
TECHNISCHE UNIVERSITÄT DRESDEN

MASTER THESIS

Automated Simulation of Visitors Streams
from IFC Files

Author:
Yunyi FU

Supervisor:
Prof. Dr.-Ing. R. J. SCHERER

Dr.-Ing. P.KATRANUSCHKOV
Dr. Angelika KNEIDL
M.Sc. Fangzheng LIN

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in

Institue for Construction Informatics
Faculty of Civil Engineering

15. May 2018

i

Abstract

The simulation visitor streams in buildings is based on the information of the rel-
evant visitors in the buildings and the geometric input data. At present, Industry
Foundation Classes (IFC) format brings a solution to the difficult manual work. The
semantic information like doors, walls, rooms, etc. could directly be assigned to the
geometric objects. It would be also possible to execute the simulations automatically,
and reflect the simulation result in the building information modeling (BIM) models
semantically and visually. STEP physical file (SPF) is settled as the official file format
for IFC files. Since the extensible markup language (XML) files are widely used in
engineering, BIM generates the ifcXML file according to XML document structure
for ease of implementation and interoperability.

In this study, the main direction and task is to extract data in the model files and
analyze input file to implement into the simulation software crowd:it provided by
accu:rate. As the input file is written in XML format, the progress will be based on
ifcXML files, and build out a filter and converter for extraction.

ii

Contents

Abstract i

1 Introduction 1
1.1 Building Information Modeling . 1
1.2 Crowd simulation . 2

1.2.1 Combination of BIM and crowd simulation 4
1.3 Study plan . 4

1.3.1 Study challenges . 5

2 Study of IFC and ifcXML 7
2.1 Industry Foundation Classes . 7

2.1.1 IFC data schema architecture . 7
2.1.2 IFC model—Spatial structure and space element 10

2.2 IFC file formats and SPF file . 12
2.3 IfcXML file . 13

2.3.1 Extensible Markup Language . 14
2.3.2 Elements relations in ifcXML . 15

Full sub-element nesting expression 15
Id-ref pairs expression . 17
Composed expression . 18

2.4 Comparison of the SPF and ifcXML . 21

3 Design of data conversion from ifcXML 23
3.1 Information retrieval from ifcXML . 24

3.1.1 Frame of IFC building element 24
3.1.2 Wall elements . 26
3.1.3 Stair elements . 34
3.1.4 Door elements . 36
3.1.5 Space elements for rooms . 38

3.2 Solutions for 3D to 2D conversion . 39
3.2.1 Building storey information . 41
3.2.2 Summary . 43

3.3 Application in simulation softwares . 45
3.3.1 Input of crowd:it . 45
3.3.2 Summary . 47

4 Result and Analysis 48
4.1 Parse in Java . 48

4.1.1 API tools for XML parsing in Java 48
4.2 Case study of ifcXML filter . 50

4.2.1 Introduction and programme test 51
4.3 Case study of file converter . 56

4.3.1 Introduction . 57

iii

4.3.2 Programme test and result . 60
4.4 A short study of IfcOpenShell . 62

4.4.1 Introduction and usage . 62
4.4.2 Test and result . 64

5 Conclusion 68

Bibliography 70

iv

List of Figures

1.1 The process of BIM [4] . 1
1.2 The flow of study plan. 5

2.1 IFC data schema architecture [17] . 8
2.2 Schema and model differentiation for EXPRESS and XML [21] 9
2.3 Definition of spatial structure elements [21] 11
2.4 Decomposition of a spatial structure [21] 11
2.5 IfcWallStandardCase in graph expression 19

3.1 Design of data conversion from ifcXML to crowd simulation 24
3.2 Entity inheritance chart of building elements[21] 25
3.3 Attribute inheritance chart of building elements 27
3.4 IfcXML representation of the 3D wall . 28
3.5 Examples for standard walls (ground view, cross section and eleva-

tion) [21] . 31
3.6 Geometry retrieval chart of IfcWallStandardCase 33
3.7 Geometry retrieval chart of IfcStairFlight 35
3.8 Geometry retrieval chart of IfcDoor . 38
3.9 Geometry retrieval chart of IfcSpace for rooms 39
3.10 Dimention conversion based on original file(left) and output file(right) 40
3.11 Relation between spatial structure and building elements[17] 41
3.12 Whole geometry retrieval chart of IfcStandardWall 44
3.13 Whole geometry retrieval chart of IfcSpace 44
3.14 Crowd simulation with crowd:it . 45

4.1 Comparison between DOM and SAX [36] 49
4.2 Example flow of the iteration algorithm in the filter 53
4.3 Flow chart of the the file filter . 54
4.4 Classes for FilterWork . 55
4.5 FilterMain class . 55
4.6 IfcXML file filter test edition GUI . 56
4.7 Flow chart of the file converter. 57
4.8 Overview of programme structure. 58
4.9 Classes for standard wall and door . 58
4.10 Classes for stair and room . 59
4.11 Classes for fundamental function Readuos 59
4.12 Simple house 3D model graphs in BIM Vision 60
4.13 Geometry display in crowd:it for level 1 (a) and level 2 (b) 61
4.14 Plan graph of first floor from Revit(a) comparing with IfcOpenShell

output with only wall command (b) and command to add door in-
formation(c) . 65

v

4.15 Plan graph of second floor from Revit (a) comparing with IfcOpenShell
output with only wall command (b) and command to add door infor-
mation (c) . 66

vi

List of Tables

2.1 An extract from a STEP physical file [11] 12
2.2 An extract from a IFC-XML file . 14
2.3 An example of an XML file . 14
2.4 An example of IfcSIUnit . 16
2.5 An example of IfcAxis2Placement3D in full sub-element nesting ex-

pression . 16
2.6 An example of IfcAxis2Placement3D in id-ref pairs relationship 17
2.7 An example of IfcAxis2Placement3D in composed relationship 18
2.8 An inverse attributes of IfcLocalPlacement in ifcXML file 19
2.9 An inverse attributes of IfcLocalPlacement in IFC file 20
2.10 An example of IfcWallStandardCase in ifcXML file 20

3.1 Attributes of IfcElement . 26
3.2 Example of attribute ObjectPlacement in IfcXML 30
3.3 Example of attribute Representation in ifcXML 33
3.4 Example of IfcRelAggregates connecting IfcStair and IfcStairFlight 34
3.5 Example of connection between IfcDoor, IfcOpeningElement and IfcWall 36
3.6 Example of IfcDoor representing room in ifcXML file 37
3.7 Example of IfcSpace representing room in ifcXML file 39
3.8 Example of IfcBuildingStorey, IfcRelAggregates and IfcRelContainsInSpa-

tialStructure in ifcXML . 42
3.9 Fragment example of a part of floor file 46

4.1 An example of IfcWallStandardCase and its attributes in ifcXML file . . 52

5.1 Comparison of designed programme with IfcOpenShell 69

vii

List of Abbreviations

ABS ABstract Supertype
AEC Architecture Engineering Construction
AEC/FM Architecture Engineering Construction, and Facilities Management
API Application Programming Interface
BIM Building Information Modeling
DOM Document Object Model
GUI Graphic User Interface
GUID Globally Unique IDentifier
IDM Information Delivery Manual
IFC Industry Foundation Classes
IFD Industry Framework Dictionaries
MVD Model View Definition
SAX Simple API for XML
SPF STEP Physical File
StAX Streaming API for XML
STEP Standard for the Exchange of Product model data
SVG Scalable Vector Graphic
URI Uniform Resource Identifier
UUID Universally Unique IDentifier
XML EXtensible Markup Language

1

Chapter 1

Introduction

The study of the thesis is based on data transformation among areas of architecture,
construction and simulation. With a wide application of BIM, it is common to save
data into BIM model files, which makes a great contribution to combine planning,
design and construction. Relevant softwares also provide users to create 3D models.
Because of standardized by the international organizations, these files all provide us
a well performance in communication and exchanging.

1.1 Building Information Modeling

In the 1970s the concept of BIM has been founded [1]. Since "Building Information
Modeling" or BIM was first put forward in 1992 [2], it has been employed in the Ar-
chitecture Engineering Construction (AEC) industry. BIM is an advanced intelligent
3D model-based process and encompasses all aspects of the design, construction,
and operation of a building with high efficiency in plans, constructions and even in
management which made AEC stood in leadership.

The National Building Information Model Standard Project Committee defines BIM
as: "Building Information Modeling is a digital representation of physical and func-
tional characteristics of a facility. A BIM is a shared knowledge resource for infor-
mation about a facility forming a reliable basis for decisions during its life-cycle;
defined as existing from earliest conception to demolition." [3]

FIGURE 1.1: The process of BIM [4]

Chapter 1. Introduction 2

As a 3D model-based process in Figure 1.1, it helps engineers cast off relying on two-
dimensional technical drawings in traditional building design. Furthermore, BIM is
widely used by most of the world’s leading architecture, engineering and also con-
structions firms, and becoming the advanced solution of the AEC projects. Now BIM
extends itself beyond 3D, augmenting the three primary spatial dimensions (width,
height and depth) with time as the fourth dimension (4D) [5] and further more the
fifth (5D) [6]. So that, BIM covers not only just geometry and spatial relationships,
but also light analysis, geographic information, and quantities etc.

There are four different types of BIM models: architectural model, mechanical model,
electrical model and structural model. As our case is related with building models,
it would be more focused on architectural and structural model.

The BIM models are saved in Industry Foundation Classes (IFC) files which was
standardized by International Alliance for Interoperability [7]. There are two main
file formats for IFC files: SPF and ifcXML files. Between them, the ifcXML would
be focused on in this study. However, the BIM information embedded in IFC files
as well as in ifcXML is complicated. The problem raised that it would be difficult to
extract information from a model.

By research of literatures and using existing software tools, the deep relationships
among building elements connection and property reference should be found. How-
ever, such information is not directly provided in the file. In this study, we need to
fulfill the demand of the simulation from the industry partner, and find the solution
for information conversion from IFC files to crowd simulation.

Thus, first step should be precisely find out the location of interested information
in the ifcXML. Second step, re-right them in a way that it could be easier understood
by the users. And last step, create input files for serving software: crowd-it.

Softwares for working with BIM on a building project have been developed by sev-
eral companies, and could automatically gather all the relevant information into the
project. Further architectural tools allows additional information such as time, cost,
construction schedule and physical energy etc. Some of widely used BIM applica-
tions are Autodesk Revit, Bentley Architecture and so on. In this study the Autodesk
Revit is used to create models and files.

Revit is a design and documentation platform that supports the design, drawings,
and schedules required for BIM. During the building of models, Revit collects infor-
mation about the building project and coordinates this information across all other
representations of the project. It allows users to design a building and structure and
its components in 3D, annotate the model with 2D drafting elements, and access
building information from the building model’s database. Revit is also 4D BIM ca-
pable with tools to plan and track various stages in the building’s lifecycle, from
concept to construction and later maintenance or demolition [8].

1.2 Crowd simulation

In the area of building design, crowd is an inconspicuous but a very important factor.
The implementation of taking crowd into consideration would be crowd simulation,

Chapter 1. Introduction 3

which simulates the movement of a large number of people or entities.

Building is a kind of construction serving directly to human. Considering the area
of movement is fixed, a large crowd of people not only could lead to a traffic jam but
also would influence the practicability of the building. Especially in public areas,
when confined spaces are crowded, how people move become critical [9].

The application areas of crowd simulation is extensive, which is also the reason why
it is needed in the building design. There are four essential problems that crowd
simulation is solving for irrespective of the crowd situation.

• Traffic and mobility of the crowd.

• Safety protection.

• Evacuation.

• Crowd capacity of the construction.

These four items also indicates the purpose of crowd simulation. Not only simula-
tion attempt for an unobstructed crowd area, but also it actually concerns the safety
of the people.

Obviously, human behavior is complicated. Unlike programme or robots, it is im-
possible to predict the movements of people. So that it is complicate to analyze the
crowd behavior and very crowded places are characterized by complicated and dy-
namic systems.

Considering the places with relevantly high crowd flow rate and the places that
mostly need to consider evacuation of the crowd. The simulation mainly considers
below-listed situations.

• Public transportation and recreation areas.

• Public places with events.

• Other special places.

Firstly, the public transportation and recreation areas. These places usually have a
certain regularity of crowd form. For example, there will be usually a large crowd
of people during rush hours in the train stations and there will usually be a lot of
people in the shopping mall during the weekends. But the movement of the people
is hard to predict, especially in shopping areas, people are more likely to move ran-
domly.

Secondly, the public places with events. This mainly refers to the places that hold
temporary mega-events, for example, annual celebration, concert, football match
and etc. These places only have crowds when events are held, and people usually
have certain direction of movements.

And lastly, some other special places. This mostly refers to some tourist attractions
or some under construction areas, that they usually have problem of the carrying ca-
pacity of pedestrians, or there might be some possibilities for the urgent evacuation.
So that crowd simulation become necessary and crucial.

Chapter 1. Introduction 4

The crowd simulation enables designer to check in advance both the normal pro-
cess and the evacuation ways in case of an emergency. That means it could help the
designers to build not only a comfortable public atmosphere for the customers, but
also with more consideration about safety by avoiding stampede and other similar
emergency situation to the greatest extent. Also, when facing emergency situation,
the dynamics that can occur at events with thousands of people cannot always be
grasped just with human intuition, so that a proper evacuation needed to be con-
ducted.

1.2.1 Combination of BIM and crowd simulation

The combination of BIM and crowd simulation is an advanced and efficient solution,
and benefits in both sides.

One hand, BIM models could provide precise geometry and also plan graphs of
the building, and help process of crowd simulations in a great extend. Taking ad-
vantage of the detailed and precise layout of the buildings, a particular estimate of
the crowd can be simulated. Furthermore, semantic information is coded into BIM
models, which differs from 2D CAD drawings with only geometry information.

On the other hand, crowd simulation also contributes to the integrity of building
design especially in area of utilization. This helps to improve model practicabil-
ity. During the construction or reconstruction of buildings and infrastructure, taking
pedestrian into consideration would help the constructors to obtain a safer construc-
tion and minimize risk as early as in the planning phase.

Furthermore, with the growth of application in crossing field, BIM would gain a
wider range of development. Therefore, it is a quite prospective area for combining
BIM and crowd simulation.

1.3 Study plan

In this study, the main task is the implementation of geometry data conversion from
BIM models to crowd simulation. So that, the emphases lays on solving the com-
patibility problem of IFC file especially ifcXML in simulation, and find solution to
enables the crowd simulation software to get geometry data from IFC models that
would be used in simulation of the pedestrian flow. According to this, the plan of
the study is listed as follow.

According to Figure 1.2, there are three main steps in this work. First is the study of
ifcXML files, and provide a general view of the ifcXML structure, including the in-
formation in ifcXML, how the data is recorded, and how the elements are connected
with each other.

Second step is the design of data conversion based on ifcXML, and it includes five
parts.

1. Data retrieval from ifcXML including about which elements are identified as
relevant to crowd sim, and how they can be extracted.

2. Convertion of 3D to 2D models.

Chapter 1. Introduction 5

FIGURE 1.2: The flow of study plan.

3. A simple programme that applied for ifcWalls.

4. Application in simulation software (crowd:it).

5. A short study of IfcOpenShell.

IfcOpenShell is an open programme library that provides an application converting
the implicit geometry in IFC files into explicit geometry[10]. It was found during
the preparing of theoretical study. It enables a file format conversion of IFC files,
which could output 2D floor plans in SVG format. This is a very attractive function
for crowd simulation, although SVG may not the desiring file format. So that a short
study of this library would be practicable and useful. The study of the IfcOpenShell
would focus more on the usage, and analyze the output files to find the advantages
and disadvantages.

Last step is the conclusion, basically to conclude the above-mentioned work respec-
tively in previous two steps, and analyze the applicatability for the design work in
step two.

1.3.1 Study challenges

In this whole study, there would be some limitations and challenges on account
of the feasibility and practicability. Only part of the building elements would be
analyzed as an example of all the IFC objects. So that, in this process, there are four
main issues needed to be solved

• Relatively full-scale of exploring and understanding ifcXML data;

Chapter 1. Introduction 6

• Java parsing of the ifcXML files;

• Get the routine of the concerning information of the elements;

• Convert the 3D models into 2D models.

Combining to the listed process plan, firstly a comprehensive introduction of IFC
schema as well as ifcXML files would be provided. And then the relationship be-
tween IFC elements would be found in order to put forward a method to retrieve
the data that is needed. Based on the retrieved data, a further conversion of 3D
model to 2D model is required to apply in crowd simulation software. Finally a
summary or conclusion would be presented for the whole work in this study.

7

Chapter 2

Study of IFC and ifcXML

This chapter focuses on the main part IFC and ifcXML. As a basic, it is necessary
to fully understand the structure and framework of the IFC schema. By using the
schema, it would be easier to understand ifcXML file, and also to get the interested
information.

The chapter consists of four parts: IFC fundamental study, IFC-SPF file format,
ifcXML file format and their comparison. From the comparison, there would be a
clear explanation of why the study is focusing on ifcXML file.

2.1 Industry Foundation Classes

In the beginning, it is necessary to have general comprehension of IFC, basic of
ifcXML file. There are several non-proprietary building data models currently avail-
able, and one of these is the IFC. Initiated from 1994 it is an open standard data
model developed by the International Alliance for Interoperability (IAI) [11], which
was renamed as buildingSMART in 2006. IFC is a schema developed to define an ex-
tensible set of consistent data representations of building information for facilitating
interoperability in the architecture, engineering and construction (AEC) industries
[12].

International Organization for Standardization (ISO) later covered the IFC standard
and applied in AEC/FM. It replied on the ISO-STEP EXPRESS language and defi-
nition. Actually IFC was designed as an extensible model framework, which sup-
posed to address all building information, including whole building life-cycle, de-
sign, planning and construction.

IFC describes how to represent buildings and civil infrastructure in a digital format.
It is actually an object-based file format, and is a commonly used as collaboration for-
mat in BIM based projects [13]. Through the digital models IFC describes not only
what it looks like, but also how a facility is used and constructed. Based on BIM,
IFC is a solution for information sharing. The users and software providers would
decide what they want to share with IFC [14], building up a circulating building
information environment.

2.1.1 IFC data schema architecture

Four conceptual layers are defined by data schema architecture of IFC, each individ-
ual schema is assigned to one of the definite conceptual layers, according to the con-
nection and inheritance of objects. The structure of IFC data schema is easy for main-
tenance and expansion. At the same time differentiate the each area of AEC/FM [15].

Chapter 2. Study of IFC and ifcXML 8

It successfully reduces the difficulties of data exchanging automatically and directly
between diverse softwares [16]. The IFC data schema architecture is shown in Figure
2.1.

FIGURE 2.1: IFC data schema architecture [17]

The four conceptual layers follow hierarchical relationship. Each layer can only refer
the data from itself and the lower layers, but can not refer to the upper layers [18].
This protects the data from disturbing by lower layers.

• Resource layer — the lowest layer includes all individual schemas containing
resource definitions, which are lower class of concepts and entities [17]. And
these definitions do not include a globally unique identifier and shall not be
used independently of a definition declared at a higher layer.

• Core layer — this layer includes the kernel schema and the core extenstion
schemas, containing the most general entity definitions. All entities defined
at the core layer and above layers carry a globally unique id and optionally
owner and history information [17].

Chapter 2. Study of IFC and ifcXML 9

This layer provides the basic structure of IFC models, and it can be subdivide
into "Kernel" and "Upper Kernel" [17]. "Kernel" contains the most general en-
tity definitions, for example IfcPropertySet, IfcRoot. "Upper Kernel" including
"Control Extension", "Product Extension" and "Process Extension", which con-
tains a relevantly higher entity definitions, such as IfcBuilding and IfcElement
[19].

• Interoperability layer — this layer includes schemas containing entity defini-
tions that are specific to a general product, process or resource specialization
used across several disciplines. Those definitions are typicly utilized for inter-
domain exchange and sharing of construction information [17]. The entities
defined in this layer are common entities fulfilling the information exchange
in AEC/FM, such as IfcBeam and IfcWall.

• Domain layer — the highest layer includes schemas containing entity defini-
tions that are specializations of products, processes or resources specific to a
certain discipline [17], those definitions are typically utilized for intra-domain
exchange and sharing of information, such as IfcStructuralAction and IfcRein-
forcingElement.

easily
EXPRESS is a data modeling language defined in ISO 10303-11 [20]. It is the essence
of IFC, which officially used for defining the IFC schema. BuildingSMART has also
published an XML schema definition (XSD) file. By using a language binding, XSD
is initially the conversion from primary EXPRESS data definition. Since the release
of the second edition of IFC2x the language binding is governed by ISO10303-28 [21].

The correlation between the schema definition that controls the models or document
files can be seen in the Figure 2.2. Basically, EXPRESS plays the foundation role of
STEP physical file and XSD builds up the XML file. Both files would be introduced
in the further section in detail.

FIGURE 2.2: Schema and model differentiation for EXPRESS and
XML [21]

EXPRESS data is defined textually and graphically. Textual form of an EXPRESS
model schema is a plain text file [22] and the language elements are formed into a
stream of text within an ASCII file, which is important to formal verification and
application input.

The graphical representation would be more of perceptual intuition and more suit-
able for explanation and tutorials. EXPRESS-G is a standard graphical notation for

Chapter 2. Study of IFC and ifcXML 10

information models [23]. It is common used to represent data model structure by
EXPRESS-G notation for displaying entity and type definitions, relationships and
cardinality. The EXPRESS-G relationship graph is helpful to understand the struc-
ture in the files of the output in the further sections. With the orientated labels in
EXPRESS-G, the target elements and properties can be easily found.

2.1.2 IFC model—Spatial structure and space element

The integrity of an IFC model usually contains some essential parts which are in-
dispensable, such as project container element, base setting, spatial structure, space
element, building element, building service element and etc. In this study, the key
point is geometry of structural element, so that the emphasis would be laid on spa-
tial structure, space element and building element, and other related elements.

Project container element and base setting

The project container is required in any IFC files named as IfcProject. Note that
within an IFC file or an IFC database model there is only one instance of IfcProject.
The IfcProject holds the global definitions for the presentation context and the units
within the global context, and the information can only be provided once within the
IFC file [21].

Before uniquely identify an object and preserve information about its ownership, a
root class IfcRoot is needed for all subtypes to define the basic properties [24]. IfcRoot
derives three basic abstract, which are IfcObject, IfcPropertyDefinition and IfcRelation-
ship.

In the IFC schema, which measure types and related units should be used also need
a definition and it is provided in the IfcMeasureResource. It had been based on the
specification of the measure_schema as defined in ISO 10303-41. An IFC project file
always has units defined for its shape representations. IFC project file without a unit
definitions is not allowed [21].

An IFC model file has to include representation context. This is represented as
IfcRepresentation in IFC and is established by IfcProject. It references a single or mul-
tiple instances of IfcRepresentationContext.

Spatial structure

First of all, some of the definition and common concepts would be introduced. Spa-
tial structure is, as the name implies, the subsets of the project model according to
spatial arrangement, and it is common in most disciplines and design tasks. The
entity of spatial structure in IFC is known as IfcSpatialStructureElement.

There are four subtypes subsumed under IfcSpatialStructureElement entity, which are
IfcSite, IfcSpace, IfcBuilding and IfcBuildingStorey as shown in Figure 2.3. They are
used to represent the levels of the spatial structure.

The spatial structure of a project is based on the fundamental decomposition rela-
tionship. Among these four subtypes IfcBuilding and IfcBuildingStorey are mandatory
levels for exchanging the project data, the IfcSite and IfcSpace are optional levels. As

Chapter 2. Study of IFC and ifcXML 11

FIGURE 2.3: Definition of spatial structure elements [21]

mentioned before, only one IfcProject is allowed, but more than one IfcBuilding and
IfcBuildingStorey in one building project could exist. For the optional levels, the num-
ber of the generated IfcSite and IfcSpace is not strict limited.

The above mentioned four layers could be linked by the IfcRelAggregates to estab-
lish an hierarchical structure and the instances of IfcProject.

FIGURE 2.4: Decomposition of a spatial structure [21]

Figure 2.4 shows the connection between the instance of IfcProject, IfcSite, IfcBuild-
ing, IfcBuildingStorey, IfcSpace to other instances of the spatial structure by IfcRelAg-
gregates. Therefore, the vertical and horizontal division of the building also can be
found.

Connecting elements

As the IfcRelAggregates in Figure 2.4, in IFC files there are also essential linking ele-
ments that maintain the integrity of the model. Besides the IfcRelAggregates, there
is also a important element connecting specific building structure elements with
IfcBuildingElement or IfcBuildingStorey, which is named IfcRelContainedInSpatialStruc-
ture

Chapter 2. Study of IFC and ifcXML 12

In our case, there would be some certain building elements that is mostly concerned.
For example, IfcWall together with IfcWallStandardCase, IfcColumn, IfcDoor, IfcStair,
and etc. These are actually subtypes defined by IfcBuildingElement which would be
provided in details in further chapter.

2.2 IFC file formats and SPF file

There are several IFC file formats that is being used in different softwares and tools,
supporting various encodings of the same underlying data [25].

• IFC-SPF (STEP physical file) is a text format defined by ISO 10303-21 ("STEP-
File") with file extension "*.ifc". In this format, each line typically consists of a
single object together with its attributes. It is the most widely used IFC format,
with an advantage of supporting visualization for users.

• IFC-ifcXML is an XML format defined by ISO 10303-28 ("STEP-XML") with file
extension "*.ifcXML". As XML, this format is suitable for interoperability with
XML tools and exchanging partial building models. But the size of the file for
building models is quite large, as a typical weakness of this format.

• IFC-ifcZIP is a ZIP compressed format consisting of an embedded IFC-SPF file
or IFC-XML file with file extension "*.ifcZIP".

Currently the IFC-SPF is still being the most common method of data exchange be-
tween IFC compliant software applications. IFC-SPF is defined in ISO 10303-21:2002
with a text format containing human readable ASCII characters [20] in Table 2.1. The
size of a SPF is usually relative large. For example, a simple small house test model
could contain thousands lines of data.

1. ISO-10303-21;

2. HEADER;

3. FILE_DESCRIPTION(('ViewDefinition [ReferenceView_V1.0]'),'2;1');

4. FILE_NAME('001-00','2018-02-20T12:10:13',(''),(''),'The EXPRESS Data

Manager Version 5.02.0100.07 : 28 Aug 2013','20160225_1515(x64) -

Exporter 17.0.416.0 - Alternate UI 17.12.14.0','');

5. FILE_SCHEMA(('IFC4'));

6. ENDSEC;

7. DATA;

8. #1= IFCORGANIZATION($,'Autodesk Revit 2017 (ENU)',$,$,$);

9. #5= IFCAPPLICATION(#1,'2017','Autodesk Revit 2017 (ENU)','Revit');

10. #6= IFCCARTESIANPOINT((0.,0.,0.));

11. #10= IFCCARTESIANPOINT((0.,0.));

12. #12= IFCDIRECTION((1.,0.,0.));

13. #32= IFCAXIS2PLACEMENT3D(#6,$,$);

14. #33= IFCLOCALPLACEMENT(#16541,#32);

15. #36= IFCPERSON($,'Macalister','Samuel',$,$,$,$,$);

16. #38= IFCORGANIZATION($,'Autodesk','',$,$);

......

TABLE 2.1: An extract from a STEP physical file [11]

easily

Chapter 2. Study of IFC and ifcXML 13

As mentioned before, IFC-SPF files are able to be visualized by several stand-alone
softwares. Object model servers and software components are also available to nav-
igate SPF programmatically for use in application development. So that IFC-SPF is
more user friendly.

2.3 IfcXML file

Another widely used file format is ifcXML: IFC data is exchanged by using the
ifcXML representation (ISO 10303-28:2003) [7], which was made available to take
advantage of the XML technology [26]. Most ifcXML data files are ended with ex-
tension ".xml" or occasionally "*.ifcxml" or "*.ifx".

1. <?xml version="1.0" encoding="utf-8"?>

2. <doc:iso_10303_28 xmlns:exp="urn:oid:1.0.10303.28.2.1.1"

xmlns:doc="urn:oid:1.0.10303.28.2.1.3"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="urn:oid:1.0.10303.28.2.1.1 ex.xsd"

xmlns:ifc="http://www.iai-tech.org/ifcXML/IFC2x2/FINAL" version="2.0">

3. <exp:iso_10303_28_header>

4. <exp:name>Autodesk Revit 2017 (ENU)</exp:name>

5. <exp:time_stamp>2018-02-03T15:48:33</exp:time_stamp>

6. <exp:author></exp:author>

7. <exp:organization></exp:organization>

8. <exp:authorization></exp:authorization>

9. <exp:originating_system>20160225_1515(x64) - Exporter 17.0.416.0 -

Alternate UI 17.12.14.0</exp:originating_system>

10. <exp:preprocessor_version>Express Data Manager Version 5.02.0100.07

Aug 28 2013</exp:preprocessor_version>

11. <exp:documentation>ViewDefinition [ReferenceView_V1.0]</exp:documentation>

12. </exp:iso_10303_28_header>

13. <doc:express id="exp_1" external="" schema_name="IFC4">

14. <doc:schema_population governing_schema="exp_1"

determination_method="SECTION_BOUNDARY" governed_sections="uos_1">

15. <ifc:uos id="uos_1" description="" schema="exp_1"

configuration="IFCXML_Official" edo=""

xmlns="http://www.iai-tech.org/ifcXML/IFC2x2/FINAL"

xsi:schemaLocation="http://www.iai-tech.org/ifcXML/IFC2x2/FINAL

http://www.iai-tech.org/ifcXML/IFC2x2/FINAL/ifc2x3g_alpha.xsd">

16. <IfcOrganization id="i1903">

17. <Name>Autodesk Revit 2017 (CHS)</Name>

18. </IfcOrganization>

19. <IfcApplication id="i1907">

20. <ApplicationDeveloper>

21. <IfcOrganization xsi:nil="true" ref="i1903"/>

22. </ApplicationDeveloper>

23. <Version>2017</Version>

24. <ApplicationFullName>Autodesk Revit 2017 (CHS)</ApplicationFullName>

25. <ApplicationIdentifier>Revit</ApplicationIdentifier>

26. </IfcApplication>

27. <IfcCartesianPoint id="i1908">

28. <Coordinates exp:cType="list">

29. <IfcLengthMeasure exp:pos="0">0.</IfcLengthMeasure>

30. <IfcLengthMeasure exp:pos="1">0.</IfcLengthMeasure>

31. <IfcLengthMeasure exp:pos="2">0.</IfcLengthMeasure>

32. </Coordinates>

33. </IfcCartesianPoint>

......

Chapter 2. Study of IFC and ifcXML 14

98. </ifc:uos>

99. </doc:iso_10303_28>

TABLE 2.2: An extract from a IFC-XML file.

easily
From Table 2.2, it can be seen that, same labels in EXPRESS language are used in
IFC-XML with format of XML, for example IfcProject. And also because of the XML
the information of each element are extended and more understandable. The names
of the items’ properties are written clearly below the elements, and the values are
also explained.

IfcXML is currently used not as common as other methods. One reason is that the
file size is significantly larger than SPF, usually two till even ten times larger [26],
which might cause a great effort in reading the file data. However, ifcXML is more
convenient for communication, thus it is mainly used to cover partial exchange, data
and etc.

Many XML tools still do not support ifcXML, but ifcXML is a special XML file that is
based on IFC standard. That means tools need to support IFC standards and need to
be able to distinguish the hierarchical structure between elements, which is still not
fully developed. Some tools are also less capable when dealing with very large mod-
els and files, where performance is critical. IFC models should be accessed from a
model server or database [26]. This is also a challenge in this study that small simple
examples are chosen to be the testers and would be discussed in details.

2.3.1 Extensible Markup Language

After the brief introduction of ifc file formats, a preliminary understanding of ifcXML
form and advantages were given. In this section, it will concentrate on ifcXML to
introduce more about ifcXML in details and provide an idea of how to parse the
ifcXML. To start with the study, it is useful to first have a basic concept about Exten-
sible Markup Language.

As it has been roughly introduced in the previous chapter, ifcXML is actually a
subset of XML. XML was defined by the World Wide Web Consortium (W3C), is
a simple and flexible text format for exchange of a wide variety of data [27][28]. The
XML is actually a metalanguage, that means, it is a language for describing other
languages. It was designed to store and transport data, which can be easily read by
human and machine [29].

1. <?xml version = "1.0"?>

2. <class>

3. <student rollno = "393">

4. <firstname>Denis</firstname>

5. <lastname>Smith</lastname>

6. <nickname>Denny</nickname>

7. </student>

8. </class>

TABLE 2.3: An example of an XML file.

Chapter 2. Study of IFC and ifcXML 15

easily
Same as normal XML files, which can be seen in Table 2.3, ifcXML file consists of
version specification in the first line. Schema specification and elements which can
be found in the rest lines.

Every element again consists of tags, attributes and characters. There are two types
of elements. One is full form with both start and end tags, while the other is simpli-
fied form that has only start tag with a slash in the end that omit the end tag.

It is necessary to specify that attribute has two meanings in this study. In XML
files, attribute is the a markup construct consisting of a name–value pair that exists
within a start-tag or empty-element tag. But in IFC schema, attribute is the unit of
information within an entity, which would be explained in the further section.

Among these elements, some of them are coordinating relation for example "first-
name", "lastname" and "nickname". Some of them are affiliation for example "class"
and "student". And in affiliations, the elements that have sub-elements are called
parents, and those sub-elements are called children.

Characters only appear in full form of the elements and are always embedded be-
tween start and end tags, while the start tag will always have the same name as the
end tag.

Attribute may appear in start tag as a supplement for extra informations, and it usu-
ally stays after the title of the start element. Together with tags and characters these
three parts build up an element which contains a complete statement with subject,
predicate and object [30]. Attributes can be found both in full and simplified forms.

Every tag has its own markup and content. The content performs as subject and
usually URL named resource, which describes what is the purport of the element,
while the character as object shows the property value.

2.3.2 Elements relations in ifcXML

It is important to understand the relations between different elements especially in
simple structures. The element itself is the primary type of data, but how they are
being relating to each other is relying on two ways. One is that they could be related
by being nested as sub-elements, which is named here as full sub-element nesting
expression. The other way is to connected through references to identifiers [31].
Such as adding the referring id numbers in attributes to the referred element would
also has its own unique id number, which establishes the id-ref pairs expression.

Actually, every property and part of the structure or ifc element (e.g. IfcApplication,
IfcSIUnit, IfcWallStandardCase etc.) would always has an id number no matter which
type of expressions. These two expressions can both represent different relationships
between elements. Followings are examples to explain.

Full sub-element nesting expression

The full sub-element nesting expression is basic expression in ifcXML for a complete
ifc element. It starts with the name and its id, and nesting its children elements

Chapter 2. Study of IFC and ifcXML 16

showing the specific parameters. The children could also be parents for other ele-
ments, all the children are nesting together. That means all the information will be
shown together in the parent element.

An example of IfcSIUnit for this basic expression can be seen in the Table 2.4. Its
id number can be found as an attribute in the start tag. It has two children: UnitType
and Name, and both have their data in characters staying between start and end tag.
Here the file basically shows that the element IfcSIUnit has two properties. So that
characters are enough to describe them.

1. <IfcSIUnit id="i1955">

2. <UnitType>timeunit</UnitType>

3. <Name>second</Name>

4. </IfcSIUnit>

TABLE 2.4: An example of IfcSIUnit.

easily
The second example in Table 2.5 shows another relative complex case with full sub-
elements nesting expression. In this situation there are several children elements. It
can be seen that IfcAxis2Placement3D has a child in the category of location, named
IfcCartesianPoint, it also has its own id, and also has its child Coordinates inside it.
The final data can be found inside Coordinates with three children representing coor-
dinates values.

1. <IfcAxis2Placement3D id="i2044">

2. <Location>

3. <IfcCartesianPoint id="i2042">

4. <Coordinates exp:cType="list">

5. <IfcLengthMeasure exp:pos="0">-15237.17153</IfcLengthMeasure>

6. <IfcLengthMeasure exp:pos="1">7449.831949</IfcLengthMeasure>

7. <IfcLengthMeasure exp:pos="2">0.</IfcLengthMeasure>

8. </Coordinates>

9. </IfcCartesianPoint>

10. </Location>

11. </IfcAxis2Placement3D>

TABLE 2.5: An example of IfcAxis2Placement3D in full sub-element
nesting expression.

easily
This is a case that there is only one child from the parent, and the child has some
grandchildren. There are also a lot of cases where the parent has several children
and the children could also have several their own children elements etc.

Obviously, in full sub-element nesting expression all the information are gathered
together, so one advantage of this case is that it is clear and easy to find the children
and the relationships between these elements. Besides, it would save lines for the
XML files, and decrease the element number in the file. Also it is fast to export from
the model in the software.

But when there is a large amount of children and grandchildren, it would be a large

Chapter 2. Study of IFC and ifcXML 17

number of lines for one element, it could also be complicated for an abstract class
while it usually includes a lot of layers of sub-classes.

To be mentioned is that, the parent-children expression is only suitable when the
children elements has only one parent. While the children element has more than
one parent or they are needed to be declared in several places, the following expres-
sion is more often used.

Id-ref pairs expression

Id-ref pairs are actually used for shortening the length of element definition, instead
of nesting the whole content of children inside the parent, only the name and the id
numbers as a reference would be nested. And the children themselves will become
separate elements alongside.

Again taking the item IfcAxis2Placement3D as an example, the file content is shown
in Table 2.6, but with id-ref pairs. It can be seen that, instead of nesting inside the
Location, the IfcCartesianPoint is written separately outside the parent element, but
still have the same relationship as the Table 2.5.

1. <IfcCartesianPoint id="i1908">

2. <Coordinates exp:cType="list">

3. <IfcLengthMeasure exp:pos="0">0.</IfcLengthMeasure>

4. <IfcLengthMeasure exp:pos="1">0.</IfcLengthMeasure>

5. <IfcLengthMeasure exp:pos="2">0.</IfcLengthMeasure>

6. </Coordinates>

7. </IfcCartesianPoint>

8. <IfcAxis2Placement3D id="i1994">

9. <Location>

10. <IfcCartesianPoint xsi:nil="true" ref="i1908"/>

11. </Location>

12. </IfcAxis2Placement3D>

TABLE 2.6: An example of IfcAxis2Placement3D in id-ref pairs rela-
tionship.

easily
Similar to full sub-element nesting expression, the parent could also have several
children and several grandchildren. Each pair of elements with one affiliated by the
other can be represented in id-ref pairs expression.

Obviously, in id-ref pairs expression, each element has less lines of descriptions,
that makes the element easy to be caught by readers. This is one of the advantages
of this expression. Another advantage comes when one ifc object is referred by more
than one other objects, which means it is being a children element of more than one
parents. In this case, the content of the object does not need to be repeated because
instead of nesting to each parent it would be a independent element, and the parents
just need to add its id number.

But on the contrary to the full sub-element nesting expression, there would be much
more format paratactic elements needed and the length and size of the file would be
increased. It would be very hard for readers to get a full structure of the elements,
and a huge work would also lies on the searching of the elements.

Chapter 2. Study of IFC and ifcXML 18

Composed expression

Actually in the real ifcXML files, these two expression are used together in a com-
posed expression. So that, there are usually both two types of expression in one
element. Thus the expression is not too complicated and still systematic.

In order to have better comparison, IfcAxis2Placement3D is again taken as an ex-
ample. From Table 2.7, it can be seen that IfcAxis2Placement3D has three children.
IfcCartesianPoint is shown directly in the element but two IfcDirection belonging to
Axis and RefDirection are written only with ref-numbers.

1. <IfcAxis2Placement3D id="i2158">

2. <Location>

3. <IfcCartesianPoint id="i2156">

4. <Coordinates exp:cType="list">

5. <IfcLengthMeasure exp:pos="0">11442.22792</IfcLengthMeasure>

6. <IfcLengthMeasure exp:pos="1">2527.308404</IfcLengthMeasure>

7. <IfcLengthMeasure exp:pos="2">-3000.</IfcLengthMeasure>

8. </Coordinates>

9. </IfcCartesianPoint>

10. </Location>

11. <Axis>

12. <IfcDirection xsi:nil="true" ref="i1922"/>

13. </Axis>

14. <RefDirection>

15. <IfcDirection xsi:nil="true" ref="i1920"/>

16. </RefDirection>

17. </IfcAxis2Placement3D>

TABLE 2.7: An example of IfcAxis2Placement3D in composed relation-
ship.

easily
Actually the IfcAxis2Placement3D is a grandchild of the IfcWallStandardCase, which is
is defined at the supertype IfcWall [14], and the relationship between these entities
can be found in Figure 2.5. As it can be seen in this figure, IfcAxis2Placement3D be-
longs to RelativePlacement, one of the attribute of IfcLocalPlacement, and IfcLocalPlace-
ment represents ObjectPlacement of IfcWallStandardCase.

In IFC schema, the attribute is a very important concept. Basically it refers to the
properties that attached to the entity. Such as it is shown in in Figure 2.5, there are a
list of attributes that are written under the entity IfcWallStandardCase. In this study,
it is necessary to get basic understanding of those attributes.

Among the attributes in each entities, some of them are in black and others are in
gray color. Those are in black are explicit attributes. They can be found directly in the
entities in IFC files, and are similar to the term "field" in common programming lan-
guages. Explicit attributes may be defined as scalar values or collections including
Set (unordered, unique), List (ordered), or Array (ordered, sparse) as defined in ISO
10303-11 [20]. Those gray attributes are inverse attributes and derived attributes. In-
verse attributes do not list out directly in the entity in the IFC files, but define queries
for obtaining related data and enforcing referential integrity [14]. Derived attributes
can be found being computed in some way from other attributes. Similar to inverse
attributes they are a kind of redundant data and thus are excluded from data sets
delivered file based. The expression for computing the value of a derived attribute
is defined in the schema [14].

Chapter 2. Study of IFC and ifcXML 19

FIGURE 2.5: IfcWallStandardCase in graph expression.

For example, the ObjectPlacement in Figure 2.5 links to PlaceObject which is in gray
in IfcLocalPlacement, that means the PlaceObject can not be found in the entity IfcLo-
calPlacement.

For a better understanding, the example of IfcLocalPlacement is shown in Table 2.8.
It can be seen that the atrribute PlaceObject can not be found in the element IfcLo-
calPlacement. Since IfcLocalPlacement is related to IfcWallStandardCase, the id number
of IfcLocalPlacement can be found in element IfcWallStandardCase as a referring ele-
ment in its child ObjectPlacement. So that, without including PlaceObject, the connec-
tion can still be found in IfcWallStandardCase.

1. <IfcLocalPlacement id="i2045">

2. <PlacementRelTo>

3. <IfcLocalPlacement xsi:nil="true" ref="i2032"/>

4. </PlacementRelTo>

5. <RelativePlacement>

6. <IfcAxis2Placement3D xsi:nil="true" ref="i1994"/>

7. </RelativePlacement>

8. <IfcLocalPlacement id="i2045">

9. <IfcWallStandardCase id="i2084">

10. <GlobalId>2qDQkwZlH2yuxdvqIaccMR</GlobalId>

...

18. <ObjectPlacement>

19. <IfcLocalPlacement xsi:nil="true" ref="i2045"/>

20. </ObjectPlacement>

...

24. </IfcWallStandardCase>

TABLE 2.8: An inverse attributes IfcLocalPlacement in ifcXML file.

easily
Same case can also be seen in IFC files. Table 2.9 shows a part of the IFC file, which
including IfcLocalPlacement and IfcWallStandardCase. Obviously, with simplicity and
concise expression, the IFC file is much shorter than ifcXML file. But the content in
blanket actually includes all the explicit attributes.

Chapter 2. Study of IFC and ifcXML 20

In line #182 of IfcWallStandardCase, there are nine partitions of descriptions sepa-
rated by commas. These exactly follows the attributes shows in Figure 2.5, and also
in the same order. Same case can be found in IfcLocalPlacement. As it can be seen that
the inverse attributes still do not appear in the file, but the referring can be found in
the IfcWallStandardCase. Same location in Figure 2.5, the sixth place provides a refer-
ring number which exactly referring to the IfcLocalPlacement, implicitly indicates the
inverse attribute related data and enforcing referential integrity.

#143= IFCLOCALPLACEMENT(#130,#142);

...

#182= IFCWALLSTANDARDCASE('2qDQkwZlH2yuxdvqIaccMR',#42,'\X2\57FA672C5899\X0\:

\X2\5E3889C4\X0\ - 200mm:391703',$,'\X2\57FA672C5899\X0\:\X2\5E3889C4\X0\ -

200mm:1044',#143,#176,'391703',.NOTDEFINED.);

TABLE 2.9: An inverse attributes IfcLocalPlacement in IFC file.

easily
From the IfcWallStandardCase shown in Table 2.9, there are three cases of data ex-
pression. Besides referring number that has been discussed before, the data would
be directly written when possible, but when an explicit attribute is defined as op-
tional in express and an object (an entity instance) does not provide a value for such
an attribute, then the attribute will be marked in dollar sign ($).

However in ifcXML files, for the optional explicit attributes, there will not be a sym-
bol to indicate its information absence. The Table 2.10 is an example of full IfcWall-
StandardCase element in ifcXML. As it can be seen, the IfcWallStandardCase has eight
paratactic children instead of nine. One Description is missing, so that the optional
explicit attributes who do not provide values would not be appear in the ifcXML
files.

1. <IfcWallStandardCase id="i2084">

2. <GlobalId>2qDQkwZlH2yuxdvqIaccMR</GlobalId>

3. <OwnerHistory>

4. <IfcOwnerHistory xsi:nil="true" ref="i1944"/>

5. </OwnerHistory>

6. <Name>Basic wall:general - 200mm:392314</Name>

7. <ObjectType>Basic wall:general - 200mm:1044</ObjectType>

8. <ObjectPlacement>

9. <IfcLocalPlacement xsi:nil="true" ref="i2045"/>

10. </ObjectPlacement>

11. <Representation>

12. <IfcProductDefinitionShape xsi:nil="true" ref="i2078"/>

13. </Representation>

14. <Tag>391703</Tag>

15. <PredefinedType>notdefined</PredefinedType>

16. </IfcWallStandardCase>

TABLE 2.10: An example of IfcWallStandardCase in ifcXML file.

easily
Also it is also necessary to compare about the data record between IFC and ifcXML
files. Primarily, the id numbers that used to markup the entities are different. In

Chapter 2. Study of IFC and ifcXML 21

IFC files the line numbers are directly used, while a specific number with letter "i"
in front of line number is used in ifcXML files. For the attributes, some data of them
is exactly the same in both files such as "GlobalId", "Tag" and etc. Apart these, there
are also some of them that is quite different from each other, such as "Name" and
"ObjectType". It is very easy to understand the name of the wall that is written in
ifcXML, but the characters in IFC files rather indicates unreadable. This character-
istic of ifcXML also shows its superiority in some extent, which is much more read-
able and understandable than IFC files, that could be easier for implement in data
retrieval.

The discarding of the blank attributes in ifcXML files could help saving lines, but
it could also leads to disarray of the entities. This may cause some difficulties in
reading and understanding. Further chapters would focus on discussing the data
expression of ifcXML files.

2.4 Comparison of the SPF and ifcXML

Both IFC-SPF and IFC-ifcXML are created under IFC schema and delivering the
same data information, so that there is no difference with regard of contents. Be-
tween them, the XML file would be more user familiar, because XML files has a
broader range of supporting utilities and database implementations. Another im-
portant area is web services, where XML is the basic for the development, even some
web browser is supporting XML.

In general, the exchange of complete building models, particularly within a CAD
environment is primarily based on SPF format. The SPF format is still remaining an
ASCII format, but it allows for more compact file sizes [26].

Comparing to SPF files, ifcXML files validate against the ifcXML XSD. We could
list out the main characteristics of ifcXML.

• IfcXML files are usually much larger than the equivalent "*.ifc" (SPF) files.

• IfcXML can be considerable widely read, transformed and written. There are
a great number of tools and toolkits providing the supporting of XML, which
are freely available.

• It has been widely supported by many enterprise and desktop system, which
can handle XML.

Therefore ifcXML has been added as a valid representation of the IFC specification.
And it is quite useful to implement the post-processing of ifcXML.

It could be partitioned that the exchange scenarios sharing large information sets
(often including geometric models) are focusing on using the SPF file format. Other
scenarios that are sharing partial models, reports, schedules or set of manufacturer
information, would not be influence much by the file size. They would benefit much
more from the XML format for IFC interoperability [26].

In this study, the processing of IFC is served for simulation of visitor streams, which
is based on the information of the relevant visitors in the buildings and geometric
input data. Since the final input file of the simulation should be in the format of

Chapter 2. Study of IFC and ifcXML 22

XML and the development is based on Java language, XML has large advantages in
external supporting.

23

Chapter 3

Design of data conversion from
ifcXML

Since increasing number of researches and companies have made efforts on develop-
ing BIM for production and construction usage, BIM and IFC have permeated into
more and more industries and studies. The breadth and depth of the IFC models
are tangible reflections of the ideas of the designers and clearly indicate the broad,
diverse extent of their intended use [32]. The models not only provide 3D geome-
try for building structure and manage information but also provide data structures,
which are supported by many applications and softwares for the exchange of build-
ing geometry and all types of AEC project information. A new expansion into crowd
simulation is concerned in this study. Thus the geometry of corresponding building
structures is necessary to simulate the routine of visitors and staffs in them.

In this chapter, we would concentrate on the data conversion from the existing IFC
models in ifcXML files into the geometry files for the crowd simulation. The soft-
ware crowd:it, developed by the company accu:rate, is used in this study for crowd
simulation. This software simulates the pedestrian walking path basing on the 2D
plan graph of buildings. Therefore, a 2D floor plan is the required. So that the main
task in this chapter is to develop of a method to retrieve the 2D geometry from the
ifcXML file of the corresponding buildings. The implementation design of data con-
version is shown in Figure 3.1. It mainly consist of four parts as shown in the middle
of the figure, which are ifcXML filter, geometry data retrieval, 3D to 2D conversion
and output the files for simulation softwares.

The ifcXML filter is usually required to pick out the necessary information for the
3D to 2D data retrieval. Since ifcXML files are always with large size and the pars-
ing directly with the original ifcXML file may have unexpected data overflow. The
theoretical basic of filtering ifcXML file would be the combination of XML structure
and IFC schema.

The most important and challenging steps are the geometry data retrieval and 3D to
2D conversion. During the data retrieval, all the necessary data instances should be
linked together. Thus an analysis of the connection among data instances in ifcXML
file is interesting. Based on the previous study of IFC and ifcXML in Chapter 2,
ifcXML files are a special type of XML files that are generated from BIM models.
Data instances in the ifcXML file are defined and identified through unique markers.
These instances are also able to link each other. To find out how one data instance
is connected to another one, the user needs to search and follow the link, which is
defined in ifcXML file. This would also be explained in this chapter. After the di-
mension conversion, the 2D geometry information is generated. In the final step,

Chapter 3. Design of data conversion from ifcXML 24

FIGURE 3.1: Design of data conversion from ifcXML to crowd simu-
lation

the new data would be rewritten into readable file format for crowd:it to the crowd
simulation.

3.1 Information retrieval from ifcXML

From the chapter 2, the meaning of each tags and the relations between elements are
introduced. The fundamental concept and schema structure of industry foundation
classes are also rough clarified. However information retrieval from ifcXML is more
refined and more complex than the rough structure study.

In this section, we would focus on the specific building elements such as IfcWall,
IfcStair, IfcDoor and etc.. How the information about those elements are recorded
and the link between each other in the ifcXML files will also be talked.

3.1.1 Frame of IFC building element

Building elements defined from ISO 6707-1 are the major functional parts of a house,
which comprise all elements that are primary part of the construction of a building,
i.e.: the structural and space separating system. Building elements are all physically
existent and tangible things [17].

In the IFC schema, the IfcBuildingElement is a generalization of all elements that par-
ticipate in a building system. Typical examples of IfcBuildingElement are:

• building elements within a space separation systems

• building elements within an enclosure system (such as a facade)

• building elements within a fenestration system

• building elements within a load bearing system

Chapter 3. Design of data conversion from ifcXML 25

• building elements within a foundation system

In EXPRESS graph, IfcBuildingElement is an abstract class which defines specific
building structure elements, including 21 items of building elements, for example
walls, curtain walls, doors, columns, piles, and etc. The IfcBuildingElement itself is
an abstract entity that cannot be instantiated. So that, for other arbitrary building
elements, which are not subtypes of IfcBuildingElement, can be added to IfcBuildin-
gElementProxy.

FIGURE 3.2: Entity inheritance chart of building elements.[21]

As can be seen in the Figure 3.2, some of the specific building elements are listed as
subclasses from IfcBuildingElement. And above IfcBuildingElement, it can be seen that
the abstracts are all derived from IfcRoot.

The various subtypes of the IfcBuildingElement would define further attributes. In
general, each of the subtypes inherits the following attributes and inverse relation-
ships from IfcElement: Elements also have the following additional attributes in Table
3.1.

ENTITY IfcElement

GlobalId : IfcGloballyUniqueId;

OwnerHistory : IfcOwnerHistory;

Name : OPTIONAL IfcLabel;

Description : OPTIONAL IfcText;

ObjectType : OPTIONAL IfcLabel;

Chapter 3. Design of data conversion from ifcXML 26

IsTypedBy : OPTIONAL IfcRelDefinesByType;

ObjectPlacement : OPTIONAL IfcObjectPlacement;

Representation : OPTIONAL IfcProductRepresentation;

Tag : OPTIONAL IfcIdentifier;

INVERSE

HasAssignments : SET OF IfcRelAssigns;

Nests : SET [0:1] OF IfcRelNests;

IsNestedBy : SET OF IfcRelNests;

HasContext : SET [0:1] OF IfcRelDeclares;

IsDecomposedBy : SET OF IfcRelDecomposes;

Decomposes : SET [0:1] OF IfcRelDecomposes;

HasAssociations : SET OF IfcRelAssociates;

IsDeclairedBy : SET [0:1] OF IfcRelDefinesByObject;

Declares : SET OF IfcRelDefinesByObject;

IsDefinedBy : SET OF IfcRelDefines;

ReferencedBy : SET OF IfcRelAssignsToProduct;

FillsVoids : SET [0:1] OF IfcRelFillsElement;

ConnectedTo : SET OF IfcRelConnectsElements;

IsInterferedByElements : SET OF IfcRelInterferesElements;

InterferesElements : SET OF IfcRelInterferesElements;

HasProjections : SET OF IfcRelProjectsElement;

ReferencedInStructures : SET OF IfcRelReferencedInSpatialStructure;

HasOpenings : SET OF IfcRelVoidsElement;

IsConnectionRealization : SET OF IfcRelConnectsWithRealizingElements;

ProvidesBoundaries : SET OF IfcRelSpaceBoundary;

ConnectedFrom : SET OF IfcRelConnectsElements;

ContainedInStructure : SET [0:1] OF IfcRelContainedInSpatialStructure;

HasCoverings : SET OF IfcRelCoversBldgElements;

END_ENTITY;

TABLE 3.1: Attributes of IfcElement

easily
As a subtype of IfcElement, IfcBuildingElement has the same attribute as IfcElement.
That means there are no extra attribute added by IfcBuildingElement, and all the at-
tributes are inherited from the entities of supertypes.

In the Figure 3.3, the instance diagram of attribute inheritance is displayed. In inher-
itance extend, the attributes can be divided into IfcRoot, IfcObjectDefinition, IfcObject,
IfcProduct and IfcElement. It can be seen, the order of the attributes are also listed as
same as the inherited order, which is shown in Figure 3.2.

Also in the figure it includes explicit and inverse attributes, where explicit attributes
are in black and others are in gray. From chapter 2 we can know that only explicit at-
tributes would be seen in the file content. That means there would be eight attributes
for IfcBuildingElement in IFC and also IFCXML files.

3.1.2 Wall elements

First of all, in IFC schema, two concepts need to be specified according to the wall
elements, which are IfcWall and IfcWallStandardCase. Generally speaking, IfcWall-
StandardCase is a subset of IfcWall. IfcWallStandardCase refers to the walls that have a
constant thickness along all the wall path. And IfcWall handles the rest of the cases

Chapter 3. Design of data conversion from ifcXML 27

FIGURE 3.3: Attribute inheritance chart of building elements

of the walls.

From the explanation above, the IfcWallStandardCase should satisfy the following
conditions[21].

• having one (material) thickness along the wall path;

• having a wall path being either a straight line or a circular arc;

• may have various offsets from the wall path;

• may have a single or multiple material layers;

• may have a constant height or a varying height along the path.

Meanwhile, for the other case in IfcWall, it would including the following cases,
which are not covered by the standard wall.

• Do not have a single (material) thickness along the wall path;
either have a foot print with non-parallel sides, i.e. a varying material thick-
ness along the wall path (such as a cone as foot print),
or have a cross section, not being rectangular, like a shear wall having an L-
shape cross section,
or have openings such as windows and doors.

• Do not have a wall path being either a straight line or a circular arc;
either have an elliptic arc,
or a spline curve,
or any other irregular path geometry.

However, the attribute inheritance of both entities are exactly the same, and the at-
tributes can be seen in Figure 3.6. Also it can be seen that, there is a new attribute,

Chapter 3. Design of data conversion from ifcXML 28

which is PredefinedType. This is a new attribute provided in IFC4. This refers to a
predefined generic type for a wall that is specified in an enumeration. Note that
the PredefinedType shall only be used if no IfcWallType is assigned, providing its own
IfcWallType.

FIGURE 3.4: IfcXML representation of the 3D wall

The Figure 3.4 shows the representation in ifcXML files of the 3D wall model. It can
be seen that all the empty attributes are concealed and not presented in the ifcXML
file.

For the information retrieval, we would go a deeper study with standard walls. For
each standard wall, the IfcWallStandardCase element provided in Figure 3.6 includes
all the geometry information. The detailed introduction would be presented in three
part:

1. Location of the wall;

2. Axis of the wall;

3. Body shape of the wall;

The location of the wall can be found in ObjectPlacement, where IfcLocalPlacement is
nested. Inside IfcLocalPlacement, IfcAxis2Placement3D provides further coordinates of
the starting point of the wall, and then an axis would be provided to show the path
or the center line of the wall from top view. Both axis and body shape of the wall can
be found in attribute of representation, where IfcProductRepresentationShape provides
both axis and body IfcShapeRepresentation.

The establish of these geometry information of a wall is not simply through coor-
dinates or line equations. Firstly it starts with a local axis on an endpoint of the wall,
and this endpoint would be the original point of the axis. Then there would be a
path line along the floor. The thickness as well as the depth of the wall would be
provided separately. The two attributes ObjectPlacement and representation would be
introduced afterwards.

The ObjectPlacement includes IfcLocalPlacement which belongs to resource definition
data schemas, and it defines the relative placement of an object referenced to another

Chapter 3. Design of data conversion from ifcXML 29

object or the absolute placement of an object within the geometric representation
context of the project. It has two attributes which are PlacementRelTo and Relative-
Placement, and they are corresponding to IfcObjectPlacement and IfcAxis2Placement2D(or
IfcAxis2Placement3D in three-dimensional axis case).

The PlacementRelTo actually signs the coordinate system of the object. When the
IfcLocalPlacement is inserted with a PlacementRelTo attribute value, it defines the rel-
ative placement of an object in relation to another object and finally through the
intermediate referenced placements within the geometric representation context of
the project. But when the IfcLocalPlacement is not set with any value, it defines the
absolute placement of a product in relation to the global coordinate system as estab-
lished by the assigned geometric representation context of the project.

So that from attribute PlacementRelTo whether the coordinate system is global coor-
dinate should be confirmed. Note that when the walls are required to be contained
within a spatial structure element for complete building model exchange, then the
PlacementRelTo shall point to that spatial structure element.

The RelativePlacement refers to IfcAxis2Placement2D or IfcAxis2Placement3D. It directly
provides the coordinate of the object. Each local placement is given by an coordinate,
which can be either in a 2D or a 3D coordinate system. Either IfcAxis2Placement2D
or IfcAxis2Placement3D has three attributes which are Location, Direction and RefDi-
rection, which are given by[21]:

• Location: the location of start point of the wall;

• Direction: the direction of the local Z-axis (in case of 3D) – if omitted always [0,
0, 1];

• RefDirection: the direction within the positive XZ plane (in case of 3D) or the
direction of the X-axis (in case of 2D) – if omitted always [1, 0, 0] – or [1, 0] in
2D.

According to the rules showing above, the Location would never be omitted where a
coordinate is given to locate the original point of the axis. The Direction and RefDi-
rection together provide the direction to establish the axis.

1. <IfcCartesianPoint id="i2042">

2. <Coordinates exp:cType="list">

3. <IfcLengthMeasure exp:pos="0">-8938.26803</IfcLengthMeasure>

4. <IfcLengthMeasure exp:pos="1">10130.1963</IfcLengthMeasure>

5. <IfcLengthMeasure exp:pos="2">0.</IfcLengthMeasure>

6. </Coordinates>

7. </IfcCartesianPoint>

8. <IfcAxis2Placement3D id="i2044">

9. <Location>

10. <IfcCartesianPoint xsi:nil="true" ref="i2042"/>

11. </Location>

12. </IfcAxis2Placement3D>

13. <IfcLocalPlacement id="i2045">

14. <PlacementRelTo>

15. <IfcLocalPlacement xsi:nil="true" ref="i2032"/>

Chapter 3. Design of data conversion from ifcXML 30

16. </PlacementRelTo>

17. <RelativePlacement>

18. <IfcAxis2Placement3D xsi:nil="true" ref="i2044"/>

19. </RelativePlacement>

20. </IfcLocalPlacement>

21. <IfcWallStandardCase id="i2084">

22. <GlobalId>2qDQkwZlH2yuxdvqIaccMR</GlobalId>

23. <OwnerHistory>

24. <IfcOwnerHistory xsi:nil="true" ref="i1944"/>

25. </OwnerHistory>

26. <Name>Basic wall:interior - 200mm:392314</Name>

27. <ObjectType>Basic wall:interior - 200mm:1044</ObjectType>

28. <ObjectPlacement>

29. <IfcLocalPlacement xsi:nil="true" ref="i2045"/>

30. </ObjectPlacement>

31. <Representation>

32. <IfcProductDefinitionShape xsi:nil="true" ref="i2078"/>

33. </Representation>

34. <Tag>391703</Tag>

35. <PredefinedType>notdefined</PredefinedType>

36. </IfcWallStandardCase>

TABLE 3.2: Example of attribute ObjectPlacement in IfcXML

easily
From the example in Table 3.2, IfcLocalPlacement is an example drew from IfcWall-
StandardCase, and the IfcAxis2Placement3D can be found in its attributes. In this case
only Location is presented. It means the axis is in default direction which is same as
global axis. From the PlacementRelTo, another IfcLocalPlacement can be found. In this
case the IfcLocalPlacement with i2032 is one spatial structure element where the wall
is contained. The coordinate is global.

The IfcProductDefinitionShape is included in representation and refers to at least two
IfcShapeRepresentation according to the geometry information, where the axis and
body shape of the wall can be found separately. Different IfcShapeRepresentation can
represent axis, surface, body and etc. Usually for standard walls, there will be two
IfcShapeRepresentation and one represents the wall axis, the other represents the wall
body.

For the wall axis, the IfcShapeRepresentation is given with the following conventions
[21]:

• RepresentationIdentifier would be given as "Axis";

• RepresentationType would be given as "Curve2D";

• Items: The IfcBoundedCurve should be used. For multi-segmented path, the
IfcCompositeCurve shall be used. For a single line segment, it can be represented
using an IfcTrimmedCurve with BasisCurve being an IfcLine, or (recommended)
an IfcPolyline with exactly two IfcCartesianPoint.

Wall axis directly shows the wall path starting from the original point in the above-
mentioned coordinate system. It presents a line from top view. Besides that, the wall

Chapter 3. Design of data conversion from ifcXML 31

axis also provides the reference line to relate offset between the material layer set
and the wall. The implicit offset line of the material layer set is the right edge of the
first material layer. Some examples of straight standard walls can be seen in Figure
3.5.

FIGURE 3.5: Examples for standard walls (ground view, cross section
and elevation) [21]

Usually in wall structures, there is only one tag segment in attribute Items. For
straight walls, either the IfcTrimmedCurve or IfcPolyline can be found in this attribute.
For curved walls, the Items would only be an IfcTrimmedCurve with BasisCurve being
an IfcLine.

In the recommended IfcPolyline, the line would always along the XY direction. Two
IfcCartesianPoint would be provided in the Point, which is the only attribute of the
IfcPolyline. And finally the path of the wall can be get from lining up the two points.

For the wall body, the IfcShapeRepresentation would follow the listed conventions
[21]:

• RepresentationIdentifier would be given as "Body";

• RepresentationType would be given as "SweptSolid" (for walls with equal height)
or "Clipping" (for walls with varying height);

• Items: The IfcSweptAreaSolid should be used with two different types of sweep-
ing operations.

For the IfcSweptAreaSolid, the sweeping operations could be linear extrusion or rev-
olution referring to IfcExtrudedAreaSolid and IfcRevolvedAreaSolid separately. In stan-
dard walls, usually the IfcExtrudedAreaSolid will be used. In case of clipped standard
wall bodies, the use of IfcBooleanClippingResult is required.

The wall body is the part that really represents the 3D shape of the wall. Not only
the depth and thickness of the wall, but also a 2D arbitrary closed curve of the foot
print of the wall is given. The depth is given directly from the attribute Depth in
IfcExtrudedAreaSolid, while the thickness and the length can be found in attribute
SweptArea. As for the foot print of the wall, it can be found in the attribute Position
with also datatype IfcAxis2Placement2D.

Because the extrusion is in the vertical direction, it would provide a same body
geometry for the straight walls and the curved walls in terms of the sweep op-
eration, which are represented by IfcExtrudedAreaSolid with SweptArea of datatype
IfcArbitraryClosedProfileDef or IfcRectangleProfileDef (for walls with regular rectangle
shapes). That means the attribute Depth should be equal to the wall height that could
be found in the data of the SweptArea.

Therefore, the extrusion coordinate system which is in the Position of IfcSweptAr-
eaSolid could be aligned with the object coordinate system in RelativePlacement of

Chapter 3. Design of data conversion from ifcXML 32

IfcLocalPlacement. And a same value of the length of the wall could be found in these
two IfcShapeRepresentation.

1. <IfcPolyline id="i2049">

2. <Points exp:cType="list">

3. <IfcCartesianPoint exp:pos="0" xsi:nil="true" ref="i1912"/>

4. <IfcCartesianPoint exp:pos="1" xsi:nil="true" ref="i2047"/>

5. </Points>

6. </IfcPolyline>

7. <IfcShapeRepresentation id="i2051">

8. <ContextOfItems>

9. <IfcGeometricRepresentationSubContext xsi:nil="true" ref="i2001"/>

10. </ContextOfItems>

11. <RepresentationIdentifier>Axis</RepresentationIdentifier>

12. <RepresentationType>Curve2D</RepresentationType>

13. <Items exp:cType="set">

14. <IfcPolyline xsi:nil="true" ref="i2049"/>

15. </Items>

16. </IfcShapeRepresentation>

17. <IfcExtrudedAreaSolid id="i2065">

18. <SweptArea>

19. <IfcRectangleProfileDef xsi:nil="true" ref="i2061"/>

20. </SweptArea>

21. <Position>

22. <IfcAxis2Placement3D xsi:nil="true" ref="i2064"/>

23. </Position>

24. <ExtrudedDirection>

25. <IfcDirection xsi:nil="true" ref="i1922"/>

26. </ExtrudedDirection>

27. <Depth>10000.</Depth>

28. </IfcExtrudedAreaSolid>

29. <IfcShapeRepresentation id="i2075">

30. <ContextOfItems>

31. <IfcGeometricRepresentationSubContext xsi:nil="true" ref="i2003"/>

32. </ContextOfItems>

33. <RepresentationIdentifier>Body</RepresentationIdentifier>

34. <RepresentationType>SweptSolid</RepresentationType>>

35. <Items exp:cType="set">

36. <IfcExtrudedAreaSolid xsi:nil="true" ref="i2065"/>

37. </Items>

38. </IfcShapeRepresentation>

39. <IfcProductDefinitionShape id="i2078">

40. <Representations exp:cType="list">

41. <IfcShapeRepresentation exp:pos="0" xsi:nil="true" ref="i2051"/>

42. <IfcShapeRepresentation exp:pos="1" xsi:nil="true" ref="i2075"/>

43. </Representations>

44. </IfcProductDefinitionShape>

45. <IfcWallStandardCase id="i2084">

46. <GlobalId>2qDQkwZlH2yuxdvqIaccMR</GlobalId>

47. <OwnerHistory>

48. <IfcOwnerHistory xsi:nil="true" ref="i1944"/>

49. </OwnerHistory>

50. <Name>Basic wall:interior - 200mm:392314</Name>

51. <ObjectType>Basic wall:interior - 200mm:1044</ObjectType>

52. <ObjectPlacement>

53. <IfcLocalPlacement xsi:nil="true" ref="i2045"/>

54. </ObjectPlacement>

Chapter 3. Design of data conversion from ifcXML 33

55. <Representation>

56. <IfcProductDefinitionShape xsi:nil="true" ref="i2078"/>

57. </Representation>

58. <Tag>391703</Tag>

59. <PredefinedType>notdefined</PredefinedType>

60. </IfcWallStandardCase>

TABLE 3.3: Example of attribute Representation in ifcXML

easily
The Table 3.3 shows an example of ifcXML data file regarding to the attribute Rep-
resentation. Also in the same standard wall case, there are two IfcShapeRepresentation
representing axis and body shape of the wall. According to the above-mentioned
introduction of the conventions, we would focus on the attribute Item in IfcShapeRep-
resentation. The IfcPolyline and IfcExtrudedAreaSolid can be found in this case. Thus
the geometry information would be easily obtained.

Based on all of the information introduced above, a short summary of data retrieval
would be achieved. Figure 3.6 is an example chart of geometry retrieval. The whole
process is divided into two main parts starting from ObjectPlacement and Representa-
tion. The Cartesian point can be found in the attribute ObjectPlacement. The path and
the body of the wall would be found in the attribute Representation. The figure shows
a simple 3D standard wall case and indicates the relationship of these data types. It
also provides a certain path to locate the geometry information in the ifcXML file.

FIGURE 3.6: Geometry retrieval chart of IfcWallStandardCase

Chapter 3. Design of data conversion from ifcXML 34

3.1.3 Stair elements

Stairs are passageways that are used for walking through floors, which have differ-
ent elevations. As it has been shown in chapter 2, IfcStair is defined to represent this
building element in IFC schema.

IfcStair has not only the same entity inheritance relationship as other building el-
ements like IfcWall, but also the same attributes as IfcWall and IfcWallStandardCase.
So basically IfcStair should have a similar way of geometry representation as walls.

1. <IfcRelAggregates id="i7080">

2. <GlobalId>1SsQGlds52BAv6sNzbFrzP</GlobalId>

3. <OwnerHistory>

4. <IfcOwnerHistory xsi:nil="true" ref="i1677"/>

5. </OwnerHistory>

6. <RelatingObject>

7. <IfcStair xsi:nil="true" ref="i2197"/>

8. </RelatingObject>

9. <RelatedObjects exp:cType="set">

10. <IfcStairFlight xsi:nil="true" ref="i3132"/>

11. <IfcMember xsi:nil="true" ref="i3161"/>

12. <IfcMember xsi:nil="true" ref="i3189"/>

13. <IfcRailing xsi:nil="true" ref="i5122"/>

14. <IfcRailing xsi:nil="true" ref="i7066"/>

15. </RelatedObjects>

16. </IfcRelAggregates>

TABLE 3.4: Example of IfcRelAggregates connecting IfcStair and Ifc-
StairFlight

easily
Since stairs are composed of stair flights. Stair flight can be separated into risers
and treads. Every rise and tread may have different shapes. The geometry infor-
mation of stair is written in IfcStairFlight, which can be found being connected with
IfcStair in IfcRelAggregates. The attaching side edge beams is written in IfcMember
and handrails are defined in IfcRailing. Table 3.4 shows an example of the connec-
tion. Based on this, the information of stairs, which is necessary for data retrieval is
listed as following.

• The location of the stair;

• The number of total risers and treads;

• The length and width of each riser and tread;

• If needed, the geometry of the platform and handrail etc.

IfcStairFlight is also a building element, but with a little difference from IfcStair. It
has several its own attributes, which can be seen in figure 3.7. The number of risers
and treads in one stair flight can be found in the attribute NumberOfrisers and Num-
berOfTreads.

The geometry information therefore is quite similar to IfcWall that can be found in
the attribute representation. Also it contains IfcProductDefinitionShape, which includes
the IfcShapeRepresentation representing the shape information. In the case of stairs,

Chapter 3. Design of data conversion from ifcXML 35

IfcShapeRepresentation follows the conventions, which is similar to wall body, and
the important data is listed in IfcExtrudedAreaSolid of the Items. User would find the
number of IfcExtrudedAreaSolid, which is the same as the sum of risers and treads. So
that there are two kinds of body representation for risers and treads. By comparing
the value of attribute depth, which represents the waist thickness of tread or the riser
height, they can be distinguished.

The attribute RiserHeight and TreadLength of IfcStairFlight have been deprecated, so
that the values are no longer reliable. These two geometry values can be found in
Pset_StairFlightCommon instead. Pset_StairFlightCommon is an IfcPropertySet that is
connected to IfcStairFlight by IfcRelDefinesByProperties. Besides the two properties
mentioned above, it contains all other geometry information that is needed for the
model.

Both the IfcExtrudedAreaSolid of risers and treads provide coordinates. The IfcEx-
trudedAreaSolid of risers provide coordinates of middle point both on bottom and
top edges of each riser, while IfcExtrudedAreaSolid of treads provide the endpoints’
coordinates. According to the author, the coordinates provided by risers would be
easier to locate.

FIGURE 3.7: Geometry retrieval chart of IfcStairFlight

Figure 3.7 shows the flow chart of the data retrieval of IfcStairFlight. There are all to-
gether three parts, namely: the location of the stair, the number of risers and treads
and the size of each riser and tread. Before this, it also needs to confirm the corre-
sponding between stairs and stair flights.

Stairs usually contains several attachments such as side edge beams, handrail, plat-
form and etc. As introduced, the beams and handrail can be found in IfcMember and
IfcRailing. When a stair has a platform that makes a turning between two stair flight,

Chapter 3. Design of data conversion from ifcXML 36

then the user might find a lot more IfcMember representing the side edge beams, and
IfcSlab may also be found in the RelatedObjects that represents the platform. So that
the geometry data of these elements can be found by tracing these tags.

3.1.4 Door elements

Doors are entrance/exit and access between two spaces. In the crowd simulation,
door is essential for providing the path into a certain floor of the building. The gate
of a building is also the entrance and exit of the pedestrians. In IFC schema, it is
defined as IfcDoor, which is also a building element.

Similar to IfcStairFlight, IfcDoor also have several exclusive attributes which can be
seen in Figure 3.8. Since the doors are attached to the walls between spaces, so that
the connection between these two building elements are also important.

In IFC schema, another element IfcOpeningElement is used in this case. Basically,
IfcOpeningElement refers to the opening on the wall for doors or windows, and Ifc-
Door refers to the door itself. So that only IfcOpeningElement can be found connecting
with certain walls by IfcRelVoidsElements. The Table 3.5 shows an example of these
connection in ifcXML file.

1. <IfcRelVoidsElement id="i2299">

2. <GlobalId>3z8vncq$z8g8wy05_Meex8</GlobalId>

3. <OwnerHistory>

4. <IfcOwnerHistory xsi:nil="true" ref="i1677"/>

5. </OwnerHistory>

6. <RelatingBuildingElement>

7. <IfcWall xsi:nil="true" ref="i1825"/>

8. </RelatingBuildingElement>

9. <RelatedOpeningElement>

10. <IfcOpeningElement xsi:nil="true" ref="i2294"/>

11. </RelatedOpeningElement>

12. </IfcRelVoidsElement>

13. <IfcRelFillsElement id="i2302">

14. <GlobalId>1un7pZVQH6hg1SonpwFnlx</GlobalId>

15. <OwnerHistory>

16. <IfcOwnerHistory xsi:nil="true" ref="i1677"/>

17. </OwnerHistory>

18. <RelatingOpeningElemen>

19. <IfcOpeningElement xsi:nil="true" ref="i2294"/>

20. </RelatingOpeningElemen>

21. <RelatedBuildingElement>

22. <IfcDoor xsi:nil="true" ref="i2062"/>

23. </RelatedBuildingElement>

24. </IfcRelFillsElement>

TABLE 3.5: Example of connection between IfcDoor, IfcOpeningEle-
ment and IfcWall

easily
By comparing the IfcDoor and IfcOpeningElement tags from the file, both of them
would provide sizes and coordinates. The coordinates from IfcOpeningElement is the
same as the one from IfcDoor, and both are relevant to IfcWall. Here the size consists

Chapter 3. Design of data conversion from ifcXML 37

of the height , width and thickness of the door. So that in our case, either through
IfcDoor or through IfcOpeningElement would be enough to retrieval all the geometry
information. Since only IfcOpeningElement is connecting to walls, so that it would be
practical to use IfcOpeningElement to locate the doors.

For the doors or opening elements, it is embedded into the wall, so that the thick-
ness is no loner important. And all the other aspects of information retrieval are
listed bellow.

• The location of the door or opening;

• The height and width of the door or opening;

Because the coordinates are relevant to walls, so that finding the location of door or
opening has two steps, firstly is to find the attached wall, and then is to locate the
door or opening on this wall. As it has been mentioned before, finding the attached
wall would rely on the IfcOpeningElement. Similar to any other building elements,
the relevant coordinates can be found in the attribute ObjectPlacement where the If-
cLocalPlacement is provided, and the origin point of the coordinates is same as the
origin point that is used in wall axis. The coordinates they provided is the middle
point of the door or opening.

As it has been mentioned, the height and width can both be found in IfcDoor and
IfcOpeningElement. In IfcDoor, it has two direct attributes which are OverallHeight
and Overallwidth. And in IfcOpeningElement, they can be found in attribute Represen-
tation similar to IfcWall.

1. <IfcDoor id="i3035">

2. <GlobalId>1sx2gZimz46g6iHbaMd6bg</GlobalId>

3. <OwnerHistory>

4. <IfcOwnerHistory xsi:nil="true" ref="i1677"/>

5. </OwnerHistory>

6. <Name>M_single:0915 x 2134mm:322650</Name>

7. <ObjectType>0915 x 2134mm</ObjectType>

8. <ObjectPlacement>

9. <IfcLocalPlacement xsi:nil="true" ref="i9188"/>

10. </ObjectPlacement>

11. <Representation>

12. <IfcProductDefinitionShape xsi:nil="true" ref="i3028"/>

13. </Representation>

14. <Tag>322650</Tag>

15. <OverallHeight>2134.</OverallHeight>

16. <OverallWidth>915.</OverallWidth>

17. <PredefinedType>door</PredefinedType>

18. <OperationType>single_swing_right</OperationType>

19. </IfcDoor>

TABLE 3.6: Example of IfcDoor representing room in ifcXML file

easily
Table 3.6 provides an example in ifcXML file. As it can be seen that the height and
width are provided, and the coordinates can be found in attribute ObjectPlacement
through a routine similar to IfcWall.

Chapter 3. Design of data conversion from ifcXML 38

FIGURE 3.8: Geometry retrieval chart of IfcDoor

Figure 3.8 shows the flow chart of the data retrieval based on IfcDoor. As it can be
seen, besides the getting of height and width, there are still two steps. One is to get
the coordinates and the other is to find the attached wall.

3.1.5 Space elements for rooms

Rooms are closed areas for human activities, where people spend most of their time
in this building. So that they are usually destinations or starting points of the pedes-
trians in the crowd simulation.

Actually room is an abstract concept for a certain area, there isn’t any building el-
ement that could match room, or to say, room is not a building element. But in
IFC schema, there is a way to describe rooms in the building model by using Ifc-
Space. When the rooms are added in the application when creating building model,
in the outputted IFC files, specific IfcSpace would be written with its LongName called
"room".

1. <IfcSpace id="i1780">

2. <GlobalId>3eVqApzBbF4uxz$rr62H5j</GlobalId>

3. <OwnerHistory>

4. <IfcOwnerHistory xsi:nil="true" ref="i1677"/>

5. </OwnerHistory>

6. <Name>1</Name>

7. <ObjectPlacement>

8. <IfcLocalPlacement xsi:nil="true" ref="i1763"/>

9. </ObjectPlacement>

10. <Representation>

11. <IfcProductDefinitionShape xsi:nil="true" ref="i1776"/>

12. </Representation>

13. <LongName>room</LongName>

14. <CompositionType>element</CompositionType>

Chapter 3. Design of data conversion from ifcXML 39

15. <InteriorOrExteriorSpace>internal</InteriorOrExteriorSpace>

16. </IfcSpace>

TABLE 3.7: Example of IfcSpace representing room in ifcXML file

easily
Table 3.7 shows an example of the room representation in ifcXML file. Different from
building elements such as IfcWall or IfcDoor, IfcSpace is not inherited from IfcBuildin-
gElement but they all inherited from IfcProduct which means they all have attributes
ObjectPlacement and Representation for geometry information. Following data are
needed to analyze rooms.

• The location of the space;

• The height, length and width of the space;

In the IfcSpace which is used to represent a room, different as normal space, the loca-
tion coordinates are not provided in attributes ObjectPlacement but in Representation
together with sizes. It locates the central point of the space.

FIGURE 3.9: Geometry retrieval chart of IfcSpace for rooms

The Figure 3.9 shows a flow chart of the geometry retrieval from IfcSpace. And the
two parts of data retrieval are both done in attribute Representation, which makes the
procedure a lot easier.

3.2 Solutions for 3D to 2D conversion

Original BIM models are built in three-dimensional, so all the geometry information
would also be in 3D. But in our case for the crowd simulation, only 2D floor plans
of building are interested. In order to build the 2D floor plane of each floor, the con-
version of data from 3D to 2D is needed.

Usually there are two approaches of the dimension conversion.

Chapter 3. Design of data conversion from ifcXML 40

• Based on original file;

• Based on output file.

In the first way, mainly the original file need to be modified in order to get a 2D build-
ing model. So that it is necessary to fully understand the structure of the file and the
relationship between different data. For that a programme for the conversion is nec-
essary. Obviously it would be a rather huge work to build such a programme. But
once it is done, it could keep the integrity of structure and data in a large extend.
And it would be easier to build the further procedure. Also it would decrease the
amount of work in upgrading or modifying this project.

The other way, which is based on the output file would hold more pertinence to
the implementation. The idea is to focus on the certain elements in the original file,
and to pick out the relative data. By dispose of the data of z axis, only two-dimension
data would be collected in the output file. Comparing to the first way, the design and
time costs are significantly lower. The output files would only contain the concern-
ing elements and information. But therefore it would have limitations that might
can only be applied in some cases, and further upgrade and modification would be
very hard. The above-mentioned two approaches is presented in Figure 3.10. In

FIGURE 3.10: Dimention conversion based on original file(left) and
output file(right)

this study, because of time limitation, the second method is chosen for a attempting
study. The process according to this approach is to locate the data positions in the
input file firstly, and then write out all the geometry data. In the retrieved data, the z
direction data would be disposed, and the rest two-dimensional data would be used
to build the input file for crowd simulation.

From the previous section, the data retrieval of standard walls are introduced. As
it has been clarified that, the ifcXML file would first provide an endpoint with its
coordinate of the wall as the original point and build a new coordinate system. Then
the path and body of the wall would be provided separately. This is actually reduce
the difficulty in disposing z direction.

Based on standard wall case, the modification would only needed for dispose the co-
ordinate in z direction. Because the wall path itself would definitely a two-dimension
line, by adding the thickness of the wall, all the data for plane graph is gathered. An
extra work in this process would be confirming the storey of each wall. In the case of
stairs, doors and spaces, they do not include path axis, so that it is more directly to

Chapter 3. Design of data conversion from ifcXML 41

extract the 2D information from the element attribute by disposing z direction. But
process of confirming the storey of each element is still needed.

3.2.1 Building storey information

The building storey represents a horizontal aggregation of spaces and elements that
are vertically bounded [17]. IfcBuildingStorey is used to mark the levels of the build-
ing and contains corresponding building elements in each level. It is always asso-
ciated to one IfcBuilding, either IfcBuilding represents a building or a section in that
building.

All spaces and elements that are in the same building storey would be referenced
to the that storey. Thus the storey information could be represented. A building
storey with several partial storeys can also be decomposed into parts.

IfcBuildingStorey is defined as a subclass of IfcSpatialStructureElement, like IfcSite,
IfcBuilding and IfcSpace. By inheriting and receiving from its own class, IfcBuilding-
Storey has ten explicit attributes. Among them, the information that might needed
in this study are Name and Elevation. From the Name we could easily mark the con-
necting elements. All the connecting elements should have the same elevation and
stored in Elevation.

The assigning of building elements to the IfcBuildingStorey is handled by the IfcRel-
Connects. In our case, the relating elements and storey can be found in specified one
IfcRelContainsInSpatialStructure.

FIGURE 3.11: Relation between spatial structure and building ele-
ments[17].

As it can be seen in Figure 3.11, the building elements are connected to the certain
building storeys where they belong. The IfcSpace however does not inherit from
IfcBuildingElement, but directly from IfcSpatialStructureElement. There is also a rela-
tion class provided between IfcSpace and IfcBuildingStorey, marked as IfcRelAggre-
gates.

The IfcRelContainsInSpatialStructure have six attributes, the first four are inherited
from IfcRoot, including id, name and basic information. The other two are from
IfcRelContainsInSpatialStructure itself, which are RelatedElements and RelatingStruc-
ture. RelatedElements has several assigned referencing tags marking the building el-
ements that belong to the same building storey. The RelatingStructure provides the
certain building storey, only one storey item could be assigned in this attribute.

Chapter 3. Design of data conversion from ifcXML 42

Similar to the IfcRelContainsInSpatialStructure, IfcRelAggregates also have six attributes,
but the relating objects are represented by RelatedObject and RelatingObject. Relate-
dObject marks the spaces which are rooms in this case, and RelatingObject will pro-
vide the certain building storey.

1. <IfcBuildingStorey id="i2034">

2. <GlobalId>3AkbiG8v18Uhj0zSSdrr1d</GlobalId>

3. <OwnerHistory>

4. <IfcOwnerHistory xsi:nil="true" ref="i1944"/>

5. </OwnerHistory>

6. <Name>Level 1</Name>

7. <ObjectPlacement>

8. <IfcLocalPlacement xsi:nil="true" ref="i2032"/>

9. </ObjectPlacement>

10. <LongName>Level 1</LongName>

11. <CompositionType>element</CompositionType>

12. <Elevation>0.</Elevation>

13. </IfcBuildingStorey>

14. <IfcRelContainedInSpatialStructure id="i2486">

15. <GlobalId>3Zu5Bv0LOHrPC10066FoQQ</GlobalId>

16. <OwnerHistory>

17. <IfcOwnerHistory xsi:nil="true" ref="i1944"/>

18. </OwnerHistory>

19. <RelatedElements exp:cType="set">

20. <IfcWallStandardCase xsi:nil="true" ref="i2084"/>

21. <IfcWallStandardCase xsi:nil="true" ref="i2181"/>

22. <IfcWallStandardCase xsi:nil="true" ref="i2216"/>

23. <IfcWallStandardCase xsi:nil="true" ref="i2251"/>

24. </RelatedElements>

25. <RelatingStructure>

26. <IfcBuildingStorey xsi:nil="true" ref="i2034"/>

27. </RelatingStructure>

28. </IfcRelContainedInSpatialStructure>

29. <IfcRelAggregates id="i2225">

30. <GlobalId>2JF4e6axWHqu3u0C9FZlmi</GlobalId>

31. <OwnerHistory>

32. <IfcOwnerHistory xsi:nil="true" ref="i1677"/>

33. </OwnerHistory>

34. <RelatingObject>

35. <IfcBuildingStorey xsi:nil="true" ref="i1754"/>

36. </RelatingObject>

37. <RelatedObjects exp:cType="set">

38. <IfcSpace xsi:nil="true" ref="i1780"/>

39. </RelatedObjects>

40. </IfcRelAggregates>

TABLE 3.8: Example of IfcBuildingStorey, IfcRelAggregates and IfcRel-
ContainsInSpatialStructure in ifcXML

easily
In Table 3.8, the attributes and assigned elements in IfcRelContainsInSpatialStructure
are presented. It can be observed that, there are four standard walls lying in level
one, and they are all identified by using id numbers. The referenced IfcBuildingStorey

Chapter 3. Design of data conversion from ifcXML 43

is also presented, including the name and elevation that are needed for the crowd
simulation.

From the above-mentioned study, the information of building storeys and connec-
tions to other building elements are based on IfcRelAggregates and IfcRelContainsInSpa-
tialStructure. Some important features of these two items would be listed.

• In IfcBuildingStorey the content of Name is same as that of LongName;

• IfcBuildingStorey does not include any other structure elements in its tag;

• IfcRelContainsInSpatialStructure would provide information of not only build-
ing storey but also other spatial buildings and structures.

• Some certain IfcRelAggregates would provide information of the building storey
which spaces belong to.

So that in order to find out the belonging level of each building elements, the search-
ing path should directly point to the corresponding IfcRelContainsInSpatialStructure
and IfcRelAggregates. And the corresponding items can be filtered out by matching
its referencing id numbers with IfcBuildingStorey id. The referencing element ids in
RelatedStructure and the RelatingObject of the matched items will be saved. Through
that, all the building elements that have been collected before can be categorized.

3.2.2 Summary

In the above sections, several building elements and building storey are introduced.
how they could be converted to the data which is necessary for the crowd simulation
are analyzed. A whole procedure of geometry data retrieval and dimension conver-
sion of each would be presented.

According to the necessity of crowd simulation, the most important IFC building
elements are IfcWall, IfcStair, IfcDoor and IfcSpace. Among them, IfcWall and IfcStair
are most important and complicated. For then several different geometry cases need
to be considered. IfcDoor is always related with IfcOpening associated with IfcWall.
The rooms are represented by IfcSpace.

As it has been introduced before, the building storey is connected to building ele-
ments through IfcRelContainsInSpatialStructure. So that we would build a new path
for storey information retrieval, and finally integrate together with geometry infor-
mation. The first step is to locate the IfcRelContainsInSpatialStructure. Secondly to
check the RelatingStructure whether it contains IfcBuildingStorey. If yes, then write
down the related elements and their id numbers. Together with the geometry re-
trieval, the procedure flow can be found in the following figure.

In the Figure 3.12, it can be seen that in the example of standard walls, the total data
retrieval can be provided into two main parts for geometry and storey information.
In the retrieval of geometry information there would be three steps, which are co-
ordinates of the origin point, wall path and wall body shape. The information of
the storey which the wall belongs to can be directly gathered from the class IfcRel-
ContainsInSpatialStructure through the matching of the wall id numbers. Finally, we
could list out all the important data for each wall and extract into the output file.

Chapter 3. Design of data conversion from ifcXML 44

FIGURE 3.12: Whole geometry retrieval chart of IfcStandardWall

FIGURE 3.13: Whole geometry retrieval chart of IfcSpace

As for the IfcSpace, it doesn’t inherit from IfcBuildingElement, so the storey informa-
tion would receive from IfcRelAggregates. The procedure for getting access to the
relating storey is similar to the procedure of IfcStandardWall. The final total geome-
try retrieval chart for IfcSpace could be found in Figure3.13.

Chapter 3. Design of data conversion from ifcXML 45

3.3 Application in simulation softwares

The final step of this design is the application in simulation softwares: crowd:it. It
is a software package for microscopic, agent-based crowd simulation. It has been
tested in various projects and at the mean time passed all of the tests for simulators
of RiMEA. Not only the application range of crowd:it is quite wide and large, but also
the operation is very simple and quick. It provides realistic movement patterns and
precise visualizations. Crowd:it is a very versatile software for crowd simulation.

The user interface can be seen in Figure 3.14. As the figure shows, the 2D geom-
etry plan graph is used in the middle area for displaying pedestrian movement. On
the right side the parameters are captured and calculated. The simulation proceed
together with all the building floors at the same time. So that the precise 2D floor
plan is essential.

FIGURE 3.14: Crowd simulation with crowd:it

The output based dimension conversion requires a new simulation input file would
be written based on the geometry information that has been retrieved. Therefore, the
most important work in this part would be analysis of the input file of the software.
In this section a basic introduction of the input file would be provided. Based on
this, the basic idea of how to write the input file would be introduced. And finally a
full flow of the data conversion would be summarized and presented.

3.3.1 Input of crowd:it

The input file of crowd:it is also XML file format but with extension as "*.floor". It
records the coordinates of points from the building elements, and these points line
up the outline of the elements. And each file only provides the geometry informa-
tion for a certain floor. All floor files together build up the building geometry which
is used for simulation. The following table shows the example elements representa-
tion in a sample floor file.

Chapter 3. Design of data conversion from ifcXML 46

1. <?xml version="1.0" encoding="UTF-8"?>

2. <floor xmlFormat="0.7.1" isoDate="2017-08-22T23:01:46.544Z">

3. <layer id="geometry-of-floor0">

4. <wall id="ow2" closed="false">

5. <point x="2" y="0"/>

6. <point x="2" y="3"/>

7. </wall>

8. </layer>

9. <layer id="trafficObjects-of-floor0">

10. <wunderZone id="room-eg-40-WZ">

11. <point x="0" y="0"/>

12. <point x="2" y="0"/>

13. <point x="2" y="3"/>

14. <point x="0" y="3"/>

15. </wunderZone>

16. <wunderZone id="stair-1-eg-WZ">

17. <point x="22.0" y="8.0"/>

18. <point x="22.0" y="6.0"/>

19. <point x="19.0" y="6.0"/>

20. <point x="19.0" y="8.0"/>

21. </wunderZone>

22. <wunderZone id="exit-WZ">

23. <point x="21" y="14"/>

24. <point x="23" y="14"/>

25. <point x="23" y="15"/>

26. <point x="21" y="15"/>

27. </wunderZone>

28. </layer>

29. </floor>

TABLE 3.9: Fragment example of a part of floor file

easily
In the Table 3.9, it is obvious that the file is written in XML. There are four elements
provided in the fragment, which are wall, room, exit and stair. Among these, wall,
room and stair can be provided in the IFC building models. Exit however, is settled
manually.

• Wall: In wall element, only two points are nested as children in the file. These
two points represent the two endpoint of the wall and could be lined up to
provide a straight wall. The attribute of the start tag provides the id number
of the wall and also the information of whether the wall is closed.

• Exit: The exit element is the gate of the building. In this case four points are
used to provide a closed area representing the exit. The start tag attribute only
provides an id number.

• Stair: As for the stair, the single detailed steps are not included, and only the
outer contour is presented also by four nodes. From the attribute of the start
tag, it can be seen that the corresponding floor is provided.

• Room: Similar to the exit and stair, the room element is also presented by four
nodes surrounded area. The area are usually enclosed by walls.

Among these elements, the wall is different from room, stair and exit, and it is set-
tled in the geometry layer. The rest three are settled in traffic objects layer.

Chapter 3. Design of data conversion from ifcXML 47

From the IFC files, the geometry information can be obtained, which means we could
definitely build the geometry layer based on IfcWall and IfcWallStandardCase. In traf-
fic objects layer, stairs can be build by geometry information based on IfcStair. Exit
can be built through the door element IfcDoor, and the room can be obtained from
IfcSpace. But the door element can either for rooms or as a gate for building, so that
the manual selection for the gate is needed. In the proposing of the programme in
chapter 4, this selection may not included.

The writing of the input floor file can be done by printing out the coordinates of
the bounding points. The coordinates can be calculated from the geometry data re-
trieved before. So that the basic idea of the creating input file has two steps. First
step is the calculation of the geometry data to get coordinates of necessary points.
The step two is to create the routing of XML writing which includes all the elements
and points from the step one.

3.3.2 Summary

From the previous sections, it can be seen that, the input file of the crowd:it is not
complicated. With the enough geometry information, the file can be easily created.
According to the content in this section, the main procedure of the next program-
ming work could be enumerated.

• Data retrieval from the ifcXML file of building model;

• Data process into coordinates for crowd:it input files;

• Output "*.floor" XML file.

The programme would consist of these three parts, firstly is the data retrieval that
has been introduced in this chapter. Second would be some mathematical calcula-
tions for the geometry data, and get final coordinates that could be written. The last
step would be output these coordinates into the XML file format with the identifi-
able postfix.

Furthermore, the retrieval data would mainly includes the outline shape of the el-
ement especially for stairs. The geometry of each tread and riser would not be
included. So that further refinements of traffic objects could be done in the main
crowd:it file.

48

Chapter 4

Result and Analysis

According to previous chapters, a programme for data conversion to crowd simula-
tion is designed in this chapter. Firstly, a short introduction of XML file parsing in
Java would be presented. Then a filter and a converter programme are realized in
Java. through both programmes the "*.floor" input file for crowd simulation would
be generated from ifcXML file. Besides that, the tool IfcOpenShell will also be shortly
introduced. The result from IfcOpenShell will be compared with the result from the
developed programme.

4.1 Parse in Java

Java is a programming language which is concurrent, class-based, object-oriented. It
is one of the most popular language particularly for client-server web applications.
By using Java byte-code, software components can be reused across heterogeneous
computing platforms [33]. A close relationship between XML and Java has existed
since the early days of the XML effort [34].

To process the data in XML documents, an programme is to be developed. The Java
programming language contains several methods for XML processing. Making use
of the methods, the programme could mark and retrieve data from XML documents.
These methods are the application programming interface (API) softwares that sits
between the application and the XML documents to help the developer from the in-
tricate XML syntax. The parser reads a raw XML document, first ensures that it is
well-formed, and then validate the document against a data type definition (DTD)
or schema [35].

The API offers programmers a set of functions that they can directly use to request
information from the parser which processes the document. Some parsers are able
to check (or validate) an instance in an XML document against the DTD that is used
to describe the vocabulary, and to check whether the actual markup conforms to the
rules of the markup language [33].

4.1.1 API tools for XML parsing in Java

There are two basic approaches to build an XML programming, and both are eas-
ily available through Java. They refer to the document object model (DOM) and
the Simple API for XML (SAX) which are the two most common used APIs. These
approaches are tree-walking and event-based.

• Tree-walking: The document is parsed into a tree, and the application walks
around the tree looking for interesting or target elements.

Chapter 4. Result and Analysis 49

• Event-based: Each time the parser detects an interesting event, it calls some
method on one or more application objects. This can be further subdivided
into APIs using simple callbacks and APIs using event objects [34].

The representative tree-walking API DOM is developed by W3C. The SAX devel-
oped by David Megginson is most often used event-based API. Although SAX is
not sanctioned by any standards body, it is supported by most of the available XML
processors [36]. From Figure 4.1, it is clear to find the different approaches of paring
the XML file.

FIGURE 4.1: Comparison between DOM and SAX [36].

In DOM, an XML document is parsed as a tree with nodes representing elements,
text, and so on. The tree would be generated by an XML processor and hands it over
to an application. The tree has only one single root node, and all other nodes in this
tree except for the root have a single parent node. Furthermore, each node could
has a list of child nodes. In some cases, there could be a leaf node when the list of
children of the node is empty [37]. A DOM based XML processor creates the entire
structure of an XML document in memory, so that during the process of the DOM,
the whole XML input file has to be loaded entirely, which may cost a large portion
of internal storage.

SAX is designed to be quite lightweight that does not generate a tree structure of
an input document, so that it is a simple API for XML. Based on event driver, SAX

Chapter 4. Result and Analysis 50

has several event handler interfaces and also provides the default implementation
class [36]. As a Java native, parser-independent, event-based API for processing
XML documents, it is also suitable to use with very large documents and streaming
data and is organized mostly around interfaces [37].

DOM and SAX are two original XML processing APIs. After the development of
DOM and SAX, there are also several new APIs work on XML files. Most of them
inherit the advantages of DOM and SAX but are extended with new functions and
features. For example, JDOM and DOM4i both create XML trees during parsing pro-
cess, and StAX walks only one way through XML files similar as SAX.

Based on these Java APIs, after parsing the ifcXML file, a small routine will be devel-
oped, which can help user to find a certain information in different models. Then,
another programme for data conversion would be developed. This would help user
to have a routine of full function to get goal file for simulation directly from ifcXML
file.

4.2 Case study of ifcXML filter

This ifcXML filter example is written in the StAX iterator API. The programme is
developed to pick out the corresponding elements in the building. At the same time,
the ifcXML remains its integrity in a large extend.

StAX, with the full name streaming API for XML, is an API for reading and writing
XML documents. The StAX API exposes methods for iterative, event-based process-
ing of XML documents. Similar as SAX, XML documents are treated as a filtered
series of events, and info-set states can be stored in a procedural style [38].

However, StAX has its own features comparing to SAX. StAX is a Pull-Parsing model
while SAX pushes data to the application. In StAX, application can take the control
over parsing the XML documents by pulling the events from the parser [39]. Fur-
thermore, the StAX API is bidirectional, enabling both reading and writing of XML
documents [38].

Inherited the advantages of SAX, the StaX is an economy and light API that can
be generally used in different size of XML, and also quite efficient to pull out the
elements that the user are really interested.

The StAX API has two distinct API sets:

• Cursor API.

• Iterator API

The StAX cursor API represents a cursor with which the user can go through an
XML document one way from beginning to end. This cursor can point to each con-
struct like characters, tags etc. during the way, and the user can set one construct
once it is pointed [38]. Note that, the cursor would always move forward, and never
backward.

The StAX iterator API regards an XML document stream as a set of discrete event
objects [38], and actually it is based more on the file stream. User could pull out the

Chapter 4. Result and Analysis 51

interested events which are read in from the source XML document.

Comparing to the tree-walking and event-based API, StAX shows a great advan-
tage in parsing XML. It not only avoids the collapse of the system by enormous
XML document tree, but also concentrates more on pulling out the elements which
are required by users. By comparing cursor and iterator StAX APIs, iterator based
API would be more user friendly. Because of the event based feature, there would
not be much differences and difficulties in ifcXML file parsing comparing to normal
XML file. The most important is to distinguish goal tag name through IFC schema
in order to locate it correctly in the file.

Based on the comparison with other API, the filter programme would be developed
by using the StAX to parse a ifcXML file, and the iterator API is chosen in this case.

4.2.1 Introduction and programme test

A crowd simulation of a whole building consists of part simulations for each floor.
According to the procedure, only elements that obstruct passengers in the space
should be drawn into the plane graph. So that the interested elements to be ex-
tracted would be mainly the building elements such as walls, doors, stairs and etc.

The main features of the ifcXML that is concerned in this programming are listed
below. After the study of IFC and structure of ifcXML file, we would come up with
a proper algorithm to applicate on the real model.

• Every entity would be given with a unique id number.

• There are two types of expression for parent and children referring chapter 2
section 3.2.

• The explicit attributes would not appear in the ifcXML while they are empty.

• Every IFC element would have its unique name, while its attributes and prop-
erties could be same as other IFC elements’.

As a filter of building elements being applied to crowd simulation, there would be
some requirements and expectations.

• Integrity of the building elements.

• Access to the selected building elements.

• Output file in XML form.

• High efficiency to decrease the file size.

• Appropriate running time.

As listed above, the aim of the programme is actually to extract entities related to
the selected building elements and their explaining instances. So that, it would be
necessary to find out the relationship between entities and building elements.

By the research on different IFC and ifcXML files, it is not difficult to find out that
the attributes of an element would be related either by full sub-element nesting ex-
pression or id-ref pairs expression. So that, a basic algorithm of the filter would be
to make full use of those attributes to relate a selected element in an ifcXML file [16].

Chapter 4. Result and Analysis 52

1. <IfcOwnerHistory id="i1944">

2. <OwningUser>

3. <IfcPersonAndOrganization xsi:nil="true" ref="i1941"/>

4. </OwningUser>

5. <OwningApplication>

6. <IfcApplication xsi:nil="true" ref="i1907"/>

7. </OwningApplication>

8. <ChangeAction>nochange</ChangeAction>

9. <CreationDate>1517668138</CreationDate>

10. </IfcOwnerHistory>

11.

12. <IfcLocalPlacement id="i2045">

13. <PlacementRelTo>

14. <IfcLocalPlacement xsi:nil="true" ref="i2032"/>

15. </PlacementRelTo>

16. <RelativePlacement>

17. <IfcAxis2Placement3D xsi:nil="true" ref="i2044"/>

18. </RelativePlacement>

19. </IfcLocalPlacement>

20.

21. <IfcProductDefinitionShape id="i2078">

22. <Representations exp:cType="list">

23. <IfcShapeRepresentation exp:pos="0" xsi:nil="true" ref="i2051"/>

24. <IfcShapeRepresentation exp:pos="1" xsi:nil="true" ref="i2075"/>

25. </Representations>

26. </IfcProductDefinitionShape>

27.

28. <IfcWallStandardCase id="i2084">

29. <GlobalId>2qDQkwZlH2yuxdvqIaccMR</GlobalId>

30. <OwnerHistory>

31. <IfcOwnerHistory xsi:nil="true" ref="i1944"/>

32. </OwnerHistory>

33. <Name>Basic wall:general - 200mm:392314</Name>

34. <ObjectType>Basic wall:general - 200mm:1044</ObjectType>

35. <ObjectPlacement>

36. <IfcLocalPlacement xsi:nil="true" ref="i2045"/>

37. </ObjectPlacement>

38. <Representation>

39. <IfcProductDefinitionShape xsi:nil="true" ref="i2078"/>

40. </Representation>

41. <Tag>391703</Tag>

42. <PredefinedType>notdefined</PredefinedType>

43. </IfcWallStandardCase>

TABLE 4.1: An example of IfcWallStandardCase and its attributes in
ifcXML file.

easily
From Table 4.1, it can be seen that all the attributes of the IfcWallStandardCase that ap-
pears in the file are nested to the parent IfcWallStandardCase. Some of them are writ-
ten with their full content, but others who have more content or further attributes
are written with referencing numbers. Such as "i1944", "i2045" and "i2078", they can
be found in the file before the IfcWallStandardCase.

This algorithm could be explained as follow. Firstly, directly search the unique name

Chapter 4. Result and Analysis 53

of the element that is concerned and record the id numbers in a list. Secondly, get
the referencing numbers mentioned in this element and also add them to that list.
Repeat this step until no more referencing numbers can be found. At last, delete the
elements whose id numbers are not appeared in this list and output the new file.

Figure 4.3 shows an example flow of the programming algorithm, which is actu-
ally a iterative algorithm. Set the target element as name_0, and its id number id_0
could be found. Then there might be several referencing element ids, and for ex-
ample there are two here, which are id_1, id_2. After that, both of them can also be
located in the ifcXML file, and their referencing element ids can also be found, for
example there are together five. If there is no more referencing id can be found in
those elements and the elements which are referenced here, then the iteration would
stop. Finally, the total id list can be obtained from id_0 to id_7. Back to the ifcXML
file, only these eight elements would be remained in the output XML file.

FIGURE 4.2: Example flow of the iteration algorithm in the filter

The main idea of this algorithm is based on the target elements and guarantees the
integrity and attributes, which covers the geometry data, would be included in the
output file. However, as a result, all the branches that are stretched out from the tar-
get IFC building element are still not complete enough for a full spatial structure. At
present, there is no programme or application could build 3D model directly from
ifcXML files. So that our judging criteria would base on section 2.1.3, where the
compulsory settings and elements are listed.

So, with the help of this iterative algorithm, we could make up the final process
of the programme. There are basically four steps in the filter programme.

1. Create an id list of entities based on the input ifcXML file;

2. Iteration work on the id list based on input demanded entities;

3. A new id list would be created with only interested entities;

4. Use the StAX XML output packages to generate the final ifcXML file.

easily
In Figure 4.3, it shows the above-mentioned procedure. Block filter shows the brief
introduction of this example programme.

Chapter 4. Result and Analysis 54

FIGURE 4.3: Flow chart of the the file filter

After the introduction of the programme, we would focus on the integrity of the
ifcXML file. From the section 2.1.3, it is clear that some of the elements are essen-
tial to keep the integrity of the ifcXML file. And those following elements must be
contained in the output file.

• IfcProject

• IfcRoot

• IfcMeasureResource

• IfcRepresentation

• IfcPropertySet

Some of them are not directly linked to the building elements. That means after the
filtering, they are still not included in the id list. In this case, a multiple iteration is
used. It is based on the first iteration result, which would be compared to the list
above. Then the names that are not included would be added. And then, the pro-
gramme would gather all the id numbers from the iteration, and delete the repeated
id numbers, list out the final ids. So that all the elements in the final list are contained
in the output XML file.

In the Figure 4.4, it shows the FilterWork class which contains all the filter algorithms
and output. The two containers below are used in the FilterWork for recording the
id numbers as well as referencing id numbers in order to make the calculation and
iteration.

All the control would be done in the FilterMain class which is provided in Figure

Chapter 4. Result and Analysis 55

FIGURE 4.4: Classes for FilterWork

4.5. This class not only invokes the FilterWork class, but also creates the graphical
user interface (GUI) for user. The GUI is developed for providing the convenience.
User would quickly know how to operate when facing the GUI, even if one doesn’t
know the correct name or spelling of the IFC entities.

FIGURE 4.5: FilterMain class

The GUI is provided in Figure 4.6. User is demanded to input the name of the in-
put file, and meanwhile, the input file has to be saved in the same folder as the
one of the programming code. Then four options is provided, which are IfcWall, Ifc-
Door, IfcSpace and IfcStair. Also the programme itself provides a further choice of the
building elements.

All the target building elements has been extracted and saved in the output file of
this programme. After checking the integrity of the output file, the essential ele-
ments are all included.

Comparing the output file with the input file, it can also be found that the size of
the file has been significantly decreased, which can be up to 80%. This also depends
on the complexity of the original model. The time consuming of this programme is
evaluated. After trying with different models which include large complex models,
it might be a bit slow, but based on the user experience, it is still acceptable. Also,
there are still some improvements that could be made in this programme. About
the GUI, a upload of input file can be provided to the user to be more convenient.

Chapter 4. Result and Analysis 56

FIGURE 4.6: IfcXML file filter test edition GUI.

Regarding to the function of the programme, more options of the building element
could be provided. And based on the algorithm of the iteration, there might be a
faster algorithm that is waiting to be developed.

4.3 Case study of file converter

The previous example of ifcXML filter implements the first step of the total data con-
version design, which can be seen in Figure 3.1. In this section, the rest three steps
which are geometry data retrieval, 3D to 2D conversion and file output would be
discussed and implemented. After comparison and analysis, the JDOM API is cho-
sen for the XML parsing and output in this converter programme.

JDOM is an open source library that can be used to read, write, create and modify
XML Documents. JDOM is lightweight, fast, Java optimized and uses Java collec-
tions. Although it’s similar to the DOM, it’s an alternative document object model
that was not based on DOM or modeled after DOM. JDOM is an alternative to DOM
and SAX parser, but it also works well with DOM and SAX APIs [40].

JDOM integrates not only with DOM but also SAX, and it also supports XPath and
XSLT. Based on the filter programme, some requirements have been well satisfied.
The access to selected building elements and XML file output are achieved. Because
of the better performance with walking through the XML file of the JDOM API, the
locating of specific element with it id number would be quite easier. From the pre-
vious chapter, it clearly introduces the routines of each interested data. During the
dimension conversion, the geometry data judging would be done with the help of
IFC schema. Therefore, all the issues of this programme will be all discussed and
solved.

Chapter 4. Result and Analysis 57

4.3.1 Introduction

By the use of Java, above-mentioned can be programmed into one integrated project,
which could build up a integral file converter, and this is actually a extension of the
filter programme. There are three preconditions of the example programme, which
are parsing on ifcXML file, dimension conversion based on output file and "*.floor"
format XML output.

FIGURE 4.7: Flow chart of the file converter.

To design the programme structure, those three preconditions must be included,
after that the efficiency and extendability are also needed to be considered. So that
in this example programme, the fundamental functions listed.

• Locate the specific element by its id number.

• Obtain all elements with the same name as the located one.

• Obtain the specific attribute information in those elements.

• Judge the geometry data and filter out or calculate 2D data.

• Output the XML file.

The programme is mainly consists of three parts, which are actually corresponding
to the three steps in Figure4.7.

Figure 4.8 presents the programme flow and procedures are presented. As can be
seen, the file would be converted and outputs by stories loops. There would be a
whole procedure from data retrieval to output for each storey. The three main func-
tions are marked on the left side in orange colour, among them the most complicated
would be the data retrieval. Not only because there is a large amount of elements
to handle, but also since data retrieval is element depended for different elements
or geometry cased, different data retrieval methods are needed. According to the
mainly concerned four building elements, which are IfcWall, IfcStair, IfcDoor and Ifc-
Space, there are four classes corresponding them. An extra class for combing doors

Chapter 4. Result and Analysis 58

with their attached walls is needed, this would provides coordinates of new walls
divided by the doors. So that in the programme, all these five classes contain not
only the geometry data retrieval but also the coordinates calculation.

FIGURE 4.8: Overview of programme structure.

Figure 4.9 shows three classes for standard wall and door. In class WallStandard and
Door, there would be firstly a function to locate the goal element in the file and to
detect the geometry. Then another function to get the coordinates through calcula-
tion of geometry values is also needed. The class WallsWithDoor is for combining
the walls with attached doors. It would detect all the doors on a certain wall and
through a calculation to get coordinated of fragment walls.

FIGURE 4.9: Classes for standard wall and door

Figure 4.10 shows two classes for stair and room. Similar to class WallStandard and
Door, this two classes also have two functions for geometry reading and coordinates

Chapter 4. Result and Analysis 59

calculation. Since for straight stairs and normal rooms with four walls, they are both
in shape of rectangle so that there would be four nodes of coordinates to calculate.

FIGURE 4.10: Classes for stair and room

Despite these classes for building elements, there are three more classes which are
main class including the element selection according to story number i, output class
for writing the "*.floor" file and the fundamental function class including static meth-
ods of detecting attributes and values in certain elements. All the instance methods
in this class are shown in Figure 4.11.

FIGURE 4.11: Classes for fundamental function Readuos

Therefore, through the whole programme, user would get "*.floor" output files from
ifcXML input file. All the geometry information of walls, doors, stairs and room
would be intructed and saved in "*.floor" file for crowd simulation. But as an initial
attempt and JDOM based programme, it still has several limitations. The advan-
tages, disadvantages and limitations are listed below.

Chapter 4. Result and Analysis 60

• Advantages:

1. Easy and simple controlling;

2. Realize the data conversion from IFC to crowd simulation.

• Disadvantages and limitations:

1. Relatively slow operation;

2. Only walls, doors, stairs and rooms are under operation;

3. Only standard walls are considered;

4. Only straight stairs with single stair flight are considered;

5. Only rectangle rooms are considered..

In this programme, user couldn’t select elements, and only the mentioned four enti-
ties are considered and would be operated. Furthermore, the programme could only
deal with standard walls which should be straight and equal height, thickness along
the length. Also the stairs should be straight and could only have one stair flight
without platforms. Because of using JDOM API, the running progress would be
rather slow, especially when dealing with large and complicate model files. There-
fore, the combination with filter programme is necessary when the file size is too
large. While combining the filter and converter programme, user could only control
through the filter GUI to provide ifcXML file and selected concerned elements. Since
in the filter programme, only the four elements can be handled, user needs to select
corresponding options in filter GUI.

4.3.2 Programme test and result

To test the developed programme, a small house model has been built through Au-
todesk Revit.

FIGURE 4.12: Simple house 3D model graphs in BIM Vision

As can be seen from the Figure 4.12, It is a small house with only two floors with
walls, slabs, doors, stairs and rooms. From the 2D floor plans, the arrangements of
two floors are settled differently. The model is saved in the ifcXML file format and
imported into the developed programme. Since it is a simple small building model,
the operating is quite fast.

From the original building model, two floor files with walls, stairs and room would
be exported. As the top level is only with roof slabs, an empty output file for top
level is expected.

Chapter 4. Result and Analysis 61

As a result, the file for level three is empty, and the elements in other two level
are all exported in the other two output files. After imported into the crowd:it, the
following floor plan would be received.

(a)

(b)

FIGURE 4.13: Geometry display in crowd:it for level 1 (a) and level 2
(b)

Figure 4.13 shows the converted file from the developed programme with crowd:it.
Comparing to Figure 4.12, the complex geometric data has been correctly converted
by developed programme and shown in crowd:it.

Chapter 4. Result and Analysis 62

4.4 A short study of IfcOpenShell

During the on-line study on the buildingsmart website, they also provide a collec-
tion of available open resources to support software development for IFC based in-
teroperability. In these open sources there is a software library that especially works
with IFC file format, which enables IFC files being converted into other file formats.
Among these output file format, the SVG file is the most interested one. The proce-
dure is quite similar to this study, that it creates 2D SVG floor plans from 3D model
IFC files.

After a short introduction of the library and usage, the sample structure would be
tested and its performance would also be analyzed and compared with the one from
developed programme.

4.4.1 Introduction and usage

IfcOpenShell is an open source software library that helps users and software devel-
opers to work with the IFC file format. It uses Open CASCADE internally to con-
vert the implicit geometry from an IFC files into explicit geometry supported by any
CAD software or modeling package. IfcOpenShell’s permissive LGPL license encour-
ages it to be used freely in both proprietary and open source software [10].

IfcOpenShell has many mesh-based viewers. It has a significant advantage that it is
backed by a powerful modeling kernel which is the Open Cascade. This has already
proven its high performance in the ease of creating 2d floor plans from 3d elements
in the SVG exporter [41].

At present, IfcOpenShell is still under development, the current version supports only
files with the "*.ifc" extension and it can not fully understand all geometry informa-
tion that is presented in an IFC file.

The IfcConvert as one of the tools provided by IfcOpenShell is used for format con-
version. It could be installed in Windows Visual Studio or Linux. The format con-
version of an IFC file supports to output following formats. Among these file format,
SVG would be the one that will be used in this study.

• "*.obj": Wavefront OBJ;

• "*.dae": Collada, digital assets exchange;

• "*.stp": STEP, standard for the exchange of product data;

• "*.igs": IGES, initial graphics exchange specification;

• "*.xml": XML, property definitions and decomposition tree;

• "*.svg": SVG, scalable vector graphics (2D floor plan).

The operating of the programme is through command line in the terminal window.
Then, the output file will be automatically created. The command line is basically
consist of four parts: programme sign, input file, output file and further options.

User must type IfcConverter in the beginning of the command line for invoking the
installed library. Second part is the full name of the input file, and note that the input

Chapter 4. Result and Analysis 63

file should be saved under the same path where the terminal points. The name of
output file can be fully customized by user, but must end with extension of "*.svg".
The output file would be saved under the same path as the input file. Last part is to
set the operation options including geometry and serialization options, for example
the bounds, filtering entities and etc.

Here are some options that could be used in converting to SVG [10].

• –bounds arg
Specifies the bounding rectangle, for example 512×512, to which the output
will be scaled. Only used when converting to SVG.

• –section-height arg
Specifies the cut section height for SVG 2D geometry.

• –use-element-names
Use entity names instead of unique IDs for naming elements upon serializa-
tion.

• –use-element-guids
Use entity GUIDs instead of unique IDs for naming elements upon serializa-
tion.

• –include arg
Specifies that the entities that match a specific filtering criteria are to be in-
cluded in the geometrical output:
1) ’entities’: the following list of types should be included. SVG output defaults
to IfcSpace to be included. The entity names are handled case-insensitively.
2) ’layers’: the entities that are assigned to presentation layers of which names
match the given values should be included.
3) ’arg <ArgumentName>’: the following list of values for that specific argu-
ment should be included. Currently supported arguments are GlobalId, Name,
Description, and Tag.

• –include+ arg
Same as –include but applies filtering also to the decomposition and/or con-
tainment (IsDecomposedBy, HasOpenings, FillsVoid, ContainedInStructure)
of the filtered entity, e.g. –include+=arg Name "Level 1" includes entity with
name "Level 1" and all of its children. See –include for more information.

• –exclude arg
Specifies that the entities that match a specific filtering criteria are to be ex-
cluded in the geometrical output. See –include for syntax and more details.

• –exclude+ arg
Same as –exclude but applies filtering also to the decomposition and/or con-
tainment of the filtered entity. See –include+ for more details.

• –filter-file arg
Specifies a filter file that describes the used filtering criteria. Supported formats
are ’–include=arg GlobalId ...’and ’include arg GlobalId ...’. Spaces and tabs
can be used as delimeters. Multiple filters of same type with different values
can be inserted on their own lines. See –include, –include+, –exclude, and
–exclude+ for more details.

Chapter 4. Result and Analysis 64

• –plan
Specifies whether to include curves in the output result. Typically these are
representations of type Plan or Axis. Excluded by default.

• –model
Specifies whether to include surfaces and solids in the output result. Typically
these are representations of type Body or Facetation. Included by default.

• –convert-back-units
Specifies whether to convert back geometrical output back to the unit of mea-
sure in which it is defined in the IFC file. Default is to use meters.

• –use-world-coords
Specifies whether to apply the local placements of building elements directly
to the coordinates of the representation mesh rather than to represent the local
placement in the 4x3 matrix, which will in that case be the identity matrix.

4.4.2 Test and result

This open library would also be tested with the simple building model created in
Autodesk Revit, which can be seen in Figure 4.12.

Since the entities are added respectively after the "–include" command, firstly we
would try to output only with walls by following command.

~/Documents$ IfcConvert littlehouse.ifc house.svg --bounds 512x512 --include

entities IfcWall

easily
In order to compare the performance of this converter with the one from developed
programme in previous section, a contractive command would be created with fur-
ther entities, which are IfcDoor, IfcStair and IfcSpace. They would be simply added
after IfcWall in command line as below.

~/Documents$ IfcConvert littlehouse.ifc house.svg --bounds 512x512 --include

entities IfcWall IfcDoor IfcStair IfcSpace

easily
Figure4.14 shows the first floor plan graphs from results under those two commands
comparing to the model in Revit. From the figure, it can be seen that, the Figure (b)
has only walls presented, but the Figure (c) has both walls and doors.

The stair is expected to be shown in Figure 4.14 (b), but however the output file
shows that IfcStair can not be understood by the library. The IfcSpace is also unrec-
ognized. We also tried command lines that only have these two entities, and it was
resulted with an error that no geometrical entities found, which also proved that
they are not recognized. And from the graph (b), the walls are automatically sep-
arated by the doors. Only with the command including doors, the doors symbol
would be displayed. Then user could know which gaps are because of doors and
which are initially different walls.

From the output file, it can also be seen that, all the walls that in this model would
be drawn in the SVG format. It contains both floors and are presented all together
by default. So that a SVG editor is needed for restore these two floors separately.

Chapter 4. Result and Analysis 65

(a) (b)

(c)

FIGURE 4.14: Plan graph of first floor from Revit(a) comparing with
IfcOpenShell output with only wall command (b) and command to

add door information(c)

In the plan graph from Autodesk Revit, the upward direction is north, which is op-
posite to the one from IfcOpenShell. So we could see in the Figure 4.14, the figures
(b) and (c) are rotated with 180 deg. The same can be found in the second floor plan
graphs in Figure 4.15.

Furthermore, the IfcOpenShell also has a filter function. The user can filter according
to specific value of the certain attribute. For example, -include+ arg Name "Level 1"
includes entities with name of "Level 1" and all of its children.

So that it is also possible to output only interested floors of the entire model. With
following example command, the output SVG file would only contains all the walls
in level 1.

~/Documents$ IfcConvert littlehouse.ifc house.svg --bounds 512x512 --include

entities IfcWall --include+ arg Name "Level 1"

easily
Besides, there are some other options such as exclude and etc. But for 2D floor plan
output, it would be enough by using introduced commands.

Chapter 4. Result and Analysis 66

(a) (b)

(c)

FIGURE 4.15: Plan graph of second floor from Revit (a) comparing
with IfcOpenShell output with only wall command (b) and command

to add door information (c)

In the end, for crowd simulation, the geometry accuracy and integrity would be
critical. After the comparison and summary with further models, the advantages
and disadvantages with IfcOpenShell would be listed below:

• Advantages:

1. Fast and stable operation;

2. Accurate and integral geometry output;

3. The coverage of all stories.

• Disadvantages:

1. Limited recognizability of the building elements;

2. Further SVG supporting needed for file conversion into crowd simula-
tion.

As a open source library working with the IFC file format, it is quite helpful for user
to quickly obtain 2D floor plan from 3D BIM model. But for crowd simulation, the
biggest problem of this library would be the limited recognizability of the building
elements, especially IfcStair. So that further improvement is needed in this library.

Chapter 4. Result and Analysis 67

Comparing with the developed programme in previous section, the IfcOpenShell ap-
proach has lower design cost and it can recognize the wall elements quite well. But
it can not be used to handle some other building elements like stairs. And the out-
put file is in SVG format. Extra data conversion tools are needed to match crowd:it.
On the contrary, the developed programme is optimized to generate the proper file
for crowd simulation. The output file is directly with extension "*.floor", which is
exactly the supported file format of crowd:it. Above all, the designed programme
can extract correctly all the important geometry information of doors, stairs, walls
and rooms, which is necessary for crowd simulation. Even with longer run time, the
designed programme shows better performance with more accuracy. It matches the
requirement of the study.

68

Chapter 5

Conclusion

As a broad application of BIM model in building and construction, it is more prac-
tical to run a crowd simulation basing on BIM. In this case, a 2D floor plan of a
building is necessary. The most efficient way to get the 2D geometry information
is to directly convert from the existing 3D BIM model. Of course the converted 2D
floor plan should have exactly the same information as the original 3D model. In
this study, a functional Java based programme is designed. Its performance is also
compared with the open source library IfcOpenShell. The comparison shows that the
designed programme can satisfy the requirement of the study. This study basically
consists of four main parts.

• Study of IFC files;

• Analysis of data conversion algorithm;

• Java implementation and test;

• Performance comparison with IfcOpenShell.

In the first part, fundamental knowledge of IFC schema and IFC model representa-
tion has been presented. Besides, the two IFC file formats: IFC-SPF and IFC-ifcXML
have been introduced. IfcXML has been studied and analyzed in details, especially
about the elements relations. After a comparison of these two file formats, the ad-
vantages of ifcXML file have been summarized.

The analysis of data conversion algorithm has been talked in three steps. Based
on the detailed study of ifcXML, the idea of geometry information retrieval has been
put forward. In the first step, paths have been presented for important building el-
ements including walls, stairs, doors and spaces. After the introduction of building
storey represented in ifcXML files, a solution of 3D to 2D file conversion has been
introduced in the second step. In the final step, the input file of crowd:it has been
analyzed.

For the Java implementation and test, a filter programme and converter programme
have been developed and integrated together to convert the data from BIM ifcXML
file into the one for crowd simulation. The developed programme not only handles
the important building elements but also directly output with extension "*.floor",
which directly suits the demands of crowd simulation software crowd:it. Thus no
more extra converter is needed, to transfer other file types into "*.floor".

In the final part, an open library IfcOpenShell has been introduced and studied. In
comparison to the former developed programme, IfcOpenShell shows its advantages

Chapter 5. Conclusion 69

in applicability and run time, but has a limit number of recognizable building ele-
ments. Compared with it, the designed programme shows a higher feasibility, which
can recognize almost all the essential building elements.
easily

Designed programme IfcOpenShell

Pros
Optimized for crowd:it; easy opera-
tion

stable; fast

Cons
limit number of element geometry
cases; slow

limit number of recognizable ele-
ments; SVG file supporting needed

TABLE 5.1: Comparison of designed programme with IfcOpenShell

As a matter of fact, the developed programme still has a list of disadvantages in-
cluding slow operation and limited application cases, as mentioned in section 4.3.1,
for example, only straight standard walls and only stairs are considered.

In the future study, more building elements that could be used in crowd simulation
should be added. Improvements are needed in some functions for geometry data
retrieval. Other geometry cases such as curved walls or stairs with platforms could
be added into BIM models in order to find the paths of their geometry information
in ifcXML files and include them into the designed programme. The efficiency of the
programme is also needed to be increased.

As a primary study of combing BIM with crowd simulation, the work fulfills the
expected requirements and provides a visualization of the IFC model in the crowd:it.
Since the programming work is an attempt testing in this study, it still has some de-
ficiency and limitations. Therefore, modifications and improvements are needed in
the future.

70

Bibliography

[1] Charles Eastman et al. An Outline of the Building Description System. Institute of
Physical Planning, Carnegie-Mellon University., 1974.

[2] G.A. van Nederveen and F.P. Tolman. “Modelling multiple views on build-
ings”. In: Automation in Construction 1.3 (1992), pp. 215–224.

[3] Frequently Asked Questions About the National BIM Standard-United States. https:
//www.nationalbimstandard.org/faqs. 16.10.2014.

[4] Jon Williams. The Three Worlds of BIM. https://thebimhub.com/2015/04/14/
the-three-worlds-of-bim/. 13.04.2015.

[5] Jim Jacobi. “4D BIM or Simulation-Based Modeling”. In: Structure Magazine
(2011), pp. 17–18.

[6] ASHRAE Introduction to BIM, 4D and 5D. https://www.cadsoft-consult.com.
29.05.2012.

[7] ISO International Standard 10303-28, Industrial automation systems and integration
— Product data representation andexchange — Part 28: Implementation methods:
XML representations of EXPRESS schema and data. Geneva, Switzerland (1994).

[8] Autodesk. Introduction to Revit. https://knowledge.autodesk.com/support/
revit-products/learn-explore?sort=score. 04.2014.

[9] Simulation of people flow. https://www.accu-rate.de/en/simulation-of-
people-flow/. Retrieved: 2017.

[10] IfcOpenShell. http://ifcopenshell.org/index.html. 03.2017.

[11] Johannes Dimyadi, Micheal Spearpoint, and Robert Amor. “Sharing Build-
ing Information using the IFC Data Model for FDS Fire Simulation”. In: FIRE
SAFETY SCIENCE–PROCEEDINGS OF THE NINTH INTERNATIONAL SYM-
POSIUM (2008), pp. 1329–1340.

[12] Chuck Eastman et al. BIM Handbook. A Guide To Building Information Modeling.
Hoboken, New Jersey: Wiley, 2011.

[13] Building SMART. https://www.buildingsmart.org/bim/. Retrieved: 19.03.2017.

[14] IFC Introduction. http://www.buildingsmart- tech.org/ifc/. Retrieved:
2017.

[15] Pingwang Shi, Liangfan Lin, and Xueyuan Deng. “Research on Representa-
tion and Management of IFC-Based Building Components”. In: JOURNAL OF
GRAPHICS (2016).

[16] Jongsung Won and Ghang Lee. “Algorithm for Efficiently Extracting IFC Build-
ing Elements from an IFC Building Model”. In: Computing in Civil Engineering
416 (2011), 713–719.

[17] IFC Version 4.1 Final Release. http://www.buildingsmart- tech.org/ifc/
IFC4x1/final/html/. Retrieved: 2017.

https://www.nationalbimstandard.org/faqs
https://www.nationalbimstandard.org/faqs
https://thebimhub.com/2015/04/14/the-three-worlds-of-bim/
https://thebimhub.com/2015/04/14/the-three-worlds-of-bim/
https://www.cadsoft-consult.com
https://knowledge.autodesk.com/support/revit-products/learn-explore?sort=score
https://knowledge.autodesk.com/support/revit-products/learn-explore?sort=score
https://www.accu-rate.de/en/simulation-of-people-flow/
https://www.accu-rate.de/en/simulation-of-people-flow/
http://ifcopenshell.org/index.html
https://www.buildingsmart.org/bim/
http://www.buildingsmart-tech.org/ifc/
http://www.buildingsmart-tech.org/ifc/IFC4x1/final/html/
http://www.buildingsmart-tech.org/ifc/IFC4x1/final/html/

Bibliography 71

[18] Chih-Wei Tsai. “Retrieving information for Structural Analysis form IFC Build-
ing information”. MA thesis. National Chiao Tung University, 2007.

[19] Ya-hsing Chen. “The Conversion of IFC Building Spatial Data to CityGML”.
MA thesis. National Chiao Tung University, 2010.

[20] ISO International Standard 10303-11, Industrial automation systems and integra-
tion — Product data representation andexchange — Part 11: Description methods:
The EXPRESS language reference manual, International Organization for Standard-
ization. Geneva, Switzerland (1994).

[21] G.A. Thomas Liebich and F.P. Tolman. “IFC 2x Edition 3 Model Implementa-
tion Guide”. In: buildingSMART International Modeling Support Group (2009).

[22] EXPRESS data modeling language. https : / / www . loc . gov / preservation /
digital/formats/fdd/fdd000449.shtml. Retrieved: 21.12.2016.

[23] 4 EXPRESS-G Language Overview. http://www.steptools.com/docs/devtools/
devtools-7.html. Retrieved: 9.11.2008.

[24] Yi-fan Dai and Liang Dong. “Brief Analysis on IFC Standard for Data Repre-
sentation and Exchanging of Building Information”. In: BUILDING SCIENCE
24 (2008).

[25] IFC Overview summary. http://www.buildingsmart-tech.org/specifications/
ifc-overviews. Retrieved: 19.03.2017.

[26] N. Nisbet and T. Liebich. “ifcXML Implementation Guide. Modeling Support
Group, International Alliance for Interoperability”. In: (2007).

[27] P. De Meo et al. “Integration of xml schemas at various severity levels”. In:
Information Systems 31 (2006), 397–434.

[28] H. S. Thompson, D. Beech, and M. Maloney. Xml schema part 1: Structures sec-
ond edition. http://https://www.w3.org/TR/xmlschema- 1/. Retrieved:
28.10.2004.

[29] XML 1.0 Specification. https://www.w3.org/TR/REC-xml/. World Wide Web
Consortium. Retrieved 2010-08-22.

[30] Liyang Yu. A Developer’s Guide to the Semantic Web. Atlanta, USA: Springer,
2014.

[31] Nayantara Duttachoudhury. “IfcXMLExplorer: A Visualization Tool for Ex-
ploring and Understanding IfcXML Data”. MA thesis. The University of British
Columbia, 2015.

[32] E.F. Begley, M.E. Palmer, and K.A. Reed. Semantic Mapping Between IAI ifcXML
and FIATECH AEX Models for Centrifugal Pumps. U.S. DEPARTMENT OF COM-
MERCE, 2005.

[33] Mark Austin. “Tutorial: XML and Java for Scientists/Engineers”. In: (2001).

[34] Matthew Fuchs. “Why XML is Meant for Java? Exploring the XML/Java Con-
nection”. In: Web Techniques (1999).

[35] Hock-Chuan Chua. Java Programming: Java and XML. https://www.ntu.edu.
sg/home/ehchua/programming/java/J6d_xml.html. Last modified: March,
2009.

[36] Hiroshi Maruyama. XML and Java : developing Web applications. Addison-Wesley,
2002.

https://www.loc.gov/preservation/digital/formats/fdd/fdd000449.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000449.shtml
http://www.steptools.com/docs/devtools/devtools-7.html
http://www.steptools.com/docs/devtools/devtools-7.html
http://www.buildingsmart-tech.org/specifications/ifc-overviews
http://www.buildingsmart-tech.org/specifications/ifc-overviews
http://https://www.w3.org/TR/xmlschema-1/
https://www.w3.org/TR/REC-xml/
https://www.ntu.edu.sg/home/ehchua/programming/java/J6d_xml.html
https://www.ntu.edu.sg/home/ehchua/programming/java/J6d_xml.html

Bibliography 72

[37] Elliotte Rusty Harold. Processing XML with Java : a guide to SAX, DOM, JDOM,
JAXP, and TrAX. Addison-Wesley, 2003.

[38] The JavaTM Web Services Tutorial. For Java Web Services Developer Pack 1.6. https:
//docs.oracle.com/cd/E17802_01/webservices/webservices/docs/1.6/

tutorial/doc/JavaWSTutorial.pdf. 14.06.2005.

[39] Lars Vogel. Java and XML - Tutorial. http://www.vogella.com/tutorials/
JavaXML/article.html#javaxml. 06.10.2016.

[40] Jason Hunter. “JDOM and XML Parsing”. In: Oracle Magazine (2002).

[41] IfcOpenShell. IfcOpenShell-Blog. http://blog.ifcopenshell.org/. 10.2015.

https://docs.oracle.com/cd/E17802_01/webservices/webservices/docs/1.6/tutorial/doc/JavaWSTutorial.pdf
https://docs.oracle.com/cd/E17802_01/webservices/webservices/docs/1.6/tutorial/doc/JavaWSTutorial.pdf
https://docs.oracle.com/cd/E17802_01/webservices/webservices/docs/1.6/tutorial/doc/JavaWSTutorial.pdf
http://www.vogella.com/tutorials/JavaXML/article.html#javaxml
http://www.vogella.com/tutorials/JavaXML/article.html#javaxml
http://blog.ifcopenshell.org/

	Abstract
	Introduction
	Building Information Modeling
	Crowd simulation
	Combination of BIM and crowd simulation

	Study plan
	Study challenges

	Study of IFC and ifcXML
	Industry Foundation Classes
	IFC data schema architecture
	IFC model—Spatial structure and space element

	IFC file formats and SPF file
	IfcXML file
	Extensible Markup Language
	Elements relations in ifcXML
	Full sub-element nesting expression
	Id-ref pairs expression
	Composed expression

	Comparison of the SPF and ifcXML

	Design of data conversion from ifcXML
	Information retrieval from ifcXML
	Frame of IFC building element
	Wall elements
	Stair elements
	Door elements
	Space elements for rooms

	Solutions for 3D to 2D conversion
	Building storey information
	Summary

	Application in simulation softwares
	Input of crowd:it
	Summary

	Result and Analysis
	Parse in Java
	API tools for XML parsing in Java

	Case study of ifcXML filter
	Introduction and programme test

	Case study of file converter
	Introduction
	Programme test and result

	A short study of IfcOpenShell
	Introduction and usage
	Test and result

	Conclusion
	Bibliography

