporarily 
saves the polygon from the list as the template polygon that most closely 
resembles the shape of the blob's edge. After completing the iteration through the 
list, it thus retrieves the polygon from the list that most closely approximates the 
shape of the blob's edge. 
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Fig 13 Flowchart of Template Matching Based on Hu Moment Invariants 

Following the acquisition of the corresponding centroid coordinates and primary 
axis angles, these data must be transformed into 'VisionTechResult2D' objects. In 
order to achieve this goal, a 'CogTransform2DLinear' object is initially created. This 
object typifies a 2D geometric transformation and encapsulates affine 
transformations that can be applied to points, regions, and other geometric 
objects within the VisionPro environment. 

Subsequently, the previously obtained centroid coordinates and primary axis 
direction are respectively assigned to the 'TranslationX', 'TranslationY', and 
'Rotation' properties of this 'CogTransform2DLinear' object. This assignment 
enables the robotic arm to utilize these data to move to the corresponding 
position. 

 

Fig 14 Flowchart of the AutoSlabAlign.vpp Toolblock 
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The calibration tool, blob tool, and the template reading tool are combined, and 
then the script is used to implement the template matching of the results obtained 
by the blob tool through the above process, and output VisionTechResult2D, which 
is the final tool block AutoSlabAlign.vpp. Install this tool block on the Smartpad of 
the KUKA robot arm to guide the robot arm visually to recognize and assemble 
irregular objects. 

 

Fig 15 Architecture of the AutoSlabAlign.vpp Tool Block 

 

Based on the background study, the project aims to monitor the window 
construction progress of a building at the university, i.e., Beyer-Bau as presented 
in Fig. 4, using YOLO as the object detection algorithm. By employing YOLO for this 
task, high accuracy and real-time performance can be achieved, which is critical 
for effective monitoring of the window building progress. In the subsequent 
sections, a detailed description of the specific targets, methodology, outcomes, 
and evaluations of the project will be provided. 

4 Validation of Workflow Rationality 

In this chapter, we will provide an illustrative example of a program which is 
capable of recognizing and grasping irregular objects in a two-dimensional 
environment and subsequently arranging them according to a predefined 
template. This use case is grounded on the development within the Cognex 
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VisionPro platform, representing a significant application of machine vision in 
practical production scenarios. Through in-depth understanding and 
implementation of this specific application, we not only experience the robust 
capabilities of the VisionPro platform in the realm of machine vision but also gain 
profound insights into the challenges and solutions pertaining to the grasping and 
assembly of irregularly shaped objects. Crucially, through this hands-on 
application, we observe the concrete manifestation of theoretical principles and 
algorithms in real-world scenarios, enabling us to further comprehend their value, 
significance, and to validate the effectiveness of our code. 

This chapter is structured into two key sections: simulation and experimentation. 
In the simulation section, we will initially introduce the simulated environment—
KUKA's SimPro, followed by a detailed explanation of the robotic arm model 
employed. Subsequently, we will elaborate on the process of constructing models 
of irregular objects and positioning the camera within the simulated environment. 
Furthermore, we will discuss the placement of the calibration board within the 
simulation and the subsequent camera calibration process. Lastly, we will detail 
the simulation of the robotic arm's motion program and present the resultant 
outcomes. 

In the experimental section, we will firstly delineate the experimental 
environment—KUKA Educate Ready2, and provide a comprehensive explanation 
of the camera calibration process implemented therein. Following this, we will 
describe how to install the tool blocks developed by us, and detail the 
programming process for the vision-guided motion program of the robotic arm, 
which will utilize KUKA's Robotic Language (KRL). Finally, we will showcase the 
results of the experiment. 

4.1 Design of workflow 

According to our previous discussion, to implement the identification and 
grabbing of irregular objects in two dimensions, the workflow can be designed as 
follows: 

a) Image preprocessing: First, preprocess the captured image. The goal of 
preprocessing is to clean up the image, reduce noise, enhance the object edges, 
simplify data, and finally distinguish the foreground and background. You can 
use the Sagment Anything Model to preprocess images with complex lighting 
and backgrounds, segment the foreground and background to get a mask 
image, then pass the mask image to visionpro for further processing. If the 
background and lighting are controllable, such as using uniform lighting and a 
pure black background, threshold segmentation can be used for image 
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preprocessing. 

b) Hand-eye calibration and camera calibration: If the relationship between the 
camera coordinate system and the robot arm base coordinate system is 
known, perform the robot arm hand-eye calibration first, then use 
checkerboard calibration to calibrate the camera to get the conversion 
relationship between pixel coordinates and actual coordinates, and correct the 
camera distortion. The corrected image serves as the input for subsequent 
steps. 

c) Blob analysis: Next, use the Blob tool to analyze the preprocessed image to get 
the geometric characteristics of the blob, such as edge centroid and major axis. 
Calculate the geometric moment of the irregular object based on these data 
as the input for the subsequent Hu Moment Invariant matching step. 

d) Template reading: The tool block reads the vertex information of the template 
polygon from the csv file and calculates the Hu moment of the irregular object 
as the input for the subsequent Hu Moment Invariant matching step. 

e) Template matching: Match the template based on the analyzed geometric 
characteristics to determine the placement of the object. Use the Blob tool to 
calculate the Hu Moment Invariant of each irregular shape, which consists of 
seven components. Then take an irregular shape and calculate the Euclidean 
distance between its Hu moment and all template polygons. The template 
polygon with the smallest distance is the placement for this irregular shape. 
Repeat these steps until all irregular shapes have been matched. 

f) Output of VisionTechResult2D object: After the matching is complete, calculate 
the centroid and major axis of each irregular shape and its matched template 
polygon in turn as the coordinates and direction for the robot arm to grab and 
place. After the calculation is complete, use these coordinates and directions 
to construct the VisionTechResult2D object, which is used to guide the 
movement and grabbing of the KUKA robot arm. 

g) Vision-guided robot arm: The robot arm grabs and places according to the 
obtained coordinates and directions, using point-to-point, linear and other 
movement methods to assemble irregular objects according to the template. 

This workflow automates various steps of vision guidance, including image 
preprocessing, camera calibration, Blob analysis, template matching, etc., 
reducing the complexity of operation. In addition, each step is encapsulated into 
an independent module, and each module can be independently updated and 
upgraded, making it easy to maintain and upgrade. The subsequent chapters will 
validate the rationality of this workflow through simulation and experiment. 
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4.2 Simulation 

In the upcoming section on simulation, we will take a deep dive into the simulation 
environment utilized for this study, namely, the KUKA SimPro software. The 
selection of this particular software will be elaborated in detail, showcasing its 
superior compatibility with the KUKA series of robots, in comparison to other 
simulation software options. We will present a comprehensive understanding of 
the software’s features, focusing on the process of image acquisition including the 
location and resolution of the images. We will also delve into how camera 
calibration is conducted within this software, translating pixel coordinates into 
actual spatial coordinates. Additionally, we will elucidate the programming 
commands used in KUKA SimPro such as Point-To-Point (PTP) and Linear (LIN) 
movements and how the robotic arm's motion program is developed. The section 
will culminate in the presentation of our simulation results. 

4.2.1 Simulation Environment 

In the realm of robotics simulation software, KUKA SimPro emerges as a robust, 
versatile, and user-friendly platform. It serves as an integral part of this study 
owing to its unique attributes that align well with the demands of our research. 
KUKA SimPro, developed by KUKA, a renowned manufacturer of industrial robots 
and solutions for factory automation, is a specialized software that facilitates the 
simulation and offline programming of KUKA robot systems. This enables us to 
virtually design and verify the robotic system and processes before deploying it in 
the real world. 

A primary advantage of using KUKA SimPro lies in its excellent compatibility with 
the KUKA series of robots. It supports a wide range of KUKA robots, making it an 
ideal platform for our study. This exceptional adaptability significantly simplifies 
the integration of various robot models into the simulation environment, thereby 
improving the overall efficiency of the design process. 

The true strength of KUKA SimPro is its ability to generate real robot programs 
directly from the simulation. Once the robot’s movements and tasks are simulated 
and verified in the software, the program can be exported and run on the actual 
robot controller without the need for any further modifications. This feature not 
only accelerates the development cycle but also minimizes the risk of errors 
during the transition from the simulation to the actual execution. 

Another noteworthy feature of KUKA SimPro is the ease of use. Its intuitive 
interface allows even novice users to quickly grasp the basic operations and start 
developing simulations. The software also includes advanced features for more 
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experienced users, offering a well-rounded tool for developing sophisticated 
robot simulations. 

Through its blend of compatibility, functionality, and user-friendliness, KUKA 
SimPro provides us with a practical and efficient platform for developing and 
testing our robot programming. The ability to design, simulate, and validate 
robotic applications within a single software environment streamlines our 
research process, contributing to the thoroughness and accuracy of our results. 
Based on the aforementioned discussions, this project will be carried out in KUKA 
simpro 3.1.2. 

4.2.2 Models 

In the simulation of this project, the model used is KUKA Ready2EducateKR3. 
This model includes a KR 3 R540 robotic arm, along with a corresponding 
workstation and background panel. The assembly location is consistent with the 
equipment used in the experiments. The robotic arm's gripper has been 
replaced with a suction cup, as shown in Fig 12. 

 

Fig 16 Kuka Educate Ready2 Model（KUKA sim pro） 

 

For the irregular objects, each is modeled as a rectangle with distinct lengths of 
sides. This is done to better set and demonstrate the major axis direction of the 
polygons within the software. The model contains five irregular objects, which 
are placed on a pure black background. The dimensions of these irregular 
objects are as shown in the table below: 
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Fig 17 Irregular shapes used in Simulation (KUKA sim pro) 

These irregular objects can be assembled into a rectangle measuring 
163mm88mm10mm, as shown in the figure. 

 

Fig 18  Irregular shapes used in Simulation after Assembling (KUKA sim pro) 

4.2.3 Calibration 

Model number Length(mm) Width(mm) Height(mm) 
1 88 50 10 
2 50 38 10 
3 50 50 10 
4 88 25 10 



  52 

Following the placement of the irregular objects, we need to calibrate the 
simulated camera. This process is identical to real-world camera calibration. The 
camera is positioned directly above the background panel, and every image 
capture is a top view of the panel with a resolution of 1116*632. 

After obtaining the top view images via the simulated camera, we employ a 
calibration plate for calibration, converting pixel coordinates into real-world 
coordinates. This step uses the Calibration tool block provided by VisionPro, which 
allows the use of a chessboard calibration plate to calibrate the camera. This tool 
block plays a key role in transforming images based on pixel coordinates into 
actual dimensions. Once the camera is correctly calibrated, the tool block can 
parse input from the pixel image and produce the corresponding real-world 
dimensions. The calibration process is not only crucial for accurate object 
recognition and measurement but also helps to minimize distortion and provide 
a clear and actual view of the objects to be recognized or assembled. 

The calibration plate used in this simulation is shown in Figure 1. The origin of the 
pixel coordinates and the directions of the x and y axes are shown in Fig15, and 
the origin and directions of the x and y axes after calibration are shown in Figure 
16. 

 

Fig 19 

   

Fig 20 
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4.2.4 Signal simulation 

In the KUKA Sim Pro simulation environment, we can simulate I/O signals by 
creating and configuring "Signal" objects. This mode of simulation allows us to 
simulate and test interactions between the robot arm and peripheral devices 
without actual hardware, providing theoretical support for applications in real 
environments. 

KUKA Sim Pro offers a series of predefined signal types, including digital input 
signals, digital output signals, analog input signals, and analog output signals, etc. 
These signal types can meet various application scenarios. For example, when 
executing some logical judgments or device switch controls, we can choose to use 
digital input and output signals. When we need to simulate sensor or actuator 
values, we can opt for analog input and output signals. 

In this project, our primary focus is on the simulation of digital signals. This is 
because we need to control the suction cup's gripping and releasing via signals. 
The specific operation process is as follows: when the robot arm moves to the 
pickup or placement location, we use the '$out' command to output a digital signal. 
This signal will be sent to the suction cup's controller to control the action of the 
suction cup based on the signal's state. When the signal is 'true', the suction cup 
is triggered to grip the object; when the signal is 'false', the suction cup is triggered 
to release the object. 

In this way, we can simulate and control the suction cup's action by controlling the 
state of the digital signal, achieving the gripping and placing of irregular objects in 
the simulation environment.  

 

Fig 21 The gripper used in the simulation (KUKA sim pro) 
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Fig 22 Signal connection between the robotic arm and the gripper (KUKA sim pro) 

 

 

 

 

 

4.2.5 Application of the Custom Tool Block 

After adding the Calibration tool block into the custom tool block, it is necessary 
to place the template file containing the vertex coordinates of each irregular object 
after assembly in the specified path of the tool block. Subsequently, images can 
be imported to start processing images collected in the simulation software, 
obtaining the centroid coordinates and main axis angles of each irregular object 
before and after assembly. The results after processing by the custom tool block 
'AutoSlabAlign' are shown in Fig 17, where the edges and centroids of the irregular 
objects are marked in green. Fig 17 shows the result of the program execution, 
which is output in KUKA Vision2D format. Here, X, Y, and A represent the position 
and angle of the origin of the tool coordinates for a particular pick or place pose 
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of the robot arm, respectively. The data is output in pairs in sequence, 
representing the pick and place positions respectively. 

 

Fig 23 The results after processing by the custom tool block AutoSlabAlign 

 

After obtaining the grasping and placing posture of the manipulator, the tool block 
can save the posture information into a csv file, and then read these data into 
KUKA simpro through the KUKAsimproAPI plug-in and convert it into PTP, LIN of 
the manipulator Wait for the movement command. 

KUKA's SimPro uses KRL (KUKA Robot Language), a proprietary, high-level 
language developed specifically for programming KUKA robots. Two critical 
commands used frequently in KRL are PTP (Point-to-Point) and LIN (Linear). PTP - 
Point to Point movement: The PTP command moves the robot arm from one point 
to another in space. The robot will take the shortest path to the destination, but 
the path taken between the two points is not defined, and the orientation of the 
end-effector can also change during the movement. This kind of movement is 
usually used when the path between two points is unobstructed and the precise 
path taken by the robot arm is not important. LIN - Linear movement: The LIN 
command instructs the robot to move in a straight line from its current position 
to a specified point. Unlike the PTP command, LIN ensures a linear path and a 
constant orientation of the end-effector during the entire motion. This command 
is typically used when there is a need for a precise path, such as in painting or 
welding applications. In KUKA SimPro, these commands can be used to program 
complex robot arm movements, and are often critical to the success of the task. 
By simulating these movements beforehand, the user can ensure safe and 
efficient operations. 

The custom plugin reads the grabbing and placing pose information from a CSV 
file and then adds a PTP command at a certain height directly above this position. 
Subsequently, the arm moves to this position using a LIN command before 
executing the grab or placement. After importing the file, the motion commands 
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for the robotic arm are shown in Fig 18, and Fig 19 shows the process of assembly 
executed by the robotic arm based on the commands. 

 

Fig 24 The Process of Assembly Executed by the Robotic Arm Based on the Commands 

It can be seen from the simulation that the robotic arm can better recognize the 
irregular graphics in the image and automatically complete the assembly 
according to the template. Fig 20 shows the effect of the assembled robotic arm 
in KUKAsimpro. 

 

Fig 25 The Result of Assembly Executed by the Robotic Arm Based on the Commands 

4.3 Experiment 
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In the forthcoming section on experimental application, we will delve into the 
application of our developed algorithm on a real-world robotic system, the KUKA 
educate ready2. This robotic system, designed for educational purposes, provides 
an authentic experience of industrial-grade automation processes, and it is crucial 
for our study to test our developed solutions in such a realistic environment. 

This chapter will commence by providing a comprehensive understanding of the 
KUKA educate ready2 system. We will explore its various components, 
functionalities, and their significance in the context of our application. Further, we 
will elucidate on how our developed solution is integrated into the teach pendant 
of the system. This step is crucial as it transforms our theoretical and simulated 
concepts into a tangible operation, underlining the practical relevance of our 
study. 

Next, we will illustrate the calibration process in a real-world setup, which might 
encompass certain challenges not encountered in the simulated environment. 
Calibration is an essential step to ensure the accuracy and reliability of our vision-
guided robotic operation. We will provide an in-depth understanding of this 
process, focusing on its methodologies, techniques, and relevance. 

Following calibration, we will expound on the programming of the vision-guided 
robotic arm movement. We will elaborate on the various instructions, commands 
required to successfully implement this motion control.  

4.3.1 Experiment environment 

The experiments for this project were conducted on the KUKA Educate Ready2 (as 
shown in Fig 21), a compact, industrial-grade robotic system designed specifically 
for educational and research applications. Its objective is to provide users with 
hands-on experience of real-world automation and robotics technology, bridging 
the gap between theoretical knowledge and practical application. It consists of a 
compact, lightweight yet powerful KR 3 R540 robotic arm (as shown in Fig 22) and 
a mobile teaching table equipped with the robot arm and relevant control 
hardware. The KR 3 R540, a compact six-axis robot, is particularly suitable for small 
working spaces, with a maximum working radius of 541mm and a maximum 
payload capacity of 3kg. Its precision of approximately ±0.02mm makes it an 
excellent tool for tasks that require high precision. The KUKA Educate Ready2 is 
powered by the KUKA KR C4 compact controller, a comprehensive controller 
solution tailored for its bundled KR 3 R540 robotic arm. Researchers control the 
robotic arm via the KUKA smartPAD-2 (as shown in Fig 23). 
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Fig 26 KUKA Educate Ready2 (https://www.kuka.com/) 

 

Fig 27 KR 3 R540 robotic arm (https://www.kuka.com/) 

For our specific project, we have opted for the VCXG-25M industrial camera due 
to the following justifications (Baumer_VCXG-25M_EN_20221110_DS): 

a) High resolution and frame rate: The VCXG-25M provides a high resolution of 
1920*1200 pixels and a frame rate of 40 frames per second, enabling us to 
capture clear, detailed images and process them in real-time. 

b) Stability and reliability: The VCXG-25M is specifically designed for industrial 
applications and can operate reliably under diverse, harsh environmental 
conditions typically found at construction sites. 

c) Advanced features: This camera model offers advanced features like hardware 
triggering and image preprocessing, enhancing control over the image capture 
process and improving image processing efficiency. 

d) Appropriate interface: The VCXG-25M utilizes the GigE Vision interface, which 
ensures high-speed, stable data transmission, and offers advanced features 
such as synchronization and triggering. 
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e) Flexibility and adaptability: Importantly, the applications developed for the 
VCXG-25M, thanks to its standardized GigE Vision interface, can be readily 
adapted for use with other industrial-grade cameras having the same interface. 
This flexibility and compatibility make it a more versatile choice, adding 
another layer of justification for selecting this specific model. 

 

Fig 28 VCXG-25M industrial camera 
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Due to the fact that the gripper supplied with the KUKA Educate Ready2 cannot 
suction and grab irregular objects like the suction cup used in the simulation, in 
this experiment, the gripper is only used to indicate the pick-up and placement 
positions of irregular objects. The irregular objects are replaced with cardboard of 
the same rectangular size with different lengths and widths as used in the 
simulation (as shown in Figure 24), solely to verify the feasibility of the methods 
and codes proposed in this project. 

 

 

                   Fig 29 Smart pad                   Fig 30 Irregular shapes used in experiment 

 

 

 

 

 

 

4.3.2 Calibration and Tool block setup 

Upon introducing the experimental equipment and tools, this section will delve 
into the calibration of the camera used in the experiment, as well as the 
installation and debugging of the tool block. 

Since the calibration of the camera in KUKA Educate Ready2 is performed 
separately from the tool block, the first step in the experiment involves calibrating 
the camera to derive the transformation relationship between pixel coordinates 
and actual coordinates. This is then followed by the installation and debugging of 
the tool block. The calibration process for the camera is the same as in the 
simulation, with the camera being fixed directly above the black background 
board. The calibration board used is a checkerboard calibration board with 
dimensions of 240mm*180mm*6mm (as shown in Fig 25). Once the calibration 
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board is properly positioned, calibration can be performed using the SmartPAD. 
The transformation relationship between the pixel coordinates and actual 
coordinates is saved in a custom file after calibration. 

 

Fig 31 Calibration Board used in Experiment 

The tool block developed for this project is based on VisionPro. As long as the 
KUKA visiontech plug-in is installed on the SmartPAD, the tool block can be easily 
installed by using the AutoSlabAlign.vpp file in SmartPAD. Once installed, it needs 
to be run once to adjust parameters such as the camera's exposure and focus, 
and an image should be collected for blob analysis area (as shown in Fig 26). The 
analysis area should be within the black background board area to avoid 
influences from other background factors. 

 

Fig 32 Graphical User Interface of the Blob Tool 
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Once the tool block has been adjusted, it can be copied onto the SmartPAD. The 
tool block installation can then be conducted at the "Task Configuration" section 
in VisionTech, with the previously obtained calibration file selected during the 
installation process. 

 

  

 

Fig 33 Running results of AutoSlabAlign.vpp on Smartpad 

4.3.3 Vision-guide KUKA robotic arm motion programming 

Upon establishing the appropriate settings for the camera and tool block, the 
stage is set for the creation of the KUKA robotic arm's motion program. The 
programming language employed by the KUKA robotic arm is the proprietary 
KUKA Robot Language (KRL) developed by KUKA. KRL is a procedural 
programming language that embodies a fundamental structure composed of the 
declaration segment (variable definition), the data segment (data block 
declaration), and the task segment (inclusive of program codes). It also 
incorporates control structures for loops and conditional judgments. 

In the context of this project, the KRL command 'VT.TRIGGER' is invoked to trigger 
a visual task (vt). Subsequently, the 'VT.WAITFORRESULT' command is called upon 
to wait for the visual system to return the results of recognition and localization. 
Finally, the 'VT.LOOPRESULTS' command is implemented to iterate through all the 
results returned from the visual task, and to independently carry out the grasping 
and placement for each irregular object. This sequence of command utilization 
ensures that each object is appropriately handled and manipulated as intended, 
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thereby driving the success of the automation process. In addition, the 'SPTP' and 
'LIN' commands are also called to control the robot arm tool coordinates to move 
to the target point with the fastest path and the straight path respectively. 

 

Fig 34 The robotic arm, guided by the vision program, moves to the irregular object's placement location. 

5 Conclusion  

In this project, we have pioneered an automated workflow that enables a robotic 
arm to autonomously recognize and assemble irregular shapes according to a 
provided template. At the heart of this achievement lies the creation and 
implementation of a tool block named "AutoSlabAlign". Built around the Hu 
Moment Invariants shape matching algorithm, this tool is powerful in effectively 
processing and analyzing image data of irregular shapes, and extracting key 
geometric characteristic information therein. The tool uses collected PNG-format 
images and CSV files (which contain location data of template polygons) as input, 
and outputs the centroid coordinates and principal axis directions of these 
irregular shapes, as well as the centroid coordinates and principal axis directions 
of the corresponding shapes in the template. 

These pieces of information are then transformed into 'VisionTechResult2D' 
objects, and a 2D geometric transformation is implemented via a 
'CogTransform2DLinear' object, achieving precise control over the robotic arm. 
The algorithms used include binary threshold selection, morphological operations 
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(such as dilation, erosion, opening, and closing), and the Hu Moment Invariants 
matching method. 

The project encountered challenges in binary image processing due to factors 
such as illumination and background. The introduction of the "Segment Anything 
Model" significantly mitigated these challenges, ensuring the acquisition of stable 
binary images under various environments and imaging conditions. 

To validate the effects of the designed workflow and model, we conducted 
simulations with KUKA simpro and empirical tests on the KUKA educate ready 
platform. The results showed high feasibility of our method, highlighting the 
potential of this work in revolutionizing automated operations in the industry 
dealing with irregular shape components. 

However, we acknowledge there is still room for improvement. Despite the 
advancements, there are certain limitations to the current workflow, which are 
subsequently discussed. 

 

 

5.1 Limitation 

While our workflow demonstrates excellent performance in handling 2D scenarios, 
it does have some constraints. First and foremost, the current model is designed 
for two-dimensional images. For problems involving depth information or 
operations in a three-dimensional environment, our workflow might require 
significant adjustments or additional modules to handle these extra dimensions. 
When dealing with the assembly of irregular shapes in three-dimensional space, 
the factors to consider become more complex, including but not limited to object's 
location, shape, rotation angle, lighting conditions, and background environment. 

Secondly, the existing workflow relies primarily on the robot arm moving directly 
to the target location using ptp (point-to-point) or lin (linear) commands. This 
method does not take into account any possible obstacles along the path. If 
obstacles are present, the robot arm may collide, causing equipment damage or 
operation errors. This is especially important in real environments, as workplaces 
often undergo dynamic changes, and the appearance of obstacles is often 
unpredictable. 

Moreover, the project assumes that the irregular shapes being handled are 
consistent in thickness, and the height at which the robot arm grasps needs to be 
pre-set, or a suction cup gripper with flexibility is required for grasping. This 
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assumption may cause problems when dealing with objects of uneven thickness 
or complex shapes. To address this issue, new grippers might need to be designed, 
or more sophisticated algorithms might need to be employed to estimate the 
grasp posture. 

To overcome these issues, future work might include developing tools and 
algorithms suitable for three-dimensional image processing, introducing more 
complex path planning algorithms to avoid obstacles along the path, and 
designing new grippers or developing more advanced grasp posture estimation 
algorithms. This might involve hardware upgrades (such as introducing 3D sensing 
devices like depth cameras or radar), as well as the corresponding software 
development and debugging work. This would broaden the application range of 
our workflow, but it would also bring about higher development and 
implementation costs. 

In addition to the aforementioned limitations, there are some unique constraints 
to consider with the "Segment Anything Model" we use. This model requires a 
preliminary prompt to help identify the object to be segmented. In our project, we 
set the number of objects to be segmented in advance, and then extract the 
highest scoring results from the global segmentation mode of the "Segment 
Anything Model". However, this method might lead to inaccuracies, as the highest-
scoring segmentation is not always the most suitable. 

To address this issue, we might consider implementing advanced object detection 
models such as YOLO to provide more accurate prompts for the "Segment 
Anything Model", achieving more precise image segmentation. For instance, we 
could first use an object detection model to identify the target objects in the image, 
then set the prompt for the "Segment Anything Model" based on the position and 
shape information of these objects to achieve more accurate segmentation. 

Moreover, such advanced object detection models could also achieve real-time 
target detection and tracking, enabling our workflow to adapt to more complex 
and dynamic environments. However, this requires substantial computational 
resources and meticulous model training and fine-tuning, which is a consideration 
for future research. 

Consequently, future work may also involve: 1) the development and integration 
of advanced object detection models to improve the accuracy and flexibility of 
image segmentation; 2) optimizing the "Segment Anything Model" to enhance its 
segmentation performance under various conditions; 3) a deep optimization and 
integration of the entire workflow to adapt to a broader and more complex range 
of applications. 
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5.2 Application prospect 

Automated Material Handling: On construction sites, materials that require 
handling often come in different, irregular shapes, such as stones, bricks, and 
precast components. Utilizing the technology developed in this project to 
automatically identify and handle irregularly shaped objects can automate the 
collection, classification, and placement of these materials, significantly improving 
the efficiency and accuracy of material handling. 

Automated Assembly: During the assembly process of precast components, it is 
necessary to accurately install components of various shapes and sizes at specific 
locations. By using the tools we have developed, automatic identification, 
positioning, and assembly of components can be achieved, thus greatly reducing 
the complexity and error rate of manual operations, and enhancing the efficiency 
and quality of assembly. 

Construction Robots: With the technology developed in this project, we can design 
and develop construction robots capable of automatically recognizing and 
handling irregularly shaped objects. These robots can autonomously perform 
various construction tasks in complex construction environments, such as 
material transportation, component assembly, construction site cleanup, etc. This 
significantly improves the level of construction automation, alleviates the intensity 
of manual labor, and enhances the efficiency and quality of construction. 
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