
Assistance in Conceptual Design
of Concrete Structures

by a Description Logic Planner

Genehmigte Dissertation

von der Fakultät für Bauingenieurwesen
der Technischen Universität Dresden

zur Erlangung des akademischen Grades eines Doktors
der Ingenieurwissenschaften

vorgelegt von
Dipl.-Ing., MSc Michael Eisfeld aus Kassel

Gutachter: Universitätsprofessor Dr.-Ing. Raimar J. Scherer
Universitätsprofessor Dr.-Ing. Franz Baader

Universitätsprofessor Dr. habil. Peter Struss

Preface

”To design a structure and give it the correct proportions, one needs
to follow two paths: the intuitive and the mathematical one.”

(Pier Luigi Nervi, 1955)

This thesis is the result of my research work at the Institute of Constructi-
on Informatics at the University of Dresden from August 2000 to December
2003. The work about computer-aided conceptual design of building structu-
res was initiated by Professor Raimar Scherer. He investigated research into
this area at the institute with the Doctoral thesis of Marcus Hauser in 1994
under his supervision. I continued and expanded research into this challen-
ging field under his supervision as part of the European Industrial Research
and Development Project ISTForCE. My thesis has given me the chance to
explore Navi’s statement that is at the heart of structural design despite
the fact that it has not been the guiding principal of mainstream applied
informatics that deals with problems of structural design.

The development of the computer-aided design system in this thesis is based
on a range of design studies and interviews. They were conducted at Ove
ARUP, Dusseldorf [Eis01a], Jacobsen&Widmark, Gothenburg [Eis00], and at
the design office of Eisfeld Engineers, Kassel (published in this thesis).

This thesis represents original work by the author and has not been submitted
in this or any other form. Where use has been made of the work of others, it
has been duly acknowledged in the text.

iii

Acknowledgments

I have been very fortunate to receive the support of many people who con-
tributed to this thesis in numerous ways.

My parents have been a constant source of support. Therefore and for the
many times my father and I discussed the “secrets” of good conceptual design
of concrete structures I would like to thank them.

I am grateful to Dr-Ing. Raimar J. Scherer, Dr-Ing. Franz Baader, and Dr.
habil. Peter Struss for their guidance.

I would like to thank Dr. Till Eggers and Marcus Looft in particular for
valuable and detailed reviews on my thesis. Their kind and careful reviews
made this thesis a better thesis.

I have extensively benefited from correspondences with several computer
scientists, which was very helpful for me as a structural engineer. I would
like to thank Dr. habil. Ralf Möller, Dr. Carsten Lutz for their help on des-
cription logics, Katharina Wolter for her comments on the GUI design of the
system, and Michael Wessel for comments on my journal paper.

I would also like to acknowledge the work of CogVis group of the University of
Hamburg and Planning group of the University of Maryland, which provided
the description logic system RACER and planning system SHOP used in the
thesis.

This thesis depends on information covered by design studies at Ove ARUP,
Jacobsen&Widmark Consulting, and Eisfeld Engineers. I would like to thank
these companies for making detailed design studies possible.

I would also like to thank my office mate Alexander Gehre who introduced
me into the basics of object-oriented programming.

My wife, Sabine Sors-Eisfeld, gave me the necessary personal support over
the years of my thesis. If she had not taken the decision to follow me to
Dresden, I probably would have not had the possibility of doing this thesis.

I dedicate this thesis to her.

iv

Table of Content

List of Figures viii

Abstract ix

1 Introduction 1

1.1 The Design Process . 1

1.2 Industrial Motivation . 3

1.3 Definition of Research Problem 6

1.4 Research Hypothesis . 6

1.5 Structure of Thesis . 7

2 Model Formulation 9

2.1 Conceptual Design . 9

2.2 Requirement Specification . 21

2.3 Previous Work . 21

2.4 Existing Models of Design Theory 25

2.4.1 F-B-S model . 28

2.4.2 Planning Model . 30

2.5 Design Studies . 32

2.5.1 Assumptions for Knowledge Elicitation 33

2.5.2 Elicited Knowledge . 34

2.6 Model of Conceptual Design 40

v

vi Table of Content

3 The Formalism 49

3.1 Design Knowledge Representation 49

3.2 Methods for Configuration Design 51

3.3 The Description Logic Planner 55

3.3.1 The Description Logic 57

3.3.2 Language Definition of Description Logic 65

3.3.3 Consistency Algorithm 70

3.3.4 The Planning Language 75

3.3.5 Planning Language Definition 81

3.3.6 Interactive Planning Algorithm 84

4 Prototype System 87

4.1 GUI Design of the System . 87

4.2 Design Session with Prototype 91

4.3 Use case scenarios . 111

5 Conclusions 113

5.1 Summary of Results . 113

5.2 Discussion . 116

5.3 Further Work . 119

References 121

List of Figures

1.1 Phases of the building design process without iteration cycles . 2

1.2 Elevation of a conceptual design task 4

2.1 Incomplete and complete structural configuration 12

2.2 Side view of office building . 14

2.3 Office floor layout . 15

2.4 Actions types in conceptual design according to F-B-S model . 28

2.5 Environment during conceptual design 35

2.6 Mean response over two design studies 37

2.7 System model of the engineer while designing 38

2.8 A simple state model . 48

3.1 System model of the engineer while designing 56

3.2 An example graph . 58

3.3 ABox-consistency algorithm 70

3.4 Interactive planning algorithm 85

4.1 Main GUI components . 89

4.2 Building parameter dialog . 93

4.3 Slab dialog . 96

4.4 Core dialog . 97

4.5 Wind load dialog . 99

4.6 Initial structural concept . 102

4.7 Column dialog . 106

vii

viii List of Figures

4.8 Final structural concept . 111

Abstract

Conceptual design of concrete structures requires detailed knowledge. The
lack of such knowledge results in ill-designed structural concepts, which ha-
ve to be corrected or revised in a “time consuming” iterative process. One
way to improve the outcome of the design process is to assist engineers with
computer-aided design systems that make knowledge of experienced prac-
titioners usable. However, todays computer-aided design systems miss the
opportunity to assist effectively.

Expressive description logics appear to be an appropriate tool for conceptual
design support because they allow the formal representation of and reasoning
about incomplete conceptual knowledge in a correct way. Knowledge repre-
sentation systems like RACER enable description logics effective processing
such as consistency and completeness testing of a structural concept during
conceptual design on a predefined knowledge base. Description logics exten-
ded by constructs for actions and plans can be additionally employed for
specifying control knowledge by which practitioners hierarchically plan their
design process to reduce later iterations and subsequent costs.

The result of this thesis is an interactive description logic based planning
formalism. By the formalism, engineers can draw up robust structural con-
cepts closely related to their mental model, test them for correctness on the
knowledge base, plan thereby their design process, and reduce time consu-
ming iterations. To reach this result, the conceptual design task of concrete
building structures has been formalized, and design studies of experienced
engineers have been analyzed to acquire the necessary information about
their reasoning and employed knowledge. As a proof of concept, a prototype
system based on the formalism has been implemented.

Keywords: computer-aided design, CAE, interactive description logic plan-
ning, conceptual structural design, declarative control knowledge, design pro-
blem solving, configuration design

ix

Chapter 1

Introduction

The thesis develops a theoretical framework and a practical approach that
supports structural engineers by computer-aided conceptual design. After the
structural design process has been introduced briefly and an example has cla-
rified the problems engineers face at the conceptual design stage, I argue that
a conceptual model about the structure is of primary importance to design
a correct structural concept and to reduce design iterations by control know-
ledge. Commercial tools and various research approaches proposed to date do
not support the use of incomplete and abstract representations of the design
structure in form of such a model. This thesis attempts to fill the gap in
computer-aided conceptual design of concrete building structures by an inter-
active hybrid system based on description logic and hierarchical planning.

1.1 The Design Process

Various tasks have to be fulfilled during the building design process to ensure
the main building functions of occupancy, load transfer, and services [BD95].
One possibility of dividing the design process into phases is shown in figure 1.1
for which the structural design phases are depicted in grew and the iteration
cycles are omitted for clarity. The first phase consists of the conceptual design
of the architect. At this stage, the architect mainly focuses on the appearance
and the occupancy of the building with its particular rooms. The result is a
room and occupancy concept, which determines the geometry and occupancy
loads for a building structure. In the next step of the design process, the
architect or the structural engineer designs a structural configuration that
exhibits a global load transfer. This task results in the main arrangement and
choice of types of structural elements, which are ordinarily columns, walls,

2 1 Introduction

slabs, beams, shear walls, and cores. After the structural concept has been
assigned the engineer estimates the approximate capacity and serviceability
of its structural elements, e.g. bending resistance and deflection for a beam.
The result of the first three phases are the architectural concept and the
structural configuration, which are represented in drawings to lay out the
main functions of the building with its structure. The architectural drawings
include the spatial arrangement of the rooms, their occupancies, and the
main building elements with their materials, whereas the structural drawings
depict the load-bearing elements, sizes and materials for them, and their
arrangement in space. The main element sizes are needed for the design
of the service installation, which includes the placement of service ducts.
On this basis, the architect and structural engineer carry out their detailed
design. The structural design process continues with the structural analysis
and design of the structural elements, which leads to precise element sizes
and required arrangement of reinforcement. The end of the building design
process is marked by the completion of the drawings for the formwork and
the reinforcement.

Conceptual

architectural design

Conceptual

structural design

Service installation

design

Detailed architectural

design

Detailed analysis and

design

Formwork/

reinforcement drawings

Preliminary analysis

and design

Figure 1.1: Phases of the building design process without iteration cycles

The structural design process is essentially a hypothesis formulation and test
procedure because a structural configuration can only later be designed in
detail if all information is available. If the engineer has deep design knowledge
and starts with a correct structural configuration, reasonable estimates of the
final element sizes and internal forces in the procedure, one detailed analysis
followed by a design check is usually all that is required. HOLGATE calls
the engineer’s ability to design a structural configuration with a minimum of
iteration cycles “the art in structural design” [Hol86] and FRASER “the con-
ceptual process of logical thinking in which the engineering techniques are
the base from which logic operates” [Fra81]. The design process consists of
three interacting tasks: conceptual design, preliminary analysis and design,

1.2 Industrial Motivation 3

and detailed analysis and design, see cf. [Fra81, Sch80]. Conceptual design
has the goal to find a configuration of structural elements and systems that
transfer the applied loads safely to the ground and stabilize the building. The
structural configuration is usually called the structural concept1 during the
early design phase because details of the structural representation are omit-
ted [Leo77], as the elements have to be designable later and comply with the
geometrical constraints imposed by the architect [Sch80]. Preliminary ana-
lysis and design consists of simple calculations performed with an ordinary
scientific calculator and based only upon the elementary concept of structu-
ral equilibrium and stiffness - the type of calculations that can be performed
even “on the back of an envelop” - to obtain reasonable estimates of element
sizes and main reinforcement. The detailed analysis/design constitutes much
of the day-to-day activity in an engineering office is a later stage in the total
design process. The detailed analysis of statically indeterminate structures
requires a prior statement about the distribution of element stiffnesses, or
the relative sizes of the element members of the structure calculated in preli-
minary design. A typical assumption is that bending rigidity is constant. The
results from this analysis are then used to proportion the elements and choo-
sing the detailed amount and arrangement of reinforcement in keeping with
the initial assumptions about stiffnesses. Quite often the resulting element
sizes violate these assumptions so a revised analysis, followed by modification
to the element sizes, is required.

1.2 Industrial Motivation

Conceptual design is one of the most demanding tasks for the structural en-
gineer during the whole design process [Wom02]. At this early stage, almost
all important decisions about the structure are made in terms of robustness,
costs and life-cycle functioning [BD95, Eng98]. However, a number of engi-
neers, especially novices, lack design skills or disregard to design a structural
concept because they do not maintain a conceptual model of the structure
and/or rely on analysis and design tools for detailed design [dP01]. The im-
pression of leading engineers, called “Prüfingenieure” in Germany, is that 1/3
of all practitioners design unsafe conceptual design solution due to a missing
global load transfer and 1/3 of them disregard design constraints imposed by
the architect or the DIN 1045-1 [Eis01b]. As a consequence, these shortco-
mings can result in the overall failure of the structure, unsatisfying conceptual

1Hubka [Hub82] calls a concept a sketched interpretation of a proposed structure. The-
refore, I will denote the concept by I.

4 1 Introduction

design solutions, and hence, a highly inefficient iterative design process. This
applies not only to complex design tasks but also to regular multi-storey
designs of concrete building structures, which account for 80 per cent of all
designs. Therefore, a simplified recommendation was adopted for prevailing
design tasks in [dP03]. It implements the demand on engineers to design a cor-
rect structural configuration synthesized by preconceived structural systems
from structural elements which must transfer the applied loadings safely to
the ground, provide sufficient stability for the building, and satisfies the de-
sign constraints. The following example features some of the failures during
early design stages that lead to the above mentioned shortcomings.

Figure 1.2: Elevation of a conceptual design task

Example 1 (Reasoning in conceptual design) Figure 1.2 shows a com-
mon conceptual design task, which is paper-based in current practice, adop-
ted from EISENBLÄTTER [Eis01a]. Engineers usually extract first the im-
portant design information from a CAD-drawing. It depicts the room and
occupancy concept. The drawing is the starting point of the design work.
Experienced structural engineers build up an initial conceptual model of the
structure, denoted I0. This results in the middle elevation sketch as external
representation. The model includes building elements, which are supposed to
be load-bearing, and external loadings by occupancy and other effects. Fur-
thermore, economical and maybe material constraints are added to the initial
working model because they determine the selection of element types. Becau-

1.2 Industrial Motivation 5

se engineers often do not maintain a conceptual model, they miss to design
a correct structural concept. They often do not establish load paths among
the existing structural elements to find the critical members in the concept
that dictate possible solutions. These critical members should be worked out
first since all other design decisions depend on them. Since this is frequently
skipped, the concept has to be redesigned later in the design process. This
shortcoming could be avoided by maintaining a conceptual model about the
structure to take the critical members and systems early in the design pro-
cess into account. Experienced practitioners possess such a conceptual model
about the structure. If they find that the structural concept is incomplete
due to elements that are not appropriately supported or inconsistent due to
elements that violate design constraints, they revise their design approach in
order to reduce iterations. At the end of the design process, they have develo-
ped a conceptual goal model, denoted IG, that extends the initial incomplete
model and depicted as the right elevation sketch, without iterating.

Designing a structural concept requires - demonstrated by example 1 - a mo-
del representing conceptual knowledge and the engineer’s capability to reason
about it. It is the first and critical step on which control knowledge can ope-
rate to reduce time consuming iterations by a suitable design approach in the
process [Sim99]. Conceptual knowledge consists of two parts. The first part
allows the engineer to assign the arrangement of elements and systems in the
structural concept in terms of their required parts and properties stipulated
in the DIN 1045-1. The second part helps him to assign valid load paths to
the elements in the structure, similar to qualitative reasoning described in
[Iwa97, For88]. Control knowledge consists of a suitable task decomposition
of conceptual design into subtasks and the applicability of actions to deve-
lop a solution. The decomposition corresponds to the design approach (also
called design intent or design plan [GGF94, Sim77]). Conceptual and control
knowledge constitute the engineer’s design knowledge.

According to surveys carried out by DEKKER and EISFELD & SCHERER

[Dek00, ES02b], structural engineers miss support for conceptual design sin-
ce commercial computer tools as FLBuilding, SOFiCAD, and Nemetschek
Allstar, which are available on the German market, only support structu-
ral engineers at later stages in the design process. Research proposals for
computer-aided conceptual design have not taken into account these requi-
rements as they do not support engineers in the focused development of a
correct structural concept (see for example the skeleton refinement method
of HAUSER and SCHERER [HS97], and the decomposition method along
knowledge hierarchies of FENVES et al. [FRG00]).

6 1 Introduction

1.3 Definition of Research Problem

The aim of this research thesis is the development of a formalism, that can aid
and guide the reasoning steps taken by engineers. This requires an extension
of traditional support by a conceptual model and control knowledge for:

1. testing the correctness of a structural concept with its members during
design,

2. sequencing subtasks according to the critical members before flexibly sol-
ving the subtasks in a bottom-up fashion, and

3. proposing actions to develop the concept and to reinstall the correctness
of it.

I limited the envisaged design support to ordinary concrete building struc-
tures. They account for 80 per cent of todays buildings and feature the fol-
lowing characteristics: good soil properties, facade and stairwell design are
non-governing load-bearing elements, no frame structures, living, shop, and
office occupancy, simple layouts that can be composed of basic geometrical
shapes, ordinary wind and snow loading, only walls, slabs, staircases and sa-
nitary cores are given as load-bearing elements as design input, and layout
variations are of a simple type.

1.4 Research Hypothesis

The computer-aided design system proposed in this thesis overcomes the afo-
rementioned shortcomings in conceptual design for the domain of concrete
building structures. The system is based on a model of conceptual design
that takes the conceptual model of the structure and control knowledge into
account. To realize the system for the domain specific requirements, a hybrid
formalism that applies the description logic language ALCQI(D)− with the
reasoning services of consistency and completeness testing and the hierarchi-
cal task planning language SHOP that allows interactive task decomposition
and suitable action application to implement a subtask have been chosen.
The formalism:

• supports the work with incomplete concepts during design due to open
world semantics2,

2Open refers to absence of information that indicates lack of knowledge, whereas closed
interprets the absence of information as negative information [BHS93].

1.5 Structure of Thesis 7

• tests the consistency of a structural concept with its members on design
constraints of the DIN 1045-1,

• identifies members with an incomplete load transfer due to closed world
semantics at selective points, and

• sequences the conceptual design process on control knowledge to reduce
iterations.

These results of the thesis were obtained by a work programme that deter-
mined the structure of the thesis.

1.5 Structure of Thesis

Chapter 2 starts with reviewing generally accepted definitions of conceptual
structural design. They serve as starting point to discuss related research pro-
posals with their open questions in detail. As the research about conceptual
structural design is in its infancy, relevant classical design theory is brief-
ly reviewed to define the problem of conceptual design of concrete building
structures and to formulate a solution model for it.

Thereafter, survey data, that come from design studies in the domain of buil-
ding structures [Eis00, Eis01a] is analyzed on the knowledge-level [New82]. It
allows to view the engineer as a dynamical control system [New90], whose be-
havior is determined by its rationality trying to design a goal concept without
iterating by its given knowledge. The analyzed design studies are employed
twofold. Firstly they are used to refine the model formulation as knowledge-
intensive search. Secondly, the practitioners’ design knowledge was used to
base the “designing as search process” upon it. Only a very few design studies
where conducted. They were used to assign the most important “engineer’s
system” parameters that affect his performance. These parameters are a first
approximation of the parameter space as the appropriate formulation of the
model was the main focus of this thesis. For a critical discussion about when
to choose few or large data sets for model formulation and validation see cf.
[Sim96, Sim77]. The model is validated by means of a developed prototype
in usability tests with engineering users. The results of the usability tests
and the application scope of the developed model are discussed on a sample
session in Chapter 4.

In Chapter 3, a formalism is developed on the basis of the defined model to aid
engineers in conceptual design. Therefore, different relevant knowledge-based

8 1 Introduction

methods for configuration design are reviewed. Knowledge-based methods are
based on the idea to acquire expert knowledge and make it accessible to other
users to support them. Thereby, they try to improve users’ performance on
the task at hand. The methods are discussed in terms of their applicability
to conceptual structural design. After their evaluation, I select a logical and
a planning method to implement the formalism. Expressive description logics
appear to be an appropriate tool for conceptual design support because they
allow the formal representation of and reasoning about incomplete structural
concepts in form of a conceptual model in a correct way. Hierarchical task
planning can be used to decompose conceptual design into subtasks befo-
rehand and thereby decrease the number of iterations. The combination of
these methods results in the interactive description logic based hierarchical
planning formalism. To suit the domain specific requirements introduced by
examples I first select two appropriate languages from the two groups of
description logic and planning languages to represent the domain.

The resulting design language with the respective sublanguages for represen-
ting conceptual and control knowledge is formally introduced and the respec-
tive reasoning services for consistency testing and completeness testing of a
structural concept as well as task decomposition of conceptual design and ac-
tion application for a subtask are defined. Completeness testing is based on
local closed-world semantics to check the load transfer of structural elements.
Furthermore, interleaving task decomposition and execution of actions is sup-
ported to change the sequence of remaining actions for a subtask based on
the developing concept. The services are used to provide the envisaged de-
sign support. To implement the services, the system employs the description
logic system RACER and a plan-space search system SHOP. The description
logic reasoner was developed by HAARSLEV and MÖLLER [HM01] and the
planning algorithm by NAU et al. [NCLMA01].

To highlight the extended design support in Chapter 4, a prototype that
draws on the developed formalism is presented by applying it to a conceptual
design problem. To validate the model and system’s scope of application the
results of usability tests with structural engineers are discussed. Depending
on the level of experience, practitioners report that they can detect incorrect
and reduce time consuming iterations by the system prototype.

Chapter 5 summarizes the main ideas of my thesis and gives an outlook on
open research questions.

Chapter 2

Model Formulation

Conceptual design of concrete building structures is introduced based on a
literature study. Based on the result of this study and a detailed conceptu-
al design example from practice, I specify the requirements for a model to
support the engineer in this task and discuss which kind of support is not
provided by previous work. The requirement specification helps to formula-
te a model that comprises a conceptual model of the structure, the subtasks
and action types of conceptual design, and control knowledge to sequence the
subtasks and actions appropriately. Analyzed design studies of experienced
practitioners serve the model refinement by acquired conceptual and control
knowledge. Because complete descriptions about action types and knowledge
at early stages are rare in the domain, I briefly review accepted descriptions
from design theory to base the model formulation upon it.

2.1 Conceptual Design

Conceptual design is an important and knowledge intensive problem solving
task for engineers. However, it has not been formally defined in the struc-
tural engineering field. Only declarative descriptions in vague terms have
been introduced that deal broadly with the characteristics a structure has to
obey, cf. [Eng99, HB85, SE94, Fra66, Fra69, KW95], and the decomposition
of conceptual design into subtasks that require different intellectual enginee-
ring activities, cf. [Leo77, BD95, Hol86, Fra81, Wom02, Sch80]. A missing
notion of a structural concept with global load transfer and how to proceed
while designing it results often in poor design solutions, which have to be re-
vised by external experts [dP03]. The goal of this chapter is to define a model
of conceptual design of concrete structures under the domain assumptions

10 2 Model Formulation

stated in Section 1.3 because the computational support requires an appro-
priate and precise model formulation. DAVIS, who calls a model a problem,
points out that “a problem formulation has an independent value, apart from
the program, as an expression of one expert’s mental model1 of the task and
the relevant knowledge” [Dav99]. A formulated model provides thus a basis
for novices to understand the underlying expertise of experienced engineers
[Mer02]. I start with descriptions of a structural concept that can be found
in literature.

The reviewed literature describes the characteristics of a structure but not of
a structural concept. This comes from the fact that traditional computational
methods of engineering analysis and design are not applicable for defining a
conceptual model of the structure that has to be specified on an abstract level
with incomplete information. I summarize the descriptions by introducing the
most important notions about a structure. For example, SCHODEK defines
a structure strictly in terms of its load transfer requirement.

“A structure can be conceived of as an organization of positioned con-
stituent elements in space. No matter how some individual elements
are located and attached to one another, if the resultant configurati-
on and interrelation of all elements does not function as a whole unit
channeling loads of all anticipated types to the ground, the configura-
tion cannot to be said a structure” [Sch80].

O’BRIEN and DIXON describe a structure in similar terms but state the
additional requirement of stability. They understand structural systems as
groups composed of elements to perform a specific function.

“A complete structure can incorporate any number of independent
systems all of which act together to transfer the applied loads to the
foundations and provide overall stability to the structure” [BD95].

HAMPE and BÜTTNER describe the load-bearing structure as a model of the
real structure because the system is not known at the design stage [HB85].
The load-bearing behavior of the model describes the concrete processes ta-
king place in structural elements, which are ordinarily given by a set of equa-
tions defined on concrete-valued state variables like support reactions and
internal forces. Other textbooks emphasize the requirement on each struc-
tural system or element to carry, resist and transfer the applied loads to

1A mental model includes usually a conceptual model of the domain of discourse and
knowledge about its manipulation - in the thesis domain knowledge about the design
process.

2.1 Conceptual Design 11

adjacent structural elements, see for example [Eng99]. Hence, a structure is
determined by the behavioral processes that take place in a structural sy-
stem or element in response to a loading. These processes are usually casted
into a system of equations in traditional equilibrium statics. They can be
computed by structural analysis, since traditional engineering methods like
stiffness, energy or equilibrium methods can be employed. However, these
analysis methods cannot be used for conceptual design because they need
precise information about the structure in terms of its topology, stiffness and
loading.

In the beginning of the design process almost nothing is fixed and the engi-
neer has to choose the type of structure, the principal arrangement of main
structural elements and structural materials by experience and rules of thumb
[Eng98, Leo77]. Therefore, the notion of structure of later design stages, which
draw on detailed information, needs to be adapted to the conceptual design
stage, since the mereology and the topology are the main outcomes of con-
ceptual design but usually disregarded at later design stages. The mereology
describes the decomposition of the structure into parts like structural sy-
stems and elements with their properties [AFGP96], and the topology speci-
fies the arrangement of adjacent structural systems and elements interrelated
via their supports [BA97]. Only the topology of single structural systems is
mapped into incidence tables for structural analysis but not for the struc-
tural configuration as a whole unit. However, the arrangement of structural
systems and elements by support relations is important for establishing global
load paths through the structure.

The incomplete information demands an adaption of equilibrium equations
and support conditions to conceptual design. These modified equations and
conditions that constitute conceptual knowledge allow the engineer to confi-
gure a structure by arranging structural elements, which transfer the applied
loads safely to the ground. I denote the resulting level at which the structure
is represented conceptual level in comparison to the analysis level mentioned
above. On this level, the equilibrium equations and support conditions find
their counterpart in logical equations over the abstract domain of structu-
ral elements and systems. This abstract representation allows the engineer
reasoning about how structural elements have to be chosen and arranged
in structural systems with very little information. After the engineer has
established a structural configuration, he estimates critical member sizes on
approximately calculated internal forces at the end of conceptual design. A
simple conceptual design example shall clarify the difference between the
conceptual and later design stages.

12 2 Model Formulation

Figure 2.1: Incomplete and complete structural configuration

Example 2 (Conceptual reasoning about structure) In figure 2.1 an
initially incomplete conceptual model I0 and a complete conceptual model
IG of a structure are depicted. It is the task of the engineer to complete the
initial model by parts to a configuration that transfers the load PEd = 100 kN
applied at mid-span and the self-weight through the beam element B1 to the
ground. For simplicity, it is assumed that the moment capacity as beam
parameter is decisive for choosing its gross sectional constants. The self-
weight is omitted for brevity. At the conceptual design stage, first elements
have to be chosen that support the beam to ensure equilibrium, before the
engineer can calculate internal forces and support reactions as state variables.
In this example, he decides to simply support the beam by two columns C1

and C2. After he has added the two columns, he calculates the two support
reactions that are equal due to symmetry and result in the actions NEd1 and
NEd2 on the columns imposed by equilibrium statics, denoted ΣV = 0 with
V the vertical forces:

ΣV = 0 : PEd = 100 kN = NEd1 + NEd2 with NEd1 = NEd2 = 100/2 = 50 kN.

Now, he is in the position to calculate the unknown value of the internal
bending moment MEd by moment equilibrium, denoted ΣM = 0 with M the
bending moments on the gross section at mid-span:

ΣM = 0 : MEd = PEd · l/4 = 200 kNm.

Thereafter, the engineer estimates the beam depth z on the basis of the
ultimate limit state constraint MEd ≤ MRd for providing the required mo-
ment capacity that resists the calculated internal bending moment MEd. He
calculates the beam depth according to the DIN 1045-1 to:

z =

√

MEd

µEd,lim · fcd · b
= 0, 32 m.

2.1 Conceptual Design 13

As illustrated by the example, the engineer uses first conceptual knowledge
to assign structural elements and relate them by supports with incomplete
information. Thereafter, he calculates internal forces and support reactions
by equilibrium statics, before he can estimate these gross sectional constants
that are critical for member sizing in terms of stipulated design constraints
in the DIN 1045-1 [Bau01]. In the following, I will describe conceptual design
with its subtasks based on the structural engineering textbook sources.

In the literature, conceptual design is mostly seen as a synthesis process,
which comprises different subtasks that draw on the experience of the indi-
vidual engineer, cf. [Eng98, Wom02]. Subtasks usually decompose into sub-
tasks at lower abstraction level until an atomic level is reached on which the
engineer develops the structural concept. In contrast to the structure, the
subtasks and actions involved in design are only sketchily described in the
literature, cf. [BD95, Leo77], and, hence, provide a weak basis for deriving
guidance how to design a robust structural concept from scratch. In addition,
they leave out the notion of control knowledge for the suitable decomposition
of conceptual design into subtasks at different abstraction levels to efficient-
ly design a concept. I will give the most important descriptions here; the
interested reader is referred to the references for more details.

FRASER understands conceptual design as an engineering process, that re-
quires different solution techniques, which are highly interwoven. Conceptual
design can be seen as comprising several subtasks dealing with different de-
sign issues.

“In oversimplified terms conceptual design requires: the recognition of
constraints and parameters relevant to the project, the assembly of
constraints and the identification of their relationships, the devising
of a structure to comply with the demands of the constraints” [Fra81].

This notion is shared by most authors in combination with the requirement of
an appropriate selection of structural schemes that comply with these cons-
traints, see for example O’BRIEN and DIXON [BD95]. WOMMELSDORF

states that it is the most complicated task for the engineer, which is worked
out in collaboration with the architect. The engineer has to decompose the
building structure into single structural elements or systems that are desi-
gnable according to design procedures [Wom02]. This opinion is also shared
by LEONARDT, who emphasizes that conceptual design involves a lot of
experience [Leo77]. SCHODEK places the emphasis of conceptual design on
adapting the structure to the envisaged spaces, which are dictated by the
programmatic function where structural elements have to be positioned and
their interrelations be formulated [Sch80].

14 2 Model Formulation

What kind of reasoning practitioners do based on the conceptual model, de-
sign constraints, and control knowledge and how each part of it contributes to
the development of a correct concept without design iterations, is discussed
in an example taken from a realistic project. It compares the design approach
of an experienced practitioner to collected ones of engineers with little ex-
pertise. Along the approach taken by the experienced practitioner, I mention
the occurring shortcomings2 in the collected approaches. The example is an
L-shaped office building situated in a city center between two neighboring
buildings shown in figure 2.2, taken with permission from ARUP Consulting.
For a detailed description of this project the reader is referred to [Eis01a].

Figure 2.2: Side view of office building

The conceptual architectural design includes a number of drawing plans,
which the architect usually hands over to the structural engineer together
with the brief as design input for developing a structural concept. For brevity,
only a plan of an upper office floor layout is depicted in figure 2.3. The plans
are ordinarily received either in electronic or in paper form. They include
geometrical building information and occupancies. Since conceptual design is
paper-based in current practice due missing design tools, the engineer works
directly with the architectural plans to design a structural concept.

2Shortcomings are marked by R because they set up the support requirements for a
model of conceptual design.

2.1 Conceptual Design 15

Example 3 (Design project with shortcomings) The example compri-
ses the task description for the engineer, the compared design approaches
with the shortcomings, and the correct structural concept as solution to the
task.

Task description: A structural concept for an office building with six storeys
and one lower storey has to be designed. The initial room and occupancy
concept is described by the following information:

• the floor layouts and side views that describe the building geometry,

• occupancies: shops at the surface floor, and offices at the other floors,

• good soil properties and no subsoil water, and

• design brief: flexible room concept, light facade, no load-bearing walls
in staircase and shopping area, and medium budget.

Figure 2.3: Office floor layout

16 2 Model Formulation

The building has a base length of 30 m and a side length of 15 m, and is 23
m high. The ground floor has a storey height of 5 m and the five upper floors
a storey height of 3.5 m, respectively. The offices can be reached via an aisle
located in the middle of the building. The functional spaces are given by a
grid of 5 × 5 m. Two sanitary shafts with 4 × 5 m are located at the end of
the building. At the upper right corner, a staircase of 8 × 8 m with a light
external glass facade is planned.

Design approach: The engineer starts to develop the initial conceptual mo-
del I0 as problem specification. He starts with the constraints and parame-
ters. For the given storey height of 3.5 m a maximum slab system height
of 50 cm is possible. The occupancy does not result in extraordinary loa-
ding conditions. Therefore, he selects for the shopping area a distributed
load q1 = 5 kN/m2 , for the office area a load of q2 = 3 kN/m2, for the roof
coverage g1 = 2 kN/m2 , and for the finish and services an additional slab
self-weight of g2 = 1.5 kN/m2.

R: Some engineers miss to apply all slab loads that result from existing
occupancies or finish and services like g1. As result, they have to redesign
all these elements and systems that participate in the load transfer for the
modified slab loads.

The engineer chooses a column system for the vertical load transfer, which
satisfies the flexible room constraint. Since no special constraints are impo-
sed on the facade, a load-bearing facade is selected. He must design a local
solution for the staircase because the glass facade around the stairwell does
not allow for load-bearing elements.

R: Some engineers do not consider all existing constraints at the beginning.
If an engineer does not consider the local solution for the facade at the
staircase and places the load-bearing facade also there, he must calculate the
slab system again because of wrong support conditions along the slab edges.

Since the soil is load-bearing the engineer plans to design an ordinary foun-
dation with line and point footings.

R: Some engineers do not check the soil properties at the beginning of their
design. If the soil has a low soil pressure, a base plate has to be chosen instead
of line and single footings, and the whole structure has to be redesigned due
to changing load paths.

In the next design step, the engineer checks the feasibility. He studies the
floor layouts to find local conflicts that should be worked out as soon as
possible because they could make a design of a robust structural concept
infeasible. If this is the case, the engineer must contact the architect who

2.1 Conceptual Design 17

has to change the conceptual architectural design. Up to now, there exists
only one local conflict at the surface floor because load-bearing walls cannot
be placed internally to provide stability. Because he can place the shear wall
on two columns at the surface floor, which do not have size restrictions, the
conflict is resolved.

R: Some engineers skip to search for local conflicts like the one for the stabi-
lity system or do it late in the design process. Both cases result in a redesign
of the stability system that affects the analysis and design of the slab system
above the surface floor.

The engineer starts to search for already existing load-bearing elements. In
the corners of the building, the two sanitary cores can be used for lateral sta-
bility. By means of his conceptual knowledge about suitable stability systems
he estimates if the existing two cores suffice for providing stability. Here, two
additional shear walls have to be placed at the centre of the building to pro-
vide sufficient stability and to make the arrangement of the lateral elements
symmetric.

R: If the two additional shear walls are not introduced the structure twists
and the lability numbers might not be fulfilled. The shear walls act as ad-
ditional support lines for all slab systems, which have to be calculated and
designed again with the modified support conditions.

At this point in the design process, the engineer plans the sequence of the
remaining subtasks. He decides to start with the vertical system and the
possible spanning length of the slab. Thereafter, he is going to design the
slab system and sizes the critical elements. Finally, he calculates the lability
numbers for the stability system.

R: Because many engineers do not work out a problem specification they
cannot plan the remaining subtasks. If the stability or the slab system has
to be designed first depends on the existing lateral elements which provide
supports for the slab system.

For the design of the vertical system, the engineer adds the existing load-
bearing elements of the drawings to his developing structural concept. He
starts with the external walls. The spanning length between the walls is 15
m. To obtain an economical slab height for a flat or a two-way spanning slab,
which can span up to 9 m, he has to introduce another support line.

R: If a slab alternative, which spans outside its effective spanning length is
chosen, the costs of the slab system increase. They make up 60 per cent of
the total costs for the structure.

18 2 Model Formulation

He introduces a slab beam as support line at mid-span and checks, if the beam
can be placed at every floor. The floors are regular except of the staircase
area where the column grid must be locally adapted. The column grid is thus
7.5 × 7.5 m.

R: Many engineers often do no check if they can provide the same load paths
at all floors. If load paths vary between floors they have to redesign the
vertical load-bearing system above the floor where the change in load paths
occurred.

For the design of the slab system, a flat slab or two-way spanning slab has been
already preselected. The engineer selects the two-way spanning slab beam
alternative to span li = 7.5 m without problems. By the required slenderness
ratio li/d ≤ 35 for slabs stipulated in the DIN 1045-1 he calculates the height
h = 25 cm which also includes concrete cover and half of the reinforcement
diameter.

R: If the slab height is not correctly estimated by the slenderness ratio, the
self-weight is incorrect. All design steps like calculating the lability number,
sizing critical elements, etc. that depend on the self-weight of the slab have
to be done a second time.

At the staircase, a local solution is required because the slab has a free edge
along the boundary. The engineer designs a thicker slab edge. If this design
is not sufficient he has to investigate other solutions like integrating the glass
facade into the load-bearing system.

R: Some engineers do not consider or make wrong local adaptions due to
changing geometries. However, the slab edge acts like a slab beam as support
for the slab system. If the local solution is disregarded or incorrectly designed,
the slab system has to be redesigned.

Load-bearing elements are slabs, slab beams, columns, and walls that the
engineer preliminarily designs. For this subtask, a range of design tools and
design procedures exists. For some preliminary designs, the engineer uses
the computer for the calculations. He starts to determine the loads on the
slab and its self-weight. The slab is only sized by the required slenderness
ratio. Then, to obtain the required size of the slab beam, first the maximum
internal bending moment over the support is calculated by MEd = −0.1·qEd·l2

from a design table where qEd is the slab load and the self-weight of the beam.
Because a total slab system height of 50 cm is possible, the engineer calculates
the required breadth b = 100 cm for the continuous slab beam with 3 spans on
the fixed height of h = 50 cm (the breadth can be calculated in a similar way
as the depth in example 2). For the columns, one internal column is designed
at the surface floor because it is loaded by all the loads from the upper floors.

2.1 Conceptual Design 19

The loads of all upper floors are calculated based on the tributary areas to
find the critical compression force. The engineer chooses a gross section of
50 × 50 cm for the column and calculates the required reinforcement. The
external walls are not critical because a size constraint except of the minimum
requirements for the wall breadth does not exist in the DIN 1045-1.

R: Sometimes, engineers do not calculate all critical members. If they miss
to size the column with the highest compression force, they have difficulties
to provide reinforcement in the detailed design that does not exceed the
allowable reinforcement ratios of the DIN 1045-1.

The engineer checks if the actual reinforcement ratio does not exceed the
allowable reinforcement ratio of 9 per cent for the column. For the ratio of
3 per cent, the column has some remaining load-bearing capacity which is
favorable if any unexpected load increase occurs later at the detailed design
stage.

R: Often allowable reinforcement ratios for elements stipulated in the code
are exceeded. It results in the modification of the gross section at late design
stages such that a second complete detailed analysis and design step becomes
necessary.

As final design step, the engineer checks if the stability of the structural
concept is in fact sufficient. The required gross sectional parameters of the
shear walls and cores are calculated by the computer as well as the shear
centre. The stability can be assumed as sufficient if the inequation

α =
1

htot
·

√

Ecm · Ic

FEd
≥

{

1/(0.2 + 0.1 · n) for n < 3

1/0.6 else

for both building directions is satisfied, where htot is the building height, Ecm

Young’s modulus, Ic the total moment of inertia of all stabilizing elements,
FEd the total vertical building load, and n the number of floors, respectively.
For this building, the translational stiffness is sufficient an the rotational
stiffness does not have to be computed since the stabilizing elements are
placed symmetrically around the shear centre of the building.

Because there do not exist remaining conflicts and the load transfer has
been assigned the structural concept is complete. The design of the staircase
facade and the lower floor are not considered in more detail because they do
not affect the structural concept.

20 2 Model Formulation

Solution: On his conceptual goal model IG, the engineer builds up a struc-
tural concept that encompasses the following structural systems:

• the vertical system with an internal column system, a grid of 7.5 × 7.5
m, and external load-bearing walls,

• the two-way spanning reinforced concrete slab system, which fulfills the
serviceability state limitations,

• the lateral stability system with two sanitary cores and the walls at the
stairwell as parts,

• the foundation as line and point footings, and

• the critical member sizes of the slab, the slab beam, and a column at
the surface floor that satisfy constraints of the DIN 1045-1.

Engineers often miss a conceptual model and control knowledge for designing
efficiently a correct structural concept. They either design the concept non-
globally that is load paths are discontinuous and incomplete or they do not
elaborate the critical members or systems at the beginning of the design pro-
cess. Both increases the number of iterations. Contrary to them, experienced
practitioners first plan their design process on a task level before they deve-
lop a structural concept on the conceptual level. During design, they change
locally their design approach for a subtask, if they find out that elements
are inconsistent on the DIN 1045-1 or incomplete due missing supports. The
initial conceptual model allows the practitioner to sequence the remaining
subtasks to avoid iterations in the design process. Such iterations are rede-
signs of structural systems or elements that are affected by modifications
of already designed members. Based on the feasibility check the remaining
subtasks have to be performed in a suitable order because some subtasks
need information that is created by others. The stability system has to be
designed before all other systems if additional shear walls are required. If
the slab system or the vertical load-bearing system has to be designed first,
depends on critical elements governing the design of the systems. In addition,
the slab height depends on the assignment of the column system that sup-
ports the slab system. The sizing of the critical elements makes only sense if
the element types and their arrangement are fixed. For the calculation of the
stability numbers, the total vertical building load is needed. Therefore this
check can only be carried out at the end of the design process.

2.2 Requirement Specification 21

2.2 Requirement Specification

Motivated by the major shortcomings from current practice, the following
list refines the requirements of Section 1.3 to model conceptual design for the
envisaged computer support.

1. Testing the correctness of a structural concept:

a) check constraints for structural elements and systems to ensure their
consistency with the DIN 1045-1,

b) support the assignment of load paths for each element to provide a
complete vertical load transfer,

c) assist the selection of suitable element types for given constraints.

2. Sequencing subtasks before solving them bottom-up:

a) support the construction of an initial conceptual model that includes
constraints like costs, soil properties, and loads,

b) decompose conceptual design into a suitable subtask sequence based
on the initial model.

3. Proposing actions to develop a concept and to reinstall correctness:

a) reduce iteration cycles by selecting suitable actions to solve a subtask,
and in case of incorrect member solutions, by proposing direct modifi-
cations to reinstall consistency,

b) guide the user to members that are not complete in terms of their load
transfer,

c) force the user to solve conflicts directly after they have occurred.

Previous work will be discussed on these requirements in the next section.

2.3 Previous Work

Because a formal model with the necessary design input, the structural
concept, and the involved task ingredients to develop a correct structural
concept is missing a variety of computational paradigms to aid intellec-
tual engineering activities has been applied in the structural domain, see
[HL90, Mil01, MM94, RS03, SH97]. They understand design problem sol-
ving in the structural domain as constructing and working with some kind of

22 2 Model Formulation

conceptual model on a symbolic or sub-symbolic3 level, respectively [SH97].
MILES [Mil01] gives an almost up-to-date overview of applied methods to
support conceptual structural design. The following list reviews relevant pro-
posals in terms of the requirement specification and highlights the need for
the knowledge-based design interface developed in this thesis.

• The automatic system HI-RISE [Mah84] was the first knowledge-based
design system supporting structural engineers. Its purpose was to show
that knowledge-based methods can be employed for supporting the
structural engineer. The system and its successor systems discussed
in [Mah91, MG96b] uses the PSRL reasoning system, which is rule-
based and enhanced by a frame representation with function demons,
for proposing preliminary design solutions of high-rise buildings. Later
it was extended by a genetic algorithm to select optimal design para-
meters [MG96a]. The structural solutions are represented in the frame
part, which included alternative refinements and decompositions accor-
ding to the given control rules but no load transfer. The design task is
subdivided into a fixed sequence of subtasks for structural systems. In
turn these are separately realized by an automatic synthesis, analysis,
evaluation, and selection cycle. This assumption that the design task
can be decomposed into a predefined order of subtasks applies only to
pure routine design problems like preliminary design. The interaction
between the engineer and the system takes place at the selection level
of completely specified solutions for which the structural elements and
systems have been preliminarily sized by rules of thumb.

• The interactive system CONFIG [Gom98] developed in the SEED pro-
ject [FRG00] assists engineers in conceptual design of simply-shaped
building structures. Its main focus was to allow the rapid assembly
of building elements that enclose a given spatial layout. It uses an
object-oriented language for the representation and processing of the
structural concepts. Conceptual knowledge, which was acquired from
standard textbooks, is represented by decomposition and inheritance
relations. The engineer can refine the overall building along a skeleton
into basic structural subsystems called building entities but cannot test
the overall concept for its correctness. Each building entity can then be
designed by the application of so-called technology nodes that make up
a graph for each building element. Methods for determining attributes,
compositions and relations of the building entity under development

3Sub-symbolic refers to neuronal networks as for example trying to imitate the proces-
sing on the physical level.

2.3 Previous Work 23

are attached to the nodes in the search tree by so called technologies.
Control knowledge is thus encoded in the refinement hierarchy. Techno-
logies can be understood as actions. The applicability of a technology
node is determined by predecessor nodes that must be already app-
lied. The application sequence of technology nodes is fixed along the
skeleton since nodes cannot change their location in the graph. Addi-
tionally, stored solutions can be retrieved for building entities, which
the engineer has to adapt manually to the new designs.

• The system CADREM [KR97, Rap95] for conceptual design of struc-
tural layouts applies cased-based reasoning for retrieving a structural
solution concept to the engineer. It was mainly designed for propo-
sing structural grids in dependence of suitable slab types. The cases
for slab types and the decomposition knowledge were extracted from
textbooks. It represents cases for different subtasks by methods, which
are applicable for certain preconditions. Thereby, the system generates
solutions by methods used in solving similar cases in the past. The en-
gineer can adapt the formerly generated solutions in a restricted way.
Control knowledge is used for composing complete cases from parti-
al solutions in the case-base. This framework is automatic in nature
and the engineer can only adjust retrieved cases. Thus, a number of
solutions can quickly be generated. It works for simple layouts when a
conceptual model is not needed because similar cases can be stored as
solutions in the case-base prior to their retrieval.

• The BGRID system [SMM99, SMM03] supports the engineer in gene-
rating alternative structural layouts for rectangular building structures
with evenly distributed occupancy loads. Its main purpose is the rapid
optimization of structural grids according to given design criteria. Its
domain is restricted to steel framed buildings where heuristic knowled-
ge exists in form of rules of thumb about span/depth ratios for seizing
member dimensions. The knowledge and the underlying assumptions
were elicited from structural engineers. It transfers the ideas developed
by MOORE [Moo97] for conceptual bridge design to building design
which requires the search for adequate alternative solutions. BGRID

employs a genetic algorithm where span requirements and design crite-
ria4 are set up by the user prior to the search process. Thus, the sup-
port is automatic in nature as is the one of CADREM. Both systems
work only for regular building layouts and simple loading conditions
for which control knowledge can directly be used to compute structu-

4Criteria are constraints that are ordinarily fixed prior problem solving.

24 2 Model Formulation

ral solutions. Its applicability is hence restricted to design situations
with simple geometry and loading conditions. The main results of a
BGRID application session include structural grid dimensions, a slab
system with its assembly and dimensions, and the resulting vertical
storey dimensions.

• HAUSER’s system PRED employs a skeleton refinement method for as-
sisting the engineer in the conceptual structural design task [Hau98]. It
was designed for developing the required structural systems in a top-
down process for rectangular building layouts. The structural solution
model is dynamically constructed along a decision tree, which repres-
ents the conceptual knowledge about solution alternatives. The decision
tree can be explored along the is-a and has-part relations of the envi-
saged concept. For the representation of the conceptual model a frame
language is used and for the control knowledge an operator scheme
from Artificial Intelligence5 planning [HS97]. However, the sequence of
possible actions is fixed due to the strictly confined operator applicabi-
lity encoded by the operators’ preconditions. A pure top-down assisted
design process is to inflexible because engineers first plan their design,
which is later bottom-up developed by direct element manipulation
[ES02b]. Furthermore, the system does not take the load transfer and
the design constraints of the DIN 1045-1 into account. For a detailed
description of the limitations of the PRED system see [ES02b].

The thesis extends the conceptual design support according to the require-
ment specification because other proposals support only the engineer in 1.c)
and 2.a). The newly developed computer-aided conceptual design system in
this thesis covers support for all other points except of 3.c) and partly 1.c)
because complex geometrical and costs constraints are excluded. The diffe-
rence to the other proposals will be discussed in more detail at the end of the
thesis in Chapter 5 after the prototype system has been presented. The kind
of developed support in this thesis is termed expert-critiquing, as introduced
by HÄGGLUND [Häg93]. The bottleneck for the success of such systems is
usually to acquire and represent realistic expert knowledge about the task
and the experts problem solving methods [GRS00], since most experts can
only explicate implicit knowledge in a restricted way. Section 2.5 will discuss
the problem of knowledge acquisition in more detail but first general design
theory will be reviewed for the model formulation.

5Artificial Intelligence refers to the science and engineering of making intelligent ma-
chines, especially intelligent computer programs [McC00].

2.4 Existing Models of Design Theory 25

2.4 Existing Models of Design Theory

Design theory is concerned with developing a formal theory of design, which
is domain-independent [Hub82]. This formal theory aims at broadening the
capabilities of computers to aid designing, drawing upon the tools of artificial
intelligence, cognitive science and operation research [Sim99]. In the past, the
development of different models has not resulted in a shared formal theory.
According to GERO this is because no present model does possess explana-
tory capabilities for describing all constituents involved in design [Ger98b].
However, all design models assume that a general human problem solving
behavior is common to all engineers regardless of the design domain, where
designing can be in principal seen as a form of rational human problem solving
[NS72, GP89]. These assumptions are indicated by NEWELL’s rational agent
view [New90], which states the hypotheses that a human problem solver like
an engineer can be described on the knowledge-level by its goal, actions and
knowledge where the goal is to provide desired function. The principle of
the agent’s rationality now states that the agent applies all its knowledge to
reach the goal, where knowledge can be understood as an external agent cha-
racteristic. GOEL remarks in [Goe94] that in a design process not all objects
are known at the outset in comparison to ordinary human problem solving.
He understands designing therefore as a more explorative process where en-
gineers create new symbolic objects during problem solving not known to
them beforehand. This limitation is however debatable since SIMON argues
that the manipulation objects and the desired function must be at least in-
tensionally as design knowledge defined, since otherwise engineers would not
know whether or not they found a valid solution [Sim77].

In general, designing refers to the range of actions participating in the model
to transform function into a structural description in such a way that the
described structure can produce this function6 [Ger90]. They are also often
termed activities, cf. [Hac00, CRR+90, Suh90]. I will use the term actions
in the sequel to denote external and internal activities, which comprise also
planning actions to control the design process. The actions draw on knowledge
to carry out the transformations. One of the most accepted definitions is by
HUBKA, who describes in [Hub82] the task of designing as a search process,
which “consists of thinking ahead and describing a structure, which appears
as carrier of the desired functions under the given constraints”. Further, he
interprets conceptual designing as assigning possible structures that could
fulfill the desired functions and constraints. A structural concept is therefore
a hypothetical solution that might be later adapted at the detailed analysis

6Other authors call Gero’s function “functional requirement”.

26 2 Model Formulation

and design stage. He calls a sketched interpretation of a proposed solution
a concept, also termed scheme by other authors, see for example FRENCH

[Fre99]. GERO realizes similar characteristics for conceptual designing.

“An important characteristic of conceptual designing that is missing in
detailed designing is that in conceptual designing not all information
that is needed to be known to complete a design is known at the
outset” [Ger98a].

Typical of conceptual design is that the engineer cannot verify the functions
due to incomplete information but ensures that the global functions can
be embodied by appropriate subsystems, where conceptual designing is also
termed functional design [PB96, UT97].

Most of these models interpret designing, also termed design problem solving,
as an intellectual human activity, which involves search and exploration of
design state spaces along paths of design states. A state is a snapshot of
the world at a certain time and serves as conceptualization a fixed purpose
[NG89]. In structural design, a state is a concept description that might be
incomplete and comprises a set of objects and relations among them. Ob-
jects are structural elements, and systems, e.g. stability system, supports
and loads. At the conceptual design stage however, the engineer has on-
ly incomplete information about support objects and how elements/systems
are connected via supports. Therefore, he represents a support object and a
connection of elements or systems by a support relation that is later refined
into a separate support object and connectivity relation. A set of support
relations connect thus elements, loads and systems at fixed points to transfer
the loads from their application points through the elements or functional
systems to the ground. In addition, compositional relations aggregate struc-
tural elements to functional systems. In the literature, objects in a design
state are usually described by a set of value assignments for structural or be-
havioral variables in which the functions manifest. In the literature, different
notions of function are given, cf. [CJ00, UT97, Ger90, PB96]. I understand
function as a mode of deployment in agreement with CHANDRASEKARAN.
Here the function of an object is fulfilled, if the domain constraints among
external and internal behavioral variables, represented by a set of equations,
are satisfied for a given purpose [CJ00]. Domain constraints constitute thus
the knowledge to evaluate the behavior of the solution in terms of the desired
function. For a structural concept, the purpose is to ensure a global transfer
of the applied loads to the ground by support relations, overall stability, and
the local transfer by structural elements. The same applies to elements or
systems for which their terminals can be considered as external variables of

2.4 Existing Models of Design Theory 27

the object to communicate to other objects. Supports take on this role for
members in a structure.

Example 4 (Objects in structural design) In a design state of example
2, the beam object B1 of an intermediate concept, denoted I, is described by
associating the bending resistance MRd as structural variable, and the inter-
nal bending moment MEd as behavioral variable to it. The element function
can be understood as a Boolean function designable : E → {⊤,⊥} with E
the set of elements. It evaluates to true if the function of the beam to resist
the internal bending moment, described by the relation v2 ≤ v1, is satis-
fied by a value assignment. For the beam, designable : B1 → ⊤ since the
value assignment v1 = 210 kNm and v2 = 200 kNm satisfies the inequati-
on for the mode of deployment of the beam to resist the load. Because the
elements are only approximately sized for the main functions in conceptual
design, which have to be later designed in detail, the Boolean function is
called designable. Structural and behavioral variables are called parameters
and state variables, e.g. bending resistance and internal forces, in structural
design. Furthermore, the beam B1 is related to the load PEd by the relation
supports(PEd, B1) and associated to the vertical system SV by the compositio-
nal relation hasPart(SV , B1). Other constraints might arise from the building
geometry or the requirements of the DIN 1045-1.

The design state space is then conceivable as the set of possible states that
could exist if all the design actions, except of planning actions, operate syntac-
tically correct on all the object variables to assign values to the variables and
arrange objects by possible structural relations. Search takes place in a finite
state space of enumerable solutions that is fixed prior problem solving where-
as exploration accounts for a countable state space that cannot be completely
enumerated before or even during problem solving [RN95, Pup91]. This no-
tion usually results in the separation of the design problem class into routine
and creative, also termed configuration and conceptual design [BC89, Ger90].
However, the boundaries are fluent and not fixed. In the building domain, the
engineer composes a structural concept by given structural elements, and the
design can, thus, be classified as explorative since the solution alternatives
are constructed during design. It is also of routine nature since the structu-
ral concept is decomposed into a fixed set of structural systems, which are
composed from a well-known set of elements described by variables.

In the following, I introduce selected models of designing. They are GERO’s
function-behavior-structure (F-B-S) model [Ger90] also proposed by UMEDA

[UTY90], and SIMON’s planning model [Sim99] extended by the task struc-
ture idea of CHANDRASEKARAN [Cha90] being widely accepted in the field

28 2 Model Formulation

of design theory. Their aim is to draw on their characterization of designing,
especially design action types to develop and test a concept, and planning
actions to decompose and sequence the design task, to model conceptual
structural design.

2.4.1 F-B-S model

The F-B-S model first proposed in [Ger90] and successively developed in
[Ger98a, GK02] represents the developing design in different states. The mo-
del separates the information of a design state into function F , structure
S , actual behavior Bs , expected behavior Be , and a description D of the
structure. Conceptual knowledge corresponds to expected behavior in this
model to synthesize a structure and test the actual behavior. The different
design information is linked by types of design actions, denoted AD not inclu-
ding planning actions. By an action, information is transformed or deduced
from known one by means of knowledge. The types of actions occurring in
conceptual structural design can be described as depicted in figure 2.4.

Figure 2.4: Actions types in conceptual design according to F-B-S model

2.4 Existing Models of Design Theory 29

Example 5 (Action types in conceptual design of structures) Con-
sider the small design task from example 2. After the engineer had built up
his initial model I0 of the structure, the engineer retrieved conceptual know-
ledge Be for the function F to transfer the applied load PEd to the ground.
In the next design step, he refined the initial configuration, here called S,
by choosing the structural elements C1 and C2 and relating them with the
beam B1 by support relations. Support relations serve not only to configure
the structure but also to ensure load paths among elements. Thereafter, he
calculated the actual behavior Bs given by support reactions NEd1 and NEd2

of the columns, which implement the support relations of the conceptual le-
vel, and the internal bending moment MEd of the beam. He sized by a rule of
thumb from the DIN 1045-1 the beam depth to resist the bending moment.
In the testing step, he compared the expected load transfer Be to the actual
load transfer Bs. In the example, the expected and the actual load paths are
the same and no modification step is necessary. If this was not the case, the
engineer would have to modify the configuration. At the end, he produced a
sketch D of the concept’s structure on the basis of the conceptual model IG.

The final product of conceptual structural design is created by the above
action types. It is a sketch D of the concept’s structure S entailing the fixed
functions F on the conceptual model. GERO emphasizes that a causal me-
chanism of the underlying structure is needed because direct mapping from
function to structure does not exist except. The expected behavior as such is
a causal mechanism on which the design of the structure is based. The causal
mechanism shall explain an aspect of the behavior in terms of others in such
a way that the aspect being explained can be changed if desired [IS94]. An
explanation refers to parts of the structure and describes how the structure
works in terms of causal interactions among the parts that lead to the actual
behavior, termed desired result in [KB86]. Thus, a direction of inference is
needed for reasoning in ordinary non-directional equations [Sim77]. The con-
ceptual knowledge is necessary to evaluate the found solution and to make
modifications to incorrect structural concepts during design.

Because the F-B-S model could not explain the design approaches of archi-
tects from analyzed design studies for conceptual stages [GT01], GERO and
KANNENGIESSER [GK02] proposed an extension to accommodate develop-
ments of cognitive science into the F-B-S model. This resulted in the model of
situated designing, which extends the model by two qualitatively new proces-
ses. These incorporate the notion of situatedness and constructive memory.
Situatedness describes that actions are not the outcome of previously set up
plans but result from the interaction with the situation the designer is in
[Suc87]. Constructive memory subsumes the idea that memories are not fi-

30 2 Model Formulation

xed by experience but are always newly constructed in response to the need
of this memory [Cla97]. In the extended F-B-S model, situatedness is under-
stood as the designer’s interaction with the situation, which is represented
by the sketches D. The interpreted sketches refer to the engineer’s concep-
tual model of the structure in the current situation. The model serves also
for the proposition of design actions for a focused subtask because the engi-
neer conceives a subsequent situation resulting from possible design actions
on his conceptual model. By this extension, designing also includes acting in
reflection to the current design situation made up by sketches, which SCHÖN

describes as “shaping the design in reflection to the situation” [Sch83]. The-
reby, the sketches serve as an additional information source in a similar way
as the long-term memory does. The sketches drive the design process to pre-
ferred solutions by recognition. I found similar results in the protocols of the
structural design studies, which indicated that the engineer follows only an
abstract design plan in form of a suitable subtask sequence. The local design
approach in a subtask is however revised in response to intermediate sketched
design solution. An intermediate design solution is a structural concept that
is not completely designed.

I use GERO’s categorization for the design action types to model design
actions in the structural domain. I preclude the actions that formulate the
conceptual knowledge since the experienced engineer simply retrieves it for
the task at hand. This knowledge will be later stored as persistent knowledge
in the knowledge base.

2.4.2 Planning Model

SIMON understands design as a problem of finding an action path from an
initial design situation into goal one, since no direct transformation from the
initial to the goal situation exists by a trivially constructible transformation
matrix [Sim77]. A situation simply corresponds to a sketch of the design state
because the world is static. SIMON hence states that“everybody designs, who
devises courses of action aimed at to change existing situations into preferred
ones”[Sim99]. Due to the limited capacity of his working memory the engineer
cannot generate the entire design state space of possible solutions to find the
optimal one. Therefore, he searches for promising solutions along an abstract
design plan where suitable subgoals and design actions for a certain design
state constitute his control knowledge about the design process. He calls these
solutions “sacrificing” and the engineer’s planned behavior bounded rational
for the agent’s utility to minimize the length of a design action sequence.

2.4 Existing Models of Design Theory 31

Example 6 (Planning in conceptual design) Consider the conceptual
design task of example 3. The engineer creates first the initial conceptual
model I0 to plan the design process. He chooses the following abstract plan
represented by a list of tasks: vertical system design, slab system design,
sizing of the members, and calculation of the lability numbers. Now, he starts
with decomposing tasks into subtasks with greater detail until he has reached
the conceptual level on which he develops the functional systems by design
actions AD of the F-B-S model. The abstract plan provides hence focus and
reduces iterations in the design process.

On this basis, designing can be understood as a sequential, deliberative ac-
tivity [New90, Joh02], which encompasses interleaved problem formulation,
problem finding and problem solving [Sim95]. Problem formulation is the
construction of an initial conceptual model for the task at hand, problem fin-
ding the setting up of the design goals, and problem solving the changing of
the current state into a goal state, respectively. The state space corresponds
to the solutions enumerable on the engineer’s conceptual model. Goals cor-
respond to subtasks, which have to be performed to reach certain design
states. The design problem is continually reformulated during the process of
designing in which goals by planning actions, denoted AP , and constraints
retrieved from long term memory emerge. Constraints are ordinarily expres-
sed as the set of equations a solution has to satisfy. The constraints are
equivalent to the conceptual knowledge at early design stages. The engineer
generates alternatives by composing known components into an overall so-
lution (in the structural domain elements into functional systems). Creative
solutions can thereby emerge through combinatorics. The selection of com-
ponents takes place in the course of design by recognition. The environment
given by sketches provides the stimulus for retrieving structural element and
system alternatives from long term memory or external information sources.
The sketches aid the engineer as external memory and accumulate design
information about the current design state. Thus, the engineer records de-
cisions made in the sketch and can review them in different design states.
Visual cues thereby evoke relevant information. The design process follows
a Choose-Record-Review-Recognize-Revise cycle (it is another view on the
design action types as introduced by GERO) from the highest abstraction le-
vel to more detailed levels. By this kind of recognition driven design process
the engineer takes all considerations into account, step by step, during desi-
gning. The incomplete conceptual model allows to retain flexibility because
the engineer cannot anticipate all contingencies.

Planning is thus represented in SIMON’s model by subgoaling (setting up
subtasks) and by selection of applicable actions to solve a subtask. Since

32 2 Model Formulation

this model misses a clear notion about how to plan a hierarchical design
by task decomposition, I extend it by the task structure approach from
CHANDRASEKARAN. It is based on the idea that a design task with its task
structure can be roughly modeled as a decomposition tree [Cha90, CJS92,
BC89], first proposed by MOSTOW [Mos85]. Nodes in the tree refer to simple
or compound tasks, denoted t. By a planning action on the conceptual mo-
del, a compound task decomposes, e.g. conceptual design, into a sequence of
subtasks on lower abstraction level t → [t1, . . . , tn], whereas simple tasks, e.g.
design slab system, are implemented by suitable design action sequence from
the F-B-S model t → [aD1

, . . . , aDn
], which are ordered according to the ap-

plicability relation over design states. A design action is applicable in design
state if its precondition is entailed by the state. Control knowledge is thus
represented by suitable task decompositions of conceptual design into task
sequences [CJ93] ranging from the concept to functional systems to elements
and the design actions preconditions. A task decomposition for a compound
subtask in conceptual structural design is similar to a design episode introdu-
ced by HACKER [Hac00], which represents a local design approach to solve
a certain subtask. It allows the engineer to organize the design process in a
flexible way on the task level.

I employ the idea of hierarchical task decomposition and action application
to model the engineer’s design approach. It reduces iterations at the task and
conceptual level.

2.5 Design Studies

After the action types for design problem solving in the structural domain
have been selected knowledge acquisition is the critical step to formulate a
suitable model7 of conceptual design. Therefore, design studies and interviews
are used to acquire the conceptual and control knowledge, the subtasks at
all abstraction levels, and the instantiations of the action types. The explicit
goals of the complete knowledge acquisition process are stated below.

• Elicitation of the precise information needed for the initial concept I0,
when the engineer starts the conceptual design task and plans subtasks.

• Refined definition of a correct structural concept IG as output of the
design process.

7Since the model provides the foundation for the formalism that will become the core of
the system, the system’s model should closely match the engineer’s mental model [FH90].

2.5 Design Studies 33

• Enumeration of a set of external actions (sketching and calculating) to
develop structural systems and elements in subtasks, and a set of in-
ternal actions (reasoning actions) to test the consistency/completeness
of a concept and to sequence the subtasks of conceptual design.

• Conceptual model with knowledge about structure, global load trans-
fer, structural object parameters, and external loading conditions to
construct a concept and test if a concept is consistent and complete.

• Control knowledge about the decomposition of tasks into subtasks and
the applicability of actions to subtasks and intermediate design soluti-
ons.

The knowledge and the actions are stored in the knowledge base as persistent
knowledge, which the engineer does not modify during the course of design
due to the preclusion of learning. Creating the external representation in form
of sketches is included in the actions for configuration and modification by
structure. In the following, I describe the assumptions made for setting up
and analyzing the design studies.

2.5.1 Assumptions for Knowledge Elicitation

I assumed for the knowledge acquisition process that the engineer can be
modeled as a rational agent [New82] and the observer and the practitioner
share a common symbolic representation of the structural concept. This as-
sumption was also indicated for the task environment of design by SACHSE

and HACKER [SH95] who classified design problem solving as knowledge-
based acting. There it was found that engineers act internally and externally
during the course of designing, because they apply all relevant and accessible
design knowledge for reaching their design goal, in the domain of the thesis
a correct structural concept and a design process with as few as possible ite-
rations. However, due to the limitation of the engineer’s mental processing
capacity planning and opportunistic design approaches are combined on the
basis of the current state [Hac00, Dör01].

These assumptions are of special importance for the model formulation and
the knowledge acquisition from design studies. First, the model formulation
based on the analyzed design studies is independent of the underlying imple-
mentation of the design task on the computer. Thus, the representation of
the task with its knowledge constituents - preferably by logic - and its sym-
bolic processing on lower levels can be clearly separated [New82]. Second, the

34 2 Model Formulation

design knowledge can thereby be inferred from the a priori known engineer’s
goal of efficiently designing a correct structural concept, since the observa-
ble problem solving behavior in form of design actions is determined by the
engineer’s knowledge.

I neglected perceptual and motor skills and presumed a sequential goal sub-
goal problem solving behavior, because I focused on eliciting the deliberative
part of the design activity [Joh02, NS72]. I also excluded any type of learning.
Furthermore, I considered the engineer as a feed-back control system defined
by CHANDRASEKARAN for human problem solvers in general [Cha03]. The-
reby the engineer’s behavior is determined by the system parameter of design
knowledge. By studying practitioners with a high level of design knowledge,
the behavior is more stable and allows more simply to elicit an underlying
system structure, in the thesis the engineer’s mental model of conceptual
structural design. The engineer as a control system plans actions by informa-
tion from the current design state. Information retrieved from his long-term
memory or from sketches continuously control his design approach to achie-
ve the design goal. Architectural constraints and requirements of the DIN

1045-1 are only used for selecting an alternative from the range of possible
ones. The engineer can hence be described on the knowledge level during
design problem solving by: a symbolic representation of incomplete structu-
ral concepts that are observable in sketches, the desired goal state including
a correct goal concept and a short design action sequence, the conceptual
and control knowledge, and the design actions [ES01a]. Reasoning about the
consistency/completeness of the concept and planning the design process by
task decomposition and suitable action selection on top of it arises thus from
the need of controlling his behavior to reach a goal state. The reasoning acti-
ons on the symbolic representation will be realized by appropriate inference
services on the computational level.

2.5.2 Elicited Knowledge

Since different knowledge acquisition techniques are suitable for certain know-
ledge types [Bur98, Fri93] we carried out separate sessions for knowledge
about the structural concept [ES02b] and knowledge about the design pro-
cess [Eis01a, Eis00]. Conceptual knowledge independently defines the set of
conceivable structural concepts. They can successively be developed by ex-
ternal design actions and tested for correctness by internal actions during
designing. It thus lays the foundation the engineer acts upon. Control know-
ledge in form of suitable task decompositions and F-B-S actions in a state
can be afterwards described on top of the conceptual model to reduce design

2.5 Design Studies 35

iterations by planning. I conducted a range of document analyses, design stu-
dies and interviews with engineers, where protocol techniques were employed
which can be found in [CCD96]. Before conducting the design studies, two
running design projects were observed in order to use real world conceptual
design situations in which structural engineers are embedded. They served
choosing appropriate working environments for the design studies by proto-
col analysis. SCHÖN argues that designing is mostly transacting with design
objects and relations among them within design worlds [Sch93]. Therefore, I
tried to put engineers into their natural environments for the design studies
in which they could make up their own design worlds by sketches and hand
calculations as memory aids, depicted in figure 2.5.

Figure 2.5: Environment during conceptual design

Since I focused on finding a common structured design approach, I worked
with practitioners that could draw on deep domain knowledge for developing
a structural concept and planning the subtasks. They feature a stable design
problem solving behavior in comparison to novices, which tend to design in
a less structured way resulting in a varying design problem solving behavior
over a set of similar samples [KG02]. Hence, my work is different from the
one about analyzing the difference of conceptual design problem behavior
among novices and practitioners carried out in [KG02], because my goal
was to find a common rigorous design approach shared among experienced
engineers. It requires from the practitioner to possess a clear mental model
of the structural concept and the design process.

First, the conceptual knowledge acquisition resulted in the establishment
of a robust domain representation for structural building concepts that was
capable of covering real world cases from practice under the restrictions stated
in Chapter 1. The knowledge corresponds to expected behavior Be of the F-
B-S model and is represented in a description logic. It encompasses a domain
taxonomy and a description of complete load paths for elements.

36 2 Model Formulation

The taxonomy included for testing the consistency of a structural solution:

• the set of basic structural elements described by parameters, state va-
riables, and simple constraints for selection of element types,

• the set of external loads, described by allowable concrete-valued inter-
vals for ordinary building structures,

• the minimum and maximum gross section dimensions and reinforce-
ment ratios for each structural element of the DIN 1045-1, and

• the admissible decomposition of structural systems into elements.

To test the completeness, the description of the load transfer comprised:

• the admissible arrangements of elements by support relations, and

• the main ultimate limit state requirements for structural elements and
the stability system stipulated in the DIN 1045-1.

Second, four project documentations of already finished projects were analy-
zed. On their basis, the initial concept, which included external information
given by the architect and other standard information gathered by the engi-
neer, was elevated. In addition, the analyzed design documents determined
the information that a goal concept has to comprise. In the following, the re-
quired information about the room and occupancy concept, and the initial-,
and the goal concept is informally summarized. The room and occupancy
concept included: architectural plans (elevations and sections), facade ty-
pe, internal space concept, service installation requirements, constraints like
costs limits or geometrical restrictions for floor heights, and occupancies. The
initial concept was augmented by design information that engineers simply
look up in codes or drawings resulting in the initial concept I0. It was com-
prised of: occupancy loads, self-weight, and external loadings according to
DIN 1055, assigned load-bearing conditions for external walls, the foundati-
on type, local conflicts and governing constraints. The goal concept IG as a
consistent and complete structural concept documented in general the follo-
wing: vertical system with all its subsystems, slab system, lateral stability
system with cores and shear walls, decisive structural elements with gross
sectional constants, roof type, and the support and compositional relations. I
elicited information about the relations by additional interviews with practi-
tioners. Furthermore, rules of thumb for calculating parameters as the gross
sectional constants and state variables were also acquired from the written
project documentation.

2.5 Design Studies 37

For the appropriate definition of the conceptual design task with its actions,
subtasks, and control knowledge, and how they are interrelated a second run
was conducted at an engineering office by EISENBLÄTTER [Eis01a]. Two
design studies with protocol analysis methods were conducted. Both studies
were supplemented with many interviews because not all knowledge could
be elicited directly from the analyzed design studies. Figure 2.6, taken from
[Eis01a] shows the distribution of the design actions along the time in regard
of the design progress.

Figure 2.6: Mean response over two design studies

It can be seen from the diagram that in the beginning internal actions do-
minate, whereas at the end of the design process external actions prevail.
External actions are employed for constructing the structural concept obser-
vable in sketches and for calculating. Internal actions are usually used for
testing the consistency/completeness of the concept under development and
for planning the subtasks according to the partial concept. However, whether
or not an action is external or internal depends on the expertise of the en-
gineer. Actions for information gathering like reading the design documents
and communicating with the architect cannot be supported and are therefore
excluded from the listed actions. One design study employed the thinking-
aloud method to capture the actions. They are given in the following.

The configuration actions Be → S are: select overall building information,
make building storeys with occupancies, apply external load, create a new
structural element with location from scratch, copy an existing slab or vertical
load-bearing system and change a structural aspect, decompose slab or lateral
stability system into elements, synthesize a vertical load-bearing system from
elements, and establish support relations among elements.

The sizing actions by rules of thumb F → S are: set or determine a sy-
stem’s or element’s attribute value, calculate a system or element parameter
according to a design procedure from DIN 1045-1.

38 2 Model Formulation

The assignment and simple calculation actions S → Bs are: calculate internal
forces or support reactions by domain equations.

The modification actions S → S are: delete or modify a load, a storey, a
system, an element or the building information, respectively, and change
support or composition relations.

The test actions AT ⊆ AD for load transfer are Be × Bs → {⊤,⊥}: test at
the end of a simple subtask if the system transfers the applied loads, and
check the consistency of an element or system during design according to the
DIN 1045-1 requirements including the calculation of lability numbers.

The planning actions are: sequence the subtasks on the basis of the initial
concept and select design actions on the intermediate structural concept.

The set of all actions is denoted A. They will be modeled in the next section,
and, in Chapter 3, translated into suitable symbolic actions for the formalism.
A second study used a retrospective method for eliciting the design process
organization by suitable subtask decompositions and by checking the correct-
ness of the concept during designing. Figure 2.7 shows the system model of
an engineer while conceptual designing.

Figure 2.7: System model of the engineer while designing

A typical conceptual design decomposes by planning actions AP into a known
set of subtasks T at lower task levels until the conceptual level is reached.
This decomposition was found across different design studies [Eis00, Eis01a,
ES02b]. On this level, the engineer develops in a simple subtask the systems
or elements of a structural concept by a sequence of design actions and tests
it for correctness. Actions AT determine when a subtask is considered to be
solved and when a part of the concept is inconsistent that needs be modified.

2.5 Design Studies 39

At the highest task level, t0 = design structural concept decomposes into
three compound subtasks: t1 = enter building, t2 = check feasibility, and
t3 = make structural concept. They have to performed in this order, denoted
t1 ≺ t2 ≺ t3. The first task results in the problem specification on which
the engineer checks the feasibility to design a concept for the given load and
design constraints. On the next lower task level for example, the subtasks
of t3 are: t4 = design vertical system, t5 = design slab system, t6 = size
elements, t7 = design stability, and t8 = design foundation. The following
ordering constraints exist among the subtasks: t4−5 ≺ t6 ≺ t7 ≺ t8. However,
the lateral elements have to be chosen before t4−5. The main subtasks t4 and
t5 have to be solved in an appropriate order depending on the architectural
constraints and loading conditions. If these subtasks are not performed in the
right sequence or if the stability system must be changed late in the design
process, it might become necessary to redesign some structural systems as
discussed in example 3. Dependencies among the subtasks and when they
should be performed represent control knowledge. It reduces the number of
iterations. Information required for a task to be performed and how it is
decomposed into subtasks at a lower level is encoded as precondition. A
precondition is evaluated against the current design state, an intermediate
solution, to determine if a task and how it is decomposable. A preconditi-
on can hence determine which kind of task decomposition is suitable for a
developing structural concept.

On the conceptual level, simple subtasks as t7 = calculate lability or t4 =
design vertical system are solved by design action sequences. For t7, only the
action to calculate lability numbers is required, whereas for t4 a sequence
of actions, like e.g make column and make wall, develop the vertical load-
bearing system. At the end of the vertical system design, the engineer checks
if the system is complete by a test action. If it is the case, he continues with
the next subtask, otherwise he completes these parts of the vertical system
that need additional supporting elements to provide sufficient load transfer.
Selection of suitable action sequences for a simple subtask are also encoded
by preconditions in design actions. In this way, the engineer can sequence
design actions to reduce iterations in simple subtasks. A consistent concept
that might be still incomplete is the basis for his design. During design, the
engineer detects by conceptual knowledge these elements that do not fulfill
requirements stipulated in the DIN 1045-1 and modifies them immediately
before continuing.

On the basis of the so far acquired information in this chapter, a model of
conceptual design for the domain of concrete building structures is formula-
ted.

40 2 Model Formulation

2.6 Model of Conceptual Design

In conceptual design, the engineer first plans his design approach on the task
level before he designs the structural concept at the conceptual level. At the
task level, design actions are related to simple subtasks for which their appli-
cability to intermediate solutions is determined by their preconditions. Thus,
these two levels are connected via the structural concept under development
and the simple tasks. The initial concept can be seen as the starting point
of the actual conceptual design because the required information is simply
looked-up and copied from the room and occupancy concept, the design brief,
and the drawings. The output of conceptual design is a correct refinement of
the initial concept with:

• a global load transfer and sufficient stability (completeness),

• elements fulfilling the requirements stipulated in the DIN 1045-1 and
satisfying the architectural constraints (consistency).

The refinement is carried out in a focused manner due the task level. Refine-
ments are the addition of elements and their composition into structural sy-
stems, their arrangement by relations, and the assignment of element/system
parameters or state variables to values. As a consequence, conceptual design
can be formulated as the problem to refine a given initial interpretation of
a structure on the conceptual level to a goal interpretation found in sket-
ches [Bas00]. An interpretation is a mathematical structure, which is called
a model if it satisfies all facts in the knowledge base, which describe the re-
quired properties for a fixed signature8 [TW02]. In the case of conceptual
structural design, the properties are completeness and consistency. Facts in
the knowledge base are the initial concept as problem specification in form of
loads, constraints, and existing elements, the conceptual knowledge, and the
refinement of the initial concept as the solution. What a correct solution for
a problem specification is determines thus the conceptual knowledge. The set
of models that correspond to correct solutions are goal interpretations that
are uniquely described by the interpreted facts defined in some language and
assumed to be true [EFT96]. The goal interpretation possesses an extended
domain of discourse with additional structural objects and a refined structure
because the initial interpretation is not complete. Since the initial and the
set of goal interpretations are ordinarily intensionally defined by conceptual
knowledge represented by facts in the knowledge base they have to satisfy, I

8The initial and the goal interpretation share the same signature.

2.6 Model of Conceptual Design 41

only define the main characteristics of the required design input and output
as a mathematical structure. They are load transfer, system composition,
and approximate element design.

Definition 1 (Initial structural concept) An initial structural concept
is a structure9 I0 = 〈∆I0

, RI0, F I0〉 that consists of a non-empty set ∆I0
(the

domain of concrete building structures), the relations RI0:

• structural-objectI0, constraintI0 , systemI0 ⊆ ∆I0
,

• loadI0 ⊆ structural-objectI0 and all x ∈ loadI0 maximal in structural-
objectI0,

• elementI0 ⊆ structural-objectI0,

• storey-systemI0 ⊆ systemI0,

• designableI0 = ∅ and stableI0 = ∅,

• supportsI0 ⊆ elementI0 × structural-objectI0,

• hasPartI0 ⊆ systemI0 × (elementI0 ∪ systemI0),

• hasConstraintI0 ⊆ (systemI0 ∪ elementI0) × constraintI0,

where constraintI0, structural-objectI0 , systemI0 are pairwise disjoint, and the
partial functions F I0:

• state-variableI0 : elementI0 → R, parameterI0 : elementI0 → R.

The load set might include wind, snow, self-weights and occupancies, and the
element set walls, columns, slabs, cores, shear walls, and foundation elements.
The constraints are of abstract type like budget, flexibility and allowable ver-
tical load bearing elements on certain storeys. Complex constraints that arise
due to the building geometry are disregarded because their satisfaction is not
in the scope of support. Since the building height might determine the allo-
wable heights of slab and slab beam elements it is informally considered in
the design procedures for estimating element gross sections. Design require-
ments for the structural elements are ultimate limit and serviceability state
constraints or limitations for minimal reinforcement ratios and gross secti-
ons. If the respective design requirements are fulfilled, an element is added
to the subset designable. If a stability system satisfies the stability condition

9a non-empty set with relations and functions defined over it

42 2 Model Formulation

of the DIN 1045-1, it is assumed to be stable. A structural goal concept is
then defined as a refinement of the initial concept where unchanged sets are
left out for brevity.

Definition 2 (Structural goal concept) A structural goal concept is a
structure IG = 〈∆IG

, RIG, F IG〉 that is a refinement of I0 and consists of a
set ∆IG

⊇ ∆I0
, the functions F IG = F I0, and the extended relations RIG:

• elementIG ⊇ elementI0,

• footingIG ⊆ elementIG and only x ∈ footingIG minimal in structural-
objectIG,

• systemIG = {SV , SL, SS, . . .} ⊇ systemI0 with SV , SL, SS the vertical,
the lateral and the slab system,

• designableIG = elementIG,stableIG = {SL},

• supportsIG ⊇ supportsI0 that is a total order over structural-objectIG,

• state-variableI0(x) ≤ parameterI0(x) as element requirements.

An intermediate design state, denoted I is a partial refinement of I0 that
has been constructed by a sequence of design actions, and does not possess
the goal structure. The design state space, denoted W , can be hence con-
ceived as the set of interpretations reachable from I0 by instantiated actions
of the action types AD. In the structure, the function F is represented by
the predicates designableI and stableI for elements and the lateral system.
The expected behavior Be is given by the equivalence classes of domain ob-
jects, the total order relation, and the inequality relation. The structure S of
the concept is described by objects ∆I \ constraintI , the relations hasPartI

and supportsI , and the structural variable parameterI(x). The actual beha-
vior Bs corresponds to assigned values for state−variableI(x) and related
elements, loads, and systems through supportsI . The support relation is two-
fold employed because of missing detailed information in conceptual design.
On the former definitions, the problem of conceptual design in the domain
of concrete building structures is defined.

Definition 3 (Conceptual design problem) Conceptual design is the
problem to refine an initial concept I0 to a structural goal concept IG.

The set of goal states WG can be understood as the class of interpretations
that possess the same structure as IG [EFT96, TW02].

2.6 Model of Conceptual Design 43

Example 7 (Small conceptual design problem) Consider example 2,
which represents a part of a larger conceptual design for which no constraints
were imposed and the foundation and stability system do not have to be
designed. The subtask is to transfer the applied load through the beam to
supporting elements and size it for moment capacity. The conceptual design
problem is to find for the initial structural concept I0 = 〈∆I0

, RI0, F I0〉 with:

• ∆I0
= {PEd, B1},

• structural-objectI0 = {PEd, B1}, constraintI0 = ∅, systemI0 = ∅,

• loadI0 = {PEd}, elementI0 = {B1},

• designableI0 = ∅,

• supportsI0 = {(B1, PEd)} , hasPartI0 = {(SV , B1)},

• hasConstraintI0 = ∅, and

• state-variableI0(PEd) = 100kN,

a vertical load-bearing system as goal concept IG = 〈∆IG
, RIG , F IG〉 with:

• ∆IG
= {PEd, B1, C1, C2},

• structural-objectI0 = {PEd, B1, C1, C2} with PEd maximal and C1, C2

minimal in the set,

• systemIG = {SV },

• loadIG = loadI0, elementIG = {B1, C1, C2},

• designableIG = {B1},

• supportsIG = supportsI0 ∪ {(C1, B1), (C2, B1)},

• hasPartIG = hasPartI0 ∪ {(SV , C1), (SV , C2)},

• state-variableIG(MEd) = 200kNm ≤ parameterIG(MRd) = 200kNm.

This problem is often called abductive design [RN95, PMG98, RS03], mo-
del construction by BUCHHEIT and et al. [BKN95, BBH94], or model as-
signment by NEBEL [Neb01a] when possible solutions are defined by a set
of facts in a knowledge base for which a model as solution is constructed.
In these frameworks, knowledge about how elements of the domain can be

44 2 Model Formulation

related and values can be assigned for them is thus not extensionally defi-
ned by enumerating all tuples in the relations but intensionally by describing
the required property of possible solutions by facts in some logical langua-
ge [GRS00, RN95]. However, the question what kind of structure a solution
possesses is open. The model construction view also subsumes that design is
represented as constraint satisfaction problem according to HÖLLDOBLER

[Höl01] for which constants representing domain objects have to be assigned
that satisfy the domain constraints.

On the underlying model construction approach, the design of unknown
structural concepts with new relations and functions in the structure is not
possible because the conceptual knowledge fixes the structure of possible solu-
tions. The engineer has to search a structural concept, which is not explicitly
known beforehand but can be deduced from implicit conceptual knowledge.
Therefore, conceptual design of building structures is similar to configura-
tion design problem solving10 [WS97] for which knowledge-based methods
have been proposed. Because the search space tends to be quite large due
to possible combinations of components by their connections and parameter
value assignments, some of these methods draw also on the notion of con-
trol knowledge to find a solution efficiently. Control knowledge represents
suitable action sequences to construct a correct configuration for a problem
specification. The methods search for reasonable action sequences to con-
struct correct configuration instead of searching directly in the state space of
configurations. Since the state space of possible structural concepts is large,
too, and the analyzed design studies indicated such a design approach, the
model of conceptual design should incorporate the idea of control knowled-
ge. It is represented by a suitable task decomposition of conceptual design.
NEBEL even states that the model formulation should incorporate the me-
thod practitioners use to solve the problem because the right model makes
the solution of the problem tractable by computers [Neb96]. I will return to
configuration design in Chapter 3 in which I will review different methods
for configuration design that motivated my choice for the description logic
based planning formalism on which the prototype system operates.

State transition systems are useful to model dynamical systems as the engi-
neer while designing since effects of actions are discrete and fully predictable

10A configuration design problem is to construct a correct configuration from a fixed,
predefined set of components connected by ports for a given specification, which comprises
of constraints and a partial incomplete configuration. The correct configuration consists
of a set of parameterized components and a description of the connections between the
components by ports satisfying given functional requirements and constraints imposed on
the port connections [MF89, Bro97].

2.6 Model of Conceptual Design 45

[Wun00]. It is based on the idea of NEWELL and SIMON that a dynamic
system with an initial state can be described in terms of its actions to change
the initial state into successor states for which some of them are goal states
in which the system halts [NS72]. In my case, a system state is a structural
maybe incomplete concept together with a list of remaining tasks to trans-
form the current concept into a correct one. Subsequent states are reached
by pure sequential actions of task decomposition, concept manipulation, and
its testing. This idea is very similar to the common definition of a determi-
nistic finite automata except that for these the transition function is usually
defined to be partial [Sch99]. Such a system is ordinarily used to describe
state models for planning domains for which the problem is to find an acti-
on sequence that generates a state trajectory from an initial to a goal state
[BG01, Rin03]. Because such a state transition system must model action
sequences that correspond to context free sets that result from cycles in sub-
tasks [EHN95, Ero95], the state transition system is extended by a storage
for a sequence of subtasks [GNT03]. It works like a stack of a pushdown au-
tomata [HU94] except that a solution is a correct structural concept with
no remaining subtasks on the stack. Tasks can be pushed onto the stack or
removed from the top of the stack. An action sequence [a1, . . . , an] transforms
the initial system state S0 = (I0, t0) into a goal system state SG = (IG, [])
where [] denotes the empty stack. S = W × T ∗ is a set of system states
reachable by actions sequences over A from S0. Furthermore, the additional
system parameter K of conceptual and control knowledge, denoted KC and
KP , is introduced into the system because it affects the system behavior. An
action a(K) depends thus also on the unchanged system parameter of know-
ledge during designing. The engineer can be described by a system state of
the design process s ∈ W × T ∗ with (I, [t1, . . . , tn]) which includes the cur-
rent design state, and the remaining subtasks at some task level. A transition
function δ : W × T × A(K) → W × T ∗ maps each system state by a design
step to a new one for which only the concept I ∈ W and the tasklist t ∈ T ∗

(T ∗ the set of subtask sequences over T) are changed by state transitions.
On this basis, the engineer can be modeled as dynamical state system during
conceptual design.

Definition 4 (State model of conceptual design) A state model of con-
ceptual design is a system MCD = 〈S0,S, A(K), T,G, δ〉 with:

• S0 = (I0, t0) the initial system state,

• S = W × T ∗ the set of system states reachable from S0 by [a1, . . . , ak],

46 2 Model Formulation

• A(K) = AD(KC) ⊔ AP (KP) the set of design actions including test
actions AT and planning actions,

• T = TS ⊔ TC the set of simple and compound subtasks,

• G =
⋃

I∈WG

(I, []) ⊆ S the set of goal system states.

The transition function δ is given for the different action types as:

• δ(I, tS , aD) = (I ′, tS),

• δ(I, tC , aP) = (I, [t1, . . . , tn] ∈ T ∗),

• δ(I, tS , aT1
) =

{

(I, []) if I is complete

(I, tS) else,

• δ(I, tS1
, aT2

) =

{

(I, tS1
) if I is consistent

(I, [tS2
, tS1

]) else with tS2
a simple modification task.

Intuitively, the transition for a design action aD means that the engineer
changes the concept but not the subtask. The transition for the planning
action aP means that the engineer sequences the subtasks by task decom-
position on the next lower task level. The transition for the test action aT1

depends on the completeness of the design state in terms of load transfer.
If the engineer has designed a complete structural system or element in a
simple subtask, the transition for the test action removes the subtask from
the top of the stack, denoted [], whereas in the other case the simple subtask
remains on the stack and incomplete elements are marked by the system.
The transition for the test action aT2

depends on the correctness of the de-
sign state. If the engineer has designed a correct structural system or element
in a subtask, a transition for a test action keeps the subtask at the top of
the stack, whereas in the other case it pushes a simple subtask on the stack
to modify the incorrect element. The initial concept I0 is problem instan-
ce specific assigned by the engineer on the given drawings and information.
The actions A, the tasks T , and the knowledge K are persistent, which the
engineer retrieves from long-term memory during designing. On this chosen
model, a solution does thus not only include a correct structural concept SG

but also the design action sequence [a1, . . . , an] for refining the initial con-
cept into a correct one. For a system MCD, a design step is a binary relation
(I, [a : x], [t : y]) ⊢ (I ′, x, [z : y]) over the set of system states if (I, z) in
δ(I ′, a, t). The relation ⊢∗ is the reflexive and transitive closure of ⊢ resulting
from the successive application of the transition function δ.

2.6 Model of Conceptual Design 47

Definition 5 (Solution to the model of conceptual design) Let MCD

be a model of conceptual design. SG ∈ G and P = [a1, . . . , an] ∈ A∗ are a
solution for MCD if (S0,P) ⊢∗ SG.

The definition of the engineer as a state transition system and its solution to
this model leave some open questions because the state transitions are only
defined for types of actions and over the abstract state space. However, the
model gives an intuition about how the engineer solves the conceptual design
task by different design actions. In Section 5.2, I will compare this model
of conceptual designing to the one of HAUSER, who proposed a cognitive
architecture, which assigns different reasoning processes to conceptual design
problem solving in the routine structural domain [Hau98].

The engineer considered as system can be visualized by a graph in which a
set of nodes annotated by stacks are used to describe a system state. They
represent given snapshots of the world at different times during designing.
Edges connect these nodes indicating possible changes that can be caused by
the engineer’s actions. Another state is reached by applying an action to a
given system state.

Example 8 (State model in conceptual design) Figure 2.8 illustrates
the idea of a state model. It represents a fraction of a possible behavior of
an engineer in the design process. The model comprises of the seven system
states S as depicted, which are described by a design state and a current
tasklist. The initial system state is S0 = (I0, t1) and the possible design acti-
ons are A = {aP , aD1

, aD2
, aD3

, aT1
} to change a system state. The subtasks

T = {t2} include only one simple task. The set of goal system states are
G = {(I1, []), (I2, [])} ⊆ S. The transition function δ is given as shown in
figure 2.8.

For example, the initial process state (I0, t1) might include a slab represen-
tation and the task to design a column as support for it. Then the planning
action aP decomposes the task t1 into the subtask t2 which can be solved
by suitable design actions. The action aD1

is used to insert a column and
to establish the support relation between the column and the slab. Now,
the engineer tests by the action aT1

if this support relation is sufficient. If
it is the case, the engineer has reached a goal state. Otherwise, he has to
modify the column design because the subtask t2 remains on the stack. In
the example, he removes the new column an starts the subtask t2 at the be-
ginning. The engineer might add another support relation by design action
aD2

. Now, he tests the completeness of the solution by the action aT1
, which

is in this example an element of the goal set. The paths which transform

48 2 Model Formulation

Figure 2.8: A simple state model

the initial process state in either of the two goal states represent a solution,
e.g. P = [aP , aD1

, aD2
, aT1

]. To avoid cycles in simple tasks preconditions in
design actions encode local control knowledge. In case of a column design,
the engineer had checked its gross sectional requirements by an action aT2

that had pushed a simple modification task on the stack for an inconsistent
column.

Goal states are not explicitly enumerated but described by conceptual know-
ledge about correct and complete concepts in a description logic language.
Design states are given by state descriptions in this language, too. Possible
actions and control knowledge are defined in a hierarchical planning language
that operate on these state descriptions. Reasoning services for task decom-
position, action selection, consistency testing and completeness testing will
be implemented by the formalism in the next chapter.

Chapter 3

The Formalism

First, a brief introduction about knowledge representation is given. Thereaf-
ter, different knowledge-based methods that support configuration design and
share similarities with the conceptual design problem are discussed. Since
these computational paradigms do not completely cover the envisaged design
support for the model of conceptual design, I introduce the selection of a de-
scription logic system combined with a superimposed hierarchical planning. I
will discuss my specific choice of the expressive description logic ALCQI(D)−

with the system RACER and the hierarchical task planning method SHOP to
implement the interactive formalism for the computer-aided design system.
At the end of the chapter, I give a detailed presentation of the description
logic based planning formalism.

3.1 Design Knowledge Representation

Conceptual design is a complex intellectual activity that cannot fully be map-
ped onto a computational process. Therefore, a couple of assumptions were
made in Chapter 2, which resulted in definition 4 of model for conceptual
design. In this model, the engineer searches the system state space along the
task decomposition for a goal concept by actions. The search is conducted
by interacting with the environment or the design knowledge, e.g. sketching
the concept or retrieving known facts, also called believes, from long-term
memory. Because I assume that the design environment and knowledge are
to be either true or false I exclude to model the engineer’s believe state, in-
tentions, etc. [NG89]. In general, the engineer is interested to derive implicit
believes from a collection of known facts in a logically sound and complete

3 The Formalism 50

way. Because the real design objects are not present at design time the en-
gineer applies design symbols for representing a set of believed propositions.
They are part of his conceptual model about the structure on which actions
operate and control knowledge can be encoded. Knowledge must be decla-
rative and independent of its usage since it must be versatilely applicable
in many situations [Neb01a]. The engineer has to reason because many be-
liefs, made up of represented symbols, are only implicitly given or created
during the course of design. The formal manipulation of design symbols by
actions, representing the structural concept during design, allows to produ-
ce new propositions. This behavior might be called intelligence1 [PMG98].
Knowledge-based systems realize this behavior on computers (see for example
[Neb90, BHS93] for reasoning and knowledge representation techniques and
systems).

Approaches to knowledge representation divide roughly into logic-based for-
malisms and other, non-logical representations. The former developed out
of the idea that first-order predicate logic (henceforth FOL) can be used to
represent facts about the world, the latter emerged from the idea to base
representations on cognitive notions - for example a frame and a rule. In a
logic-based approach except of non-monotonic reasoning, the representation
language is usually a variant or subset of FOL and the reasoning amounts
to the verification of logical consequences or testing if a theory is consistent.
In the non-logical approach, reasoning is accomplished by ad-hoc procedu-
res that manipulate knowledge represented by means of data structures. This
results in a lack of precise semantic characterization for the reasoning proces-
ses, often called services. This lack leads to responses of a knowledge-based
system that are not traceable for the user.

Formalisms, also termed computational methods, can be used to map the re-
asoning involved in design onto the computer to support the engineer during
his work [CRR+90, Cha90, TS92]. One class of methods, introduced informal-
ly in the previous chapter under the term“configuration”, has been developed
in the field of Artificial Intelligence. In the next section, I will first describe
configuration design in more detail to compare it to the model of conceptual
design. On this basis, I will be able to discuss the applicability of proposed
configuration-design-methods. They shall be used to implement the model of
conceptual design and thereby support the solution process.

1McCarthy [MH69] calls a machine intelligent if it solves a class of problems requiring
intelligence in humans.

51 3.2 Methods for Configuration Design

3.2 Methods for Configuration Design

Methods of configuration design are employed to reduce design costs, error
rates, and automate the development stage in the design process partially.
According to GERO and CHANDRASEKARAN and BROWN [Ger90, BC89],
which categorize design problems into design problem classes, configuration
design can be roughly classified as a class 3 design problem. They assume for
configuration design that the product structure with all its components, re-
lations, and parameters is known by experience of similar design projects. A
global solution can be top-down constructed from partial solutions and com-
ponents. NAVINCHANDRA states for example two important characteristics,
which are not supported by methods for solving a class 3 design problem: the
possibility of redesigning partial configurations and the exploration of the de-
sign state space by constructing new solution alternatives during designing
[Nav91]. On these limitations, configuration design can be seen as a special
case of design activity, which obeys three key features: the artifact being de-
veloped is assembled of a fixed set of well-defined components, the artifact has
a nearly fixed structure, and components interact with each other in predefi-
ned ways [Bro97, WS97]. According to [MF89, SW98, GK99] the problem of
configuration design can be described as follows: Given an initial partial con-
figuration, conceptual knowledge about components with their parameters
and their relations (taxonomical, compositional), a set of constraints about
possible component connections, a set of configuration actions, and control
knowledge about the configuration process, construct a complete configura-
tion by a sequence of configuration actions satisfying the constraints.

Depending on how the components, the assembly structure and constraints
have been defined prior to the configuration task, configuration design can be
seen to span from local to full configuration design [WS97]. Many others, see
for example [GK99, TS92], have pointed out that methods from configuration
design face difficulties when their application is extended to assisting practical
design problems as for the model of conceptual design. There, the function of
the artifact has to be taken into account to compute a correct configuration.

In the following, I will introduce methods for solving the configuration de-
sign problem and discuss their limitations to develop my envisaged design
support. I call the methods model-based where model-based refers to a con-
ceptual model of the configuration, which is necessary for the desired inter-
active conceptual design support2. I discuss the methods in terms of offered

2For a complete list of configuration methods see for example [GK99, SW98, WS97] or
the special issues Vol. 12, No. 4, 1998 and Vol.17, No.1, 2003 about configuration of the
Journal Artificial Intelligence for Engineering Design, Analysis and Manufacturing.

3 The Formalism 52

reasoning services to test the formal correctness of the obtained concept and
to allow bottom-up design. The correctness is important because engineers
expect especially from a computer-aided conceptual design system a relia-
ble support. It depends on the soundness and completeness of the employed
reasoning services, which process the language to draw inferences on the
knowledge. Higher expressiveness of a language leads to an increased com-
plexity for solving the inference problems. At some point of expressiveness,
a service becomes incorrect because it misses for example some inferences.
Therefore, there is a trade-off between expressiveness and tractability, de-
termining the correctness, as mentioned by LEVESQUE and BRACHMAN

[LB87]. If the language is highly expressive as FOL, the inference problems
become semi-decidable. Thus, only limited reasoning support can be retained
since for some cases the inference machine runs forever or gives the wrong
answer [Baa99].

The model-based methods can be roughly separated into structure-based,
graph grammar-based, constraint-based and logic-based. After their discussion,
I will discuss my choice for a description logic based planning formalism to
implement the model of conceptual design.

The configuration system ENGCON uses a structure-based method [HWG00].
It represents conceptual knowledge in the cyclic frame language BHIBS de-
veloped by CUNIS [Cun92], which allows to reason about taxonomical and
compositional relations of the developing configuration. The user can top-
down construct a goal configuration along is-a and has-part relations defined
in the domain taxonomy. A dynamic realization of the configuration and cons-
traint propagation in a numerical constraint network support the user during
the configuration process. Furthermore, control knowledge is encoded by an
independent agenda-based mechanism [Gün89]. It enables the refinement of
the configuration by selecting a configuration action, called agenda entry in
this method. For the entry, different calculation methods are selectable. The
configuration process proceeds until the agenda is empty. Thus, the engineer
can explore the configuration state space by an ordered sequence of actions.
The system allows backtracking to previous states and the evaluation of the
current configuration state for numerical and simple relational constraints
in data logic [Kre02]. The frame language employed is undecidable, which
SCHRÖDER et al. showed by translating BHIBS into the description logic
ALCQIOD, where the letters stand for different language constructors of
the description logic [SML96].

53 3.2 Methods for Configuration Design

The UPGRADE system employs a graph grammar method for supporting
the user in detecting inconsistencies in architectural building layouts at the
conceptual design stage. The graph grammar approach focuses on the design
support by conceptual knowledge. Kraft et al. [KMN02] use the PROGRES

language for specifying the conceptual knowledge. This graph language is
very expressive and allows the representation of conceptual knowledge and
reasoning about labeled cyclic graphs. The solution is represented by an in-
stance graph, which can be designed from a type graph. Design actions are
represented by rewriting rules for specific nodes or subgraphs from the in-
stance graph. A similar approach is taken for example by STEIN et al. [SS01]
in the conceptual design domain of chemical engineering. They define graph
transformation rules over a labeled-graph as design actions in order to deve-
lop a goal configuration where they develop a structure model corresponding
to a configuration. These approaches do not take control knowledge about
the suitable sequence of subtasks and design actions into account. However,
this knowledge is important to reduce iterations in the design process.

A constraint-based method for supporting the conceptual design of a bicycle
structure from a function-means tree is investigated by SULLIVAN [O’S02].
The underlying design language GALILEO is an expressive constraint pro-
gramming language based on FOL enriched with frame information and con-
crete domains. The configuration problem is processed by a method that
combines an arc-consistency procedure and constraint filtering. The design
process is structured according to a model of conceptual design, which inclu-
des the subtasks: function specification, schemes generation, and evaluation
and comparison of schemes. After the function has been defined, the func-
tion is decomposed into embodiments, which in turn have to fulfill certain
subfunctions. An explicit representation of behavior is not given but com-
piled into a function-embodiment mapping, whereas control knowledge is
represented by function-embodiment pairs. Local concrete valued behavioral
constraints restrict furthermore the possible set of solutions. The engineer
can thus assign in which sequence he embodies the functional requirements,
whereas the system checks the schemes’ correctness on the conceptual know-
ledge. The problem of computing the correctness of a scheme is undecidable
because of the design language’s expressiveness. LOWE et al. [LPB98] use a
similar method, which is enhanced by representing control knowledge on a
separate declarative level and process it by a proof planning procedure. They
propose their system for improving the maintainability of knowledge bases
for configuration design.

3 The Formalism 54

Logic-based methods can be roughly separated into FOL and description logic
(abbreviated DL) methods. Description logics are a subset of FOL [Bor96].
They offer additional reasoning services and remain decidable [BCM+02].

FRIEDRICH et al. [FS99] solve automatically the configuration problem with
a FOL theorem prover. They employ the unsatisfiability service for testing the
consistency of a current configuration. Due to the very high expressiveness,
testing for satisfiability in FOL is undecidable and provides thus limited
reliable design support. In addition, they use some form of closed-world model
checking ensuring the validity of a complete configuration at the end of a
configuration session. Configuration actions and control knowledge about the
organization of the configuration task are not represented.

The configuration system PROSE used the description logic ALNFIH plus
facilities for dealing with numbers to provide interactive support during con-
figuring [MW98, BCM+02]. Conceptual knowledge about admissible confi-
gurations is represented by an unfolded concept definition under which the
partial configuration is realized by stating new facts about components. A
set of rules is applied for inferring new facts triggered by the user’s input. A
sound and complete so-called ABox reasoning service for instance checking
serves for configuring admissible parts of a solution and deciding rule app-
licability. Because a rule application can lead to inconsistent configuration
states they provide a backtracking mechanism.

BUCHHEIT and BAADER pursue another approach to solve automatically
the configuration problem with a DL reasoner for the language ALCQ with
cardinal restrictions on concepts [BKN95, BBH94]. They propose to employ
a consistency service for the generation of a goal configuration from an initial
partial configuration. Conceptual knowledge is also represented in a so-called
TBox for which, while testing the initial configuration’s consistency, a model
can be constructed as goal configuration.

WEIDA introduces a closed taxonomy assumption for solving the configura-
tion problem by a DL reasoner [Wei96]. It allows the reasoner to infer more
information in comparison to the open world assumption because the ex-
tension of the taxonomy by concepts created during the solution process is
forbidden. By this assumption, an exploratory component while configuring
is excluded but the complexity of the inference problem is strongly decreased.

To find a solution for the model of conceptual design is not supported by a
single method from above. Conceptual design is action-based and demands
the representation of the global load transfer. They govern the final structu-
ral concept. Furthermore, the taken design approach realizes main structu-
ral systems by relating structural elements through support conditions in a

55 3.3 The Description Logic Planner

bottom-up synthesis process for known simple subtasks. This type of soluti-
on approach usually separates design from pure configuration tasks [Bro97].
WIELENGA and SCHREIBER call this type skeletal design [WS97] based on
the work about planning with constraints by STEFIK [Ste81].

The envisaged design support of the system has to provide services for the
evaluation of single elements in terms of their load transfer, for testing their
consistency on the DIN 1045-1, for dynamic planning of the subtasks, and
for design action proposition. I employ therefore an approach, which combi-
nes BAADER’s and BUCHHEIT’s idea of consistency checking with LOWE’s
planning formalism. For defining the description logic based planning for-
malism with the corresponding reasoning services, I extend these ideas by
two aspects. First, I include completeness testing by local closed world re-
asoning about single elements since open world reasoning like consistency
testing excludes the detection of incomplete elements, e.g. missing support
relations. Second, I incorporate the means for interleaving design actions and
hierarchical planning by which the structural concept can be developed in a
bottom-up fashion. This is done by using the work of NAU et al. about hier-
archical task decomposition planning [NCLMA01]. It allows the engineer a
bottom-up design of the structural concept for planned subtasks. In the next
subsection, I will introduce the formalism with its design language and the
corresponding reasoning services that implement the testing of a structural
concept and the planning of the design process.

3.3 The Description Logic Planner

In order to reason about design knowledge in a computer to support the engi-
neer in conceptual design, knowledge has first to be represented in a language.
I employ two different languages for the representation of knowledge and four
services to reason about it. The conceptual model including the developing
structural concept and the conceptual knowledge about structural systems,
elements, and their relational load transfer behavior will be represented in a
description logic. I use a so-called terminological component to represent the
persistent conceptual knowledge and a so-called assertional component for
the structural concept. I introduce an additional component to represent the
load transfer of a structural concept. The DL services are consistency and
correctness testing. Control knowledge and actions will be represented by a
hierarchical planning language. The planning services are method and opera-
tor application. Method application allows to decompose tasks into suitable
subtasks by planning actions, whereas operator application selects suitable

3 The Formalism 56

design actions to solve simple subtasks. The different knowledge types are
integrated via the assertional part of the description logic, which is thus the
base language over which parameterized actions including planning actions
are defined.

Definition 6 (Design symbols) Let L and P be two disjoint sets, where L

denotes the set of description logic names and P the planning names, respec-
tively. They are used to represent the conceptual design domain for MCD.

A refined system model with the different components is shown in figure 3.1.
The control knowledge is represented by methods and actions’ preconditions
and the conceptual knowledge by so-called TBox and CBox.

Figure 3.1: System model of the engineer while designing

Because of the mentioned shortcomings of non-logical formalisms in the last
subsection, a logic-based approach is taken in this thesis. This approach se-
parates the representation of the design knowledge from the services. It is
especially well-suited for the representation of complex, incrementally evol-
ving domains like the one of building structures because the knowledge base
can be independently developed from the reasoning services. The logical ap-
proach comprises the following steps according to [Neb01b, Baa02] to realize
a logic-based formalism like the one of the thesis:

• definitions of a formal language including logical, non-logical symbols,
and syntax rules,

• provision of compositional semantics, which interprets the non-logical
symbols and defines rules for determining combined interpretations of
single symbols,

57 3.3 The Description Logic Planner

• definition of reasoning services for the design language that obey the
logical entailment relation |= and the transition relation ⊢,

• specification of algorithms that implement the reasoning services.

The need of assigning computational tractable techniques to realize the de-
sign support on the symbolic processing level led to the choice of a description
logic based planning formalism. The next two subsections will introduce de-
scription logics and planning. They define first the sublanguages with the
corresponding reasoning services, and then the algorithms. The introduction
of description logics is taken from [BCM+02] and for planning from [GNT03]
for which the examples have been adapted to the conceptual structural design
domain.

3.3.1 The Description Logic

Description logics descended form structured inheritance networks to over-
come the ambiguities of early semantic networks and frames as used in the
KL-ONE system [WS92]. They restrict possible language constructs and re-
sult in decidable inference problems. Description logic is a subset of FOL
[Bor96] but enhances the formalism by additional reasoning services as for
example computing the taxonomy [BHS93]. This service is especially import-
ant for complex domains like the one of building structures, where a correct
taxonomy has to be built up before deploying the computer-aided concep-
tual design system. In addition, description logic procedures are sound and
complete, and always terminate, which is required for reliable support.

A graph can give some intuition about the representation of knowledge in
a description logic system. Nodes are employed to characterize concepts or
objects, interpreted as sets of individual objects, and edges are employed to
characterize roles that can hold between concepts. They are a characteristic
feature of description logics and are interpreted as relations over individual
objects. Complex relations and individual objects, which are associated with
a concept, are themselves also represented as nodes. Furthermore, concepts
can have attached simple attributes. A graph like this is called a terminology.

Example 9 (Terminology about a structure) Figure 3.2 shows a ter-
minology, which represents knowledge about the conceptual design domain
described by some concepts and roles. It represents the generality/specificity
of the involved concepts. For example the edge between Slab and Structu-

ralElement says that slabs are a subset of structural elements and the edge

3 The Formalism 58

Figure 3.2: An example graph

between SLAB1 and Slab says that it is an object of the concept. The subset
relation defines a hierarchy over the concepts. When a concept is more spe-
cific than some other concept, it inherits the properties of the more general
concept. If for example, the structural element has dimensions, then a slab
has dimensions, too. The concept of DistributedLoad has a role loads as pro-
perty. The role restricts the range of types of objects that can fill that role,
denoted by the label v/r. Additionally, the node has a number restriction
(1,1), which specifies that one distributed load can only load one slab. The
concept StructuralSystem has a value restriction hasPart, which specifies that
a system is at least composed of one StructuralElement. Observe that there
may be implicit relations between concepts. For example, the concept Slab is
a more specific descendant of the concept StructuralElement and as a result
would inherit from StructuralElement that it can be part of a StructuralSystem.

It is the task of a description logic system to find such implicit relations
among concepts, roles and objects, which might be much more complex. To
find propositions implicit in the structure, a system needs to draw inferences
on it. If the structure becomes more complex, it becomes more difficult for
the reasoning system to draw inferences on all components and to give always
right answers. Therefore, there is a trade-off between expressiveness of the
representation language and the difficulty of reasoning over the representation

59 3.3 The Description Logic Planner

built using the language, already mentioned in Section 3.1. The expressiveness
is the result of the constructs available in the language for building complex
concept and role expressions. I will later discuss the necessary constructs
to represent the conceptual design domain, where the goal is to represent all
required information while retaining reliable design support. Even though the
employed inference problems have a high worst-case complexity, it turned out
that they behave well for the conceptual design domain. The closed taxonomy
assumption even decreases the complexity during the conceptual solution
process because only defined or atomic concepts and atomic roles are offered
to the engineer to build up the structural concept.

To process terminologies (graphs) they have to be represented in a language
for which a precise characterization of the meaning of the language constructs
and the set of inferences drawn on it is needed. Description logics are such a
language family because their constructs and reasoning services have a pre-
cise meaning while the inferences remain decidable. The specific language
is named according to the given set of constructs for building up complex
concept and role terms. Concept expressions are variable-free in comparison
to FOL expressions. A description logic employs two disjoint alphabets of
symbols, which can be used to denote basic concepts and atomic roles. Basic
concepts correspond to unary predicate symbols and basic roles to binary
predicate symbols in FOL. The former are employed to express simple pro-
perties, the latter to express relationships between concepts. For example,
the intersection of concepts is denoted C ⊓ D. Other concept constructors
are negation ¬C, conjunction C ⊔ D, full existential quantification ∃R.C,
value restriction ∀R.C, and number restriction of the kind ∃≤n C.

Concept expressions are interpreted as the set of objects, also called individu-
als, that satisfy the properties stated by the expression. Concepts and roles
have set-theoretic semantics, which reside in a relational structure, that can
be arbitrary and infinite. Atomic concepts are interpreted as subsets of the
interpretation domain, also named universe of discourse, while the semantics
of the other constructs are then specified by the set of individuals denoted by
each construct. For example, an intersection C⊓D restricts the set of objects
to belong to C and D. Another example is the value restriction ∀R.C that
requires that all individuals being in the relation R belong to the concept
C. In such a way, the meaning of a complex concept expression is composed
from primitive ones, which is called compositional semantics. Description lo-
gics possess furthermore open world semantics in comparison to the ordinary
semantics of databases. While, a database instance represents exactly one
interpretation by the objects and listed tuples, a description logic instance
can have many interpretations, namely models of the knowledge base. Thus,

3 The Formalism 60

absence of information means not negative information but lack of know-
ledge. This is of special importance in conceptual design for which missing
information allows the engineer to develop different models in a flexible way.
A computer-aided design system has to take this requirement into account
because it must not consider missing information as negative information
and report an error in the structural concept, although the engineer has not
finished for example a system, yet.

Example 9 (continued) Suppose that DistributedLoad, Slab, StructuralSy-

stem are atomic concepts and that loads and hasPart are atomic roles. The
concept Slab ⊓ ¬(DistributedLoad ⊔ StructuralSystem) describes then a slab
that is not a load or structural system . If one wants to describe the concept
of a distributed load that only loads slabs, one can do this by the expression
DistributedLoad⊓∃loads.Slab⊓∀loads.Slab. The edge between DistributedLoad

and Slab for example in figure 3.2 is defined by the former concept expression
but misses the quantified role restriction (1,1) that only one distributed load
can be applied to one slab. To state this, additional constructs are required.
Another example is a structural system that has at least two parts, which
can be expressed by StructuralSystem ⊓ (∃≤ 2 hasPart).

The description logic that provides the above introduced constructs for full
negation, intersection, number restrictions, union, value restriction, and exi-
stential quantification is named ALCN and is an extension of the well-known
description logic ALC by number restrictions [SSS91]. This description logic
can be further extended by other constructs. The resulting group of descrip-
tion logics is termed expressive since the logics originate from relationships
with expressive modal logics and represent additional information about the
relational structure of the domain. Additional constructs of qualified number
restrictions, inverse roles, and concrete domain predicates are necessary to
represent the domain of multi-storey concrete building structures.

Example 10 (Required constructs for conceptual domain) Nearly-
independent systems allow the experienced practitioner to structure the over-
all design task into controllable subtasks. To define for example a structure
with a independent stability and vertical system by the expression

∃=1hasPart. StabilitySystem ⊓ ∃=1hasPart. VerticalSystem,

qualified number restrictions are required where the independence is descri-
bed by StabilitySystem ⊓¬∃hasPart.(Column ⊔Beam) to describe an indepen-
dent stability system that has no columns or beams as parts. The extension
by qualified number restrictions is denoted Q in the language description.

61 3.3 The Description Logic Planner

Consider the concept of a shear wall which is part of a lateral stability sy-
stem. An inverse role hasPart− for the expression ∃hasPart−.StabilitySystem

is needed. Furthermore, to express that an element loads another a support
relation supports = loads− with its inverse counterpart is needed. It is needed
for the concept expression Column⊓∃supports.Beam stating that the element
is a column and supports a beam. The language description including this
construct is extended by I. This extension gives more inferences, since addi-
tional information about a relation is represented.

To express the concept of a column, which is a structural element that must be
loaded by a compression force and has to possess certain element dimensions
(its height must be smaller or equal four times its breadth, and its length must
be at least six times larger than the height), two other constructs for attributes
and concrete domain predicates, denoted D in the language description, as
for example NormalforcekN and ≤0, are required.

StructuralElement ⊓ ∃NormalforcekN .≤0 ⊓

∃Heightm, Breadthm.≤4·Breadthm
⊓ ∃Lengthm, Heightm.≥6·Heightm

I will also model load magnitudes, structural element parameters and state
variables, and geometrical constraints by attributes over a concrete domain.

Definition 7 (Concrete domain) The concrete domain D = 〈R, ΦD〉 is
a pair, where R is the set of rational numbers, and ΦD is a set of predicate
names from L over R. Each predicate P from ΦD is associated with an arity
n and a n-ary predicate PD ⊆ Rn

D. The predicates of ΦD are:

• unary predicate ⊤D = R and a unary predicate ⊥D = ∅ for which ⊥D

is the negation of the predicate ⊤D,

• unary predicates Pr for each P ∈ {≤,≥, =, <, >} and each r ∈ R with
(P R

r) = {r′ ∈ R | r′Pr}, and

• binary predicates Pr for each P ∈ {≤,≥, =, <, >} and each r a poly-
nomial over n real attributes with (P R

r) = {r′ ∈ Rn | r′Pr}.

This concrete domain is admissible according to [BH91] because it is closed
under negation and the satisfiability problem for real arithmetic is decidable.
The resulting expressive description logic is called ALCQI(D)− because it
allows no attribute chains. It extends the logic SHIQ [HST00] by concrete
domain attributes but leaves out the constructs for role hierarchies and tran-
sitive roles included in ALCQHIR+(D)− [HM01]. Therefore, it is a decidable
subset according to [Lut02].

3 The Formalism 62

A couple of basic inferences on concept expressions in a description logic
exists. Subsumption is the task of checking whether a concept D is more
general than a concept C, denoted C ⊑ D. To check the relation between
the two concepts, one has to take the concept expressions in the terminology
into account. Another reasoning task is to check the satisfiability of a certain
concept expression, which amounts to check if the concept expression does
not denote the empty concept.

To build up a description logic knowledge base the additional concept of
components is necessary. A terminological component contains conceptual
knowledge in a TBox. It is built up through declarations that describe gene-
ral properties of concepts by concept expressions. Conceptual knowledge can
be separated into so-called definitorial and background knowledge [Sat03].
Definitorial knowledge defines the domain taxonomy - elements or systems
with their properties like attributes or aggregations - and background know-
ledge. It reduces the set of correct concepts. For examples, see also EISFELD

and SCHERER [ES02a]. An additional component, called CBox, is needed to
represent the conceptual knowledge about the load transfer among elements.
The ABox contains extensional knowledge in form of facts about individuals
of the domain of discourse, here the description of the structural concept
under development. Intensional knowledge, stored in the TBox and CBox, is
usually thought not to change, whereas extensional knowledge is problem-
specific, and therefore subject to constant change while problem solving. A
TBox defines usually a partial order among concepts, which is entailed by the
subsumption relation. A CBox allows to formulate queries over individuals
of the ABox that are known or provable to belong to two concepts.

An ordinary TBox comprises a set of concept declarations. The basic form of
a declaration is a concept definition, where the new concept is defined in terms
of previously defined or atomic concepts. For example, C ≡ D ⊓ E defines
the concept C in terms of the atomic concepts D and E. If the requirement
of acyclic and atomic concept declarations is dropped, a declaration can also
be an inclusion axiom of the form C ⊑ D. This extension increases the
complexity of the inference problems, which even happens for simple cyclic
concept definitions shown by SCHILD [Sch91].

Example 11 (Concept definition and axiom of elements) A slab is a
structural element that is loaded by a distributed load can be defined by the
following declaration:

Slab ≡ StructuralElement ⊓ ∃loads−.DistributedLoad,

which is interpreted as logical equivalence and represents definitorial know-
ledge. However, in the conceptual design domain, inclusion axioms are also

63 3.3 The Description Logic Planner

needed interpreted as logical implication to represent background knowledge.
For example, if an element is loaded by a distributed load then it must be a
slab which is represented by

DistributedLoad ⊓ ∃loads.StructuralElement ⊑ Slab.

The basic reasoning service for a TBox is classification. It computes the
concept hierarchy by placing concepts in the proper place of the hierarchy.
Classification can be realized by verifying the subsumption relation between
neighboring concepts. I employ the classification service for the development
of a correct taxonomy of the conceptual design domain.

A CBox is a set of concept definitions not occurring in the TBox. They are
used to retrieve elements of an ABox known to be instances of these concepts.
The retrieved elements do not refer to the objects of the domain, but what
the knowledge base knows about the domain.

Example 12 (Concepts for load transfer) Consider a state in the design
process, in which the engineer would like to check, if a column transfers
the applied load by a beam to a supporting element and if the column is
approximately designed. This requirement can be defined by the concepts:

LoadedColumn ≡ Column ⊓ ∃loads−.Beam,

DesignedColumn ≡ Column ⊓ Designable ⊓ ∃supports.(Column ⊔ Beam).

If the element belongs to both concepts, the load transfer is complete. Other-
wise, the element is not load-bearing or is not completely designed.

An ABox contains the problem-specific knowledge, which is the structural
concept in the design domain. Usually, the structural concept is built up by
assertions about individual elements, loads, etc., called concept assertions,
and arranging elements and systems by role assertions. Predicate and attri-
bute assertions allow to represent element parameters and concrete domain
constraints. As a limitation, concept and role expressions can be restricted to
denote atomic or defined expressions as for the closed taxonomy assumption.

Example 13 (Representation of the structural concept) Consider a
design situation in which an incomplete structural concept is described by
having a slab system on which a distributed load is applied. The role asser-
tions hasPart(S, SL) and loads(LO, SL) state for example that the structure
possesses as part a slab system, which supports a distributed load.

3 The Formalism 64

The basic reasoning tasks for an ABox are instance checking and consistency
testing that amount to check whether a given individual is an instance of a
specified concept and whether every concept in the knowledge base admits at
least one individual, respectively. Additionally, I define completeness testing
as a reasoning task for individuals of the ABox on a CBox. It amounts to
checking if an individual is an instance of the difference set of the two defined
concepts. If it can be proven that individuals of the ABox are instances of
the first but not of the second set the load transfer is incomplete and addi-
tional individuals in the ABox representing elements are required. I employ
it for finding elements with incomplete load paths in the structural concept.
Instance checking and other reasoning services for ABoxes can be reduced to
the consistency test problem. Reasoning with respect to a given ABox makes
reasoning more complex. Therefore, the techniques for TBox reasoning have
to be adjusted. I employ consistency and completeness testing to assist the
engineer in constructing a correct structural concept. The completeness test
is performed for all individual elements in the ABox.

65 3.3 The Description Logic Planner

3.3.2 Language Definition of Description Logic

In the following I define the language and the used reasoning services formally.
Concept descriptions allow to build up complex concept expressions about
structural object properties in the conceptual design domain.

Definition 8 (Syntax of concepts) Let C, R and F be disjoint sets of
concept, role and attribute names from L and n ∈ N. In concept expressions,
inverse roles, denoted R−, maybe used instead of role names R. If C and D
are concepts of C, R is a role of R, P ∈ ΦD is a predicate of arity n and
f1, . . . , fn are attributes from F, then concepts can be formed according to the
following syntax rules:

C, D −→ ⊤ | (universal concept or true)

⊥ | (bottom concept or false)

¬C | (full negation)

C ⊓ D | (intersection)

C ⊔ D | (union)

∀R.C | (value restriction)

∃R.C | (full existential quantification)

∃≥n R.C | (qualified number restrictions)

∃≤n R.C |

∃=n R.C |

∃f1, . . . , fn.P | (existential predicate restriction)

∀f1, .⊥D (limited predicate value restriction).

The universal concept ⊤ abbreviates C ⊔ ¬C and the bottom concept ⊥
the concept ¬⊤, respectively. To define a formal semantics of ALCQI(D)−-
concepts, an interpretation has to be introduced. It allows to reason about
the correctness of intensionally defined structural objects. An interpretati-
on consists of the universe of discourse and an interpretation function that
assigns to every atomic concept a subset of the interpretation domain and
to every role a subset of binary relations over the interpretation domain.
This type of semantics is called Tarski-style semantics for concepts, since it
is set-theoretic.

Definition 9 (Semantics of concepts) I = 〈∆I , ·I〉 is an interpretati-
on that consists of a set ∆I, the abstract domain, with ∆I ∩ R = ∅, and
an interpretation function ·I. The interpretation function maps each atomic

3 The Formalism 66

concept name C to a set CI ⊆ ∆I , each role name R to a binary relation
RI ⊆ ∆I ×∆I , and each attribute name f to a partial function fI : ∆I → R,
which is written in the extensional form (aI , xI) ∈ fI . Inverse roles are in-
terpreted as (R−)I = {(a, b) ∈ ∆I × ∆I | (b, a) ∈ RI}. The interpretation
function is then extended to concepts by the following inductive definitions
with n ∈ N :

⊤I = ∆I ,

⊥I = ∅,

(¬C)I = ∆I \ CI ,

(C ⊓ D)I = CI ∩ DI ,

(C ⊔ D)I = CI ∪ DI ,

(∀R.C)I = {a ∈ ∆I | ∀b ∈ ∆I : (a, b) ∈ RI → b ∈ CI},

(∃R.C)I = {a ∈ ∆I | ∃b ∈ ∆I : (a, b) ∈ RI ∧ b ∈ CI},

(∃≥n R.C)I = {a ∈ ∆I | |{b ∈ ∆I | (a, b) ∈ RI ∧ b ∈ CI}| ≥ n},

(∃≤n R.C)I = {a ∈ ∆I | |{b ∈ ∆I | (a, b) ∈ RI ∧ b ∈ CI}| ≤ n},

(∃=n R.C)I = {a ∈ ∆I | |{b ∈ ∆I | (a, b) ∈ RI ∧ b ∈ CI}| = n},

(∃f1, . . . , fn.P)I = {a ∈ ∆I | ∃x1, . . . , xn ∈ R :

(a, x1) ∈ fI
1 ∧ · · · ∧ (a, xn) ∈ fI

n ∧ (x1, . . . xn) ∈ PD},

(∀f.⊥D)I = {a ∈ ∆I | ¬∃x1 ∈ R : (a, x1) ∈ fI},

where |· | denotes the cardinality of a set. Two concepts are equivalent, written
C ≡ D if CI = DI for all I. A concept is called satisfiable if there exists an
interpretation I such that CI 6= ∅. Such an interpretation is called a model
of C. A concept C is subsumed by a concept D, written C ⊑ D, if CI ⊑ DI

for all interpretations I.

An interpretation I corresponds to an intermediate design state. However,
the domain ∆I is structured by facts stated in the description logic and
not by extensionally defining the relations. To define concept abbreviations,
previously called declarations, terminological axioms are used. A set of them
specifies the conceptual knowledge about DIN 1045-1 constraints and suitable
element aggregations for systems in a TBox.

Definition 10 (Syntax and semantics of TBox) A terminological axiom
is a concept definition C ≡ D, a concept specialization C ⊑ D, where C is
a concept name of C and D is a concept term, or a generalized inclusion
axiom, for which C and D are concept terms. A finite set of such axioms

67 3.3 The Description Logic Planner

is called a TBox T . Standard semantics is used for T . An interpretation I
satisfies an axiom of the form C ≡ D and C ⊑ D if and only if CI = DI

and CI ⊑ DI, respectively. An interpretation I is a model for T if and only
if it satisfies all declarations in T . Two axioms are equivalent if they admit
the same models.

When I modeled the conceptual design domain, I constructed a terminology
about the conceptual knowledge. During this process, it is important to find
out if newly introduced concepts make sense in terms of already defined
concepts or if they are contradictory to them. I used the reasoning service of
classification to do this.

Definition 11 (Classification) A concept C is subsumed by a concept D
with respect to a TBox T if CI ⊆ DI for every model I of T , written
C ⊑T D. A subsumption hierarchy is a quasi ordering over all concept names
occurring in T with respect to the subsumption relation ⊑T .

A set of concept definitions is used to define the conceptual knowledge about
valid load paths for structural elements in a CBox. The CBox represents thus
the required structure for a goal concept by separate concept definition for
structural element types and their required support relations. They determine
if the load transfer for all elements of a developing structural concept is
complete where for each subset of structural element types two completion
axioms are used to describe their local load transfer.

Definition 12 (Syntax and semantics of CBox) Let C,D be two concept
names of C, which do not occur in T and both include an atomic concept
name E. E denotes an equivalence class of structural elements. Furthermore,
let A be an ABox. A completion axiom is a concept definition C ≡ D. For
some abtract object names a1, . . . , ak in A belonging to E, there exist two
completion axioms. A finite set of such pairs of completion axioms is called a
CBox C and C a defined concept, respectively. An interpretation satisfies such
a pair of completion axioms C1, C2 for some abstract object names a1, . . . , ak

for E if CI
1 \ CI

2 = ∅ for EI = {aI
1 , . . . , aI

k} ⊆ ∆I . Such an interpretation
is a called a model of a CBox C if it satisfies for every concept E in C with
given a1, . . . , ak the pair of completion axioms.

I use an ABox for the description of a design state, which represents the
structural concept under development. The structural concept description is
built up by a set of concept, role, attribute, and predicate assertions.

3 The Formalism 68

Definition 13 (Syntax of assertions in ABox) Let OD and OA be dis-
joint sets of so-called concrete and abstract object names from L, abbreviated
OS. If C is a concept name of C, R is a role name of R, f is an attribu-
te name of F, P ∈ ΦD, a and b are elements of OA, and x, x1, . . . , xn are
elements of OD, then the following expressions are an assertional axiom:

C(a) (concept assertion)

¬C(a) (negated concept assertion)

R(a, b) (role assertion)

f(a, x) (attribute assertion)

P (x1, . . . , xn) (predicate assertion).

We call a finite set of such axioms an ABox A, which represents the concept
under development in a design state.

A semantics to an ABox is given by extending an interpretation to object
names that refer to structural objects in the conceptual design domain like
elements, systems, etc.. It is assumed that distinct abstract object names
denote distinct abstract objects. Therefore, the mapping has to respect the
unique name assumption (UNA), that is, if a, b are distinct names, then
aI 6= bI . The UNA does not hold for concrete object names.

Definition 14 (Semantics of assertions in ABox) An extended inter-
pretation for an assertional language is an interpretation I, which, in addi-
tion, assigns to every abstract object name a ∈ OA an element aI ∈ ∆I and
to every concrete object name x ∈ OD an element of xI ∈ R. An extended
interpretation I satisfies an assertion

C(a) iff aI ∈ CI ,

¬C(a) iff aI 6∈ CI ,

R(a, b) iff (aI , bI) ∈ RI ,

f(a, x) iff (aI , xI) ∈ fI ,

P (x1, . . . , xn) iff (xI
1 , . . . , xI

n) ∈ PD.

If aI ∈ CI , then a is called an instance of C in I. If (aI , bI) ∈ RI , then b
is an R-successor of aI . We define Inv(R) to be R− for a role name R and
R for an inverse role R−. If b is an R-successor of a or a is an Inv(R)−-
successor of b, then b is called an R-neighbor of a. I is a design state and a
model of A, if it satisfies all assertions in A.

69 3.3 The Description Logic Planner

Note, that we can construct different models and reason about incomplete
structural concepts due to open-world semantics if they are represented by
an ABox. I use the reasoning service of consistency testing for detecting
inconsistent structural concepts or parts of them on the prescribed TBox.

Definition 15 (Consistency testing) A structural concept represented by
an ABox A is consistent with respect to a TBox T if and only if A and T
together have a model I, written I |= A, T . Otherwise, a structural concept
as ABox A is called inconsistent.

To find the elements of a structural concept that do not transfer the loads to
adjacent elements beneath, I employ the reasoning service of completeness
testing based on a combined instance retrieval test.

Definition 16 (Completeness testing) A structural concept represented
by an ABox A is complete with respect to a CBox C if and only if A and
C together have the same model, written I |= A, C. Otherwise, a structural
concept is called incomplete.

A complete and consistent ABox has a model I that has the same structure
as the goal concept IG in definition 2. Examples of testing the consistency
and completeness will be given in Chapter 4 in which a detailed example
will be explained. According to [BCM+02, DLN+93] the reasoning services
of classification of a TBox T , completeness testing of a 〈A, C〉 knowledge
base, and consistency testing of a 〈A, T 〉 knowledge base can be reduced to
the problem of consistency testing of an ABox with an empty TBox. The
empty TBox is obtained by a preprocessing step in the algorithm. The sa-
me preprocessing can be done for a CBox. A sound and complete tableau
algorithm for consistency testing of the description logic ALCNHR+(D)− is
given in [HMW00] that terminates on any input. In the following an algo-
rithm to decide the consistency of ALCQI(D)− knowledge base 〈A, T 〉 is
summarized, which was first developed by [HST00] and adjusted to include
concrete domain predicates by [HMW00]. As an example, this algorithm in-
cludes the preprocessing step for a TBox. The problem of consistency testing
should remain decidable and sound and complete according to the results ob-
tained by [BLSW02] about fusion of different description logics. It is beyond
the scope of the thesis to show these properties but the aim to gain a basic
understanding how such an algorithm works to find a structural goal concept.

3 The Formalism 70

3.3.3 Consistency Algorithm

Tableau algorithms are often used to implement the reasoning service of
ABox consistency [BS01]. They originate from FOL tableau calculus whe-
re the rules have been adapted to the specific requirements of description
logics. Disjunction and qualified number restrictions in the language cause
non-determinism, which must be implemented with search techniques. There-
fore, the algorithm works with sets M of ABoxes. Mi+1 is obtained from Mi

by an application of a completion rule. If A0 shall be tested for consistency we
start with the singleton set M1 = {A1}. Intuitively, the algorithm searches
for an ABox in a tree, which does not include an obvious contradiction and
to which no more rules can be applied, a so-called open and complete ABox.
Search takes place over sets of ABoxes by applying so-called completion rules
to assertional axioms of an ABox, which generate new search states. Because
more than one rule might be applicable a completion strategy is needed. The
completion strategy enforces some kind of breadth-first search. The algorithm
applies completion rules until no more rules are applicable to the - by asser-
tional axioms augmented - ABoxes in M. Thus, implicit knowledge in the
initial ABox is made explicit. The application of rules stops and backtracks
to remaining choice points, if an obvious contradiction, a so-called clash, is
discovered. Therefore, an ABox with an obvious contradiction is called clo-
sed. When the algorithm from figure 3.3 succeeds to construct an augmented
ABox to which no more rules can be applied and which does not contain a
clash, then a completion of A0 exists and the ABox is consistent, so that a
model for it can be constructed.

define procedure ABox-consistency(A0, T)
A′

0 := fork-elimination(A0)
A1 := calculate-augmented(A′

0, T)
r := 1
M1 := {A1}
while a rule from the completion rules is applicable to Mr do

r := r + 1
Mr := apply-completion-rule(Mr−1)
od

if there is an A ∈ Mr that does not contain a clash then
return consistent
return inconsistent

Figure 3.3: ABox-consistency algorithm

71 3.3 The Description Logic Planner

To test the initial ABox A0 for consistency, the algorithm starts with trans-
forming A0 into an augmented ABox A1 that is consistent with respect to
an empty TBox. To obtain A1, first all so-called forks are eliminated. A fork
in A0 is an attribute f with {f(a, x1), f(a, x2)} ⊆ A0. Since f is interpreted
as a partial function, such a fork means that x1, x2 have to be interpreted as
the same objects. The fork elimination replaces every occurrence of x2 in A0

by x1, denoted fork-elimination(A0), which returns A′
0 without forks.

After the fork elimination, the algorithm calculates the augmented ABox A1,
denoted calculated-augmented(A′

0, T). Every concept term C occurring in A′
0

is replaced by its definition or specialization. Generalized inclusion axioms
C ⊑ D are then replaced by so-called universal concept assertions, after re-
writing concept definitions into the equivalent form C ⊑ D and D ⊑ C.
The assertion ∀x : (¬C ⊔ D(x)) are added to the ABox for every generali-
zed inclusion axiom, where x have to be fresh individual names. As a final
preprocessing step, every concept term in A′

0 has to be transformed into its
negated normal form by rewriting rules based on DeMorgan laws and rules
for quantifiers.

Definition 17 (Rewriting rules for negation normal form) A concept
term C is in negation normal form, denoted ∼ C, if and only if negation
signs occur only in front of concept names from C. The negated normal form
is obtained by the following rewriting rules:

¬¬C −→ C

¬(C ⊓ D) −→ ¬C ⊔ ¬D

¬(C ⊔ D) −→ ¬C ⊓ ¬D

¬∀R.C −→ ∃R.¬C

¬∃R.C −→ ∀R.¬C

¬∃≤nR.C −→ ∃≥n+1R.C

¬∃≥nR.C −→ ∃≤n−1R.C, n > 0

¬∃≥0R.C −→⊥

¬∃f1, . . . , fn.P −→ ∃f1, . . . , fn.¬P ⊔ ∀f1.⊥D ⊔ . . . ⊔ ∀fn.⊥D

¬∀f.⊥D −→ ∃f.⊤D

If no rule is applicable the resulting concept is in its negation normal form
and ∼C and C have the same models.

The rules push negations inside by their exhaustive application. The obtained
concept has the same models, since the rewriting rules preserve the equiva-

3 The Formalism 72

lence. As a last preprocessing step, inequality assertions a 6
.
= b are added for

the abstract individuals contained in the ABox.

After the augmented ABox A1 has been computed, the algorithm starts with
M1 := {A1}. In accordance with a completion strategy, the completion rules
are applied to M1 as long as possible to generate a complete set of ABox Mr

to which no more rules can applied. An individual ordering ≺I and concrete
ordering ≺C for new concrete individuals in A are necessary because first
all rules have to be applied to individuals already present in A before new
individuals are introduced.

Definition 18 (Ordering) If b is an abstract individual newly introduced
in A, then a ≺I b is an abstract ordering for all new individuals a already
existing in A. If y is a concrete individual new in A, then x ≺C y is an
concrete ordering for all concrete individuals x already in A.

A new individual a is called blocking a new individual b from A ∈ M, if
σ(A, a) =: {C |C(a) ∈ A} ⊇ σ(A, b) and a ≺I b. An individual a is called
directly blocking an individual b from A, if σ(A, a) = σ(A, b) and a ≺I b.
Furthermore, an individual a generated by a rule is denoted new(a).

Definition 19 (Completion rules) Let M be a finite set of ABoxes and
A ∈ Mi of M. The following set of completion rules will replace an ABox
A by one A′ or two ABoxes A′,A′′ in M:

→⊓-rule:

if 1. (C ⊓ D)(a) ∈ A and

2. {C(a), D(a)} * A
then A′ = A ∪ {C(a), D(a)}

→⊔-rule:

if 1. (C ⊔ D)(a) ∈ A and

2. {C(a), D(a)} ∩ A = ∅
then A′ = A ∪ {C(a)} or A′′ = A∪ {D(a)}

→∀-rule:

if 1. (∀R.C)(a)) ∈ A and

2. a has an r-neighbor b with C(b) 6∈ A
then A′ = A ∪ {C(b)}

73 3.3 The Description Logic Planner

→∃-rule:

if 1. (∃R.C)(a) ∈ A and

2. a has no r-neighbor b with C(b) ∈ A and

3. new(a) ⇒ ¬∃c : directly-blocking(a)
then A′ = A ∪ {C(a), R(a, b)} where b is not used in A

→∃P -rule:

if 1. (∃f1, . . . , fn.P)(a) ∈ A and

2. ¬∃x1, . . . , xn : {f(a1, x1), . . . , f(an, xn)} ⊆ A
then A′ = A ∪ {f(a, x1), . . . , f(a, xn), P (x1, . . . xn)}

with x1, . . . , xn are not used in A

→∃≤-rule:

if 1. (∃≤nR.C)(a) ∈ A and

2. a has n+1 r-neighbors b1, . . . , bn with{C(b1), . . . , C(bn+1)} ⊆ A and

3. bi 6
.
= bj 6∈ A for some i, j, 1 ≤ i < j ≤ n + 1 and

4. new(a) ⇒ ¬∃c : blocking(a)
then A′ = A[bi/bj] by replacing each occurrence of bi by old bj

such that i, j, 1 ≤ i < j ≤ n + 1 where bi 6
.
= bj 6∈ A

→∃≥-rule:

if 1. (∃≥nR.C)(a) ∈ A and

2. a has less than r-neighbors b1, . . . , bn with {C(b1), . . . , C(bn)}⊆A and

3. bi 6
.
= bj 6∈ A for some 1 ≤ i < j ≤ n and

4. new(a) ⇒ ¬∃c : blocking(a)
then A′ = A ∪ {R(a, bi) | 1 ≤ i ≤ n} ∪ {C(bi) | 1 ≤ i ≤ n}∪

{bi 6
.
= bj | 1 ≤ i < j ≤ n} with n newly created bi and bi 6

.
= bj 6∈ A

→choose-rule:

if 1. {(∃≤nR.C)(a), R(a, b)} ⊆ A and

2. C(b) or ¬C(b) 6∈ A
then A′ = A ∪ {C(b)} or A′ = A ∪ {¬C(b)}

The rules →⊔, →∃≤ and →choose are called non-deterministic because they
can yield different ABoxes A′ applied to A. The remaining rules are called
deterministic. Moreover, the rules →∃, →∃P and →∃≥ are generating since
they can introduce new objects.

The completion strategy determines according to an ordering of new indi-
viduals, which rule is applied if a set of rules is applicable. First, rules are
only applied to old individuals before they can be applied to new ones. A
rule is applied to a new individual only if no rule is applicable to another
individual that has precedence defined by a ≺I b. Completion rules are ap-
plied in two steps: first, non-generating completion rules are always applied

3 The Formalism 74

as long as possible. If a set of applicable non-generating rules is empty this
step is simply skipped. Second, an applicable generating rule is applied and
restarts with a non-generating rules. If the set becomes empty, the algorithm
restarts with the application of non-generating rules. If a clash is discovered,
the algorithm backtracks to remaining choice points or returns inconsistent.

Definition 20 (Clash) An ABox A is closed if it contains one of the fol-
lowing clashes:

• primitive clash: {C(a),¬C(a)} ⊆ A,

• agreement clash: {a 6= a} ⊆ A,

• number restriction clash: (∃≤nR.C)(a) ∈ A and a has n+1 r-neighbors
b with bi 6= bj for all 0 ≤ i < j ≤ n,

• concrete domain attribute clash: {f(a, x), (∀f.⊥D)(a)} ⊆ A, and

• concrete domain predicate clash: P (x
(1)
1 , . . . , x

(1)
n) ∈ A, . . . ,

P (x
(k)
1 , . . . , x

(k)
nk) ∈ A and

∧k
i=1 Pi(x

(i)
1 , . . . , x

(i)
ni) is not satisfiable in R.

An ABox A is open if non of the clashes occurs and called complete if no
more completion rules are applicable to A. An open and complete ABox A is
a completion of A0.

An ABox containing a clash is obvious unsatisfiable. If a completion exists,
then the ABox is consistent with respect to the TBox and admits a model
[BCM+02]. It can be constructed as a canonical interpretation of the com-
pletion, which is not described here (for more information see [HMW00]).
In Chapter 4, this model construction step will be given for the detailed
example.

In the next subsection, I start with giving a brief introduction to planning
and actions. The actions work on an ABox, which is the state description of
the structural concept under development. The introduced reasoning services
of consistency and completeness testing check the correctness of a state de-
scription. The description logic with the two reasoning services provides the
foundation of the model-based design support to direct the design process.

75 3.3 The Description Logic Planner

3.3.4 The Planning Language

Reasoning about actions is a necessary element of intelligent behavior [Wil88].
Planning techniques lent themselves therefore to observed human problem
solving, which is goal-directed and differential [NS72]. The task of coming
up with a sequence of actions that transforms an initial state3 into a goal
state is called planning [RN95]. The reasoning is more specifically called task
planning because the planning is abstract in nature in comparison to other
planning types [GNT03, Rin03]. Todays task planning methods descended
from the historical most influential STRIPS4 planner, which has been exten-
ded or modified by appropriate search methods and richer representations
of the planning domain. In the STRIPS planning system, world states are
represented by sets of first order formulae, and actions change state descrip-
tions by adding and deleting formulae [NG89]. This approach assumes that
the planner has complete information about the world - variables are not
allowed in state descriptions - and no sensing actions are required to update
the state information [Thi03]. Because FOL is very expressive and its proces-
sing computational expensive, the language constructs have been restricted
for representing the state of the world and the actions. This class of obtai-
ned planning languages is propositional and the planning problems possess
a lower complexity [Neb00]. However, the relational structure of the domain
has to be modeled. Therefore, an ABox A is used as state description. This
ABox represents a set of interpretations and can hence model incomplete
structural concepts.

Planning is necessary to reduce the search to relevant actions. Consider for
example, an engineer that has to design a structural concept. He would be
overwhelmed by the number of actions he can take. Therefore, he has to re-
ason about how design actions taken will affect the developing concept and
preclude irrelevant design actions. He can further restrict his focus on those
design actions, which achieve a certain task. The ability to decompose the
design problem into nearly-independent subproblems contributes to the en-
gineer’s efficiency, too, because he has to consider less relevant design actions
at a time [Yan98]. Thus, the engineer can work on subgoals independent-
ly, but needs to do some additional work to combine the resulting subplans
for the subtasks. Decomposition requires a second state component besides
the concept description to store the current state of decomposition. On this
state component planning actions operate. The outcome of the engineer’s

3A state is similar to a situation of the world if one assumes that actions always succeed
and the world is static.

4STRIPS stands for STanford Research Institute Problem Solver

3 The Formalism 76

planning is usually a set of design actions on the conceptual level, with orde-
ring constraints on them, for execution. Because the engineer has a restricted
working memory capacity he has to interleave planning and execution, called
contingency planning [RN95, Rin03].

Rephrased in a state model, it is the task of a planning system to find a path
from the initial state to the goal state and to reduce iterations in the search
process. If a goal state, which is fixed by the conceptual knowledge, can be
reached by a sequence of actions [a1, . . . , an] then this sequence is called a
plan and the search process state-space based [GNT03]. In state-space search
each node represents a state of the world and a plan is defined as a path
through the space. If the planner searches in the space of possible plans,
where a plan is defined as a set of actions, plus some constraints over it, the
search is called plan-space based [Kam97]. This leads also to the distinction
of linear and partial-order planners5 since the latter allow partial orders of
actions during the search process [Wel99].

Depending on the assumptions made about the dynamical system concerning
the properties of actions and states representing the world, different types of
planning techniques are needed to find an action trajectory from the initial
to a goal state. The basic assumptions6 for state models that led to the so-
called classical planning are: determinism, full observability, discrete time
and actions, finite states, and no control knowledge and underlying domain
information [RN95, Wil88, Rin03]. I will discuss these assumptions and state
which of them have to be modified to support designing on the introduced
model of conceptual design.

In the simplest form, the initial state of the world and the actions that
have been taken so far determine the current state of the world, which leads
to determinism. This assumption holds for the conceptual design domain
because it is static - the engineer is the only an agent triggering events - and
the actions themselves are deterministic in nature.

For deterministic planning problems with one initial state there is usually
no need to observe the environment because goals can always be reached
by one sequence of actions. This is also true for design but an enormous
large state space and the engineer’s limited working memory capacity require
to interleave planning and execution. Interleaving means feedback from the
environment for the engineer to guide his design process and set up subgoals
in primitive tasks, which is called closed-loop planning according to [BG01].

5Partial order planners are also called least-commitment planners since orderings are
only introduced during the search if required [Wel94].

6For further reaching assumptions to constrain the state model see [Rin03, GNT03].

77 3.3 The Description Logic Planner

The assumption of discrete time and actions enforce unit durations for them.
This means that all changes resulting from an action are immediately visible.
Since I only consider deliberative problem solving and a static world, this
assumption holds for the conceptual design domain, too.

The assumption about finitely many states holds for routine design but is
irrelevant since the design state space is very large. This assumption was
introduced in the beginning of planning research to retain decidability of
the considered planning problems. It restricts conditions in the actions to
be function-free literals. Because the engineer generates new design objects,
this requirement does not hold for the conceptual design domain. Therefore,
decidability cannot be ensured any longer by the system. Since the system
shall interactively support the engineer in the decomposition of conceptual
design into suitable subtasks the engineer has to decide when to stop the
design process. However, the system can check if there are remaining subtasks
or the structural concept is incorrect.

In a classical planning framework plans are synthesized by actions based on
how they affect the world. There might be however other information re-
sources that can control the planning process. In hierarchical planning for
example, so-called control knowledge is represented in hierarchical task net-
works, to provide information about the structure of possible plans [Yan98].
A system state then incorporates not only the world state but also the refine-
ment state of the task network as introduced in Chapter 2. Another extension
is to evaluate the current state for directing the search process [NSE98]. In
the conceptual structural design domain, the engineer exploits both informa-
tion sources. First, he draws on the decomposability of the conceptual design
task into nearly self-contained subtasks. Second, he evaluates always the cur-
rent design state in terms of his conceptual knowledge to avoid unnecessary
backtracking. Domain information is usually given by a causal theory of the
underlying domain [Wil88]. WILKINS states that practical planning requires
a richer model than only the planning domain [WD01]. Therefore, a model
about the domain objects is often used upon which conditions are defined.
The conceptual knowledge in the TBox and CBox represents this model. In
this way, additional control information about correct design states can be
supplied to guide the search.

Because states have certain meaning and determine, which actions are ap-
plicable in these states, describing extensionally system states is not most
suitable for stating facts about it [Rin03]. An ABox A and a list of remai-
ning subtasks t = [t1, . . . , tn] describes theses facts in the formalism. This
ABox - combined with completeness and consistency testing - and the list
of subtasks can then be used to guide the search for a suitable sequence of

3 The Formalism 78

actions during design. An initial concept I0 is given by a consistent ABox
A0 and successive system states are reached by planning actions on the task
level or design actions on the conceptual level. At the end of design, when
the list of subtasks on the stack is empty, a model IG for such a complete
and consistent ABox is constructed.

Design actions AD are defined in terms of their applicability to a state des-
cription and a simple subtask and how they change the state by deleting or
adding assertional axioms from the current ABox. Often, there are regulari-
ties in the set of design actions because objects of the domain behave in the
same way. This leads to the introduction of design operators which include
a set of variables {?x1, . . . , ?xn} as placeholders for design object names OS .
Variables have to be first substituted by names of domain objects before an
operator can be applied to a state in form of a design action. A substitution is
a mapping τ = {?x1/o1, . . . , ?xn/on} from the set of variables into the set of
domain object names. Thereby, a set of similar actions can be expressed by
one operator, also called a STRIPS operator. An extended substitution is a
substitution for which additional variables not occurring in the precondition
have been replaced by object names coming from user input. A design opera-
tor is a 5-tuple 〈name, pre, bin, del , add〉. The name includes the name of the
simple subtask to which the operator can be applied. The precondition, delete
list, and add list being sets of assertional axioms in which the names of the
individuals are replaced by variables. A binding set ensures that all domain
variables are instantiated in the add and delete list by user input. The add
and delete list are called effect of an operator because they determine how
the state is updated, resulting in a successor state. Note, that calculations
can also establish bindings for variables in the binding set. An operator is
ground if all the variables in the precondition and effect are substituted by
names of domain objects already in the ABox or introduced by the binding.
A ground design operator is called an design action. Intuitively, an opera-
tor is applicable to an ABox and a simple subtask if a variable substitution
exists such that the ground precondition is a subset of the ABox and the
name matches the task name.

Example 14 (Design operator and its application) Consider for exam-
ple the design operator aD for a column:

aD = 〈makeColumn,

{Beam(?x1)},

{setColumn(?x2)},

{}, {supports(?x2, ?x1)}〉.

79 3.3 The Description Logic Planner

The operator is applicable to a state A1 = {Beam(B1)} and a simple task
tS = makeColumn because the operator name matches the task name and
{Beam(B1)} ⊆ A1 under τ = {?x1/B1, ?x2/C1} with C1 the new column
object as user input. The application of the design action yields a successor
state with A2 = A1 ∪ {supports(?x2, ?x1)τ}. Delete and modify actions are
similar but defined over different set operations in the effect.

In classical planning it is not possible to describe how complex tasks have
to be performed. The hierarchical organization by task descriptions is an
important technique to reduce the complexity of designing by control infor-
mation [ENS95]. A design domain includes then additionally to the set of
design operators a number of task descriptions about how a task is decompo-
sed into a number of subtasks at a more detailed level by planning actions AP .
Not decomposable tasks are considered to be simple from which design ope-
rators are referenced, whereas compound tasks are decomposed by planning
actions into sequences of task descriptions at lower level. This kind of task
description is called hierarchical task network, abbreviated HTN [Yan98], and
originates from early work of SACERDOTI about skeleton plans [Sac80]. The
lack of theoretical understanding delayed the progress of HTN planning for
which theoretical semantics were first introduced by EROL and HENDLER

in [EHN94]. EROL also showed that HTN planning is more expressive than
classical planning because cycles in plans and interleaving among subtasks
may occur as in design [Ero95]. HTN planning employs the refinement plan-
ning model for which similar to plan-based search a compound initial task
as plan is refined by decomposing it into subtasks through the hierarchy into
greater levels of detail. To represent control information about the structure
of possible plans on lower abstraction level, the planning language must be
extended to include a construct for the hierarchical task network. It refers
to a partially ordered set of subtasks {t1 ≺ t2, . . . , tk ≺ tl}. Thereby, recipes
can be specified to perform complex tasks. A task specifies an abstract goal
network, which has to be realized by subtasks on lower abstraction level,
called task reduction. Interactions of subtasks are resolved by protection of
interfering conditions, called constraints among subtasks.

In partial-order planning it is hard to reason about the states since the states
are not totally instantiated during the search. This led to the reduction of
full HTN planning to hierarchical ordered task planning, developed by NAU

et al. [NCLMA99, NCLMA01]. In this planning framework, task networks
have to be completely ordered resulting in the list form [t1, . . . , tl]. It is an
adaptation of HTN planning to the needs of practical applications because
complex reasoning like logical inference, calls to external programs, etc. have
to be performed for the current state while planning to prune large parts of

3 The Formalism 80

the search space [NSE98]. This need applies also to conceptual design where
the design state space is very large and the number of possible design actions
must be reduced. The engineer therefore not only evaluates the incomplete
structural concept on the conceptual knowledge but also decomposes concep-
tual design into suitable subtasks. Whenever he wants to plan the next task
he has already planned everything that comes before, to know the current
state of the world. Therefore, the network has to be totally ordered, called
a tasklist, and the subtasks in this extensions have to be decomposed from
left to right. Thus, tasks have the same order in planning and later executi-
on, which allows their interleaving, which is also sometimes called replanning
[Wil88, Mye96]. Another advantage of this planning technique is that the
search strategy allows forward planning from the initial state and backward
planning from the goal state at the same time since task networks represent
the goal structure [NCLMA01].

Because regularities exists in the planning actions methods are introduced, si-
milar to operators for actions. They describe how compound tasks are decom-
posed. These methods represent control knowledge about the design process
in form of task decompositions and groupings of design actions into simple
subtasks. A method is 3-tuple 〈name, pre, red〉. The name includes the name
of the compound task to which the method can be applied. The precondition
is the same as for a design operator. The reduction is a sequence of sub-
tasks [t1, . . . , tl] at a lower task level. The reduction might include simple or
compound tasks. A method with a ground precondition is called a planning
action.

Example 15 (Method and its application) Consider the focused com-
pound task t1 = designVerticalSystem in a system state S1 with a structural
concept description A = {VerticalSystem(VS), Concept(C), hasPart(C, VS)}.
The method

aP = 〈designVerticalSystem,

{hasPart(?x2, ?x1)},

[designColumnSystem, designBeamSystem]〉

is applicable to S1 = (A, [t1, . . . , tn]) and results as planning action in the
successor state

S2 = (A, [designColumnSystem, designBeamSystem, . . . , tn]).

For a simple subtask, the number of design actions is hence reduced the
engineer can choose from. The system aids him through the design process
by offering suitable reductions to the engineer.

81 3.3 The Description Logic Planner

Some description logics have been proposed for including planning facilities.
For an overview of them see [AF00] and for single extensions (cf. [DINR96,
LS02]). They use for example the system CLASSIC to encode a modal ope-
rator by rules to model state transitions or enhanced STRIPS style operators
with semantics to capture the relational structure of the planning domain.
However, these formalisms are only in a limited way employable to the con-
ceptual design domain because they lack constructs for representing control
information necessary to represent a conceptual design domain like the one
of building structures. In the next subsection, I define a hierarchical planning
language. It uses ideas from [LS02] where preconditions, bindings and effects
are defined in terms of restricted description logic expressions.

3.3.5 Planning Language Definition

The planning language encodes the actions to change the system state. Con-
trol knowledge is encoded in the preconditions and task reductions for com-
pound tasks at the task level and in the preconditions of operators for simple
tasks. Testing actions AT are differently represented. Testing the consisten-
cy of the developing structural concept is encoded as a condition in the
preconditions of design operators and methods. This ensures that the engi-
neer does not continue his design on an inconsistent concept. The predicate
StateConsistentp() for an ABox makes a call to the reasoning service of consi-
stency testing of a current ABox, denoted A, T ⊢ {⊤,⊥} where ⊤ is returned
for a consistent and ⊥ for an inconsistent ABox. If the design state is consi-
stent the engineer can continue. Otherwise he has first to modify the current
concept to regain consistency before continuation. Testing the completeness
of a structural concept is carried out on demand of the user and at the end
of a simple subtask. A testing action makes a call to the reasoning service
of completeness testing of a current ABox, denoted A, C ⊢ {⊤,⊥}. It re-
turns in case of incompleteness ⊥ and the set of incomplete individuals for
a structural system. Otherwise, such a testing action returns ⊤ and removes
the head of the tasklist because the task is considered finished. Actions to
finish a simple subtask are modeled as testing actions for which a call to the
completeness test is done if required. A tasklist describes the actions that
remain to be performed in order to develop a correct structural concept.

Definition 21 (Task and tasklist) Let TS and TC be two disjoint sets of
simple and compound task names from P. If t1, . . . tn ∈ T = TS ∪ TC then
t = [t1, . . . , tn] is a tasklist.

3 The Formalism 82

A system state consists of an ABox and a tasklist. During design, this state
is changed by the algorithm that will be later presented.

Definition 22 (System state) If A is an ABox and t is a tasklist a system
state is a tuple S = (A, t). The head of the tasklist is called focused.

Conditions defined as parameterized assertional axioms specify preconditions
and effects, which determine when a design operator or method is applicable
and how a design action affects the current design state.

Definition 23 (Condition) Let OX be a set of object variables, disjoint
from OS . A condition c is an assertional axiom

C(?x1), R(?x1, ?x2), f(?x1, ?x2), P (?x1, . . . , ?xn)

where the concrete and abstract object names of OS have been replaced by ob-
ject variables ?x1, . . . , ?xn ∈ OX. A condition is ground if all object variables
of OX have been replaced by names of OS . A test condition is a predicate
StateConsistentp : A, T ⊢ {⊤,⊥} for consistency testing of a current struc-
tural concept under development.

Design operators are stored in the knowledge base of the system. They turn
into design actions after variable substitution.

Definition 24 (Syntax of design operators) Let TS be the set of simple
task names. A design operator is a 5-tuple aD = 〈name, pre, bin, del, add〉
with a name tS ∈ TS, a precondition as set pre of conditions including always
a test condition, a binding as set bin of new abstract object assignments
?x → a with a ∈ OA or new concrete object assignments ?x → x with
x ∈ OD, an delete list as set del of conditions, and an add list as set add
of conditions. A precondition is ground if all elements of pre are assertional
axioms. An operator is ground if all design variables have been replaced by
object names. AD = {aD1

, . . . , aDn
} is the set of design operators.

Object assignments are carried out by user input. For concrete objects, an
unknown value can be assigned by a calculation. The application of design
operators to a state define the successor state by set operations on the current
ABox. In the case of a synthesis action, the successor state has to contain
additional assertional axioms for the new structural elements and design in-
formation. In the case of delete actions, assertional axioms are subtracted
from the current ABox. Modifying actions, are performed by combined ad-
dition and subtraction of assertional axioms.

83 3.3 The Description Logic Planner

Definition 25 (Design operator application) Let aD be a design opera-
tor and S a system state. The design operator aD is applicable in a state
S = (A, t = [tS : x]) if there is a substitution for aD such that preτ =
{c1τ, . . . , ckτ} ⊆ A and name(aD) = tS. If aD is ground under the extended
substitution of τE ⊇ τ called a design action, and S a system state then the
successor state is obtained under the ground add list addτE

= {c1τE , . . . , clτE}
and delete list delτE

= {c1τE , . . . , cmτE} as follows:

δ(A, tS, aD) =

(A∪ addτE
, tS) for a synthesis action,

(A \ delτE
, tS) for a delete action,

(A \ delτE
∪ addτE

, tS) for a modify action.

This operation implements the transition function for design actions. Testing
the load transfer for completeness is covered by a different operator since it
manipulates the tasklist of a system state.

Definition 26 (Syntax of test operator) Let TS be the set of simple task
names. A test operator is a 3-tuple aT = 〈name, pre, com〉 with a name tS ∈
TS, the empty set as precondition pre being always ground, and a complete
condition com. The condition com is a predicate StateCompletep : A, C ⊢
{⊤,⊥}. AT = {aT1

, . . . , aTn
} is the set of test operators.

The predicate tests the completeness of a current structural system under
development in a focused and simple tasks. The operator removes the focused
task from the tasklist in case of completeness.

Definition 27 (Test operator application) Let aT be a test operator and
S a system state. A test operator aT is applicable in a system state S =
(A, t = [tS : x]) if name(aT) = tS. It is called a test action for a simple
subtask tS. The successor state is obtained as follows:

δ(A, tS, aT) =

{

(A, x) for StateCompletep : (A, C) = ⊤,

(A, t) for StateCompletep : (A, C) = ⊥.

The system holds out a range of methods that encode also control knowledge
to decompose compound tasks by planning actions. Methods are applicable
in different states depending on the developing concept whereby suitable task
decompositions are chosen by preconditions.

3 The Formalism 84

Definition 28 (Syntax of methods) Let TC be the set of compound task
names. A method aP = 〈name, pre, red〉 is a 3-tuple with a name tC ∈
TC, a precondition as set pre of conditions including a test condition, and
a reduction red as tasklist. A method is ground if all elements of pre are
assertional axioms. AP = {aP1

, . . . , aPn
} is the set of methods.

Methods for which their preconditions are satisfied by the current system
state are offered for task decomposition. After their application the head of
the tasklist is replaced by the reduction in the method’s body, which has to
be in turn realized. The semantics of a method application is defined in terms
of a tasklist reduction.

Definition 29 (Method application) Let aP be a method and S a design
state. The method aP is applicable in a state S = (A, t = [tC : x]) if there is a
substitution for aP such that preτ = {c1τ, . . . , ckτ)} ⊆ A and name(aP) = tC .
Such a ground method is called a planning action and the result is obtained
by δ(A, tC, aP) = (A, [red(aP), x]).

At intermediate task levels the engineer can decompose the tasks until he
reaches the conceptual level, where he can select between design actions to
extend the ABox. A range of applicable design actions in a current system
state is offered for application because the engineer should remain in control
of designing the concept by suitable elements. In the next section, the inter-
active planning algorithm is presented to support design at the task level.

3.3.6 Interactive Planning Algorithm

I start with relating the constituents of the model MCD from definition 4 to
the formalism defined. The initial system state given as problem specific input
to the algorithm is S0 = (A0, t0). The consistent initial ABox A0 represents
the concept and the compound initial task t0 = designStructuralConcept the
task to be performed. A0 provides all required design information, which is
already known prior the solution process. This is typically design information
that can be looked-up from tables like material properties, occupancy classes,
safety factors, etc.. The set of system states S is not completely constructed
prior problem solving but only successively by actions. This is necessary
because the search space is rather large due to possible attribute assignments
of elements, element combinations by composition and support relations, and
possible task decompositions. The set of actions are persistent knowledge.
They are the operators AD and AT and the methods AP . The set of tasks
remains unchanged. The algorithm returns a goal system state SG = (AG, [])

85 3.3 The Description Logic Planner

together with a plan P = [a1, . . . , an]. For a state to be a goal state, the final
ABox AG must be consistent and complete.

The algorithm decomposes the head t1 of the tasklist t = [t1 : x] of the system
state S = (A, t) into a list of subtasks at a lower task level by planning
actions. The head of the list is always first decomposed until a simple task is
reached on the conceptual level. On this level, the engineer develops by design
actions the structural concept. By test and finish actions the engineer can
determine for simple tasks, if they are complete. The algorithm uses depth-
first search and stores intermediate design plans in the nodes. For operator
as well as method applicability, a breadth search step is included.

define procedure CONED(A, t, AD, AT , AP)
if t = [] then return []
if t1 ∈ TS then

Aapp := {aD,T ∈ AD ∪ AT | pre(aD,T) is ground and
aD,T is applicable to t1 in A}

aD,T := user-choose(Aapp)
π := CONED(δ(A, t1, aD,T), AD, AT , AP)
if π = failure then

return failure
else return aD,T .π

else if t1 ∈ TC then
Mapp := {aP ∈ AP | aP is ground and

aP is applicable to t1 in A}
if Mapp = ∅ then

return failure
else aP := user-choose(Mapp)

π := CONED (δ(A, t1, aP), AD, AT , AP)
return aP .π

Figure 3.4: Interactive planning algorithm

The algorithm in figure 3.4 starts searching for an applicable operator or me-
thod in the knowledge base for head t1 of the tasklist t. In case, it is a simple
task and a set of operators is applicable to it in the current system state, they
are displayed for user choice. The engineer can now select an action due to his
preference. Either he selects a design action to develop the structural concept
or he checks the subtask for completeness by a testing action. If the simple
task is complete, it is removed from the tasklist, otherwise it remains on the
list since the task is incomplete. If the ABox A of the successor state, which is
obtained by the design action application, remains consistent, the algorithm

3 The Formalism 86

is recursively called with the new ABox. The algorithm offers a reduced ope-
rator set for an inconsistent ABox because the predicate StateConsistentp

makes all operators that are not suitable to remove the parts that caused the
inconsistency unavailable.

In case, t1 is a compound task specified in the tasklist t and a set of methods
is applicable in the design state, the methods are displayed for user selection.
The engineer can choose a method due to his preference, again. The reducti-
on of the method specified in the method’s body is appended in front of the
tail x by a method application and the algorithm is recursively called with
the expanded tasklist. If the set of applicable methods is empty, the algo-
rithm returns a failure. If the tasklist t becomes empty, the final structural
concept AG is consistent and complete on the conceptual knowledge. The
algorithm returns the structural concept AG and additionally the complete
action sequence P stored in π.

In the next chapter, a detailed example of a computer-aided design with the
prototype system is given based on the introduced formalism.

Chapter 4

Prototype System

The goal of this chapter is to present an envisaged design session with the
prototype system. At the beginning, the motivation for a graphical user inter-
face and its components are explained. The interface components make the
design support available based on the underlying formalism. Along the ses-
sion, the extended design support is explained in terms of the requirement
specification. It highlights the different types of support to improve the user’s
design performance. Finally, possible application scenarios of the prototype
system are listed.

4.1 GUI Design of the System

Graphical user interfaces (GUI) of todays computer aided drafting (CAD)
systems have to allow for direct manipulation of graphical objects by poin-
ting devices like the mouse in a window-based interface. The advantage of
such window-based interfaces is that the user can directly manipulate the
objects of the domain model, here the model of the structural concept, which
supports intuitive working with a CAD system. As SHNEIDERMAN points
out [Shn98] this is especially important for explorative tasks like design. The-
refore, the computer-aided conceptual design system developed in this thesis
possesses the same main GUI components as todays CAD systems, which
are a drawing window for direct object manipulation, a palette of commands
to trigger design and testing actions, and a documentation line for system
output [Inf97]. The high amount of functionality of modern CAD systems has
led to a high number of available commands at their GUIs. This increases
not only errors but also lowers the productivity of users, especially new ones.

88 4 Prototype System

The prototype system tries to cover this usability requirement by an additio-
nal GUI component, which usual GUIs of CAD systems lack. It displays the
task of conceptual design with its corresponding subtasks and dependencies
in a task structure dialog. The dialog restricts the number of available com-
mands the user can select from. Furthermore, the system offers a reasonable
sequence of design commands to reduce the number of redesign steps. The
formalism with its reasoning services makes this possible because it compu-
tes how tasks are suitably decomposed into subtasks and which design action
commands are available under a simple task in the task structure.

To design these main components of the GUI for the prototype system I
employed usability engineering. Usability engineering provides methods to
design user-centered interactive systems. For a list of them see [Shn98] and
for a summary of the most prominent ones [Wol03]. Because the GUI design
was not the main part of the thesis, I selected the discount usability engi-
neering approach, proposed by NIELSEN [Nie90]. The approach focuses on
four major techniques. User and task observation is carried out to get a clear
notion of the user’s task, in my case conceptual design of concrete building
structures. This was covered in Section 2.5 “Design Studies” of the thesis.
The resulting task description has to be mapped to scenarios for testing.
A scenario features a part of or the complete system’s user interface, which
can be realized by prototypes or “mockups”, to test the design with users. I
used paper prototypes proposed by RETTIG in [Ret94] that allow a fast and
cheap production of scenarios. They can in turn be tested by simplified thin-
king aloud studies in iterative cycles. I conducted three studies with different
engineers to identify major usability problems. The engineers had different
levels of experience to cover a range of potential system users in the future.
NIELSEN mentions in [Nie94] that three to five users are often sufficient to
determine 75 per cent of the usability problems. The final step, a heuristic
evaluation of the prototype is conducted by an usability expert following ge-
neral evaluation rules or guidelines, like for CAD systems given in [Inf97].
This step has not been carried out, yet, since the whole GUI and underlying
system core with its graphical output has not been completely implemented
yet.

The studies showed, that the design support for testing the correctness of
the structural concept was helpful. It had a different importance for all three
engineers but was not reducing the usability of the system. The novice and
unexperienced engineer reduced the rate of concepts that did not exhibit a
global load transfer or violated constraints of the DIN 1045-1, whereas the
experienced practitioner found it helpful that correctness of the structural
concept was also checked in the background by the system. The design sup-

4.1 GUI Design of the System 89

port of planning the design process prior designing, was experienced relatively
to the engineer’s level of control knowledge. For the experienced practitio-
ner, the process control in form of the task structure dialog was not helpful,
whereas for the less experienced engineer and the novice the control was im-
portant to improve their performance. The increased performance resulted
from a focused design approach with less iterations. All test users felt sup-
ported in a flexible way, if the system allowed to modify the once designed
concept in simple tasks.

Figure 4.1: Main GUI components

The so far performed usability engineering steps resulted in a GUI design,
depicted in figure 4.1. The main GUI components are the drawing window,
the palette of design actions, the task structure dialog, and the documentation
line. The buttons for the testing actions, e.g. vertical load transfer control, are
also found at the palette. The modal dialogs for input about structural objects
are not shown in the figure. Apart from the drawing window, a 3D-viewer
shall be used to display the spatial concept under development. However, it
is not implemented yet. Typical modal dialogs will be shown along a design
session in Section 4.2.

90 4 Prototype System

The drawing window is an ordinary 2D window for graphical output. It dis-
plays the current structural concept and allows direct manipulation of struc-
tural elements and loads. Correct structural objects are displayed in blue,
whereas incorrect ones that contradict the definitorial knowledge or need
revision due to insufficient load transfer are displayed in red.

The task structure dialog is the control for the design process. It displays
the task structure as decomposition tree with the subtasks dependencies on
different task levels. A user can dynamically decompose the initial conceptual
design task according to the current system state by clicking on an available
task item in the tree. A task is highlighted in bold and called focused when
the user clicks on the task item. It triggers the search process for applicable
design methods Mapp for compound tasks or design operators Aapp for simple
tasks, respectively. Since the subtasks have to be linearly-ordered the task
decomposition tree is dynamically explored top-down. Furthermore, a task
at the head of a tasklist is highlighted and set available in the decomposition
tree, whereas tasks in the tasklist’s tail are set unavailable. However, it is
possible for the user to modify once entered design input for a focused simple
task, which leads to local cycles in the tree. If a set of compound design
methods is applicable, the engineer has to select a single one for further
refinement. At the simple task level, design and testing action buttons from
the palette become available for highlighted subtasks from which the user
can select.

The palette of design actions is integrated in the application frame window.
Action buttons in the palette become available for a focused simple task in
the tree, if the corresponding design actions are applicable. The range of
available design action buttons on the palette is dynamically adapted to the
current system state by searching for the set of applicable design operators
Aapp. If a user selects a design action button, an input cycle for a structural
object starts. It includes user input like points from the drawing window via
mouse selection and from a displayed modal dialog. At the end of this cycle, a
corresponding design action evolves the structural concept. Structural object
input, which results in an inconsistent structural concept, is displayed in red
and must be immediately revised. The button for load transfer control can
be activated and deactivated. It uses the reasoning service of completeness
testing to compute elements that do not exhibit a complete load transfer. In
an active state, elements turn red in the drawing window that do not transfer
correctly the loads to supporting members. In addition, a finish button allows
the user to finish a focused task at any time. The finish action triggers a
completeness test if required.

4.2 Design Session with Prototype 91

The documentation line outputs information about the design process and
the structural concept. For example, after a design action has changed the
structural concept, the documentation line displays information about the re-
sult of the consistency test. The system performs this test in the background.
Or as another example, if the user has set up conflicts, he is prompted to
reexamine these in the corresponding simple subtasks.

Modal dialogs for user input cover a set of object related design actions. The
planning component computes, which of them are applicable to a focused
element, and makes the corresponding widgets available on the dialog. For a
structural element as example, the user can add an element, relate it to other
structural objects, choose its type, and preliminary design it. However, at a
certain system state, it may not be possible to size it, because first the type
of element needs to be chosen or the internal forces have to be computed.

GUI elements like design action buttons on the palette and task items of the
decomposition tree change dynamically their state depending on the current
system state. To show how the system works, parts of it are explained the-
refore on the basis of the underlying formalism. The structural concept with
its systems, elements, and loads is described by an evolving ABox and at
selected points shown in a 3D-viewer. The task decomposition tree is direct-
ly given in the formalism instead of the task structure dialog. The tasklist t
comprises the currently focused task and the remaining tasks at the same le-
vel but not tasks at higher levels. Tasks in front of a focused task are already
removed but shown for clarity. If different task refinements or design actions
are possible they are given as a set Mapp or Aapp. In these sets, test and
finish actions are skipped for brevity. Furthermore, the add list is shown for
synthesis actions, the delete list for delete actions, and both lists for modify
actions, respectively. For readability, the concrete domain objects created in
the binding lists are not written in the ABox and the operators.

4.2 Design Session with Prototype

For representation purposes, the same office building as in example 3 is em-
ployed. The origin of the coordinate system is located at the down left end
of the building. The initial concept has first to be built up based on informa-
tion in the drawings and the design brief. Information that is independent of
a certain task instance like concrete classes, reinforcement grades, possible
design criteria, foundation types etc. are stored in the initial ABox A0. They
are related by choose conditions in the binding list of design actions to the
structural concept, denoted CONCEPT. Set conditions denote user input.

92 4 Prototype System

The design process starts in the system state S0 = (A0, t0) when the user
clicks on the highlighted initial task item

t0 = [designStructuralConcept]

in the task decomposition tree of the task structure dialog. After the system
has found the only applicable method

aP1
= 〈designStructuralConcept

{},

[enterBuilding,

checkFeasibility,

makeStructuralConcept]〉,

the top-level task t0 expands to the list of ordered compound subtasks

t1 = [enterBuilding, checkFeasibility, makeStructuralConcept]

in the decomposition tree. Since the subtasks are ordered, they have t be com-
pleted by the user in this order. In the current system state S1 = (A0, t1),
the user starts to build-up the initial incomplete structural concept I0 repre-
sented by a consistent but incomplete ABox. In this subtask, the operators
and methods have no additional preconditions to the consistency test becau-
se entering the building is a routine task. It consists of the assignment of
the building parameters and design criteria, the existing structural elements
with their geometry given by the architectural drawings, and applied loads
on the structure. The load cases are self-weight, and variable actions like oc-
cupancy, wind, and snow. When the user focuses the subtask of entering the
building, the system expands it by a planning action aP2

, similar to aP1
, to

three ordered subtasks

t2 = [setParameter, defineBuildingGeometry, applyLoads].

Now at the conceptual level, the engineer has to define actions on existing
building elements. Three operators, denoted Aapp = {aD1

, aD2
, aD3

}, become
applicable to the simple subtask for user choice in the action palette. The
first operator

aD1
= 〈setParameter,

{StateConsistentp()},

{StructuralConcept(?x1 → CONCEPT),

chooseSoilClass(?x2 → a0),

chooseCriteria(?x3 → b0),

4.2 Design Session with Prototype 93

chooseFoundationType(?x4 → c0),

chooseConcreteClass(?x5 → d0),

chooseSteelGrade(?x6 → e0),

chooseExpositionClass(?x7 → f0)},

{hasSoilClass(?x1, ?x2), hasCriteria, (?x1, ?x3),

hasFoundationType, (?x1, ?x4),

hasConcreteClass(?x1, ?x5), hasSteelGrade(?x1, ?x6),

hasExpositionClass(?x1, ?x7), Parameter(?x1)}〉

can be used to assign building parameters. Objects that are already in the
initial ABox are denoted by a subscript. The second applicable operator is

aD2
= 〈setParameter,

{StateConsistentp()},

{StructuralConcept(?x1 → CONCEPT),

setFunctionalGridxm
(?x2 → a), setFunctionalGridym

(?x3 → b)},

{hasFunctionalGridxm
(?x1, ?x2), hasFunctionalGridym

(?x1, ?x3),

Grid(?x1)}〉

to choose a functional grid. The third one, denoted aD3
, is to define storey

heights and occupancies. When the user for example selects the operator aD1

a modal dialog, shown in 4.2, is opened.

Figure 4.2: Building parameter dialog

94 4 Prototype System

After the user has entered the building parameter values in the figure, the
system substitutes the variables in the operator’s add list and transforms the
current state A0 into the successor ABox

A1 = {hasSoilClass(CONCEPT, GE),

hasCriteria, (CONCEPT, SPACE/NOWALLS),

hasFoundationType, (CONCEPT, SHALLOW),

hasConcreteClass(CONCEPT, C20/25),

hasSteelGrade(CONCEPT, B500S),

hasExpositionClass(CONCEPT, XC3),

Parameter(CONCEPT), . . .},

where GE stands for a good soil class, SPACE/NOWALLS for a flexible room
concept without internal walls, and SHALLOW for a foundation with single
and line footings, respectively. These abstract constraints are later used to
select suitable element types. The user adds the functional grid to the concept
by the design action aD2

with the ground effect hasGrid(CONCEPT, GRID)
and FunctionalUnitm(GRID, a1) with a1 = 5.0 (because the two functional
unit lengths are the same they are abbreviated by one). This action results
in

A2 = A1 ∪ {hasGrid(CONCEPT, GRID), FunctionalUnitm(GRID, a1)}.

Finally, he chooses the operator aD3
to define storey occupancies and storey

heights, represented in A3 by hasPart(CONCEPT, G1), StoreyHeightm(G1, h1),
hasOccupancy(G1, p1), and Shop(p1) for the ground storey for example.

The user can also skip design actions, since a building does not always have a
functional grid or changing storey heights. When the user wants to change or
delete his entered input, he can do so by the “modify”and “delete” operators.
Corresponding modify operators aD4

, aD5
, aD6

exist for each of the three ope-
rators. A delete operator aD7

exists only for the grid action because the other
design information has to exist and cannot hence be deleted. A modification
of the building parameters is for example possible, if an assertion of the cur-
rent design state matches the condition Parameter(?x1) in the precondition
of the modify operator with name name(aD4

) = setParameter. It works for
the operators aD5

and aD6
correspondingly. A delete action like aD5

removes
ground conditions from the current ABox.

After every design step, the design state is tested for consistency. When the
user for example finishes the parameter subtask, A3 is checked on an axiom
of the definitorial conceptual knowledge T for consistency.

4.2 Design Session with Prototype 95

BuildingParameter
.
= ∃=1hasCriteria.⊤ ⊓

∃=1hasFoundationType.⊤ ⊓

∃ConcreteClass.StrengthN/mm2 . ≤100 ⊓

∃hasPart.(∃hasPart.Slab ⊓

∃supports.(ConcentratedLoad ⊓

¬∃hasValuekN . >7))) ⊓

∀hasPart.(hasOccupancy.(Residence ⊔ Office ⊔

Shop ⊔ Accumulation))

If for example the user defines distributed loads that are larger than 5 kN/m2

or a concentrated load that is larger than 7 kN, which lies outside the scope of
ordinary building structures according to the DIN 1045-1, the system notices
that and outputs this information on the documentation line. In the example,
the building parameters are consistent and the user can continue with its
design. Otherwise, he has to modify his input until it becomes consistent. The
finish action adds the assertion setParameterOK(CONCEPT) by the design
action aD8

to set the focus on the subsequent subtask.

Up to now, the actions aP1
, aP2

, aD1
, aD2

, aD3
, and aD8

have been appended
to the empty solution plan resulting in P1 = [aD8

, aD3
, aD2

, aD1
, aP2

, aP1
] and

the system state S6 = (A4, t2). If the user has modified the grid, for example,
the solution plan includes an additional action aD5

somewhere between aD8

and aD2
. When the user clicks on the highlighted subtask item in

t2 = [setParameter, defineBuildingGeometry, applyLoads].

in the decomposition tree, the system searches for applicable methods and
finds the method

aP3
= 〈defineBuildingGeometry

{StateConsistentp(), setParameterOK(CONCEPT)},

[makeStoreyGeometry, . . . ,

makeLateralSystem]〉,

which expands the focused subtask into the tasklist

t3 = [makeStoreyGeometry, . . . , makeLateralSystem]

to define the element geometries at each storey and to set up stabilizing
elements. As an example, the dialog shown in figure 4.3 is referenced by the

96 4 Prototype System

first subtask of t3 for which two different design operators, one for slabs and
one for walls, have become applicable, denoted by Aapp = {aD9

, aD10
}. Walls

that are located only at a single storey do not exist in this example.

Figure 4.3: Slab dialog

After the user has entered the values for the geometry by selecting points in
the drawing window, the design action

aD9
= 〈makeBuildingGeometry,

{StateConsistentp()},

{Storey(x1 → G1), Slab(x2 → SL1),

setGeometry(GE1 → [(0.0, 0.0), (15.0, 0.0)(15.0,−15.0),

(30.0,−15.0), (30.0, 9.0)(28.0, 9.0),

(24.0, 13.0), (24.0, 15.0), (0.0, 15.0)]),

setKozm
(z1 → 4.875),

setLoad(p1 → 6B),

chooseSupportElements(lst1 → nil),

chooseLoadElements(lst2 → [p1])},

{Slab(SL1),

hasPart(G1, SL1), hasCoordinate(SL1, z1)

hasGeomerty(SL1, GE1), loads(p1, SL1)}〉

4.2 Design Session with Prototype 97

transforms the current ABox into A5 where bound variables are written wi-
thout question mark. In this dialog, the user can only enter loading or suppor-
ting elements, which have been previously defined. In the example, the occu-
pancy load p1 is displayed because it loads the slab. The items for selecting a
slab type and sizing it by a rule of thumb are not available at the tab-control,
because their corresponding design operators name(aD15

) = selectSlabType

and name(aD16
) = SizeSlab are not applicable to the focused subtask. If the

user tries despite to select one of them, the system outputs at the documenta-
tion line, that selecting a slab type is part of the subtask checkFeasibility and
that sizing the slab requires a chosen slab type plus additional information.
After the user has entered in five steps the other slabs for each storey by copy
actions, the intermediate plan is now given by P2 = [aD19

, aD9
, . . . , aP3

,P1]
with aD19

a finish action. In the system state S19 = (A16, t3),

t3 = [makeStoreyGeometry, . . . ,makeLateralSystem]

makes the design operators Aapp = {aD20
, aD21

} for shear walls and cores
applicable. The user adds the two sanitary cores located at either ends of the
building. He could also select existing shear walls as stabilizing elements. As
an example, consider the core dialog shown in figure 4.4.

Figure 4.4: Core dialog

98 4 Prototype System

The corresponding design action is used to add the right sanitary core to the
lateral stability system.

aD21
= 〈makeStabilitySystem,

{StateConsistentp(), StoreyGeometryOK(6)},

{StabilitySystem(x1 → LS), Core(x2 → CO1),

setGeometry(GE2 → [(15.0,−11.0), (15.0,−15.0),

(19.5,−15.0), (19.5,−11.0)]),

setKozm
(z1 → 0.0), setKozm

(z2 → 22.5),

setCoreThickness(t1 → 0.3),

chooseConcrete(RC → C300),

chooseSupportElements(lst1 → nil),

chooseLoadElements(lst2 → [SL1, SL2, SL3, SL4, SL5, SL6]),

calculateSelfWeightkN/m(gC1
= 25 · 0.3 · 2 · (4.0 + 3.0))},

{Core(CO1), hasPart(LS, CO1),

hasGeomerty(CO1, GE2), hasMaterial(CO1, C30),

hasCoordinate(CO1, z1), hasCoordinate(CO1, z2),

Thicknessm(CO1, t1),

supports(CO1, SL1), . . . ,

SelfWeightkN/m(CO1, gC1
)}〉

The user indicates by the design action name(aD28
) = makeStabilitySystem

that he has finished the initial stability system LS given by the architectural
design. The system computes first in the binding list of aD28

, whether or
not the cores are symmetrically located. In the example, ¬Symmetric(LS) is
deduced. The system outputs on the documentation line that the user should
provide additional shear walls in the subtask checkFeasibility and adds the
assertion¬Symmetric(LS) to the current ABox. Now, the algorithm checks in
the consistency test if the object StabilitySystem(LS) is at least consistent on
the inclusion axiom

StabilitySystem ⊑ ∃=3 hasPart. ShearWall ⊔

∃≥2 hasPart. Core ⊔

(∃=1 hasPart. Core ⊓

∃=2 hasPart. ShearWall).

4.2 Design Session with Prototype 99

The algorithm only tests if design assertions about the stability system given
by the ABox part

A19 = {. . . ,

StabilitySystem(LS),

hasPart(LS, CO1),

hasPart(LS, CO2),

Core(CO1),

Core(CO2), . . .},

contradict the inclusion, which is not the case in this example. This test
however is not a sufficient condition to provide lateral stability, indicated by
the inclusion axiom. Since the shafts are not symmetrically placed, which
results in a twist around the shear center, additional shear walls have to be
provided. The symmetry assertion from above ensures that the user will later
add further stabilizing elements in the design process.

The subtask makeStabilitySystem results in P3 = [aD28
, aD21

, aD21
,P2] and a

design state S22 = (A19, t2) with the task applyLoads focused. It includes
design information about the specific building parameter, occupancies, the
grid, the six storeys with their slab geometry and the two stiffening sanitary
cores as well as the support and compositional relations among the structural
objects.

Figure 4.5: Wind load dialog

After the system has found an applicable method aP4
for the next subtask in

t2 = [makeParameter, defineBuildingGeometry, applyLoads]

100 4 Prototype System

the focused subtask expands to the tasklist [applyLoad] from which opera-
tors Aapp = {aD29

, aD30
, aD31

, aD32
, aD33

} are referenced to define other loads
on the structure like concentrated loads, linear loads, distributed loads, snow
loads, and wind loads. In the example, only wind loads and snow loads are
applied to the building. As an example, consider the design operator aD33

for
wind loading, which corresponds to the dialog shown in figure 4.5. After the
user has entered the values and closed the dialog, the system calculates the
resultant wind forces WL1, WL1 and applies the design action

aD33
= 〈applyLoad,

{StateConsistentp(),

{WindLoad(x1 → WL1), Windload(x2 → WL2),

setRoofAngle(α → 0.0◦),

chooseSupportElements(lst1 → [LS]),

calculateForcekN(FWx = (0.8 + 0.5) · 30 · 22.5),

calculateForcekN(FWy = (0.8 + 0.5) · 30 · 22.5)},

{WindLoad(WL1), WindLoad(WL2),

loads(WL1, CO1), loads(WL1, CO2),

loads(WL2, CO1), loads(WL1, CO2),

hasValuekN(WL1, FWx),

hasValuekN(WL2, FWy)}〉.

Thereafter, he defines a snow load by an action aD32
and finishes the focused

subtask by the operator name(aD44
) = applyLoad that adds the assertion

appliedLoads(CONCEPT) to the ABox. Other loads are not applied to the
structure in this example.

The ABox A22 resulting from the subsequent actions aD33
and aD32

is checked
for consistency, again. Since it the algorithm returns consistent on the con-
ceptual knowledge, the initial structural concept I0 is reached via the design
plan P4 = [aD44

, aD32
, aD33

, aP4
,P3] in the system state S26 = (A22, t1) with

checkFeasibility focused. The initial structural concept as interpretation can
be constructed from the ABox A22 and includes the structural objects, the
load transfer and compositional relations among structural objects, and the
constraints. After all objects have been realized into their most specific con-
cepts in the TBox T the interpretation I0 = 〈∆I0

, ·I〉 is given as follows for
which ·I corresponds to RI

0 and F I
0 :

4.2 Design Session with Prototype 101

∆I0
= {CONCEPT, G1, . . . , G6, SL1, . . . , SL6,

LS, CO1, CO2,

SPACE/NOWALLS, GE, SHALLOW, WL1, WL2,

g1, . . . , g7, p1, . . . , p7, gC1
, gC2

, s},

StructuralObjectI0 = LoadI ∪ ElementI0 with all x ∈ LoadI0 maximal,

LoadI0 = {WL1, WL2, p1, . . . , p7, g1, . . . , g7, gC1
, gC2

, s},

ElementI0 = {SL1, . . . , SL6, CO1, CO2},

StoreySystemI0 = {G1, . . . , G6},

SystemI0 = {G1, . . . , G6, LS},

DesignableI0 = ∅ and StableI0 = ∅,

ConstraintI0 = {SPACE/NOWALLS, GE, SHALLOW},

supportsI0 = {(LS, WL1), (LS, WL2), (CO1, p2), . . . , (CO1, p6),

(CO2, p2), . . . , (CO2, p7),

(SL1, p2), . . . , (SL6, p7),

(CO1, gC1
), . . . , (CO2, gC2

),

(SL1, g2), . . . , (SL6, g7), (SL6, s)},

hasPartI0 = {(CONCEPT, G1), . . . , (CONCEPT, G6),

(CONCEPT, LS), (LS, CO1), (LS, CO2),

(G1, SL1), . . . , (G6, SL6), }, and

hasConstraintI0 = {(CONCEPT, SPACE/NOWALLS), (CONCEPT, GE),

(CONCEPT, SHALLOW)}.

The domain comprises the incomplete concept CONCEPT, the storey systems
G1−G6, the slab systems SL1−SL6, the lateral stability system LS, the cores
CO1,CO2, the loads g1−7,p1−7, the snow load s, and the wind loads WL1,WL2.
The loads applied to the structure are maximal in the set of structural ob-
jects according to the support relations. The set of support relations does
not order the structural objects totally since no minimal objects exist. The
elements are not designed yet and the building is not stable because of mis-
sing lateral elements. The elements are added to the subset of designable
elements if they have been approximately sized by rules of thumb. Therefore,
the partial functions state-variableI0 and parameterI0 are not used, yet. The
initial structural concept is shown in a 3D-view as in figure 4.6.

102 4 Prototype System

Figure 4.6: Initial structural concept

In the second major compound subtask of

t1 = [enterBuilding, checkFeasibility, makeStructuralConcept]

the engineer wants to establish a stability system, find the conflicting points
because of load transfer discontinuities, and choose an appropriate slab type.
Therefore, the system finds a method

aP5
= 〈checkFeasibility

{StateConsistentp(), appliedLoads(?x1),¬symmetric(?x2)}

[makeStabilitySystem,

checkConflicts,

chooseSlabSystemType]〉,

which is applicable under the substitution τ = {?x1/CONCEPT, ?x2/LS} to
S26 because name(aP5

) = checkFeasibility and

{StateConsistentp(), appliedLoads(CONCEPT),¬symmetric(LS)} ⊆ A22.

This task requests from the user to define additional shear walls due to the
unsymmetric arrangement of the cores. This compound subtask expands thus

4.2 Design Session with Prototype 103

by the method aP5
to

t4 = [makeStabilitySystem, checkConflicts, selectSlabType].

For the first subtask, the make operators with their corresponding modify and
delete operators Aapp = {aD20

, . . . aD25
} become applicable again. The system

would find another method in which this subtask is missing, if the assertion
¬symmetric(LS) was not in the design state. After the user has entered two
more shear walls SW1, SW2 and finished the subtask by aD28

, the design
information about the shear walls and the assertion hasPart(CONCEPT, LS)
about the system are inserted to the current ABox. The system has again
computed in the binding list of the finish action, whether or not the cores
and shear walls are symmetrically located, and has deleted the assertion
¬Symmetric(LS) and added the assertion Symmetric(LS) to the ABox in the
example.

In the subsequent subtask checkConflicts, the engineer has to identify any
load path discontinuities due to changing storey elevations or local load trans-
fer disturbances. This task is, however, not implemented yet and cannot be
supported by the system. In the example, the engineer has to find the conflict,
which arises from the shear walls at the stairwell that must not be located at
the ground storey. Therefore, a local solution will later be required. When the
engineer indicates this conflict by an action of type name = setConflict(aD46

),
the assertion conflict(SW1) as ground effect is added to the current ABox.
After he has finished the subtask by the action aD48

he continues with the
design process.

The next subtask selectSlabType of t4 is to find a suitable slab system
which can be performed by a relational data base query. In the data base, all
possible slab types are stored in terms of span length ratio, load magnitude,
maximum span length, and suitable building criteria. The design action

aD18
= 〈selectSlabType,

{StateConsistentp(), hasGrid(CONCEPT, GRID),

hasPart(G6, SL6)},

{selectSlabType(5.0,5.0,3.75,SPACE/NOWALLS)(SL6 → FlatSlab),

SetSpanLength(l → 5.0)},

{FlatSlab(SL6), SpanLengthmax(SL6, l)}

realizes this data base request, where the required parameters are written
in subscript. The user can select one of the slab type entries found for his
slab design. In the example, the user decides to use a flat slab system with a

104 4 Prototype System

span length of 5 m, asserted by FlatSlab(SL6) and SpanLengthmax(SL6, l). If a
feasible slab system cannot be found, the user has to change the input values
for the data base request. The user finishes the subtask checkFeasibility by
the design action aD49

which adds checkFeasibilityOK(CONCEPT) to the cur-
rent ABox. The design process results in the system state S34 = (A29, t1) with
MakeStructuralConcept focused and the sequence P4 = [aD49

, aD18
, . . . , aP5

,P3].
The consistent ABox

A30 = {. . . ,

Symmetric(LS),

hasPart(LS, SW1),

hasPart(LS, SW2),

ShearWall(SW1),

ShearWall(SW2),

conflict(SW1),

FlatSlab(SL1), . . .

checkFeasibilityOK(CONCEPT)},

for which only the newly inserted structural objects and relations are given. If
the user controls the vertical load transfer at this point by a testing action aT1

,
the system identifies that the shear walls SW1 and SW2 are not supported
and the concept is incomplete. A load on the shear wall is defined by the
concept

Load ≡ ∃SelfWeightkN .⊤ ⊔ TurningMoment

or another structural element like a slab. Suitable adjacent elements to sup-
port the wall are a line footing or two columns. A pair of completeness axioms
from the CBox C

LoadedShearWall ≡ ShearWall ⊓ ∃supports.(Load ⊔ Slab)

DesignedShearWall ≡ ShearWall ⊓ Designable ⊓

(∃n=2loads.Column ⊔ ∃n=1loads.LineFooting)

are used to compute the incomplete shear walls.

4.2 Design Session with Prototype 105

On the basis of the performed feasibility check, the system plans how to
proceed in the last compound subtask of

t1 = [enterBuilding, checkFeasibility,makeStructuralConcept].

The prototype suggests two possible task decompositions Mapp = {aP6
, aP7

}
according to the current state. In the example, it finds the applicable instan-
tiated method

aP6
= 〈makeStructuralConcept,

{StateConsistentp(), hasStabilitySystem(CONCEPT, LS),

checkFeasibilityOK(CONCEPT)},

[makeVerticalSystem,

sizeStructuralElements,

makeFoundation,

calculateLability]〉

and the method aP7
for which makeFoundation and calculateLability have the

opposite order than in aP6
. The engineer selects the former one. The subtask

makeVerticalSystem from the tasklist of aP6
expands to

t5 = [makeVerticalStoreySystem, . . .]

by which the engineer can start to design the six vertical storey systems from
top to bottom. At the storey level, the focused subtask is decomposed by

aP8
= 〈makeVerticalStoreySystem,

{FlatSlab(SL6)},

[makeColumns, sizeFlatSlab]〉

for which the tasklist t6 = [makeColumns, sizeFlatSlab] has to be elaborated
in this order because the slab design is non-critical for the chosen span length.

The subtask makeColumns expands by a method from the knowledge base
to a tasklist which references an operator to define columns. The user has
thus first to define the columns before he can size the flat slab. This is done
by selecting points via mouse click in the drawing window for the column
location and user input via the column dialog, shown in 4.7.

106 4 Prototype System

Figure 4.7: Column dialog

The column dialog triggers the design action

aD51
= 〈makeColumn,

{StateConsistentp()},

{Storey(x1 → G6), setPoint(P3 = (15.0, 0.0)),

chooseConcrete(RC → C25),

selectColumnType(C1 → Rectangular),

chooseLoadElements(lst1 → [SL6]),

chooseSupportElements(lst2 → nil),

setLengthm(l1 → 3.0), setBreadthm(b1 → 0.15),

setHeightm(h2 → 0.3),

setKozm
(z3 → 19.825), setKozm

(z4 → 22.825)},

{RectangularColumn(C1),

hasPart(G6, C1), hasPoint(C1, P3),

hasCoordinate(CO1, z3), hasCoordinate(CO1, z4),

hasMaterial(C1, C25), Supports(C1, SL6),

Lengthm(C1, l1), , Breadthm(C1, b1), Heigthm(C1, h2)}〉.

4.2 Design Session with Prototype 107

After the user has entered the column, the column is tested for consistency
on the definitorial knowledge about rectangular columns.

RectangularColumn = StructuralElement ⊓

∃NormalforcekN , CapacitykN .≤ ⊓

∃Heightm.≥0.2 ⊓ ∃Breadthm.≥0.2 ⊓

∃ReinforcementRatio.≤[0.03,0.09] ⊓

∃Heightm, Breadthm.≤4·Breadthm
⊓

∃Lengthm, Heightm.≥6·Heightm

∃Slenderness.≤[20√
νEd

,25]

The structural column C1 is represented in the new ABox by the set of as-
sertions in the add list of aD51

. Because the column contradicts the minimum
gross sectional requirement stipulated in the code the user is prompted to
revise the column, immediately.

The modify design operator aD52
becomes applicable and the other design

buttons are blocked. After the user has changed the contradicting value,
he can continue with his design. The system deletes first the contradicting
assertions of the delete list and adds thereafter the new ones of the add list.
Only the modified assertions are given.

aD52
= 〈makeColumn,

{RectangularColumn(C1)},

{setHeightm(h2 → 0.3),

setBreadthm(b2 → 0.3)},

{Breadthm(C1, b1),

Heigthm(C1, h2)}

{Breadthm(C1, b2),

Heigthm(C1, h3)〉.

In this way, the engineer creates the storey columns, which he places pre-
ferably in the functional grid points. He uses a copy operator aD70

to copy
the columns. All values are retained except of the identifier and the location.
They support the flat slab and determine the span length in both directions.
The user finishes the column system at the top storey by an action aD60

that
adds the assertion ColumnSystem(G6, CS1) to the current ABox. The system
state is now given by S41 = (A33, t6) which resulted from the action sequence
P5 = [aD60

, aD70
, . . . , aT1

,P4].

108 4 Prototype System

After the user has placed the vertical elements, he sizes the flat slab with
l = 5.0 in the subtask sizeFlatSlab with the design action

aD16
= 〈sizeFlatSlab,

{StateConsistentp(), FlatSlab(SL6), SpanLengthmax(SL6, l)},

{calculateDepthm(d1 = 0.9 · 5.0/35),

calculateHeightm(h4 = d6 + 0.04),

calculateSelfWeightkN/m2(gS6
= 25 · h6)},

{Depthm(SL6, d1), Heigthm(SL6, h4),

supports(SL6, gS6
),

SelfWeightkN/m2(SL6, gC1
),

Designable(SL6)}〉.

It calculates the required slab depth by a limitation for deflection from the
DIN 1045-1 for which the total slab height can be approximately assigned.
The user can not yet copy aggregated objects like a storey system. There-
fore, he has to design in a similar way each storey system from scratch in
the following up subtasks of t5 for which the last finish task adds the asser-
tion VerticalSystem(VS) and hasPart(CONCEPT, VS). For the next subtask
sizeStructuralElements in

t7 = [. . . , sizeStructuralElements, makeFoundation, calculateLability],

a set of design operators are applicable depending on the type of elements
like columns, beams, and footings, in the structural concept. Before a struc-
tural element can be sized, the internal forces of the specific elements must
be derived by tributary areas. For an internal column at the ground level,
the system determines NormalForcekN(C170, NEd) with NEd = 1350. In the
example, the user can choose from the operator set Aapp = {aD52

, aD73
, aD74

}.
Consider the operator for sizing a column

aD52
= 〈makeColumn,

{RectangularColumn(?x1), NormalForcekN(?x1, ?x2),

hasConcreteStrength(?x1, ?x3), hasSteelStrength(?x1, ?x4),

ConcreteGrossSection(?x1, ?x5)},

{calculateReinforcementcm2(?x6 = (?x2 − ?x3 · ?x5)?x4)},

{CapacitykN(?x1, ?x2), Designable(?x1)}〉.

It calculates the required longitudinal reinforcement for a given gross section.
In the next two steps, the engineer sizes the footings and thereby finishes the
conceptual design task what he indicates by a corresponding finish action.

4.2 Design Session with Prototype 109

The subtask makeFoundation in t7 includes the placement of footings for
the foundation and their sizing. In this example, it is not problematic due
to the allowed high soil pressure and is skipped in the example. Basically,
the user can design line and point footings under the load-bearing elements
by the operators aD64

, aD65
and size them according to well-known rules of

thumb from the DIN 1045-1 by operators aD66
, aD67

. The modal dialogs of
the point and line footings are similar to the dialogs of the other elements.

Now, under the next subtask calculateLability in t7, only one operator is
applicable to calculate the lability numbers α1 and α2 in both building direc-
tions according to the DIN 1045-1. The calculations are carried out in the
binding list of the operator.

aT2
= 〈calculateLability,

{StateConsistentp(), hasStabilitySystem(CONCEPT, LS)},

{calculateLabilityNumber(α1 =
1

BuildingHeightm
·

√

EC · ICx

FEd
)

calculateLabilityNumber(α2 =
1

BuildingHeightm

·

√

EC · ICy

FEd

)},

{hasValue(LS, α1), hasValue(LS, α2), stable(LS)}〉

The system calculates the sum of the flexural rigidities and the vertical forces
on the structure in the background. If the values of α1 or α2 are smaller than
1/(0.2 + 0.1 · n) for n ≤ 3 or 1/0.6 for n ≥ 4, where n is the storey number,
the system is sway and even additional shear walls or a more refined analysis
are needed. In this example, the structure is non-sway and the user continues
with the design.

After the last task of calculating the stability the prototype automatically
activates the load control. It computes by testing action aT3

again for all
elements of the concept if they are designed and supported. For example,
supporting elements of columns are defined by the concept StructuralElement

and a pair of the completeness axioms for the concept Column from the CBox.

StructuralElement ≡ Column ⊔ Wall ⊔ Slab ⊔ SlabBeam

LoadedColumn ≡ Column ⊓ ∃supports.(StructuralElement)

DesignedColumn ≡ Column ⊓ Designable ⊓ ∃n=1loads.(Column ⊔ Wall)

110 4 Prototype System

The completeness test returns no incomplete column objects because all loa-
ded columns are also designed and supported. In the case of the whole con-
cept, the set of all pairs of completeness axioms is empty since no elements
have incomplete load paths. A common model exists for the complete and
consistent ABox A on the CBox C and the TBox T . Hence, the final system
state S65 = (A55, []) resulting from the action sequence P6 = [aT3

, aT2
, . . . ,P5]

is a goal state. This sequence constructs first an initial concept I0 and refines
it then into the goal concept IG given as follows:

∆IG
= ∆I0

∪ {VS, FS, CS1, SW1, SW2, C1, FO1, . . .},

StructuralObjectIG = LoadIG ∪ ElementIG with all x ∈ FootingIG minimal,

LoadIG = LoadI0 ∪ {gS1
, gS2

},

ElementIG = ElementI0 ∪ {SW1, SW2, C1, FO1, . . .},

FootingIG = {FO1, . . . , FO31},

StoreySystemIG = StoreySystemI0 ,

SystemIG = SystemI0 ∪ {CO1, . . . , VS, FS},

DesignableIG = ElementIG and StableIG = {LS},

ConstraintIG = ConstraintI0

supportsIG = supportsI0 ∪ {(C1, SL6), (FO1, C188), (FO1, CO1), . . .},

hasPartIG = hasPartI0 ∪ {(CONCEPT, VS), (VS, G1), (G1, CO1),

(CO1, C1), (CONCEPT, FS), (FS, FO1),

(LS, SW1), . . .}, and

hasConstraintIG = hasConstraintI0.

New objects in the domain are the vertical system VS, the foundation system
FS, the column systems CS1−CS6 at each storey, the shear walls SW1, SW2,
the columns C1-C188, and the footings FO1 − FO31. The set of designable
elements includes the slabs, the columns, and the lateral elements since they
can always be designed. For the heaviest loaded column, the partial functions
state-variableI0 and parameterI0 are for example as follows:

NormalForceI0

kN = (C170, NEd)

CapacityI0

kN = (C170, NRd) with NEd = 1350 ≤ NRd = 1360.

The concept is depicted in figure 4.8. It encompasses a column system with
a 5.0 m × 5.0 m grid and 0.30 m × 0.30 m column dimensions, a flat slab
system with a height of 18 cm, a stability system with two cores and one
shear wall, and a foundation with point and line footings.

4.3 Use case scenarios 111

Figure 4.8: Final structural concept

4.3 Use case scenarios

The prototype system has been developed under the assumptions for ordinary
buildings described in Section 1.3. They match roughly the requirements for
a building classified as ordinary building structure according to DIN 1045-
1. Because the acquired knowledge does not cover the full range of design
support for ordinary building structures the system’s scope of application is
given in table 4.1.

The prototype system has been designed for the use of structural engineers
who collaborate with the architect in the early phase of conceptual buil-
ding design. At this point of the design process, only main building elements
that steam from the occupancy and room concept of the architect are given.
Therefore, I assumed that the user of the system has to design a structu-
ral concept with its elements. In practice however, architects often sketch
an incomplete structural concept with chosen element types that has to be
completed and/or modified by structural engineers. To aid the completion
and modification the system has to draw on the same design support as the
one developed in this thesis. To avoid entering an incomplete concept a se-
cond time an implementation of the Industry Foundation Classes (IFC) data
import functionality is planned. IFC is an object-oriented product model for

112 4 Prototype System

Requirement type Limitation

Occupancy living, office, factory, residence, manufacture
Layout L-shaped, H-shaped, U-shaped, S-shaped, rectan-

gular, layouts composed of simple geometries
Building height h ≤ 23m
Material reinforced concrete of C16/20-C35/45 classes
Load magnitude steady, occupancy q ≤ 5kN/m2 and no extraordi-

nary concentrated loads Q
Soil structural soil like clay, etc.
Spanning length l ≤ 16m
Element column, beam, slab, core, shear wall, deep beam,

wall, point footing, line footing
Load point load, line load, distributed area load, wind,

snow
Slab flat, one-way, two-way, prefabricated planks
Gross section rectangular, circular only for columns

Tabelle 4.1: Limitation for system applicability

3D building data exchange, which is supported by some major CAD vendors.
Since many architects work 2D oriented, the open question remains how to
bridge the gap of 2D data generation and 3D data exchange. Other exchange
standards will not be supported since they are not object-oriented and can
thus not avoid the work for structural engineers to enter the object data. The
structural concept with its preliminarily sized members is used in detailed
design and formwork drawings. Therefore, an export of element data to de-
sign programs as well as an IFC export to drawing programs is a reasonable
extensions for the system in order to integrate the developed system fully in
the planning process.

Chapter 5

Conclusions

This chapter summarizes the major thesis results and discusses to what ex-
tend the research problem defined in Section 1.3 has been solved. I state the
contribution of the thesis to the state of knowledge in the research area due to
the findings of the thesis. They are compared to other proposals for computer-
aided design support of building structures. At last, I point out open questions,
which remain to be solved by further development in the research area.

5.1 Summary of Results

The thesis developed a knowledge-based formalism in Chapter 3 to support
engineers in conceptual design of building structures. It is based on a model
of conceptual design. The model is founded on a vast body of design know-
ledge as described in Chapter 2. Design knowledge encompasses conceptual
knowledge about robust structural concepts and control knowledge about
the organization of the design process. Conceptual knowledge from acquired
from textbooks is represented in a description logic as described in Subsection
3.3.2, and the control knowledge elicited from structural experts in a hierar-
chical planning language on top of it, respectively, see Subsection 3.3.5. The
model maps the experienced engineers’ reasoning about the correctness of the
structural concept and the planning of the conceptual design task to compu-
tational processes. The result is a description logic based planning algorithm,
which was presented in Section 3.3.6. It employs the consistency algorithm
of Section 3.3.3 for testing the structural concept’s correctness. Implemented
into a computer-aided conceptual design system, engineers can reduce error
rates of structural concepts and the time required for the design process.
The formalism enhances the possible support of such systems as shown in

114 5 Conclusions

a detailed example in Chapter 4. Furthermore, the developed formalism al-
lows to encode the conceptual and control knowledge in a declarative way
as its representation is independent of its processing by the algorithms. The
knowledge is thus versatile employable and independent of the underlying
programming language. However, it is still tailored for conceptual design of
ordinary building structures and must be first adapted to other purposes.

The formalism should support the engineer as stated in Section 1.3 in: 1.
testing the correctness of a structural concept, 2. sequencing subtasks and
actions before flexibly solving the subtasks in a bottom-up fashion, and 3.
proposing design actions to develop and reinstall the correctness of the con-
cept.

1. Testing the correctness of the structural concept is carried out by the rea-
soning services of consistency and completeness testing in definition 15 and
16. Consistency testing works on the definitorial part of the conceptual
knowledge, which structural concepts always have to satisfy. Completen-
ess testing works on the background part by which structural elements
are computed that need additional supporting elements to ensure local
load transfer. For consistency testing, definitorial knowledge about struc-
tural elements stipulated in the norm DIN 1045-1 is used, which is stored
in a TBox. A column was considered as example in Section 4.2, which
has to fulfill minimum gross sectional requirements. If the user designs
an inconsistent element, which violates the requirements represented in
the definitorial part, it causes a direct contradiction and is immediately
detected in the formalism. The structural concept remains inconsistent,
unless the user revises the chosen gross sectional parameters of the con-
sidered column. For completeness testing, background knowledge, stored
in a CBox, can be applied to control the load transfer among structu-
ral elements at certain points during conceptual design. An example was
presented in Section 4.2 for a shear wall. If the engineer activates the
control of the vertical load transfer during the design process, the reaso-
ning service computes the set of incomplete elements. It highlights these
elements for which additional supporting elements are required or which
still have to be sized. It is up to the engineer, whether or not to revise
the highlighted elements. The consistency algorithm in Section 3.3.3 im-
plements the reasoning services of consistency and completeness testing.
It is capable of dealing with incomplete information without signaling an
error, since most load paths are incomplete especially at the beginning
and during the design process. The user can decide when to complete or
revise load paths for securing overall load transfer. In this way, finding

5.1 Summary of Results 115

inconsistent or incomplete structural objects can be intuitively performed
in an object-oriented manner.

2. The engineer can plan his design approach by means of the interactive
CONED algorithm. It supports a goal-directed and hierarchical approach,
which is applied from experienced engineers to design a concept by a
forward search decomposition process, see definition 4. The algorithm en-
forces the engineer to search depth-first for suitable subtask decomposi-
tions at different task levels. At the conceptual level, it is combined with
some kind of breadth search to assign a reduced set of possible design
actions under a current system state. Hence, goal-directed work is sup-
ported on the task levels but the engineer can still design the structural
concept bottom-up at the conceptual level. On the conceptual level, the
engineer can directly manipulate the structural concept and reason about
its correctness by means of the conceptual knowledge during the design
process. The necessary direct manipulation actions were defined in Section
2.5. They have been presented in the example of Section 4.2. A decom-
position of a slab into independent slab portions cannot be performed by
the user. Although it is a desirable support feature for conceptual design
where the design process proceeds from the abstract to detailed level, it
becomes a difficult task for aggregated objects with complex geometries.
On the task level, the algorithm draws on experienced practitioners’ con-
trol knowledge about sequencing tasks in a suitable order. Section 4.2
showed how planning can reduce the number of iteration cycles for engi-
neers and thus limit the time they spend to design a structural concept.
This is especially important for novices who lack the notion of planning in
their mental models about conceptual design. The planning is founded on
appropriate task decompositions of conceptual design, which depend on
the initial structural concept at hand. Inexperienced engineers can avoid
thereby long backtracking paths that result from inappropriate subtask
sequencing.

3. The algorithm 3.4 proposes design actions to correct the developing con-
cept in simple tasks. Planned tasks that have not been performed are hence
differently decomposable depending on the current state of the concept.
Interleaving subtasks and partial orderings among subtasks in tasklists
are not supported. Therefore, some flexibility of design support is lost due
to the chosen type of planning. This type of planning support might be to
inflexible for experienced practitioners because it enforces a strict subtask
sequencing.

116 5 Conclusions

As a proof of concept, the formalism has been implemented in a prototypi-
cal computer-aided design system, which was presented in Chapter 4 on a
trace of the underlying formalism. The prototype used the reasoner package
RACER [HM04] to implement the conceptual model with the respective rea-
soning services and the planning package SHOP [NCLMA04] to provide the
functionality for task decomposition planning. The prototype is implemented
in LISP and CLOS together with the GUI development environment from
FRANZ [Fra04].

Besides the developed formalism, conceptual design of concrete structures
has been formalized, see definition 4. It makes the mental model shared by
experienced practitioners explicit in terms of required knowledge and reaso-
ning. Design knowledge encompasses so-called conceptual knowledge about
structure and load transfer and control knowledge about appropriate sequen-
cing of subtasks and design actions upon practitioners’ reasoning operate. On
this formalization, conceptual design of concrete building structures can be
understood as a goal-directed search process through the design state space
for a correct structural concept in a focused manner. The design state space
spans over the set of conceivable maybe incomplete and inconsistent struc-
tural concepts, which the engineer explores by design actions to build up a
complete and consistent one. At the conceptual level, conceptual knowledge
serves experienced engineers to detect incorrect concepts. At the task level,
their control knowledge selects promising search paths through the very large
state space.

5.2 Discussion

The thesis developed a model of conceptual design in the domain of con-
crete building structures resulting in definition 4. The definition was based
on a thorough textbook study, a number of interviews, and design studies
conducted at structural design offices. The studies elicited important inter-
nal actions, also called reasoning skills, that have only partially or not at all
taken into account by other proposals, which have targeted different design
support or focused on computational aspects. Therefore, a formulation has
been missing considering also internal actions on the mental model, although
they have been implicitly applied by experienced engineers.

In addition to that, requirements for interactive knowledge-based design sy-
stems have to be considered. As stated in [GRS00], a high degree of interacti-
on and traceability determines the usability of such systems. SHNEIDERMAN

[Shn98] understands direct model manipulation as a major usability require-

5.2 Discussion 117

ment for GUIs of computer-aided design systems, too. WOLTER even des-
cribes that the system’s acceptance by the engineer strongly depends on this
fact [Wol03]. As found out by the testing scenarios for the GUI design in
this thesis, the computer-aided design system’s traceability corresponds to a
close fit between the users’ mental models and the system model, especially
for the planning aspect. Therefore, proposals for interactive conceptual de-
sign assistance should take these requirements into account. The developed
prototype system tries to cover these by making direct manipulation actions
possible and by introducing an additional GUI component, the task structure
dialog, for planning, first proposed by HAUSER in [HS97].

HAUSER remarks about the PRED system in [Hau98] that a fixed sequence
of design actions may be too rigorous for providing ergonomic design assi-
stance. He states in [Hau98] that the design process is iterative in nature and
is carried out with focus on alternating abstraction levels. This idea led to
a cognitive architecture of conceptual designing, which possesses a strategic,
a tactical and a reactive level. The strategic level implements the planning,
the tactical level the execution of design actions for selecting element al-
ternatives and sizing them, and the reactive level the local modification of
element parameters due to geometrical constraints, respectively. However,
planning and execution, as well as execution and modification cannot be in-
terleaved in this framework as the levels interact top-down. Therefore, a plan
in form of an abstract concept is first completely laid out that determines
a fixed sequence of design actions on the tactical level. Design actions con-
struct then a structural concept as specified on the strategic level. A revision
of the plan in response to design actions is not possible. After the concept
has been developed on the tactical level the reactive level ensures that local
element constraints are satisfied. Since conceptual knowledge is not declara-
tively represented in the conceptual model of the architecture, the engineer
cannot design self-contained structural systems that can be tested for cor-
rectness [ES01b]. Whether or not a structural system like for example the
stability system is correct, affects however the sequencing of subtasks, and
hence the planning. GEHRE [Geh99] also points out that the engineer needs
a possibility for direct element manipulations by element related dialogs.

The CONFIG design system does not explicitly represent the design process
[Gom98]. The engineer’s need to plan the design process and implement it in
a flexible manner is hence not supported. Elements can be refined along an
inheritance hierarchy given on a dialog for user input in the CONFIG system
[FRG00]. This includes a number of refinement steps excluding modificati-
ons. Since engineers usually perform one or at most two design actions for
each building element and work iteratively, the operational scale is too fine

118 5 Conclusions

and too strict for effective use in practice [Eis00, Eis01a]. Furthermore, my
notion of planning differs from the one proposed by GOMEZ [FRG00] and
MAHER [Mah90]. I advocate planning as a sequence of planning, testing, and
design actions where the sequence is dynamically constructed on the current
system state. The task of establishing a global load transfer is not covered by
GOMEZ’s and MAHER’s work because they do not represent abstract load
paths, which are important to set up the structural configuration as descri-
bed in example 2. Therefore both systems, CONFIG and HIGH-RISE, cannot
assist the engineer in testing a structural concept’s correctness during de-
sign, i.e. at a time when the engineer has only incomplete information about
structural systems and elements.

The approaches of BRID [SMM99] and CADREM [KR97] do not contain a
system model of the structural concept. It is difficult for the user to con-
ceive the obtained results as pointed out by MILES in [Mil01]. He mentions
that engineers face the problem of how to understand the results of the
search performed by the system. Therefore, he proposes to display selected
two-dimensional hyper-planes described by pairs of selected design variables.
Thereby, the user can learn about the design space and the dependencies
among the variables. This help is however of restricted use for conceptual
design problems, which demand a high degree of interaction and cannot be
formulated as numerical optimization problems on a set of algebraic equati-
ons. As a consequence, users requested a graphical representation [SMM03].

The reviewed configuration design methods in Section 3.2 work mostly for
routine design. Routine design is carried out top-down along a predefined
system or product structure [GK99]. In conceptual design, this is not longer
possible since the structure has to be determined on a component-based con-
ceptual model. Main systems of a structural concept are designed in a bottom-
up fashion whereby the necessary degree of interaction increases among the
engineer and the computer-aided design system. Nevertheless ideas from clas-
sical configuration design were used to develop the system but had to be
adapted to conceptual design of building structures. Furthermore, evaluating
possible goal concepts in terms of expected behavior to ensure the correct-
ness of a goal configuration becomes more important for conceptual design.
This requirement is mostly not studied in the research area of configuration
design.

5.3 Further Work 119

5.3 Further Work

Systems for computer-aided conceptual structural design are a young research
area, which has started in the eighties with the work of MAHER’s system
HIGH-RISE [Mah84]. Although much research work has been done since then,
see for a summary [Mil01], a lot of questions remain open because of the
still unprecise problem definition of conceptual structural design as such.
Because a problem definition did not exist to use as a starting point for the
thesis, the thesis defined first a conceptual design problem, see definition
3. This definition is independent of the computational methods employed
to solve it. A major goal of further work should be therefore to develop a
precise problem definition as a foundation on which applied computational
methods become comparable1. However, they should take into account the
high demand of interaction for exploration tasks such as conceptual design.
The thesis stands for a first step in this direction. More work is necessary to
refine the model of conceptual design of definition 4 on a range of thoroughly
analyzed design studies, see as example the analysis work about conceptual
architectural design of KANNENGIESSER and GERO [KG02].

Further work that arises from open question of the thesis can be roughly
distinguished into two categories. The first one concerns the improvement of
the developed formalism. The following open questions remain:

• how to represent quantified effects in operators?

• how to support the interleaving of subtasks?

• how to make finished subtasks revisable?

• how to make all actions available even though applicable actions are
preferable?

• how to incorporate actions for checking conflicts?

Quantified effects can automatically extend the design of a single element
to all elements of its equivalence class. Interleaving of subtasks requires to
search in different branches of the decomposition tree and not only from left
to right in the search tree. Making subtasks revisable needs a modification of
the planning algorithm. If actions for checking conflicts have to be processed,
a predicate is necessary to direct the design process to the conflicting points.

1As an example of problem formulation work and its continuous refinement see confi-
guration design [MF89, WS97, Bro97].

120 5 Conclusions

Knowledge about when and how to tackle these conflicts in the design process
has to be acquired by additional design studies.

The second aspect concerns the extension of the represented knowledge in
the conceptual design domain and the integration of other knowledge types.
Work has to be done to:

• make free composition and decomposition of structural objects possible,

• represent slabs with irregular geometry and enable their decomposition,

• add further design requirements of the DIN 1045-1 that determine when
certain support relations hold, and

• automate the calculation of internal forces in the conceptual model or
by means of external analysis packages.

I made a number of assumptions about the structural characteristics of the
building, these should also be relaxed to extend the design support to a wider
range of building types.

References

[AF00] A. Artale and E. Franconi. A Survey of Temporal Extensions
of Description Logics. Annals of Mathematics and Artificial
Intelligence, 30(1-4):171–210, 2000.

[AFGP96] A. Artale, E. Franconi, N. Guarino, and L. Pazzi. Part-Whole
Relations in Object-Centred Systems: An Overwiew. Data and
Knowledge Engineering, 20:347–383, 1996.

[BA97] P. Borst and H. Akkermans. Engineering Ontologies. Interna-
tional Journal Human-Computer Studies, 46:365–406, 1997.

[Baa99] F. Baader. Logic-Based Knowledge Representation. In M.J.
Wooldridge and M. Veloso, editors, Artificial Intelligence To-
day, Recent Trends and Developments, number 1600 in Lecture
Notes in Computer Science, pages 13–41. Springer Verlag, 1999.

[Baa02] F. Baader. Logic-based Knowledge Representation. Chair of
Automata Theory, Technical University of Dresden, 2002. Lec-
ture Notes.

[Bas00] P. Basieux. Die Architektur der Mathematik - Denken in Struk-
turen. Rowolth Verlag, 2000.

[Bau01] Normenausschuss Bauwesen. DIN 1045-1. DIN Deutsches In-
stitut für Normung e.V., Berlin, 2001.

[BBH94] F. Baader, M. Buchheit, and B. Hollunder. Cardinality Re-
strictions on Concepts. In Proceedings of the German AI Confe-
rence, KI’94, volume 861 of Lecture Notes in Computer Science,
pages 51–62, Saarbrücken (Germany), 1994. Springer–Verlag.

[BC89] D.C. Brown and B. Chandrasekaran. Design Problem Solving,
Knowledge Structures and Control Strategies. Morgan Kauf-
mann Publishers, 1989.

121

122 References

[BCM+02] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and
P. Patel-Schneider. Description Logic Handbook. Cambridge
University Press, 2002.

[BD95] E.J. Brien and A.S. Dixon. Reinforced and Prestressed Con-
crete Design-The Complete Process. Longman Scientific and
Technical, 1995.

[BG01] B. Bonet and H. Geffner. Planning and Control in Artifici-
al Intelligence: A Unifying Perspective. Applied Intelligence,
14(3):237–252, 2001.

[BH91] F. Baader and P. Hanschke. A Scheme for Integrating Concrete
Domains into Concept Languages. DFKI research report RR-
91-10, Deutsches Forschungszentrum für Künstliche Intelligenz,
Kaiserslautern, 1991.

[BHS93] W. Bibel, S. Hölldobler, and T. Schaub. Wissensrepräsentation
und Inferenz. Vieweg Verlag, 1993.

[BKN95] M. Buchheit, R. Klein, and W. Nutt. Constructive Problem
Solving: A Model Construction Approach towards Configura-
tion. DFKI technical memo TM-95-01, Deutsches Forschungs-
zentrum für Künstliche Intelligenz Saarbrücken, 1995.

[BLSW02] F. Baader, C. Lutz, H. Sturm, and F. Wolter. Fusions of de-
scription logics and abstract description systems. Journal of
Artificial Intelligence Research (JAIR), 16:1–58, 2002.

[Bor96] A. Borgida. On the Relative Expressive Power of Description
Logics and Predicate Calculus. Journal of Artificial Intelli-
gence, 82:353–367, 1996.

[Bro97] D.C. Brown. Defining Configuring. Artificial Intelligence for
Engineering Design, Analysis and Manufacturing, 12(4):301–
305, 1997.

[BS01] F. Baader and U. Sattler. An Overview of Tableau Algorithms
for Description Logics. Studia Logica, 69:5–40, 2001.

[Bur98] J.E. Burge. Knowledge Elicitation for Design Task Sequencing
Knowledge. Master’s thesis, School of Computer Science, Wor-
chester Polytechnic Institute, 1998.

References 123

[CCD96] N. Cross, H. Christianaas, and K. Dorst. Analyzing Design
Activity. John Wiley & Sons, 1996.

[Cha90] B. Chandrasekaran. Design Problem Solving: A Task Analysis.
AI Magazine, 11(4):59–71, 1990.

[Cha03] B. Chandrasekaran. Understanding Control at the Knowledge
Level. at http://www.cis.ohio-state.edu/chandra/, last visited
4.9.2003.

[CJ93] B. Chandrasekaran and T. R. Johnson. Generic Tasks and Task
Structures: History, Critique and new Directions. In J.-M. Da-
vid, J.-P. Krivine, and R. Simmons, editors, Second Generation
Expert Systems, pages 232–272. Berlin: Springer-Verlag, 1993.

[CJ00] B. Chandrasekaran and John R. Josephson. Function in Device
Representation. Engineering with Computers, 16:162–177, 2000.
Special Issue on Computer Aided Engineering.

[CJS92] B. Chandrasekaran, T. Johnson, and J. W. Smith. Task Struc-
ture Analysis for Knowledge Modeling. Communications of the
ACM, 33(9):124–136, 1992.

[Cla97] W.J. Clancey. Situated Cognition. Cambridge University Press,
Cambridge, 1997.

[CRR+90] R.D. Coyne, M.A. Rosenman, A.D. Radford, M. Balachandran,
and J.S. Gero. Knowledge-Based Design Systems. Addison-
Wesley, 1990.

[Cun92] R. Cunis. Das 3-stufige Framerepräsentationskonzept - eine
mehrdimensionale Basis zur Entwicklung von Expertensystem-
kernen. infix Verlag, 1992.

[Dav99] R. Davis. Knowledge-Based-Systems. In R. A. Wilson and
F. Keil, editors, The MIT Encyclopedia of Cognitive Sciences.
Bradford, 1999.

[Dek00] K. J. Dekker. Conceptual Design of Concrete Structures. Ma-
ster’s thesis, Chalmers University Gothenburg, Faculty of Civil
Engineering, 2000.

[DINR96] G. DeGiacomo, L. Iocchi, D. Nardi, and R. Rosati. Moving a
Robot the KRR Approach at work. In Proc. of the 5th Int. Conf.

124 References

on the Principles of Knowledge Representation and Reasoning
(KR’96), pages 198–209. Morgan Kaufmann Publishers, 1996.

[DLN+93] F.M. Donini, M. Lenzerini, D. Nardi, W. Nutt, and A. Scharf.
Queries, Rules and Definitions as Epistemic Statements in Con-
cept Languages. DFKI research report RR-93-40, Deutsches
Forschungszentrum für Künstliche Intelligenz, Kaiserslautern,
1993.

[dP01] Bundesvereinigung der Prüfingenieure. Anforderungen an das
Aufstellen EDV-unterstützter Standsicherheitsnachweise. Der
Prüfingnieur, pages 49–54, April 2001.

[dP03] Bundesvereinigung der Prüfingenieure. Anforderungen an das
Aufstellen EDV-unterstützter Standsicherheitsnachweise - ge-
wöhnliche Hochbauten. Der Prüfingnieur, pages 79–82, April
2003.

[Dör01] D. Dörner. Die Logik des Mißlingens - Strategisches Denken in
komplexen Situationen. Rowolth Verlag, 2001.

[EFT96] H.-D. Ebbinghaus, J. Flum, and W. Thomas. Einführung in
die mathematische Logik. Spektrum Verlag, 1996.

[EHN94] Kutluhan Erol, James A. Hendler, and Dana S. Nau. UMCP: A
Sound and Complete Procedure for Hierarchical Task-Network
Planning. In Artificial Intelligence Planning Systems, pages
249–254, 1994.

[EHN95] K. Erol, J. Hendler, and D. Nau. Complexity Results for
HTN Planning. Technical Report UMIACS-TR-94-32, Com-
puter Science Department, Institute for Systems Research, and
Institute for Advanced Computer Studies, University of Mary-
land, 1995.

[Eis00] M. Eisfeld. Conceptual Computerized Structural Design - Me-
thods for Documentation, Generation and Evaluation. Master’s
thesis, Chalmers University Gothenburg, Faculty of Civil Engi-
neering, 2000.

[Eis01a] K. Eisenblätter. Wissensbasierter Tragwerksentwurf - Ent-
wicklung einer Task Structure mit Hilfe von Arbeitsstudien

References 125

für den Bereich des Konstruktiven Hochbaus in einer HTN-
Planungsumgebung. Master’s thesis, Technical University of
Dresden, Faculty of Civil Engineering, 2001.

[Eis01b] W. Eisfeld. Defficiencies of conceptual structural design in prac-
tise. not published, 2001. personal communication.

[Eng98] B. Engström. Concrete Structures - Advanced Course. Divisi-
on of Concrete Structures, Chalmers University of Technology,
1998. Lecture Notes.

[Eng99] H. Engel. Tragsysteme. Gerd Hatje Verlag, 1999.

[ENS95] K. Erol, D. Nau, and V.S. Subrahmanian. Complexity, De-
cidability and Undecidability Results for Domain-Independent
Planning. Artificial Intelligence, 76(1-2):75–88, July 1995.

[Ero95] K. Erol. Hierarchical Task Network Planning: Formalization,
Analysis, and Implementation. PhD thesis, University of Ma-
ryland, 1995.

[ES01a] M. Eisfeld and R. J. Scherer. Kontrollwissen für den konstrukti-
ven Entwurfsprozess vom Tragwerksentwurf bis zur Vorbemes-
sung. In R. Romberg and M. Schulz, editors, Forum Bauinfor-
matik 2001, pages 135–145. VDI-Verlag, 2001.

[ES01b] M. Eisfeld and R. J. Scherer. Search-Control Knowledge for the
Interoperability Problem between Conceptual and Preliminary
Structural Design. In B.H.W. Topping, editor, 6th International
Conference on the Application of AI to Structural Engineering,
conference notes. Civil Comp Press, 2001.

[ES02a] M. Eisfeld and R. J. Scherer. Conceptual Parametric Design
with Expressive Description Logic. In M. Schnellenbach-Held
and H. Denk, editors, Proceedings of the 9th International EG-
ICE Workshop, Advances in Intelligent Computing in Enginee-
ring, pages 112–123, Düsseldorf, 2002. VDI-Verlag.

[ES02b] M. Eisfeld and R. J. Scherer. Wissensbasierte Entwurfsunter-
stützung für die Konzipierung von Tragwerken in der frühen
Entwurfsphase. Technical report, Institute of Building Infor-
matics, Technical University Dresden, 2002.

126 References

[FH90] E. Frieling and I. Hilbig. Informationstechniken in der Kontruk-
tion. In C.G. Hoyos and B. Zimolong, editors, Ingenieurpsycho-
logie, 12, pages 365–395. Göttigen: Hogrefe-Verlag, 1990.

[For88] K. Forbus. Intelligent Computer-Aided Engineering. AI Maga-
zine, 9(3):23–36, 1988.

[Fra66] G. Franz. Konstruktionslehre des Stahlbetons - Grundlagen und
Bauelemente. Springer Verlag, 1966.

[Fra69] G. Franz. Konstruktionslehre des Stahlbetons - Tragwerke.
Springer Verlag, 1969.

[Fra81] D. Fraser. Conceptual Design and Preliminary Analysis of
Structures. Pitman Publishing Limited, 1981.

[Fra04] Franz. Franz Allegro LISP. at http://www.franz.com, last vi-
sited 2.2.2004.

[Fre99] M. French. Conceptual Design. Springer Verlag, 1999.

[FRG00] S.J. Fenves, H. Rivard, and N. Gomez. SEED-CONF: A Tool
for Conceptual Structural Design in a Collaborative Building
Design Environment. Artificial Intelligence in Engineering,
14(3):233–247, 2000.

[Fri93] G. Fricke. Kontruieren als flexibler Problemlöseprozess. In Fort-
schrittsberichte, Reihe 1, 227. VDI-Verlag, 1993.

[FS99] G. Friedrich and M. Stumptner. Consistency-based Configura-
tion. In Technical Report WS-99-05 of AAAI’99 Workshop on
Configuration, pages 35–40. AAAI Press, 1999.

[Geh99] A. Gehre. Modellierung von Expertenwissen für den wissensba-
sierten Tragwerksentwurf. Master’s thesis, Technical University
of Dresden, Faculty of Civil Engineering, 1999.

[Ger90] J. Gero. Design Prototypes : A Knowledge Representation Sche-
ma for Design. AI Magazine, 11(4):26–36, 1990.

[Ger98a] J. Gero. Conceptual Design as a Sequence of Situated Acts. In
I. Smith, editor, Artificial Intelligence in Structural Enginee-
ring, number 1454 in Lecture Notes in Artificial Intelligence,
pages 165–177. Springer Berlin, 1998.

References 127

[Ger98b] J.S. Gero. Towards a Model of Designing which includes its
Situatedness. In H. Grabowski, S. Rude, and G. Grein, editors,
Unviversal Design Theory. Shaker Verlag, Aachen, 1998.

[GGF94] R. Ganeshan, J.H. Garrett, and S. Finger. A Framework for Re-
presenting Design Intent. Journal of Design Studies, 15(1):59–
84, 1994.

[GK99] A. Günter and C. Kühn. Knowledge-Based Configuration-
Survey and Future Trends. In F. Puppe, editor, Expertensy-
steme ’99, Lecture Notes. Springer, 1999.

[GK02] J. Gero and U. Kannengiesser. The Situated F-B-S Framework.
In J. Gero, editor, Artificial Intelligence in Design’02, pages 89–
104, Dordrecht, 2002. Kluwer.

[Gün89] A. Günter. Flexible Kontrolle in Expertensystemen zur Pla-
nung und Konfigurierung in technischen Domänen. infix Ver-
lag, 1989.

[GNT03] M. Ghallab, D. Nau, and P. Traverso. Automated Task Plan-
ning. Oxford University Press, 2003.

[Goe94] V. Goel. A Comparison of Design and Nondesign Problem
Spaces. Artificial Intelligence in Engineering, 9:53–72, 1994.

[Gom98] N. Gomez. Conceptual Structural Design Through Knowledge
Hierarchies. PhD thesis, Civil and Environment Engineering,
Carnegie Mellon University, 1998.

[GP89] V. Goel and P. Pirolli. Motivating the Notion of Generic De-
sign with Information Processing Theory: The Design Problem
Space. AI Magazine, 10:18–36, 1989.

[GRS00] G. Görz, C.-R. Rollinger, and J. Schneeberger. Handbuch der
Künstlichen Intelligenz. Oldenbourg Verlag, 2000.

[GT01] J.S. Gero and H.H. Tang. Differences between Retrospecti-
ve and Concurrent Potocols in Revealing the Process-Oriented
Aspects of the Design Process. Design Studies, 21(3):283–295,
2001.

128 References

[Hac00] W. Hacker. Konstruktives Entwickeln als Tätigkeit - Versuch
einer Reinterpretation des Entwurfsdenkens. Jahresforschungs-
bericht 76, Institut für Allgemeine Psychologie, TU Dresden,
Januar 2000.

[Hau98] M. Hauser. Tragwerksplanung und Künstliche Intelligenz. PhD
thesis, Technical University of Dresden, 1998.

[HB85] E. Hampe and O. Büttner. Bauwerk - Tragwerk - Tragstruktur,
Band 2. Ernst & Sohn Verlag, 1985.

[Häg93] S. Hägglund. Introducing Expert Critiquing Systems. The
Knowldge Engineering Review, 8(4):281–284, 1993.

[HL90] D. Hartmann and K. Lehner. Technische Expertensysteme.
Springer Verlag, 1990.

[Höl01] S. Hölldobler. Computational Logic. Institute of Artificial In-
telligence, University of Dresden, 2001. Lecture Notes.

[HM01] V. Haarslev and R. Möller. Description of the RACER System
and its Applications. In Proc. of International Workshop on
Description Logic, 2001.

[HM04] V. Haarslev and R Möller. RACER: Renamed ABox and Con-
cept Expression Reasoner. at http://www.sts.tu-harburg.de/
moeller/racer/, last visited 2.2.2004.

[HMW00] V. Haarslev, R. Möller, and M. Wessel. The Description Logic
ALCNHR+ extended with Concrete Domains: Revised Version.
KOGS Memo FBI-HH-M-290/00, Fachbereich Informatik der
Universität Hamburg, 2000.

[Hol86] A. Holgate. The Art in Structural Design. Clarendon Press,
1986.

[HS97] M. Hauser and R.J. Scherer. Application of Intelligent CAD
Paradigms to Preliminary Structural Design. Artificial Intelli-
gence in Engineering, 11:217–229, 1997.

[HST00] I. Horrocks, U. Sattler, and S. Tobies. Reasoning with Indivi-
duals for the Description Logic SHIQ. In David MacAllester,
editor, Proceedings of the 17th International Conference on Au-
tomated Deduction (CADE-17), number 1831 in Lecture Notes
in Computer Science, Germany, 2000. Springer Verlag.

References 129

[HU94] J.E. Hopcroft and J.D. Ullman. Einführung in die Automaten-
theorie, formale Sprachen, und Komplexitätstheorie. Addison-
Wesley, 1994.

[Hub82] V. Hubka. Principles of Engineering Design. Boston: Butter-
woth Scientific Verlag, 1982.

[HWG00] O. Hollmann, Th. Wagner, and A. Günter. ENGCON: A Flexi-
ble Domain-Independent Configuration Engine. In Proceedings
of the ECAI-Workshop Configuration, ECAI-2000, 2000.

[Inf97] Gesellschaft Informatik. Ergonomische Gestaltung der Benut-
zungsschnittstellen von CAD-systemen. Informatik Spektrum,
20(4):6–74, 1997.

[IS94] Y. Iwasaki and H. A. Simon. Causality and Model Abstraction.
Artificial Intelligence, 67(1):143–194, 1994.

[Iwa97] Y. Iwasaki. Qualitative Reasoning and the Sciences of Design.
IEEE Expert: Intelligence Systems, 12(3):2–4, 1997.

[Joh02] J. Johsephon. Thinking Like a Machine - Knowledge System
Approach to Artificial Intelligence. available at http://cis.ohio-
state.edu/lair/main/, last visited 5.10.2002.

[Kam97] S. Kambhampati. Refinement Planning as a Unifying Frame-
work for Plan Synthesis. AI Magazine, 18(2):67–97, 1997.

[KB86] J. De Kleer and J.S. Brown. Theories of Causal Ordering. Ar-
tificial Intelligence, 29:33–61, 1986.

[KG02] M. Kavalaki and J.S. Gero. The Structure of Concurrent Co-
gnitive Actions: A Case Study of Novice and Expert Designers.
Design Studies, 23(1):25–40, 2002.

[KMN02] B. Kraft, O. Meyer, and M. Nagl. Graph Technology Support
for Conceptual Design. In M. Schnellenbach-Held and H. Denk,
editors, Advances in Intelligent Computing in Engineering, 9th
International EG-ICE Workshop, pages 1–35, Düsseldorf, 2002.
VDI-Verlag.

[KR97] B Kumar and B Raphael. CADREM: A Case-Based System
for Conceptual Structural Design. Engineering with Computers,
13:153–164, 1997.

130 References

[Kre02] Th. Krebs. Erkennen von Benutzerintentionen im inkrementel-
len Konfigurationsverlauf. Master’s thesis, Bereich Intelligente
Systeme, TZI, Universität Bremen, 2002. Diplom thesis.

[KW95] W. Krätzig and U. Wittek. Tragwerke 1 - Theorie und Be-
rechnungsmethoden statisch bestimmter Stabtragwerke. Sprin-
ger Verlag, 1995.

[LB87] H. J. Levesque and R. J. Brachman. Expressiveness and Trac-
tability in Knowledge Representation and Reasoning. Compu-
tational Intelligence Journal, 3:78–93, 1987.

[Leo77] F. Leonhardt. Vorlesungen über den Massivbau. Springer Ver-
lag, 1977.

[LPB98] H. Lowe, M. Pechoucek, and A. Bundy. Proof Planning for
Maintainable Configuration Systems. Artificial Intelligence in
Engineering, Design, Analysis and Manufacturing, 12:345–356,
1998.

[LS02] C. Lutz and U. Sattler. A Proposal for Describing Services
with DLs. In Proceedings of the 2002 International Workshop
on Description Logics, 2002.

[Lut02] C. Lutz. Description Logics with Concrete Domains-A survey.
In Advances in Modal Logics Volume 4. World Scientific Publis-
hing Co. Pte. Ltd., 2002.

[Mah84] M. L. Maher. HI-RISE: A Knowledge-Based Expert System for
the Preliminary Structural Design of High Rise Buildings. PhD
thesis, Carnegie Mellon University, 1984.

[Mah90] M. L. Maher. Process Models for Design Synthesis. AI Maga-
zine, 11(4):49–58, 1990.

[Mah91] M.L. Maher. Expert Systems for Structural Design. In D. T.
Pham, editor, Expert systems in engineering. Springer Verlag,
1991.

[McC00] J. McCarthy. What is Artificial Intelligence. at http://www-
formal.stanford.edu/jmc/, 2000. last visited 10.9.2000.

[Mer02] L. Merö. Die Grenzen der Vernunft, Kognition, Intuition und
komplexes Denken. Rowohlt Verlag, 2002.

References 131

[MF89] S. Mittal and R. Frayman. Towards a Generic Model of Confi-
guration Tasks. In International Joint Conference on Artificial
Intelligence, volume 2, pages 1395–1401, 1989.

[MG96a] M.L. Maher and A. Gomez. The Adaptation of Structural Sy-
stem Designs Using Genetic Algorithms. In Proceedings of the
International Conference on Information Technology in Civil
and Structural Engineering Design-Taking Stock and Future Di-
rections, 1996.

[MG96b] M.L. Maher and A. Gomez. Developing Case-Based Reasoning
for Structural Design. IEEE Expert, 11(3):42–52, 1996.

[MH69] J. McCarthy and P.J. Hayes. Some Philosophical Problems from
the Standpoint of Artificial Intelligence. Machine Intelligence,
4:463–502, 1969.

[Mil01] J. C. Miles. Computer Aided Conceptual Design: A Review.
In 6th International Conference on the Application of AI to
Structural Engineering, conference notes, pages 107–136. Civil
Comp Press, 2001.

[MM94] J. Miles and C. P. Moore. Practical Knowledge-Based Systems
in Conceptual Design. Springer Verlag, 1994.

[Moo97] C.J. Moore. Decision Support for Conceptual Bridge Design.
Artificial Intelligence in Engineering, 11(3):259–272, 1997.

[Mos85] J. Mostow. Towards Better Models Of The Design Process. AI
Magazine, 6(1):44–57, 1985.

[MW98] D. McGuinness and J. Wright. An Industrial Strength Des-
cription Logic-based Configurator Platform. IEEE Intelligent
Systems, 13(4):69–77, July 1998.

[Mye96] K.L. Myers. Strategic Advice for Hierarchical Planners. In
Luigia Carlucci Aiello, Jon Doyle, and Stuart Shapiro, editors,
KR’96: Principles of Knowledge Representation and Reasoning,
pages 112–123. Morgan Kaufmann, San Francisco, California,
1996.

[Nav91] D. Navinchandra. Exploration and Innovation in Design. Sprin-
ger Verlag, 1991.

132 References

[NCLMA99] D. Nau, Y. Cao, A. Lotem, and H. Munoz-Avila. SHOP: Simple
Hierarchical Ordered Planner. UMIACS-TR-9904 CS-TR-3981,
Department of Computer Science, and Institute for Systems
Research, University of Maryland, 1999.

[NCLMA01] D. Nau, Y. Cao, A. Lotem, and H. Muñoz-Avila. The SHOP
Planning System. AI Magazine, 22(3):64–91, 2001.

[NCLMA04] D. Nau, Y. Cao, A. Lotem, and H. Muñoz-Avila. SHOP pro-
ject. at http://www.cs.umd.edu/projects/shop/, last visited
2.2.2004.

[Neb90] B. Nebel. Reasoning and Revision in Hybrid Representation
Systems. Lecture Notes in Artificial Intelligence 422. Springer-
Verlag, 1990.

[Neb96] B. Nebel. Artificial Intelligence: A Computational Perspective.
In G. Brewka, editor, Principles of Knowledge Representation,
pages 237–266. CSLI Publications, 1996.

[Neb00] B. Nebel. On the Expressive Power of Planning Formalisms:
Conditional Effects and Boolean Preconditions in the STRIPS
Formalism. In J.Minker, editor, Logic-Based Artificial Intelli-
gence. Kluwer, Dordrecht, 2000.

[Neb01a] B. Nebel. Knowledge Representation and Reasoning. Institute
of Artificial Intelligence, University of Freiburg, 2001. Lecture
Notes.

[Neb01b] B. Nebel. Logics for Knowledge Representation. In N. J. Smel-
ser and P. B. Baltes, editors, International Encyclopedia of the
Social and Behavioral Sciences. Kluwer, Dordrecht, 2001.

[New82] A. Newell. The Knowledge Level. Artificial Intelligence, 18:87–
127, 1982.

[New90] A. Newell. Unified Theories of Cognition. Harvard University
Press, 1990.

[NG89] N.J. Nilsson and M.R. Genesereth. Logische Grundlagen der
Künstlichen Intelligenz. Vieweg Verlag, 1989.

[Nie90] J. Nielsen. Big Paybacks from ’discount’ Usability Engineering.
IEEE Software, 7(3):107–108, 1990.

References 133

[Nie94] J. Nielsen. Estimating the Number of Subjects needed for a
Thinking Aloud Test. International Journal of Human Com-
puter Studies, 41:385–397, 1994.

[NS72] A. Newell and H. A. Simon. Human Problem Solving. Prentice-
Hall, 1972.

[NSE98] D. Nau, S. J. J. Smith, and K. Erol. Control Strategies in
HTN Planning: Theory Versus Practice. In AAAI-98/IAAI-98
Proceedings, pages 1127–1133, 1998.

[O’S02] B. O’Sullivan. Interactive Constraint-Aided Conceptual Design.
Journal of Artificial Intelligence for Engineering Design, Ana-
lysis and Manufacturing, 16(4), 2002.

[PB96] G. Pahl and W. Beitz. Engineering Design - A Systematic
Approach. London: Springer Verlag, 1996.

[PMG98] D. Poole, A. Machworth, and R. Goebel. Computational Intel-
ligence - A Logical Approach. Oxford University Press, 1998.

[Pup91] F. Puppe. Einführung in Expertensysteme. Springer Verlag,
1991.

[Rap95] B. Raphael. Reconstructive Memory in Design Problem Solving.
PhD thesis, University of Strathclyde, 1995.

[Ret94] M. Rettig. Protyping for Tiny Fingers. Communication of the
ACM, 37(4):21–27, 1994.

[Rin03] J. Rintanen. Introduction to Automatic Task Planning. In-
stitute of Artificial Intelligence, University of Freiburg, 2003.
Lecture Notes.

[RN95] S.J. Russel and P. Norvig. Artificial Intelligence: A Modern
Approach. Prentice Hall, 1995.

[RS03] B. Raphael and I. Smith. Fundamentals of Computer Aided
Engineering. John Wiley and Sons, 2003.

[Sac80] E. D. Sacerdoti. Problem Solving Tactics. AI Magazine, 2(1):7–
15, 1980.

[Sat03] U. Sattler. Description Logics for Ontologies. In Proc. of the In-
ternational Conference on Conceptual Structures (ICCS 2003),
LNAI, 2003. To appear.

134 References

[Sch80] D. Schodek. Structures. Prentice-Hall, 1980.

[Sch83] D.A. Schön. The Reflective Practitioner, How Professionals
Think in Action. Arena Verlag, Alderslot, 1983.

[Sch91] K. Schild. A Correspondence Theory for Terminological Logics:
Preliminary Report. In Proceedings of IJCAI-91, 12th Interna-
tional Joint Conference on Artificial Intelligence, pages 466–
471, Sidney, AU, 1991.

[Sch93] D.A. Schön. Learning to Design and Designing to Learn. Nor-
disk Arkitekturforskning, 16(1):55–70, 1993.

[Sch99] U. Schöning. Theoretische Informatik - kurzgefasst. Spektrum
Akademischer Verlag, 1999.

[SE94] B.N. Sandaker and A.P. Eggen. Die Konstruktiven Prinzipien
der Architektur. Birkhäuser Verlag, 1994.

[SH95] P. Sachse and W. Hacker. Wie denkt und handelt der Kon-
struktuer? Jahresforschungsbericht 24, Institut für Allgemeine
Psychologie, TU Dresden, Juli 1995.

[SH97] R. J. Scherer and M. Hauser. Perspektiven für die Nutzung der
Künstlichen Intelligenz im Bauwesen im Hinblick auf Exper-
tensysteme. In Perspektiven für die Nutzung der Künstlichen
Intelligenz im Bauwesen im Hinblick auf Expertensysteme, volu-
me Jahrbuch 1997, pages 75–100. VDI-Gesellschaft Bautechnik,
Düsseldorf, 1997.

[Shn98] B. Shneiderman. Designing the user interface: strategies for ef-
fective human-computer interaction. Addison Wesley Longman,
1998.

[Sim77] H. A. Simon. Models of Discovery. D. Reidel Pub. Co., 1977.

[Sim95] H.A. Simon. Problem Forming, Problem Finding, and Problem
Solving in Design. In A. Collen and W.W. Gasparski, editors,
Design and systems: General applications of methodology, pages
245–257. Transaction Publishers, New York, 1995.

[Sim96] H. A. Simon. Models of my Life. MIT Press, 1996.

[Sim99] H. A. Simon. The Science of the Artificial. MIT Press, 1999.

References 135

[SML96] C. Schröder, R. Möller, and C. Lutz. A Partial Logical Re-
construction of PLAKON/KONWERK. In Proceedings of
the Workshop on Knowledge Representation and Configurati-
on WRKP-96, pages 55–64, 1996.

[SMM99] G.M. Sisk, J.C. Miles, and C.J. Moore. A Decision-Support
System for the Conceptual Design of Building Structures using
a Genetic Algorithm. In A. Borkowski, editor, Proceedings of
6th EG-SEA-AI Workshop, Warsaw, Poland, 1999.

[SMM03] G.M. Sisk, J.C. Miles, and C.J. Moore. Designer Centred De-
velopment of GA-Based DDS for Conceptual Design of Buil-
dings. Journal of Computing in Civil Engineering, 17(3):159–
166, 2003.

[SS01] B. Stein and A. Schulz. Modeling Design Knowledge on Struc-
ture. In G. Engels, A. Oberweis, and A. Zündorf, editors, Pro-
ceedings of the Workshop of the German Informatics Society,
Modellierung 2001, volume 1, pages 38–48. German Informatics
Society, 2001.

[SSS91] M. Schmidt-Schauß and G. Schmolka. Attribute Concept Des-
criptions with Complements. Artificial Intelligence, 48(1):1–26,
1991.

[Ste81] M. Stefik. Planning with Constraints MOLGEN: PART-I. Ar-
tificial Intelligence, 16(2):111–139, 1981.

[Suc87] L. Suchman. Plans and Situated Actions: The Problem of Hu-
man Machine Communication. Cambridge University Press,
Cambridge, 1987.

[Suh90] N. P. Suh. The Principles of Design. Oxford University Press,
1990.

[SW98] D. Sabin and R. Weigel. Product Configuration Frameworks-
A Survey. Journal of the IEEE Intelligent Systems and their
Applications, pages 42–49, jul 1998.

[Thi03] M. Thielscher. The Art and Science of Programming Reaso-
ning Agents. Institute of Artificial Intelligence, University of
Dresden, 2003. Lecture Notes.

136 References

[TS92] C. Tong and D. Sriram. Design Representation and Models of
Routine Design. Academic Press London, 1992.

[TW02] H.-P. Tuschik and H. Wolter. Mathematische Logik - kurz ge-
fasst. Spektrum Verlag, 2002.

[UT97] Y. Umeda and T. Tomiyama. Functional Reasoning in Design.
IEEE Expert, 11(4):42–48, 1997.

[UTY90] Y. Umeda, H. Tomiyama, and H. Yoshikawa. Function, Beha-
viour and Structure. In J.S. Gero, editor, Applications of Ar-
tificial Intelligence in Engineering V: Design, pages 177–193.
Springer Verlag, Berlin, 1990.

[WD01] D. Wilkins and M. DesJardins. A Call for Knowledge-based
Planning. AI Magazine, 22(1):99–115, 2001.

[Wei96] Robert A. Weida. Closed Terminologies in Description Logics.
In Proceedings of the Thirteenth National Conference on Ar-
tificial Intelligence and the Eighth Innovative Applications of
Artificial Intelligence Conference, pages 592–599, Menlo Park,
August 1996. AAAI Press / MIT Press.

[Wel94] D.S. Weld. An Introduction to Least Commitment Planning.
AI Magazine, 15(4):27–61, 1994.

[Wel99] D.S. Weld. Recent Advances in AI Planning. AI Magazine,
20(2):93–123, 1999.

[Wil88] D.E. Wilkins. Practical Planning: Extending The Classical AI
Planning Paradigm. Morgan Kaufmann Publishers, 1988.

[Wol03] K. Wolter. Orientierung im Arbeitsprozess der Produktauswahl
von komplexen Produkten. Master’s thesis, University of Ham-
burg, Faculty of Computer Science, 2003. Diplom thesis.

[Wom02] O. Wommelsdorff. Stahlbetonbau-Bemessung und Konstruktion
Teil 1. Werner Verlag, 2002.

[WS92] W.A. Woods and J.G. Schmolze. The KL-ONE family. Compu-
ter and Mathematics with Applications, special issue: Semantic
Networks in Artificial Intelligence, 23(2-5):133–177, March-May
1992.

References 137

[WS97] B. Wielenga and G. Schreiber. Configuration-Design Problem
Solving. IEEE Intelligent Systems, 12(2):49–56, March 1997.

[Wun00] G. Wunsch. Grundlagen der Prozesstheorie - Struktur und Ver-
halten dynamischer Systeme in Technik und Naturwissenschaft.
B. G. Teubner Verlag, 2000.

[Yan98] Q. Yang. Intelligent Planning: A Decomposition and Abstracti-
on Based Approach. Springer Verlag, 1998.

List of Symbols

A∗ Set of action sequences, 47

AD Set of design actions including test actions and depending on concep-
tual knowledge KC , 46

AP Set of planning actions depending on control knowledge KP , 46

b Element breadth, 13

Be Expected benavior of the structural concept, 28

Bs Actual benavior of the structural concept, 28

D Desription of the structural concept in form of sketches, 28

EcmIc Flexural rigidity of bracing elements, 19

F Function of the structural concept, 28

fcd Compressive strength of concrete in ULS, 13

FEd Total vertical force on the building in ULS, 19

g distributed self-weight, 16

h Element height, 18

htot Total building height, 19

KC Conceptual knowledge, 46

KP Control knowledge, 46

l Span length, 13

MCD State model of conceptual design, 46

138

List of Symbols 139

MEd Bending moment in ULS, 13

MRd Bending moment resistance in ULS, 13

n Natural number, 19

NEd Compression force in ULS, 13

PEd Concentrated load in ultimate limit state (ULS), 13

q distributed variable load, 16

S Stucture of the structural concept, 28

s system state, 45

T Set of tasks, 46

T ∗ Set of tasklists, 45

TC Set of compound tasks, 46

TS Set of simple tasks, 46

z Internal lever arm, 13

α Lability number, 19

δ Transition function, 45

G Set of goal system states, 46

I Intermediate structural concept, 42

I0 Initial structural concept, 42

IG Structural goal concept, 42

P Action sequence, 47

S Set of system states, 45

S0 Initial system state, 45

SG Goal system state, 45

W Design state space, 42

WG Set of goal states, 43

140 List of Symbols

µEd,lim Limiting non-dimensional constant for flexure in ULS, 13

⊢ Design step as transition relation among system states s, s′ ∈ S, 47

⊢∗ Reflexive and transitive closure of a design step, 47

