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Preface 

When I started work on this text I was well aware that its size would eventually become 
considerably larger than it is usual, and that it was going to be focused on two (and not one) 
major topics, covered in different breadth and depth. Nevertheless, I decided not to change 
the initially outlined structure of the presentation. In the following I will briefly explain  
why it is as it is. 
The study reported in the thesis is the result of my research activities at the Dresden 
University of Technology in the period 1996-2000, conducted in conjunction with my parti-
cipation in the international research and development project ToCEE sponsored by the 
European Union. However, many of the initial ideas that led to this study emerged already  
in 1994-1995, during my work on an earlier European project, COMBI, at the University of 
Karlsruhe. COMBI was one of the first projects in the AEC domain that dealt with the 
development of an information system for cooperative design on the basis of product data 
technology and it was at that time – after doing a lot of modelling and having experienced 
several “integration” and “islands of automation” problems on our own shoulders – that my 
advisor, Professor R. J. Scherer, and I started to think of a conceptual solution that can help 
glue together the inherently multidiscipline non harmonised model world of CAE/CIC. 
Coupled with the specific requirements of concurrent engineering in building construction 
which were broadly investigated in the frames of the ToCEE project, this gave birth to  
the main goal of my research efforts: the conceptualisation and prototype implementation of 
an interoperability approach for a distributed client-server environment for concurrent engi-
neering processes based on product data technology. 
The core of this approach consists of a suggested new method for context-independent model 
mapping built upon the definition of a novel mapping language, CSML. 
CSML presents an extensive and formal means by which the model transformations needed 
for the successful information exchange and sharing between different discipline domains 
can be declaratively expressed and then automatically executed as to map the data specified 
by one model schema to their respective representation specified by another model schema.  
As such, CSML is the main contribution of this thesis. It provides a basis for tackling  
the semantic interoperability problems in a non harmonised or only partially harmonised 
modelling environment, which is of quite general applicability, and not specifically dedi-
cated to the solution of certain concurrent engineering tasks. For example, CSML can be 
used to facilitate the integration of application tools into a modelling environment for which 
they were not originally designed, it can help in creating adequate translators enabling the 
transformation of project data from one large model, such as IFC, to another large model as 
e.g. the CIMsteel Logical Product Model, or it can assist in the development of domain 
extension models within the IFC framework by alleviating the requirements for strict, tight 
harmonisation with the components of the kernel model. 
However, for several reasons the emphasis of CSML is on concurrent engineering. 
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First, many of the requirements of concurrent engineering to an information system can 
strongly influence the design and the implementation of the mapping language and methods. 
Such requirements include the ability to represent partial or incomplete mappings, the tack-
ling of concurrent operations on one and the same data set, the support of cooperation and 
negotiation processes by enabling the work on discipline-specific model views individually 
and in parallel, the existence of already populated models as target of a mapping task etc. 
On the other hand, the adequacy of the mapping language to deal with the abovementioned 
issues is of utmost importance to the basic conceptual idea that, to support concurrency, it is 
not necessary for all models maintained in the computer system to be fully harmonised, and 
the shared data do not have to be entirely and continuously consistent. This data could only 
be coordinated on an as-needed basis, at specific points in time, allowing to perform all 
concurrent engineering processes in a more natural way. 
At last, to facilitate the integration of design applications by means of unified programming 
interfaces, it is essential to treat the different interoperability aspects of the environment in 
their inter-relationships. In other words, the mapping language and methods need to be 
incorporated as part of a consistent overall representation approach. 
Thus, many conceptual decisions with respect to model mapping can be inferred from the 
superior and much broader subject of concurrent engineering, and many decisions with res-
pect to the overall environment are in turn dependent on the developed mapping approach. 
To help understand these decisions better, I have deliberately chosen to precede the core of 
the presentation by an extended overview of the background, the architecture and the 
operability of an envisaged environment in which model mapping can efficiently be applied. 
This resulted in three more or less distinct parts of the text as described below. 

Organisation of the thesis 

The thesis is divided into nine chapters along with seven appendices and a reference section. 
Its first part, dedicated to the overall concept of a concurrent engineering environment, 
covers the first four chapters. It is broader in scope but with less discussion about why 
certain choices are made and from what selection of alternatives. 
Chapter 1 introduces the specific motivation and objectives of the study, the adopted 

research method and the demonstration examples pulled up for the validation of the 
developed concepts. 

Chapter 2 presents the background of the proposed solution approach, focusing, on one 
hand, on the principles of concurrent engineering methodology, and on the other hand, on 
the state of the art of IT application in the building construction sector and the state of 
research and development in engineering data modelling. 

Chapter 3 outlines the basic concepts of the suggested environment and identifies the inter-
operability issues that have been the main target of the research effort. 

Chapter 4 presents an approach for solving fundamental systemic interoperability problems 
in the proposed environment. It is at the same time a transition between the first and the 
second part of the thesis as it goes into more detail than the preceding three chapters to 
present a logically consistent conceptual solution based on the idea of information 
containers, overlaid by a generalised communication model and object-oriented project 
data operations, enhanced by server-side knowledge-based functionality. However, in 
order to remain in scope, in-depth discussions are kept concise here as well. 
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The second part, comprising chapters 5 to 7, is dedicated to the main semantic interopera-
bility problems that have to be dealt with in a distributed, heterogeneous model world.  
These problems are considered as the hardest and most challenging task in the context of 
the thesis. In contrast to the first part, the presentation here is more focused and goes into 
considerably more detail. It includes a comprehensive discussion of the problem domain, 
related efforts, alternatives to the proposed new solution approach, detailed description of 
the developed model mapping language, a (heuristic) validation of the developed concepts 
and a critical appraisal of the achieved results. 
Chapter 5 discusses the general concepts and the state of research in the domain, and 

outlines the proposed solution. 
Chapter 6 introduces the developed mapping language, CSML. Along with a formal and 

comprehensive presentation of the syntax and semantics of CSML, it provides also  
a detailed proof of concept on the basis of a wide range of typical mapping exercises. 

Chapter 7 describes three larger case studies, providing evidence for the field applicability 
of the suggested approach. 

The third part, comprising chapters 8 and 9, is dedicated to the practical validation and 
evaluation of the developed concepts. For this purpose, a prototype project data management 
server and selected sample clients have been implemented as part of the research work. 
Chapter 8 outlines the main features of the prototyped server, PROMISE, and presents a 

more comprehensive implementation example, adapted from the ToCEE project, which 
covers most major aspects of the developed approach. 

Chapter 9 provides an overall evaluation of the concepts and the prototype implementation, 
and outlines envisioned areas for future research. 

Technical details and background information related to the work are presented in the seven 
appendices complementing the thesis. 
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Chapter 1: Introduction 

“Begin at the beginning”, the King said, very gravely, 
”and go on till you come to the end: then stop.” 

– L. Carroll, Alice in Wonderland 

The rapid globalisation of the world markets in the last decade has brought forth new 
challenges to the competitiveness of the building industry, strongly influencing the orga-
nisation of design and construction work. Along with the increased realisation of 
construction projects in virtual enterprises comprised of physically distributed specialist 
teams, a growing interest in the introduction of advanced production methodologies and 
the use of innovative information technology (IT) solutions can be widely observed. 
Today, it is recognised that concurrent engineering is the production methodology that 
can bring greatest competitive advantage to a company, if appropriately applied. 
This thesis presents a novel approach for computer-supported concurrent engineering 
processes on the basis of product data technology and with special emphasis on major 
interoperability problems that need to be dealt with. Chapter 1 sets the stage by intro-
ducing the specific motivation and objectives of the work, the adopted research method 
and the demonstration examples pulled up for the validation of the developed concepts. 

1.1 Motivation 
According to (Scherer 1998a), in the present time the major features of concurrent 
engineering are: (1) the collaborative work of physically distributed teams, (2) simul-
taneous engineering, i.e. taking into account the full product life cycle during the design 
stage by means of forecasting and simulation, and (3) the synchronised cooperative 
engineering of one and the same part of the product by different experts. These features 
can be realised by an IT framework and a virtual product model that allows different data 
views but includes also ”functionalities for data management, such as transformations, 
consistency checking, monitoring, control and notifications  […]”. 
This view is now broadly recognised. However, in spite of a general understanding of the 
benefits of concurrent engineering and the rapid hardware and software development, 
extending the areas of automation far beyond CAD and numerical analysis tools, the state of 
IT solutions for concurrent engineering is not yet satisfactory. 
On the one hand, this is certainly due to some differences between building construction and 
other industries that have negative influence on IT development. In (IAI 1999a) these 
differences are outlined as follows: 
– other industries have higher profits enabling them to invest larger sums in IT development; 
– other industries have few, very large, key organisations who can drive a technology to suit 

their requirements; 
– other industries have less complex supply and communication chains. 
Additional reasons are often seen in the fragmented and multidiscipline nature of the 
building industry, and the one-off products it has to deal with. 
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On the other hand, although broadly discussed, the principles of concurrent engineering and 
their implications to information technology in building construction are not yet well 
understood. The few commercially available systems claiming to support concurrent engi-
neering mainly mimic traditional document-oriented methods of work. Being document, and 
not model based, they fail to provide many vital features, such as comprehensive change and 
conflict management, system-wide data consistency, coordination of alternative solutions.  
As a result, with such systems only a limited increase in productivity can be achieved. 
By examining the state of computing in the AEC domain, many researchers have 
consequently come to the conclusion that the major problems inhibiting the successful 
application of IT lie with the conceptual models of buildings (cf. Junge 1991; Björk 1992; 
Björk 1994; Hannus et al. 1995b; Wix 1996; Amor 1997). The understanding that the lack of 
formal, standardised, comprehensive models limits both the capabilities and the integration 
of CAD applications, as well as the successful information exchange and sharing in 
construction projects, has lead to the inauguration of a number of research projects tackling 
different portions of the commonly known as “islands of automation” problem. However,  
in spite of all recent achievements, essential concurrent engineering issues, such as the 
management of the process, product, documentation and communication flows, are still 
being handled in a fragmented manner, as individual, mutually independent, or at best only 
partially inter-connected systems. Thus, to date, the major open problems related to the reali-
sation of a fully interoperable, computer-supported concurrent engineering environment are 
not related to the components, but to the conceptual modelling of the environment itself. 
Whilst in the last years a number of comprehensive product, process and document models 
have been proposed, a clear concept for a modelling environment that enables their inte-
gration, and at the same time fulfils the requirements of concurrent engineering, is not yet 
available. Many aspects related to the interoperability of the environment, such as the 
communication between users and applications in a distributed, heterogeneous system, the 
semantic integration of the implemented data models, and the functionality of the system in 
reaction to data conflicts and modifications, are not yet sufficiently investigated, and are 
solved only through the application of ad hoc developed tools and methods. 
To be more explicit, let us consider an example situation: 

Mr. Archibald is a highly qualified architect, in charge of an architectural design office. Well aware 
that today’s design work is unthinkable without adequate computer support, he has equipped his 
team with newest architectural CAD software, along with several office automation and groupware 
tools. His employees work on fully networked, Internet-enabled workstations, and they are all skilled 
computer users. However, in his latest project Mr. Archibald was again disappointed by his 
“computer investments”. After finishing the scheme design, he transmitted the prepared data via 
Internet first to the office of his fellow services engineer, Mr. Hatchwack, expecting that there might 
be some minor problems with the HVAC system that should be duly checked. But having waited for 
several days for a response, he discovered that he was faced with much more serious problems than 
initially assumed. First, it turned out that Mr. Hatchwack is using a different CAD system, and he 
had to spend many work hours merely to “feed” the data of Mr. Archibald into it. Second, he was not 
able to fulfil the HVAC design without moving some elements around, and thus had to create an 
alternative solution, producing an entire new set of drawing plans. Third, not all proposed changes 
could be seen on the drawings which required a bulky memorandum to explain. 
Many days spent on similar activities by one of Mr. Archibald’s employees, and a number of open 
questions needing additional requests for information and negotiations, brought the carefully planned 
work schedule at rock bottom, the structural engineer was kept off work, and even worse, some 
problems that arose later with the bearing structure had to be solved in wild haste, at the expense of 
space design, in order to finish in time. The final design solution was not one to be proud of, and 
many minor defects had to be fixed during construction, resulting in additional unplanned costs. 
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This simple example is freely invented, yet not that far from reality. Indeed, by using 
advanced design-support tools each designer can considerably improve his own pro-
fessional work, but there is very little he can do to coordinate his work with others, to think 
of cooperative solutions in which multidiscipline design problems can be better balanced, 
and to minimise waiting times. Thus, even though advanced design tools can make 
individual activities more effective compared to manual work, the overall process remains 
basically sequential, leaving little room for cooperative design decisions and reduction of 
lead time. The result is an improved version of “over-the-wall” design practices, far from 
the vision of concurrent engineering. 
More efficient cooperation can be achieved through the use of compatible, i.e. integrated 
computer-aided design systems. In fact, such arrangements are made often before the 
beginning of large construction projects. However, concurrent engineering requires more 
than that. Integrated software solutions allowing seamless information exchange can 
considerably cut coordination times and tedious, non value generating processes, but taken 
alone they cannot contribute much to the effective organisation of team work and truly 
collaborative project realisation. 
This aspect becomes more obvious by examining fig. 1.1, showing three “possible” time 
schedules for the above example. 

Architecture

HVAC

Stuctural Eng. t

Architecture

HVAC

Stuctural Eng. t

A) Traditional “over the wall” engineering 
Tarch = 18, THVAC = 13, Tstruct. = 13,  Ttotal = 40,  Resources = 44 time units. 

Architecture

HVAC

Stuctural Eng. t

Architecture

HVAC

Stuctural Eng. t

B) “Integrated” work 
Tarch = 16, THVAC = 12, Tstruct. = 12,  Ttotal = 36 (10% gain),  Resources = 40 (9% gain). 

Architecture

HVAC

Stuctural Eng. t

Architecture

HVAC

Stuctural Eng. t

C) Vision of “concurrent” work:  reduced lead time through continuous multidiscipline interaction 
Tarch = 18, THVAC = 12, Tstruct. = 12,  Ttotal = 19 (> 50% time gain),  Resources = 42 (5% gain). 

Fig. 1.1: Time schedules of the design process by different project realisation approaches 
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The presented time data on this figure are fictitious, but in correspondence to each other, and 
in line with the generally accepted proportions of creative and non value generating work, 
shown by light grey and dark boxes respectively. In the last diagram, coordinated activities 
are presented by checked boxes, denoting that coordination and communication in the 
concurrent engineering approach should happen hand in hand with “real” design work. 
However, while the given time schedules are fictitious, the portions of non value generating 
coordination activities, ranging between 15 and 30 percent of the total time, are not. Thus, by 
considering the design process as a whole, from the perspective of time, the great potential of 
continuously practised concurrent work can readily be seen (cf. Smith & Reinertsen 1991) *). 
On the other hand, fig. 1.1 shows only idealised time models: the last diagram presents a 
future vision, and the current situation is not that bleak. In fact, as indicated in (Schulz 1996), 
long before “virtual enterprise” and “concurrent engineering” became established terms, 
design and construction projects have been performed by teams of small specialist 
companies that cooperate together in often transient relationships to apply their skills and 
expertise on a particular project. 
Whenever possible, such team work has always been performed concurrently, leaving the 
impression that concurrent engineering is the natural way the building industry operates, 
and that there is not much to learn from other industries with respect to concurrent 
engineering methodology, but there is much to gain by adopting off-the-shelf information 
technology solutions to support the concurrent engineering process. 
Unfortunately, due to several factors, this is not quite true. 
The first key point here is in the words “whenever possible”. 
In general, concurrent work is possible when each team member knows what to do, when to 
do it, how to do it, what do others do, who is dependent on his/her actions, and whose other 
actions influence his/her work. However, to know what to do and when to do it requires to be 
able to take initiative proactively, being aware of the overall goals and the overall processes 
comprising a construction project. To know how to do some piece of work requires not only 
appropriate knowledge and expertise in the own domain but also awareness of the inter-
dependencies with other domains and time schedules, and an understanding of the 
consequences of a specific design solution to the overall performance characteristics of the 
designed construction facility. To know these inter-dependencies requires awareness of the 
responsibilities, the competence and the tasks of the other team members, and to know what 
others do means to have the right information at the right time. 
It is easy to see that many of these activities are related to coordination and communication, 
“swallowing” a large amount of the available resources**). Thus, the first challenge is to find 
IT methods to improve this “whenever possible”, which is of great importance both to the 
duration and cost of a project, and, indirectly, to the quality of the product itself. 

The second key point is in the word “concurrently”. 
Integrated information processing can improve coordination and communication times, but 
substantial productivity gains can only be achieved by simultaneously carried out tasks.  

                                                 
*) Further aspects enabled by concurrent engineering that are not shown on fig. 1.1 include better 

design solutions through enhanced coordination, early simulation for detection of risks and 
prevention of wrong decisions, improved quality control. 

**)  In (IAI 1999a) it is mentioned that “[...] up to 30% of the cost of a building project is due to the 
fractured processes and communication of the AEC/FM industry”. 
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This presumes local, independent work which inevitably leads to diverging design solutions 
and data conflicts. Therefore, to be able to work “concurrently” it is necessary to ensure data 
consistency and convergence of the individually designed building systems (spaces and 
space boundaries, bearing structure, HVAC, electrical installations etc.), and at the same time 
enable as much as possible autonomous, non coordinated, creative work. 
This dichotomy cannot be solved only by integrating design applications and shared database 
access to common project information. Besides, additional problems can arise when an IT 
system is not only logically, but also “geographically” distributed, which is a common 
situation in building construction. Thus, the second challenge is to find information tech-
nology methods that would allow to merge diverging design solutions when the necessity 
arises, without imposing rigid coordination mechanisms inhibiting creative work. 

The third key point is in the relationship to other industries. 
On the one hand, due to its natural characteristics (one-off products, highly fragmented infra-
structure), the building industry has developed an intuitive concurrent engineering approach 
long before any manufacturing industry. However, this approach is still largely intuitive. The 
theoretical methodology of concurrent engineering has been created by other industries and 
is seldom properly applied in building construction practice. As a consequence, its impli-
cations to building IT are weakly studied and insufficiently considered. 
On the other hand, off-the-shelf IT solutions available from other industries can offer only 
partial support because: (1) they are designed to act in other environments, with different 
work processes and information needs, and (2) they are mostly huge, expensive systems 
developed primarily for the needs of key organisations in powerful industry sectors 
(automotive, aerospace), which makes them inadequate to the modest resources available in 
the AEC domain. Although in a slightly different area, the limited success of STEP in 
building construction provides sufficient evidence in that respect. 
What remains is to rely on internal efforts. However, because of the limited resources for 
research and development, it is imperative to coordinate as much as possible development 
work. Thus, the third challenge is to find an approach for efficient IT support for concurrent 
engineering which is tightly aligned with existing standardisation efforts. Currently, these are 
the Industry Foundation Classes developed by the IAI. 

The last point refers to the target of the research effort. 
From the preceding discussion it is obvious that the work presented in this thesis addresses 
the design phase of a construction project. Of course, concurrent engineering methodology 
does not apply only to design, and some considerations regarding the construction phase will 
be given later on in chapter 2. However, as markedly pointed out in (Wittenoom 1998) “the 
most effective time to optimise project effectiveness and profitability is during the early 
stages of model realization. This stage accounts for a small proportion of the development 
budget but decisions taken will have major impact on life cycle effectiveness, capital expe-
nditure, and operating costs. It is important to get these decisions right as soon as possible”. 
I will only add  “with the help of an IT framework”. 
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1.2 Research Objectives 

The overall goal of this research is the development of a model-based approach for a 
distributed IT environment enabling adequate consideration of the major requirements of 
the concurrent engineering methodology. The specific focus is on the interoperability of 
the environment and its framework and not on the elaboration of single components like 
product and process models, design tools, or user interfaces. 
The developed approach should support the parallel, independent work of the members of 
a distributed design team, as well as a broad spectrum of coordination and cooperation 
activities. It should provide for the integration of different software applications used for 
different domain tasks, and it should have sufficient representational power to support the 
evolution and the concretisation of design information from initial sketches and ideas to 
final ready-to-build specifications. Last but not least, the developed concepts should be 
aligned with existing standardisation work, taking into account the requirements, 
constraints and limitations of relevant IT and building standards to guarantee the practical 
value of the achieved results. 

Depending on the initial hypotheses, different design strategies can be applied to the 
solution of the problems related to the conceptualisation of an environment that can satisfy 
the above broadly defined goal. 

The approach proposed in this thesis is based upon the following set of inter-related 
hypotheses: 
1. A main prerequisite for the envisaged environment is an underlying logically consistent 

object-oriented modelling framework enabling model-based project realisation, as 
opposed to existing document-oriented approaches mimicking traditional paper-based 
work. This framework should be implementable, i.e. it should represent not only the 
components of the designed product and the related design/production processes, but 
should encompass the components of the IT system as well. 

2. The core of the modelling framework should be built upon a standardised shared 
project model, designed in accordance with the principles of product data technology. 
However, this model cannot be expected to include all information needed in all 
subtrades of building design and construction. Along with it, other domain models may 
be needed, and these models may not be harmonised, neither horizontally, i.e. with 
each other, nor vertically, i.e. with the shared project model itself. 

3. To allow for the consideration of alternative solutions, developed in parallel by one or 
more design professionals, it should be possible for each designer to work with his own 
discipline-specific models and application tools locally and independently, in his own 
private workspace. Hence, a distributed, a priori non coordinated model world has to be 
taken into account. 

4. As individual design decisions may reference or influence the model data of others, 
adequate methods ensuring the overall consistency of the information have to be 
provided. My hypothesis here is that, instead of trying to impose continuous consistency 
by constantly updating the content of the shared project model at each single action, these 
methods should guarantee the consistency of the data as needed by the designers 
themselves, at discrete coordination points. This means that the freedom to experiment 
and the coordination of design decisions should be left solely to the human designers. 
The system should support, and not dictate the organisation of the work. 
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5. The last hypothesis is that, taken alone, the commonly used object-oriented modelling 
paradigm is not always sufficient to describe the full required functionality of a con-
current engineering environment, and that industry standard concepts of object-oriented 
programming, such as inheritance, encapsulation and polymorphism, are not always the 
best choice for the realisation of this functionality. Where appropriate, more advanced 
knowledge-based concepts enhancing standard object technology need to be considered. 

In accordance with that, the following objectives have been set up (listed in the order 
observed by the elaboration and the respective presentation of the developed approach): 
1. Provide principal concepts for a distributed client/server system for concurrent 

engineering in building design, with emphasis on the architecture and the formal 
specification of interoperability models, components and services; 

2. Use product data technology as baseline by aligning the developed concepts as far as 
possible with STEP methodology; 

3. Use the IFC models as general reference models of the proposed approach by 
coordinating all specific components for concurrent engineering support with the IFC 
modelling architecture; 

4. Study possibilities to incorporate advanced knowledge-based features into the 
concurrent engineering environment; 

5. Develop an interoperability approach to enable the solution of problems related to the 
concurrent, multidiscipline work on multiple, non harmonised domain models; 

6. Implement a prototype software system as proof of the developed concepts. 

The most challenging of these objectives are the first, the fourth and especially the fifth, 
whereas the second and the third have served basically as guidance for several conceptual 
decisions, and the last is specifically dedicated to the validation of the developed approach. 

1.3 Related Research 
As a methodology covering the full life cycle of product development and maintenance, 
concurrent engineering has many facets. A number of its aspects have been individually 
investigated in one form or another in the last decade. Currently, there exists considerable 
know-how related to various components of the envisaged concurrent engineering  
IT environment in the areas of conceptual product and process modelling, database 
management, distributed processing, computer networks and communication technology. 
Valuable results have been achieved in a series of academic studies and in a number of large 
research and development projects, as well as in the frames of major commercial systems. 
Impressive research efforts in the area of Building Construction have been undertaken in the 
European projects ATLAS (Böhms & Storer 1994; Tolman & Poyet 1995), CIMSTEEL 
(Watson & Crowley 1995), COMBI (Scherer 1995; Scherer & Sparacello 1996), COMBINE 
(Augenbroe 1995a), PISA (Braun et al. 1994), VEGA (Amar et al. 1997) and ToCEE (Amor 
et al. 1997; Scherer 2000); the US projects SEED (Flemming & Woodbury 1995; Fenves et 
al. 1995) and DICE (Peña-Mora et al. 1995; Sriram & Logcher 1996); the German project 
“A4 – digitales Bauen” (Hovestadt 1993); the Finnish OOCAD/RATAS approach (Serén et 
al. 1993; Hannus et al. 1995a); the international research initiative IRMA (Luiten et al. 1993); 
the Australian “Realization Model” (Wittenoom 1997) etc. More recent efforts include the 
projects CICC, CONCUR, COMMIT and DESCRIBE (cf. Kamara et al. 2000), and the 
CLDC framework (conceptual framework for Concurrent Lifecycle Design & Construction). 
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Intensive research and development work has been conducted in other industry branches as 
well, most notably in the aerospace, mechanical, petrotechnical, shipbuilding, high-tech and 
defense industries. Outstanding examples provide the large European projects RISESTEP /in 
the aerospace domain/ (Figay 1998), REMAP /mechanical industry and robotics/ (Sieberer  
& Keber 1998), EPISTLE (Angus & Dziulka 1998) and PIPPIN (Thomson 1998) /petro-
technical and process plant facilities/, carried out in conjunction with the POSC/CAESAR 
project, and MARITIME /shipbuilding/ (de Brujin et al. 1995), along with a cluster of 
follow-up projects (MARVELOUS, MAREXPO, OPTIMISE etc.) and in close cooperation 
with the US Navy Niddesc project. There are also a number of industry led efforts as e.g. the 
US NIIIP project /data protocols for high performance computing networks for the auto-
motive, aerospace and defense industries/ funded by DARPA (Hardwick et al. 1997) and the 
OMG's PDM Enablers initiative (Waskiewicz & Siegel 1996), as well as proprietary PDM 
solutions, such as METAPHASE software (SDRC 2000), widely used by major companies 
in the automotive, aerospace, high-tech and defense industries. 
Much standardisation work has been performed in the frames of CALS, ISO, IAI and WfMC 
that can usefully be applied. Of particular interest to this study are the integration initiatives 
undertaken in the ISO STEP standard and by the IAI. 
The objective of STEP (ISO 10303-1 1994) is the sharing of unambiguous models between 
applications through standardisation of application-independent data models, called “applica-
tion protocols” (APs). These models are expected to provide the link between the dedicated 
domains of the individual applications and that of STEP-conformant information, enabling 
both error-free data exchange and the use of shared data repositories. Currently this approach 
is being successfully applied in some subdomains of the automotive, process plant and ship-
building industries. However, because of the complicated and resource intensive stan-
dardisation process, the acceptance of STEP in building construction is still relatively low. 
In contrast to that is the work of the International Alliance for Interoperability (IAI 1999a). 
Targeting an evolutionary model with releases currently on bi-annual basis, it enjoys wide 
support by over 600 member organisations. The goal of the IAI is to define and promote a 
“universal building language”, the IFCs, as a basis for sharing AEC project information 
globally, across disciplines and technical applications, and through the product life cycle. 
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The IAI vision, expressed schematically on fig. 1.2 above, is to achieve interoperability 
through a shared project model to which all kinds of applications can interface. New gene-
ration software incorporating the IFC project model specifications is thus expected to bring 
at least the following two benefits to the way a project team works together: (1) coordinating 
information, and (2) transferring the information intact (Herold 1997). 
Many of these efforts are referenced as appropriate in the following chapters. However, 
both STEP and IAI focus mainly on software integration, envisaging, in the medium term, 
a shared project data repository as a remedy to all “islands of automation” problems, 
whereas many issues related to the interoperability of implemented IT environments are 
overlooked or, at best, treated on theoretical level, without much consideration w.r.t. their 
practical validation and scalability. The majority of the academic studies propose solutions 
only for specific difficult problems in narrow domains, such as model evolution and 
multiple design views, conflict resolution methods on the basis of constraint satisfaction, 
Internet-enabled communication and negotiation methods etc., paying little attention to the 
alignment of the developed methods in a coherent concurrent engineering approach. Larger 
projects that have investigated the construction of product data based environments in a 
wider scope have been primarily concerned with data modelling and integration aspects, 
ignoring other substantial requirements related to the architecture and the operability of a 
run-time environment. For example: 
– the ATLAS project developed a very broad layered modelling framework, with 

considerable influence on the later IFC architecture, but did barely elaborate detailed 
concepts for the implementation of this framework in a coherent running system; 

– the COMBINE project produced a great number of developer support tools, but limited 
the undertaken modelling efforts to its specific project window including a few selected 
tools for energy saving design, without much consideration of the scalability and more 
general applicability of the approach; 

– the EPISTLE project worked out a comprehensive modelling framework including a 
general ontology, a meta model and a central core model, but envisaging a large shared 
database and integration techniques that are applicable mostly for global organisations, 
typical for the petrotechnical industry sector; 

– the REMAP project provided a well thought-out revision management system enabling 
distributed team work, but associates this system tightly with a dedicated object model-
ling approach, maintaining only a weak link to STEP data models, and ignoring other 
requirements except version/revision control; 

– the RISESTEP project led by Aerospatiale and involving a large consortium of key 
European industry players elaborated advanced techniques to integrate the disparate 
PDM, CAD and other IT systems used by its partners in distributed environments, but, 
similar to EPISTLE, focused basically on solution methods that are appropriate for the 
global players in the aerospace and the automotive industries; 

– the SEED project proposed a novel modular representation approach, but only for a narrow 
domain (the early design phases), and not specifically related to concurrent engineering; 

– the VEGA project focused basically on technological aspects, such as the use of distri-
buted CORBA-based object processing with STEP models, etc. 

Thus, whilst there is much prior research related, directly or indirectly, to the subject of 
this thesis, little work has been done to investigate modelling and interoperability issues in 
the context of an overarching concurrent engineering framework for AEC. 
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One of the few major efforts in that respect is the US DICE project (Distributed and 
Integrated Environment for Computer-Aided Engineering). It examines the use of advanced 
technologies for cooperative product development, including knowledge-based methods, and 
several related concurrent engineering issues, such as: 
– effective coordination and communication; 
– capturing of design rationale; 
– forecasting the impact of design decisions; 
– collaborative negotiation methods for conflict management. 
In addition, greatest attention has been paid in DICE to the flexibility and extensibility of 
the approach, by assembling the overall capabilities of the system from individual 
components and capabilities. However, the DICE project ignores current standardisation 
efforts like STEP and IFC, favouring the development of concepts and methods in an 
unconstrained prototype modelling environment of its own. It is therefore not likely to be 
taken up in future building IT developments. 

Two other projects that deserve attention are the EU projects COMBI (1993-1995) and 
ToCEE (1996-1999). These projects exerted considerable influence on the work presented 
in this thesis due to the active participation of the author as one of the principal inves-
tigators in both of them. 

The COMBI project (Computer-Integrated Object-Oriented Product Model for the Building 
Industry) was smaller in scope and number of participating organisations than most of the 
other projects mentioned above. Its main objectives were initially set up as follows: 
– develop a flexible modelling framework capable of representing multiple design 

perspectives; 
– integrate knowledge-based design assistance tools, along with existing numerical and 

CAD applications; 
– contribute to the solution of consistency problems related to evolving design 

information by capturing the effects of individual design actions. 
COMBI focused primarily on integration issues and the examination of selected 
knowledge-based design methods, but it addressed also several aspects relevant to 
concurrent engineering in a STEP-conformant way. Such aspects included the transfor-
mations between different representations of the same physical objects, dynamic object 
evolution and re-classification, Internet-enabled data exchange. 
The modelling framework of COMBI is less detailed compared to other projects, as e.g. 
COMBINE or CIMSTEEL, but it takes a broader look at the problem domain and, like 
ATLAS, incorporates several features that contributed to the creation of the IFC models. 
Some of the concepts developed in COMBI were realised by ad hoc written support tools, 
lacking a formal specification basis, which limited their broader applicability. However, 
although the COMBI consortium was dissolved after the end of the project, many of the 
suggested ideas have been further developed in the ToCEE project and in this research work. 

ToCEE (Towards a Concurrent Engineering Environment in the Building and Civil Engi-
neering Industries) had a much wider scope compared to its precursor, COMBI, and is one 
of the few projects that examined the principal construction of an IT framework for 
concurrent engineering as a primary project goal. It addressed key issues for a successful 
concurrent engineering approach, including: 
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– a unified modelling framework for distributed process, product, document and 
regulation data; 

– legal aspects related to the project data and the electronic documentation; 
– information logistics and communication management; 
– inter-discipline conflict management; 
– monitoring and forecasting; 
– elements of cost control. 

Several domain problems that were previously examined in isolation were considered in 
ToCEE together, to provide a seamless multi-client/multi-server prototype environment 
where a wide range of tasks were inter-related. The layered modelling framework of COMBI 
was enhanced with two additional layers and encompassed a broad spectrum of data, inclu-
ding information about the information system itself (Turk et al. 2000). However, many 
aspects related to model-based product development in the line of concurrent engineering 
methodology remained without due consideration in the ToCEE project as well, and there 
was little work done for the systematic modelling of interoperability aspects w.r.t. the overall 
system. The exploration of such issues forms a major part of the work presented herein. 

1.4 Demarcation 

The creation of an IT environment providing comprehensive concurrent engineering 
support can be expected to include a large number of specialised components of great 
complexity. The development of all these components by one person is certainly not 
manageable in a lifetime. However, as already mentioned, many aspects of the envisaged 
environment have been separately investigated in previous research efforts, a number of 
related methods are known from computer science, and a variety of support tools are 
available from the software industry. All this does not have to be re-invented. Therefore, 
the emphasis of this thesis is on issues that are not yet sufficiently clarified, and are only 
partially addressed in existing approaches. This includes: (1) the principal structure of the 
modelling framework of the environment, (2) the specification of a common commu-
nication paradigm that can easily be applied by heterogeneous software components,  
(3) the basic interoperability of these components on systemic and semantic level, and  
(4) the choice of an appropriate server-side representation of the project model data, that 
matches the requirements of the environment. 
Out of scope is the development of product data models and dedicated engineering appli-
cations. Out of scope are also data management issues requiring deep domain knowledge. 
Such aspects should be treated on the level of application systems, or by sophisticated server 
agents, extending the basic server functionality addressed in this study. Interoperability on 
functional level, i.e. the specific reaction of the concurrent engineering system to user or 
application actions has been studied in principle, and sample tools have been developed that 
are demonstrated in the implemented system prototype. However, the programmed algo-
rithms need further investigation and are only briefly introduced in the presentation. 
Work on some of the abovementioned issues began in the COMBI and the ToCEE projects 
as a cooperative effort of several persons including the author. This work is related to the 
implemented modelling framework outlined in sections 3.3 and 3.4 (developed with contri-
butions of E. Ammermann, R. Junge, T. Liebich and R. J. Scherer from COMBI, and  
R. Amor, J. Hyvärinen, R. J. Scherer, Ž. Turk and R. Wasserfuhr from ToCEE), as well as to 
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the Information Container and the Communication Model specifications provided in sections 
4.2 and 4.3 (developed with the contribution of R. Wasserfuhr). However, due to some diffe-
rences in individual ideas, the concepts discussed in these sections diverge, at some places 
considerably, from the respective concepts described in the reports to these projects. 

1.5 Approach 
As a whole, the research presented in this thesis can be seen as a problem-solving task:  
it tries to develop a coherent solution to a set of problems related to the operability of the dis-
tributed, highly fragmented world of CAE in building construction, by providing concepts, 
specifications and methods for a model-based concurrent engineering IT environment.  
The core of the developed approach is a suggested novel method for model mapping based 
upon a formal, declarative mapping language combined with object-oriented and knowledge-
based techniques. 
However, due to the broadness of the target domain, the variety of involved IT aspects, and 
the vague definition of user requirements from the practice, it was not possible to find a 
closed-form solution derived from a formal axiomatic theory. Therefore, a research method 
based on the theory of empirical science has been selected. In spite of many iterations, 
try-and-error steps and reformulations that accompanied the research work, it can be 
generally delineated by the eight phases shown on fig. 1.3 below. 
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Fig. 1.3: Principal phases of the adopted research approach 

The discussion of the developed concepts and methods in the following chapters is aligned 
as much as possible with these phases. Hence, fig. 1.3 can also serve as a quick-reference 
guide through the thesis. 

1.5.1 Basic definitions 
For a new discipline, with a history of a little more than 50 years, it is not surprising that 
the terminology used in the area of information technology is not yet consolidated. Many 
concepts are often named differently by different researchers, developers and users, and the 
same terms are often used to name different concepts. In many cases concepts are only 
vaguely defined, leaving a considerable freedom of interpretation to the reader. In the sub-
domain of computer-aided building design and construction, as well as in the more specific 
area of conceptual modelling of buildings, this problem is even stronger because of the 
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inter-discipline character of the research work. Therefore, it is useful to introduce in 
advance the meaning of some basic terms and notational conventions the way they are used 
in this thesis. 
1. In the context of this study Concurrent Engineering (CE) should be understood as the  

coordinated work of design teams distributed across space, time and organisational 
boundaries. This coordinated work should be organised in such a way that the main 
principles of the concurrent engineering methodology, as defined in the relevant 
literature (see e.g. Winner et al. 1988; Carter & Baker 1992; Kusiak 1993; Prasad 1996), 
can efficiently be applied. Thus, in this thesis, the emphasis of CE is on the issues 
related to computer-supported coordination and communication. The goal is reduction 
of total development time by enabling continuous interaction between the disciplines 
involved in a design project. 

2. By a Concurrent Engineering Environment (CEE) I shall understand the information 
technology environment in which CE is practised. 
A CEE System is an IT system which enables CE in CAE/CIC. 
Computer-integrated construction (CIC) is both the use of computers for all kinds of 
applications and the integration of these applications via data transfer networks and 
standards (Howard et al. 1989). 
Seen in this perspective, integration means efficient information sharing and data 
exchange using IT as enabling technology (Björk 1995). 
A prerequisite for the development of information sharing and data exchange standards 
is the development of formalised conceptual models. Each such model represents some 
real world abstraction, based on an underlying universe of discourse. 
In accordance with that, Universe of Discourse (UoD) is this delimited part of the real 
world which encompasses the set of objects representing the knowledge of the domain 
in the subject area of an information modelling effort. In other words, the UoD is a 
well-formed abstraction of reality. 
A conceptual model is the formal representation of the UoD in terms of a set of strictly 
defined linguistic symbols and a set of necessary logical propositions on these symbols. 
Often, instead of conceptual model, conceptual schema or simply schema is being used. 
Here, schema is also the most frequently used term, mainly because of its shortness. 

3. The conceptual model of a particular class of artefacts, in our case a building, a 
constructed facility, or any self-contained part of these, is known as the Product Data 
Model of that class of artefacts. However, in the literature both product data model and 
product model are often used interchangeably. This may cause confusion, especially 
where both terms are distinctly needed. To provide for the necessary distinction, the 
definitions given in (Björk 1995) have been adopted here as follows: 
 A building product data model (shortly: product data model) is a type of conceptual 

schema where the UoD consists of buildings throughout their design, construction, 
operation and maintenance. A building product data model models the spaces and 
physical components of a building directly and not indirectly by modelling the 
information content of traditional documents used for building descriptions. 

 In contrast, a building product model (shortly: product model) is the information 
base describing some particular building. The structure of the information base is in 
conformance with a precisely defined conceptual schema (the corresponding building 
product data model). 
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Thus, concisely, a product data model represents the information structure that can be 
used to model any particular product of the referenced class of products. A product 
model is the instantiation of a product data model. 

4. Product Data Technology (PDT) is the specific IT area related to the development of 
product data models. However, research and development in the last years have shown 
that the conceptual modelling of products and the related production processes are 
closely associated, and cannot be exercised independently. As a result, a number of 
suggestions for integrated project (process and product) data models have emerged  
(cf. Luiten et. al 1993; Fisher & Froese 1996). The current IFC documentation also 
refers to project, and not product data modelling. 
In fact, the emphasis of conceptual modelling has never been on product data, which is 
merely the dominating part of the data needed in a project, but on the adequate 
structuring of the information addressed in the identified UoD. Thus, PDT should be 
understood as equal to project (product and process) data technology. Similarly, instead 
of product data management and product data services, we shall speak of project data 
management and project data services, in both cases with emphasis on the word “data”. 

5. Today, conceptual models are generally developed on the basis of the object-oriented 
modelling paradigm which dominates the field of software engineering at least since 
the proliferation of applications using the C++ programming language. 
This paradigm introduces several terms reflecting its outstanding characteristics, such 
as object, class, instance and inheritance. 
An object is a “thing” with individual identity, properties and behaviour that distin-
guishes it from other objects (Russel & Norvig 1995). 
In the conceptual models developed in ISO STEP and by the IAI the term entity is used 
instead of object with a similar, yet slightly different meaning. In the context of this 
thesis, entity is viewed as fully identical with object. 
A class (object class, entity class) is a collection of objects with common structure, com-
mon behaviour, common relationships and common semantics (Rumbaugh et al. 1998). 
The behaviour of a class is represented by its operations. 
The structure of a class is represented by its attributes. 
Each class describes a possibly infinite set of individual objects; each such object is 
said to be an instance of its class. 
A class can be defined broadly, and then refined into successive finer subclasses. 
Each such subclass inherits all the properties (structure and behaviour) of its super-
class and adds its own unique properties to it. Thus, the instances of a subclass are in 
fact a subset of the instances of its superclass. 

6. The set of all defined classes within a single product modelling effort, together with their 
properties and inter-relationships, comprises the specification of a product data model. 
The set of all actual instances of these classes, together with their actual properties and 
actual relationships, comprises an actual instantiated product model. 

Ideally, the Modelling Framework of a Concurrent Engineering Environment 
should be the set of all related conceptual models that enable the operability of its 
components, both individually, and as one consistent whole. Such frameworks do 
not exist yet. One of the main efforts of this thesis is to suggest how such a 
framework can be constructed and implemented. 
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1.5.2 Presentation formalisms 

Some of the next chapters contain formal specifications, definitions, functional descriptions 
and implementation examples presented with the help of recognised graphical and textual 
notations from the fields of mathematics, logic and computer science. However, in the 
literature different notations can be found for one and the same concept, and the same 
notational symbols used for different purposes. 

The notational conventions used in this thesis are as follows: 

1. Full and partial model schemas are presented in EXPRESS/EXPRESS-G in accordance 
with (ISO 10303-11 1994). Even if at some places UML (Rumbaugh, et al. 1998) or OMT 
(Rumbaugh et al. 1991) might have been a better choice, EXPRESS/EXPRESS-G has 
been given preference because: (1) it is the presentation formalism adopted by ISO STEP 
and IAI/IFC (IAI 1999c), (2) it is widely used in many research reports and publications, 
and (3) it is a pure conceptual modelling language, whereas OMT and its successor UML 
are more focused on software development techniques. 

2. Syntax specifications are shown in EBNF (extended Backus-Naur format).  
BNF-like productions are commonly used for such purposes, but there are many different 
variations known. In this thesis, a BNF-production is expressed as: 
term = description . 

where term designates the new concept (language element) being defined, “=” stands for 
“defined by” and “.” ends the production rule. 
In the description, words or symbols that stand for themselves and should be written 
as such are enclosed in apostrophes. In contrast, a word not enclosed in apostrophes 
denotes a term defined elsewhere in the syntax, and should be thought as substituted by 
its respective description at all places where it appears on the right hand side of a rule. 
Except where enclosed in apostrophes, brackets, braces, asterisks, plus signs and vertical 
bars are metasyntactic marks. Parentheses are not used as metasyntactic marks because 
they appear very frequently as language elements themselves. 
Brackets, [ ], indicate that what they enclose is optional. Braces, { }, simply paren-
thesize what they enclose, but when followed by an asterisk, * , denote that the enclosed 
element may appear 0 or more times, and when followed by a plus sign, + , one or more 
times respectively. A vertical bar, | , stands for 'OR'. However, within braces or brackets 
it serves merely to separate mutually exclusive choices. 
In summary, {x}*  means 0 or more occurrences of x, {x}+ means 1 or more occur-
rences of x, and [ x | y ] means 0 or 1 occurrences of either x or y. For example, in  
the rule:  
 

 schema_mapping_def = '(' MAP [ PARTIALLY ] { schema }+   
                          FROM { schema }+ mapping_spec_set ')'.  
 

MAP, PARTIALLY, FROM, schema and mapping_spec_set are supposed to be 
defined in other production rules, whereas the parentheses must be written as such; 
schema may appear 1 or more times after FROM, but mapping_spec_set is expected 
exactly once. Capitalised words like MAP, PARTIALLY, FROM are generally defined as 
keywords in the form:  MAP = 'MAP'.  Capital letters are used to emphasise that fact. 
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3. Logical and relational expressions are presented by standard arithmetic and first-order 
logic symbols, extended with some well-known mathematical notations for sets, lists, 
pointers and arithmetic to make them more compact. Such extensions, also called 
syntactic sugar, are often found in the literature in different variations. With minor adap-
tations, the notations in this thesis are taken from (Russel & Norvig 1995) as follows: 

Syntactic element Notation Examples 

Propositional logic:   
Negation (not) ¬ if P is true, then ¬P is false 
Conjunction (and) ∧ P ∧ Q is true when both P and Q are true 
Disjunction (or) ∨ P ∨ Q is true when either P or Q is true 
Implication (if-then) ⇒ (P ∨ Q) ∧ ¬Q ⇒ P (modus ponens) 
Equivalence (iff) ⇔ ¬(P ∨ Q) ⇔ ¬P ∧ ¬Q 

First-order logic:   
Universal quantifier (for all) ∀ ∀ x Door(x) ⇒ BuildingElement(x)
Existential quantifier 
    (there exists at least one) 

∃ ∃ x belongs(x,Site) ∧ Building(x)

Unique quantifier 
    (there exists exactly one) 

∃! ∃! x Identifier(x) 

Equality = Building(x) = Building_1 

Sets and lists:   
Empty set ∅  
Adjoin (x, EmptySet) { x } { Building_1 } 
Adjoin (x, Adjoin(y,EmptySet)) { x y } { Building_1 Building_2 } 
Union (R, S) R U S { c1 c2 } U { c3 } ⇒ { c1 c2 c3 } 
Intersection (R, S) R I S { c1 c2 } I { c1 c3 } ⇒ { c1 } 
Member (x, S) x ∈ S c1 ∈ Column  or  c1 ∈ { Column } 
Subset (R, S) R ⊂ S Column ⊂ BuildingElement ; 

{ c1 c2 } ⊂ { Column } 

Object-Oriented Modelling:   
Class X X IfcProduct 

Class X in schema S S:X IfcKernel:IfcProduct 

Instance xi of class X xi ∈ X W1 ∈ IfcWall 

All instances of class X { X } { IfcWall } , or  just IfcWall , 
     when unambiguous in the context 

Attribute a of class X X.a IfcMaterial.Properties 

Attribute value a  
    of instance xi 

xi.a IfcSystem1.GroupPurpose = 
  "Lateral Structural System" 

Pointer (ref. link) to xi ↑xi ↑IfcSystem_1 

Mapping transformations → Class mapping:  X → Y 
Attribute mapping: X.a → Y.b 

Functional transformation → 
F 

b,d → a ,  where: F(b,d) = b * d 
     F 
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1.6 Demonstration Examples 

In order to demonstrate and validate the proposed approach, appropriate demonstration 
examples had to be selected. It was not possible to invent a single, consistent example that 
could be tracked through all parts of the thesis because of: 
1) the broad scope of the targeted problem domain, 
2) the focus of the work mainly on server-side methods and tools, which can only be 

demonstrated with the help of adequate external client applications*), 
3) the need for dedicated, artificially constructed test cases to expose specific system fea-

tures, which would otherwise require lengthy, sophisticated, and difficult to understand 
usage scenarios,  and 

4) the need for comprehensive graphical output generated by dedicated third-party 
applications to illustrate, in concise form, the result of certain server operations. 

Therefore, different use cases - adapted from the work of the author in the EU projects 
COMBI and ToCEE, taken from the IFC documentation (IAI 1999b, c), or from other known 
publications, have been used as appropriate, along with several short examples, specifically 
designed to facilitate the discussion of certain details of the suggested approach. 

1.6.1 Examples adapted from the COMBI project 
Based on a case study performed in the COMBI project, these examples primarily focus on 
methods and techniques for cooperative work and design tool integration. 
The original COMBI case study, shown at the final workshop of the project, presents a 
simplified version of the Olympic Airways Flight Simulator Building at Thessaloniki, 
Greece (fig. 1.4). The examined design process includes the definition of the initial 
architectural design data, and the interaction between structural preliminary design, structural 
analysis and foundation design. It is described in detail in (Scherer & Sparacello 1996). 

Fig. 1.4: Demonstration  example  
from the COMBI project 

( Left: model of the finished building; top right: screenshot of the primary architectural elements; 
bottom right: screenshot of the bearing system of the building ) 

                                                 
*) As already mentioned, the development of client applications has not been in the focus of 

attention of this study. 
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The conceptual product data models used in COMBI were defined from scratch (Ammer-
mann et al. 1994; Katranuschkov 1995). They were not further developed after the end of 
the project, but the ideas of the overall COMBI framework have significantly influenced 
the later IFC development (see Junge & Liebich 1998; IAI 1999b).*) 

1.6.2 Examples adapted from the ToCEE project 

These examples, drawn from the ToCEE final workshop demonstration, focus on the 
concurrent engineering approach concerning the communication and collaboration of 
distributed design teams in a building construction project. The case study presents a 
simplified version of Hall 21 of the New Munich Fair facilities in Germany (fig. 1.5), 
involving the domains of architecture, structural, HVAC and geotechnical engineering, as 
well as facilities management. Unlike the example from COMBI, the emphasis in this case 
study has not been on the coordinated use of application software, but on the collaboration 
between the different professionals in a distributed project team. Therefore, the developed 
scenario, trying to provide an adequate demonstration of the environment and the component 
applications (mostly on CAD basis), primarily examines: (1) issues related to parallel, 
concurrent working, (2) creating, managing, coordinating changes, (3) information manage-
ment in a client-server system with both locally and globally maintained model data, and  
(4) selected project management issues. 

Fig. 1.5: Demonstration example from the ToCEE project 
( Top left: bird-eye view of the New Munich Fair facilities, showing the location of Hall 21;  

top right: side view of the building; bottom: CAD visualisation of the model data retrieved from 
the project data server ) 

                                                 
*) Appendix VII at the end of this thesis provides a schema level diagram of the COMBI 

framework, along with a summary of the number and types of modelling objects used. 
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The original ToCEE scenario is described in detail in (Turk & Scherer 2000). In chapter 8 
an adapted version of this scenario is presented, concentrating on the particular methods 
for project data modelling and management developed in the frames of this thesis. Specific 
aspects of the studies performed on the basis of the ToCEE scenario are directly or 
indirectly addressed at several other places in chapter 4 and in appendices II and VII,  
to back respectively discussed concepts. 

The modelling framework of ToCEE uses as baseline the IFC Project Model, Release 1.5 
final (IAI 1997). However, in order to provide adequate support to the identified concurrent 
engineering requirements, some specific extensions to the IFC project model were developed 
as well, including: (1) a unique object identification approach, (2) enhanced grouping mecha-
nisms, (3) domain-specific views, (4) approval and access right support, (5) system related 
meta-model specifications (Hyvärinen, Katranuschkov et al. 1999).*) 

1.6.3 Examples from IFC 2.0 

These examples focus on the possible use of IFC as an underlying model of the proposed 
concurrent engineering environment. 

As an emerging industry standard, the IFC project model was given highest priority in the 
validation of the proposed approach, and it is applied as much as possible as a reference 
model for the demonstration of the developed data management concepts. 

Whilst the ToCEE environment is also based on IFC, the given ToCEE examples are less 
explicit w.r.t. the specific features of the IFC architecture. Therefore, certain examples had 
to be (re-)constructed so that the “current” IFC models could be more clearly referenced.**) 

In addition, selected fragments of a study, demonstrating a structural engineering domain 
model developed as an extension to the IFC Project Model Release 2.0, are used as well. 
This study was conducted in the frames of a diploma work under the guidance of the 
author (Weise 1999). Its emphasis was on the interoperability between core IFC model 
data and the domain-dependent data needed in architectural and structural design. In par-
ticular, it examined (1) how the architectural data can be transformed to provide useful 
input to structural design, eliminating as much as possible waste times, (2) what extensions 
to the IFC model schemas are needed to capture at least basic structural design decisions, 
and (3) what happens when the two domain models (architectural and structural) are used 
in parallel in the same project. 

Detailed specifications of the IFC Project Model and the proposed Structural Domain 
Extension Model are provided in (IAI 1999b, c) and (Weise 1999) respectively.#) 

                                                 
*) An overview of the ToCEE models is provided also in Appendix VII at the end of the thesis. 
**) The word “current” is put in quotations here because of the fast development pace of IFC. 

Thus, while this thesis was still in its editing phase, the “current” IFC project model evolved to 
Release 2.x, with 3.0 scheduled for August, 2000. Nevertheless, since Release 2.0 is well 
documented, and the details of the model are not so essential w.r.t. the concepts developed in 
this thesis, I hope that the examples drawn from IFC 2.0 can still serve as adequate reference to 
the general IFC modelling architecture. 

#) The EXPRESS-G diagrams of the IFC Kernel Model schema and the Structural Domain 
Extension Model schema are provided also in Appendix VII at the end of the thesis. 
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The test model, shown on fig. 1.6, was crafted by hand. The application tools, used along 
with the project data management services developed in this thesis, were: (1) a general-
purpose CAD system (AutoCAD R14) simulating architectural and structural design work, 
(2) a structural analysis application (SOFiSTiK), and (3) a dedicated client enabling the 
communication between the project data server and the user applications. 

Fig. 1.6: Demonstration example used for the validation of a proposed  
structural domain extension model for IFC v. 2.0 

( Left: initial architectural design data of the sample structure; right: visualisation of the bearing 
structure developed in accordance with the proposed structural domain extension model, as 
retrieved from the project data server ) 

1.6.4 Other examples 

In addition to the above, several examples have been specifically designed or adopted from 
other sources to illustrate individual concepts, and a case study conducted by (Liebich et al. 
1995) to demonstrate the capabilities of existing model transformation approaches has 
been used in the validation of CSML, the context-independent schema mapping language 
developed as part of this thesis. 

For quick reference and preview, all given examples are summarised below: 

Chapter  #  
Examples 

4 5 6 7 8 App. 

Adapted from COMBI 1 – –  1 - 

Adapted from ToCEE 2 – – -  + 5 3 

Adapted from IFC 2.0 3 6 1  - 8 

Others 3 3 6  - 6 

Notes: 
A number in circle denotes a more comprehensive case study; plain numbers refer to short specifi-
cations or (pseudo) code sequences, and/or selected illustrative screenshots. 
The short examples given in chapter 5 are all included in tables 5.3-5.7. 
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Chapter 2: Background 

Memory: what wonders it performs in preserving and storing up  
things gone by, or rather, things that are! 

– Plutarch, Morals: On the Cessation of Oracles 

In the conceptual development of a complex environment many important design 
decisions have to be taken at the very outset. To justify such decisions, and to help the 
reader understand them better, it is first necessary to examine their background. 
The purpose of this chapter is to shed light on the recent research and achievements in 
the areas that are closely related to the proposed new model mapping approach for 
concurrent engineering processes. 
First, the basic principles of the concurrent engineering methodology and its applicability 
in the AEC domain are discussed from the viewpoint of building construction practice, 
and their main implications to building IT are identified. 
Second, the state of the art of available software solutions that can be applied in the 
envisioned concurrent engineering environment is briefly reviewed. 
Third, the achievements, the existing different concepts and the current state of research 
in engineering data modelling are analysed, and the principal perspectives for the use of 
PDT as enabling information infrastructure for concurrent engineering are outlined. 

2.1 Concurrent Engineering from the Viewpoint of Building Construction 

The term Concurrent Engineering has been introduced for the first time in a report of the 
US Institute for Defence Analysis (Winner et al. 1988) to express the method of 
concurrently designing both the product and its production and support processes. That 
report defines concurrent engineering as „a systematic approach to the integrated, 
concurrent design of products and their related processes, including manufacturing and 
support. This approach is intended to cause the developers, from the outset, to consider all 
elements of the product life cycle from concept through disposal, including quality, cost, 
schedule and user requirements“. 

However, while this is still the most widely accepted definition of the goals of concurrent 
engineering to date, it does not provide many clues about the methodology itself, neither 
about its more detailed objectives. 

In (Dean & Unal 1992) concurrent engineering is identified basically as „getting the right 
people together at the right time to identify and resolve design problems”. Putting clear 
emphasis on the design phase, the authors conclude that concurrent engineering means in 
fact designing for assembly, availability, cost, customer satisfaction, maintainability, 
manageability, manufacturability, operability, performance, quality, risk, safety, schedule, 
social acceptability, and all other attributes of the product. 
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This view on concurrent engineering is supported by many researchers. In (Jagannathan et 
al. 1991) concurrent engineering is defined as the process of forming and supporting multi-
functional teams that set product and process parameters early in the design phase. A similar 
understanding of the focus of concurrent engineering can be found in (Kusiak 1993) and, 
indirectly, in (Bralla 1996) and (Womack et al. 1991), who provide many excellent examples 
of the influence of design to the final quality and cost of a product. 
As a theoretically founded methodology for product development concurrent engineering 
has first been applied in manufacturing in the late 1980s, although some authors argue that 
concurrent engineering practices have been common to manufacturing even before World 
War II (cf. Ziemke & Spann 1993). Indeed, in the early days of manufacturing new pro-
ducts and their production processes have often been designed simultaneously. This 
intuitive “concurrent engineering” approach has been a natural way of working for the 
small and spatially compact teams of that time, but it is hardly applicable to the complex, 
highly distributed production processes of the present time. 
As understood today, concurrent engineering has clear definitions of its context and its 
essential features, as well as guidelines for its implementation, at least for the manu-
facturing industry sectors. But how do its concepts apply to construction and what 
implications do they have to building IT? 

2.1.1 Fast or concurrent, that is the question 

The main factors for competitive advantage in construction are quality and cost. A project 
is successful if it is the right thing done right (quality), on time, and within budget (cost). 

In traditional construction cost competition has meant minimisation of the costs in each 
phase of a basically sequential process. Managing of quality has been understood merely as 
supplying of materials and building components in conformity with the design. 

Today, the need for rapid completion of buildings that meet the life cycle requirements of the 
owners has become a new competitive factor in construction. This has led to the introduction 
of an intuitive method for reducing construction project time, known as fast tracking. 
The essence of fast tracking is in overlapping of design and construction activities. In many 
cases, especially by „simpler“ projects, it has helped to achieve shorter project duration and 
decrease the construction costs. However, by planning neglect, i.e. too low percentage of 
design completion prior to the start of construction, fast tracking can also result in less than 
optimal design, unexpected cost overruns, and considerable project delays (Laufer & 
Cohenca 1990; Tighe 1991). In extreme cases, this may even lead to disastrous situations*). 
Thus, with fast tracking, an undesirable project outcome is not seldom. This is mainly due 
                                                 
*) A typical example of the high risk associated with fast tracking is related by (Quaife 1991) as 

follows: “The 1988 fast-track Station Square project in Vancouver, Canada, experienced a 
roof failure on the opening day, resulting from an accumulation of design and management 
errors. Two years later, an Inquiry Report of the Canadian Project Management Institute 
attributed the main reason for the failure to the fast-tracking with multiple contracts, des-
cribing it as ‘the spreading of work and responsibilities among numerous parties in a situation 
where both owners and prospective tenants are thinking out loud about possible design 
changes or proposing them directly to engineers, architects ... while the work is proceeding’. 
The report allows to infer that design and contractual concerns were rationalised as not 
significant, due to the pressure to complete on time.” 
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to the insufficient consideration of the relationships between the value and cost of 
construction and the ability to influence them with project advance, as shown schema-
tically on fig. 2.1 below. The exaggeration of the importance of time is the major drawback 
of the fast tracking approach, leading to greater uncertainty of a project’s outcome in 
comparison to other production methods. 
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Fig. 2.1: Schematic presentation of the typical overlapping of project phases 
and their influence on the value and cost of construction 

/ adapted from (Hendrickson & Au 1989) / 

Concurrent Engineering, on the other side, is a theoretically founded production metho-
dology. Its major objectives are to decrease the duration of an engineering project,  
to increase the value of the product, and at the same time reduce its cost. These, partially 
contradictory objectives are pursued simultaneously and systematically, with constant 
concern for uncertainty reduction. 
Concurrent engineering is methodologically much better developed than the fast tracking 
approach. Hence, it is definitely worthwhile to transfer its methods and techniques to 
building construction, especially with respect to critical for the building industry aspects 
like customer satisfaction, team approach, improved use of off-the-shelf design solutions 
and time management. 
Today it is recognised that concurrent engineering implies: 
− collaborative, parallel product and process design, 
− advanced project management principles, 
− consideration of the whole product life cycle, 
− effective communication and information sharing across disciplines and phases  

of the product’s development,  and 
− adequate consideration of responsibilities. 

Let us now examine these aspects of concurrent engineering in some more detail. 
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2.1.2 Concurrent engineering in design 

A building product is a complex system developed to satisfy a set of purposes. When life is 
involved, associated considerations, such as safety and risk assessment, facility 
management, refurbishment and demolition have to be added as part of the design 
purposes. Hence, design must be performed holistically, taking in consideration many 
multidisciplinary requirements and goals. However, by tradition, each design trade in 
building construction has developed an own, reductionistic approach, concentrating on its 
narrow discipline-specific goals, and often failing to look at aspects affecting the other 
professions involved in the process. 
Taken alone, the traditional conceptual basis that sees design mainly as a set of conversion 
processes, i.e. processes of defining form to satisfy certain needs and requirements, is quite 
restrictive. If exaggerated, this view on design can lead to inefficiency, and even provoke 
errors. In contrast, as indicated by (Huovila et al. 1994), in the concurrent engineering 
paradigm the design process must be considered simultaneously as: 
− conversion, 
− information flow,  and 
− value generation. 
The view of design as a conversion process focuses on what people do in design. In this 
perspective, improvement of design means making design activities more effective and 
efficient. Such objectives have encouraged the use in everyday practice of advanced design 
software, such as CAD, calculation and analysis programs, knowledge-based decision 
support tools, and, to some extent, advanced project management methods and tools 
applied to the design process. 
Conversion is the best studied aspect of design, and its most important and natural feature. 
However, if taken as a sole view of the design process, it may cause serious oversights 
with respect to those activities that do not directly contribute to conversion, such as 
inspecting, storing, retrieving, communicating design information, as well as to the 
fulfilment of long-term customer needs. 
The view of design as information flow originates from industrial engineering. It focuses on 
what happens to information in design, by considering four basic types of information flow - 
conversion, moving, waiting and inspection. Of these, only conversion is design proper, 
while the others are basically not needed and are therefore commonly categorised as waste. 
Thus, in this perspective, improvement of design means to minimise waste, i.e. to reduce the 
portion of non value adding activities, such as rework due to errors or lack of information, 
transfer of information, waiting for information, inspection etc. Detailed analyses of the 
information flows in design have shown that the share of conversion in the total flow time is 
very little, with typically ½ to 2 ½ rework cycles and more than 30% of the total time spent 
solely for co-ordination (Dean & Unal 1992; Cooper 1993; IAI 1999a). According to 
(Northey & Southway 1993), both cost reduction and quality improvement are related 
directly to cycle time as a primary organisational metric, their basic hypothesis being that „as 
many as 90% of the existing activities are nonessential and can be eliminated“.  
In this aspect there is much yet to be done. 
The major cause for rework is uncertainty. Reduction of uncertainty, especially in the early 
design phases, can be facilitated by: (1) the implementation of appropriate AI-based 
decision support and simulation tools, allowing to consider interdisciplinary and life cycle 
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aspects beyond the main focus of attention of each individual designer, (2) adequate 
information exchange paradigms, allowing to capture and communicate design intent, and 
(3) intentionally delayed design decisions based on a thorough understanding of the overall 
production process (Ward et al. 1995). 
The main problem related to the transfer of information is on one hand the information loss 
taking place during information exchange, and on the other hand the redundancy and/or non 
consistency of the data. Information loss is most often caused by non compatibility of the 
design tools and the related underlying conceptual models that are being used. It can be 
reduced by the application of standardised information exchange formats, methods and tools, 
e.g. DXF, at the low end, or STEP exchange files (ISO 10303-21 1994) and SDAI  
(ISO 10303-22 1998) at the high end, but real progress can only be achieved through the 
development of interoperable environments based on comprehensive interoperability models, 
methods and techniques. Redundancies and inconsistencies usually arise because informa-
tion is transferred in large batches between designers or organisations. Such situations can be 
avoided with the help of information sharing systems on PDT basis, but where organisational 
borders are concerned, legal responsibilities and contractual issues have to be taken into 
account as well, and these are not sufficiently supported by today’s IT tools. 
Long waiting times are partially caused by the problems of information transfer, and 
partially by ineffective planning of activities and ineffective information access. Hence, the 
reduction of waiting times can be strongly facilitated through the use of advanced 
communication management and information logistics tools. 
At last, inspection requires appropriate browsers for filtering out nonessential data, easy 
navigation and access to important design parameters, and powerful presentation facilities. 
Such features are already available in advanced CAD systems. 
The view of design as value generation originates from quality management. Value is 
generated through fulfilment of the customers needs and requirements. It consists basically 
of the following three components: product performance, absence of defects and ease of 
maintenance. Value has to be evaluated from the viewpoint both of the next customer and 
possible future customers and therefore requires intensive life cycle and facility manage-
ment considerations. In this perspective, improvement of design means to reduce value 
loss. The latter may occur due to one or more of the following reasons: 
− part of the customer’s requirements are missed at the outset, 
− part of the design intentions are not properly communicated, and are neglected in later 

development phases *), 
− constraints or opportunities of subsequent phases are not taken into account, 
− quality control is insufficient, or does not cover all necessary aspects. 

                                                 
*) The failure of two skywalks in the lobby of the Hyatt Regency Hotel in Kansas City on July 17, 

1981, is cited as one of the greatest structural failures ever to take place in the USA. It was 
attributed to a combination of three events. First, in progressing from preliminary to detailed 
design, where joint and connection detailing occurs, the design of the hangers to the spandrel 
beam connection was inadequate. Secondly, in the assembly drawings, the connection detail 
was changed by the steel fabricator, sharpening an already critical condition. Thirdly, this 
second error was not caught during approval checking of the assembly drawings by the 
controlling structural engineers. These were all errors of communication and coordination in the 
design process, and focus on documenting the product of design while neglecting 
„requirements“, „process“ and „intent“ documentation (Sriram 1991). 



26 A Mapping Language for Concurrent Engineering Processes 

The reduction of value loss requires the application of IT tools for requirements and 
regulations management, as well as advanced (AI-based) tools that can be implemented for 
the support of such aspects as design for manufacturability, design for assembly etc., as 
well as for the management of conflicts. 
However, it is of primary importance not to try to improve the above aspects separately, 
but to consider them simultaneously, as part of a coherent, conceptually solid environment. 

2.1.3 Concurrent engineering in construction 

On the one hand, it is obvious that in the procurement and construction phases of a project 
basically the same principles as discussed for the design phase should apply. However, as 
indicated on fig. 2.1, even though procurement and construction are of considerably longer 
duration, they offer by far less possibilities to handle unexpected situations or late dis-
covered errors. 

On the other hand, the construction phase is quite interesting to look at, because many of 
the problems that inhibit the successful deployment of concurrent engineering metho-
dology in the building industry have their roots in the way the transition from design to 
construction is being organised and practised. 

In today’s popular turn-key projects, dominating the market in most countries, as e.g. in 
US or UK practice, architects and engineers are hired by the contractor to do certain 
specific tasks, typically in the conceptual design phase. In this case the contractor is 
responsible for the whole project management, and he has definite ideas on how to detail 
the building to make it easy to construct. But he does need someone to perform the detailed 
design as well, and if he does not have in-house capacities, he will hire architects and 
engineers to do the job. However, the latter will be operating merely as technicians, and 
their main responsibility will be to ensure that code compliance is observed. Thus, quite 
often, customer requirements, life cycle aspects and various project management issues 
that are related to design remain without adequate concern. 

In a conventional project architects and engineers are hired directly by the owner, which 
is a common practice e.g. in Germany. In this case as well, the construction manager will 
be the one to bid out the job, and, although he will need a lot of input on how to do things, 
he will with his expertise know how to accomplish many of the tasks, without the 
architects and engineers having to show a lot of detail. As a consequence, after design 
development the responsibility is handed over from the architect to the contractor, and the 
contractor takes command of the decision making processes from then on. This results 
often in incomplete drawings, change of scope during the construction process, contractual 
problems etc. A subcontractor who is pricing the job, if confronted with such incomplete 
drawings, must allow for possible extra costs for work that is not explicitly visible. Thus, 
his estimate must be “fat” enough to cover all probable eventualities. Or the contractor, if 
given options as to how to do the job, will choose the one which is most convenient to him, 
and not necessarily the best for the long-term service of the facility. However, this kind of 
“value engineering” will do more to give bigger profits to the construction company than 
value to the customer (Sherwin 1996). As a result, though for slightly different reasons, 
similar problems as with turn-key projects arise in conventional projects as well, leading, 
at the end, both to loss of time for the project and to loss of value for the product. 
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2.1.4 Relationship of concurrent engineering to project organisation and management 

Good project management is a major prerequisite for the success of a construction project. 
It is responsible for „filling the gap“ between design and construction, and is in fact more 
closely related to design than traditionally anticipated. 

A wide-spread (and wrong) view on project management is that it is not more than 
scheduling and subtrade coordination which takes place during project realisation, i.e. 
project management starts „when you put the first shovel in the ground“. Indeed, most 
project problems come to the surface during construction. However, for a good probability 
of success, an estimate provided by (Quaife 1991) known as the 80:20 rule, says that  
„the planning phases expand less than 20% of the total project management effort but 
must achieve a ‘nest-egg’ of about 80% of the preparedness for project success. 80% of the 
project management effort follows during implementation, both to hatch the nest-egg and 
to realise the remaining 20% of success“. 

The ASCE manual „Quality in the Construction Project“ states that „more design 
deficiencies result from mistakes in the management of a project than from purely 
technical errors“. Inadequate information, communication or coordinated forethought in 
the early phases of a project inevitably lead to rework of the design, and to wasted 
construction activities. The more serious the time pressure, the greater is the risk of such 
management errors, and the greater the likelihood of „more haste, less speed“. 

To avoid such problems, it is necessary to recognise and assess properly, along the line of 
concurrent engineering methodology, the influence of the separate elements of integrated 
project management on the success of a construction project. 

Scope is the element most exposed to planning neglect. The process of fixing the overall 
project requirements must both lead and interact with the product’s design. More detailed 
requirements must be defined ahead of tendering dates, and all details must be finalised for 
the preparation of working drawings. Scope definition must be systematic and rigorous, 
must involve all those with significant interest in the outcome and must achieve their 
timely sign-off. Changes can be reduced, before sign-off, by a review of the consistency of 
the requirements and the design solutions (design as value), and the constructability and 
maintainability of the design. 

Quality is in a sense part of the project scope. The goal of quality control is “zero defects 
first time”, avoiding the biggest problem of planned durations - rework - whether it appears 
as an unanticipated plan revision, or as a corrective action following the discovery of a 
defect. Thus, project management problems are more likely when the project manager has 
no responsibility for quality management, or has too much authority and may be tempted 
to endorse reduction of quality as a sacrifice to save time. 

Activity and resource planning and monitoring are needed to measure productivity and 
control costs. Productivity and its trends provide important information for assessing and 
predicting progress, and forecasting the final costs. Where project progress is not measured 
for the activities in progress there is a temptation to assume that the physical percentage of 
completion equals the percentage of allowed resources spent. Exaggerated reporting of the 
physical percentage of completion can hide the true cost and duration trends of a project 
and hence bring it in danger. 
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Communication is a commonly recognised criterion of integrated project management. 
However, except personal communication skills, a less recognised, but strongly needed 
requirement is the use of a formal communication system. Communication shortcomings 
can threaten efficiency, scope optimisation and quality. They can therefore threaten cost, 
schedule and performance*). 

Risk is another important element of project management, which is often neglected to suit 
the management’s desire to approve a fixed project cost, especially when there is a preset 
budget limit. This is less dangerous for routine projects, but even then a review of potential 
problems may reveal risks that are not routine at all. Management, after approving a project, 
has to accept whatever surprises may come from the initial uncertainties, whether recognised 
at approval time or not. Such “surprises” can be considerably reduced by the application of 
appropriate simulation and conflict recognition IT tools. 

Time is commonly anticipated as the most critical factor in a construction project. Time 
management involves the early recognition and solution of scope and design problems,  
and the adequate estimation of their implications for a realistic control schedule. 
„Communication“ and „monitoring“ are crucial in scheduling, and manually prepared 
schedules may respond too slowly to project needs. However, an organisation that uses 
only this last of all mentioned project management elements, believing that „scheduling by 
computer“ will do the job, will normally experience no better results than with simpler ad 
hoc methods. Certainly, time is the most elusive of all project management goals because 
no matter how or when a problem arises it takes time to solve, and there is a limit to how 
much lost time can be recovered. But if delays that originate from scope, quality, 
uncertainty or communication problems are treated only as scheduling issues, there is only 
symptom control, but no real prevention and cure. Therefore, project success is probable 
only when problems in all these areas are anticipated early in their entirety, and are solved 
long before becoming critical or, better, by avoiding them at the outset. 

2.1.5 Life cycle management 

We all know that the development of most technical products begins with requirements 
and feasibility studies and ends up with mass production and marketing, supported by an 
appropriate supply chain. Similarly, a construction project begins with the business plan 
and the brief, proceeds with tendering and construction, accompanied by establishing 
adequate supply lines, and is finished when the target one-off product is build and 
occupation can start up (see fig. 2.2). However, the life cycle of any technical product 
extends far beyond its initial development, and includes all activities to bring forth, sustain 
and retire the product. For building construction this means that facility management, 
refurbishment and demolition must also be taken into account. Though such activities lie 
outside the time span of a construction project, they should not be considered outside its 

                                                 
*) The UK Royal Commission to the fatal structural failure of the Melbourne Yarra Bridge in 1970 

pointed to a breakdown in communication due to animosities as a major contributing factor. Not 
only did the responsible site managers allow this to remain unresolved, but their superiors did 
nothing to solve it - if they were aware of it from their offices in England. This extreme 
consequence demonstrates the dangers that a project is exposed to if project information is 
confusing or incomplete, or if normal healthy difference of opinion is allowed to escalate into 
non-communication (Quaife 1991). 
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scope. In accordance with the concurrent engineering methodology, the development of a 
building product, especially in the design phase, must be done in consideration of the long-
term aspects of its life cycle. This implies as early as possible use of simulation and facility 
management tools to forecast future behavioural aspects and take appropriate measures for 
the regular functioning and maintenance of all component systems. 
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Fig. 2.2: Principal life cycle stages of a building product 

Although life cycle management cannot be delegated exclusively to the designers or the 
contractor, the responsibility for many serviceability aspects is clearly defined in each 
project, and many quality control issues, expressed through various parameters, are 
specifically defined in contractual agreements, regulations and codes of practice. Thus, the 
need for integral treatment of design, construction, project and life cycle management leads 
to the last but not least aspect of building development - the aspect of responsibilities. 

2.1.6 Responsibilities in construction projects 

As buildings and construction facilities are becoming more and more complex, no single 
player can be expected to be capable of executing the design process on his own. Design is 
handled by a team of separate design professionals with the architect taking charge of the 
overall view of spatial planning, volumetrics and context, the structural engineer looking 
after the design of the load-bearing elements, the services engineer handling the mecha-
nical, electrical and hydraulic systems and so on. 

During the earliest stages of the design process, the architect may well dictate his 
requirements for structural grids, column and beam sizes, storey heights etc. to the 
structural engineer, who will provide him with a schematic response. Once the architect 
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has accepted the principle structural solution, the responsibility for the design returns to the 
structural engineer, and the architect cannot make any further alterations to the structure 
without consulting and obtaining permission from the responsible ‘owner’ of the structural 
design - the structural engineer. Thus, in effect, the architect provides the engineer with 
performance requirements for the structure which he accepts and responds to. A similar 
process takes place between the architect and the services engineer, and between the 
services engineer and the structural engineer. Any change to the performance requirements 
of the structure, the services, or the architecture needs the sanction of its “owner” in order 
to ensure that responsibility remains with and is accepted by that “owner”. 

Much detailed design is represented by performance based specifications. The designer 
describes how the building should provide a particular service, such as capacity for the 
cladding to withstand certain wind loading, the air handling plant to provide a required 
number of air changes, structural steel junctions to withstand shear etc. These will often 
form the basis for tender documentation issued to specialist contractors or suppliers who, 
when appointed or selected, will take on responsibility for ensuring that the product will 
satisfy the required performance. The contractor may offer alternatives that may vary the 
specification for acceptance by the original designer, who will probably only do so 
providing the responsibility remains with the specialist who knows the most about the 
particular addressed performance characteristic of the product. However, if not strictly 
controlled, such delegation of responsibilities can be dangerous, especially in multi-
discipline coordination and the overlapping of design and construction phases, i.e. where 
uncertainty is high. A typical example for that are the problems which often appear in the 
coordination of geotechnical, foundation and structural works*). 

The bottom line of this concise review of concurrent engineering is that, in accordance with 
the strongly emphasised holistic approach to product development, all the issues discussed 
above have to be observed simultaneously by the design of an appropriate IT infrastructure 
to warrant their coherent treatment in the realisation of a run-time CEE system. 

Of course, it cannot be required that a CEE system should provide all needed features at 
once. It is hardly possible to imagine that such a “super system” can be achieved within a 
single development effort. However, if one or more of the aspects of concurrent engineering 
are ignored during the conceptual design of the system, there is a high potential danger that 
these aspects would never be tackled in future system extensions. 

Taking into account the enormous development costs, even for a prototype implementation, 
such planning neglects can hardly be justified. 

                                                 
*) The Grand Teton Dam, an earth fill structure more than 300 feet high in Idaho, failed during the 

initial reservoir filling requiring months of rework. The mode of foundation failure has been 
extensively analysed, and problems which „may not be directly related to the failure“ but 
contributed to it have been identified as: dual reporting arrangements, fragmentation of 
responsibilities including separation of construction from design, and inadequate coordination 
with field geologists for decisions on the foundation construction. 
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2.2 IT Support for Concurrent Engineering in Building Construction 
Practice Today 

IT tools that can be used for concurrent engineering processes may take a variety of forms. 
Schulz (1996) argues that almost any software tool and data format more structured than 
simple e-mail can qualify and, if appropriately used, can be helpful for certain specific 
needs. Therefore, by the conceptual design of a concurrent engineering IT environment it 
is useful, at the outset, to take a look at the whole complex of software tools that are 
available in building construction practice today, and assess their relation to concurrent 
engineering methodology. 

For that purpose, a survey of the state-of-the-art of building IT applications from the 
viewpoint of concurrent engineering was performed during 1996-1997 on the basis of the 
following sources: 
− published results of comprehensive relevant studies conducted in the last years in several 

industry countries (USA, UK, Germany, Denmark, Ireland), providing detailed data 
about the penetration of IT in construction (Häußler-Combe 1994; Latham 1994; CIRIA 
1995; Cragg & Zinatelli 1995; Gardner 1995a, b; Healy & Orr 1996; Howard 1996; 
Schulz 1996; Sørensen & Andersen 1996); 

− literature study of magazines, brochures and available on-line material; 
− data obtained from partner organisations in the EU projects COMBI and ToCEE*). 

Details of that survey are provided in (Katranuschkov et al. 1997a). The main issues 
relevant to the content of this thesis are discussed below. 

2.2.1 Key issues 

At first, it has to be acknowledged that the building industry has been relatively slow in 
adopting the new achievements in information technology, the basic reason for that being 
lack of finance, not lack of interest. The EU project ELSEWISE estimates the annual 
investments in innovative IT products by the European building industry to as little as 
0,4% of turnover (Sauce et al. 1997). Some US sources mention figures of 0,5% to 1%, 
which is not much higher as well. 

Nevertheless, according to the UK report “Building IT 2005” (Howard 1996) **) „it is 
wrong to think that the construction industry lags behind other industries in its deployment 
of IT simply because its investment appears to be low. Construction is not a homogeneous 
industry with steady and regular lines of supply, so comparisons with manufacturing, 
process and retailing industries are of limited value.“ 

                                                 
*) Building Research Establishment - for the UK; Obermeyer Planen + Beraten, Leonhardt, Andrä 

und Partner and SOFiSTiK - for Germany; KUPARI Oy and VTT - for Finland; General 
Construction Company and SOFiSTiK Athens S.A. - for Greece. 

**) “Building IT 2005” is a major report from the Construction IT Forum examining the future use 
of information technology in the construction sector up to the year 2005. The report itself is an 
innovation in publishing for the construction industry. It collects together the experience of 32 
experts in different aspects of construction and/or IT. 
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“Building IT 2005” raises also several important issues relevant to the current and future 
use of IT as an enabling infrastructure for concurrent engineering: 
1) Unless there is more investment in IT by construction, improvements will end up as 

responses to external imperatives rather than the intrinsic needs of the industry. 
2) Current commercial IT is sufficiently advanced to meet most needs of the industry. 
3) The Internet, a cheap, universal communications network waiting to be exploited by the 

construction industry, is a prime example of already-available technology. 
4) A common language - The biggest technical issue for construction IT is the way in 

which information is structured. There is need for a common language across the whole 
breadth of construction. 

5) Most likely to inhibit systems integration in construction will be organisational, cultural 
and industrial factors, and not technological issues. 

6) The technological key to enhanced construction capability, client satisfaction and 
competitiveness is having systems to gather, organise, transfer and display the right 
information to the right people at the right time. 

Whilst some of these issues are only indirectly related to the objectives of this thesis, issues 
#3, #4, and especially issue #6 have been among the main actuators of the research work. 
Let us now examine in some more detail the state-of-the-art in building IT in view of the 
rapid technological progress of the last few years. 

2.2.2 The landscape of building IT 
Although it was difficult to obtain precise information from surveys mainly based on 
questionnaires and expert judgement, the analysed data showed good convergence and 
allowed to deduce more or less stable trends, at least for the next few years. 
The investigated issues were selected on the basis of two criteria: (1) reliable amount of 
raw data, and (2) pertinence to the purposes of this study. 
Fig. 2.3 below sheds light on the scope of the examined material, and table 2.1 provides a 
summary of the collected data by categories. Included in column 2 of this table are the 
calculated standard deviations which take into account the differences in the results quoted 
in the investigated publications and the gathered data by the author. 

Fig. 2.3: General data of the survey of building IT application 
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Table 2.1: Building IT usage by category 

Issue 
Average 

percentage of 
use 

Prevailing 
areas of use 

Relevance to concurrent 
engineering 

CAD systems 
 Total 
 3D CAD 

 
      86% ±7% 
      25% *) 

design 
FM 

cooperative work 

Database systems       69% ±3% design 
construction 
FM 

collaborative work 
information sharing 
data integrity and consistency 

Knowledge-based systems    < 5% *) design collaborative work 
simulation and forecasting 
interoperability 
conflict management 

Groupware and workflow 
management systems  

      13% ±3% design information flow 
control and monitoring 

Document management 
systems 

      27% ±4% design 
construction 
FM 

collaborative work 
information sharing 
responsibilities 

Product data management 
systems 

   < 5% *) design collaborative work 
information sharing 
data integrity and consistency 
responsibilities 

Project management tools       48% ±4% construction time management 
resource management 
control and monitoring 

Networking & communication 
 LAN 
 Internet / WWW 

 
      60% ±8% 
      50% ±5% 

design 
construction 
FM 

information flow and 
information sharing; 
communication and 
process management 

*) The amount of analysed data was too small to allow the calculation of a standard deviation. 

The following table 2.2 presents an estimation of the interest shown in emerging new 
technologies by the contacted companies. 

Table 2.2: Interest in emerging new technologies 

Issue Companies showing 
interest 

Relevance to 
this study 

Electronic Document Management (EDM) systems 70% No 

Product Data Management (PDM) systems 30% Yes 

Object-oriented databases 30% Partially 

Internet communication tools 26% Yes 

Hypermedia 17% No 

Knowledge-based systems 13% Partially 
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At last, fig. 2.4 presents an overview of the estimated benefits to design and construction 
companies from the use of IT, as seen by end-users and managers of the responding 
organisations. 
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Improved image
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Reduced overheads

Control and monitoring

Improved communication

Increased revenue

 

Fig. 2.4: Estimated benefits to design and construction companies from the use of IT 
(0 = lowest, 10 = highest ranking) 

2.2.3 Conclusions 

From the analysis of the collected data the following conclusions can be drawn: 

1)  Use of CAD and database technology - Of all types of building IT tools CAD and 
database systems continue to be most broadly used. CAD systems are becoming more 
and more sophisticated, absorbing continuously new features from other technologies, 
like document or workflow management. Besides this, in the last years there is a clearly 
recognisable shift towards object orientation in place of the existing geometry-oriented 
models in CAD, and the relational models in DBMS. However, in spite of all achieve-
ments, neither CAD nor database systems fulfil the requirements of a framework for 
concurrent engineering because of the lack of concepts for the treatment of such 
important issues as conflict management, multidiscipline views, object evolution etc. 

2)  Use of PDT - The penetration of product data technology in building construction is still 
very low, although it is one of the most important factors for successful implementation of 
concurrent engineering in practice. Over the past decade different CAD vendors have tried 
to deploy product models as a kernel for CAD in building design without much success. 
Unlike the manufacturing industries, product data modelling has not up to now played  
a significant role in building design, and the practical use of the ISO STEP standard in 
AEC is still a future issue. However, on-going initiatives like CIMSTEEL (Watson & 
Crowley 1995) and IAI (IAI 1999a), developing models for CAD and information 
exchange on the basis of STEP methodology, are likely to bring about the desired shift of 
paradigm in the next years. 
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3)  Use of knowledge-based systems - Knowledge-based solutions are still rarely used, partly 
because of lack of understanding, and partly because of the disappointment from early 
attempts in previous years. The benefits of AI-based applications are not yet apparent to 
designers and contractors, although an increase of interest can be observed (see table 2.2). 
Here, there seems to exist a strong need for education based on example. However, the 
modest attempt undertaken in this research work shows that AI techniques can also be 
embedded in state-of-the-art object-oriented environments to improve the performance of 
the latter, and at the same time provide a working example of their own usefulness. 

4)  Communication and Data Exchange - The Internet in connection with commercial 
service providers is becoming the main backbone for communication and data exchange, 
and Intranet solutions for Local Area Networks already dominate the choice for 
organising enterprise-wide distributed information access. Comprehensive Internet-based 
client/server solutions are the vehicle for integrated communication management today. 

5)  Interest in concurrent engineering issues – As shown on fig. 2.4, in the estimation of the 
application of IT several objectives of concurrent engineering play an important role, 
such as client satisfaction, improved communication, control and monitoring. Thus, 
although not always clearly articulated, there seems to be a strong need for reliable 
computer-integrated environments for concurrent engineering. This is emphasised also 
by the amount of interest shown in new technologies. 

The bottom line here is that many existing IT solutions are ready to be used off-the-shelf 
and can create enormous change in the quality and efficiency of work in building 
construction, but only if they can be used together. Sophisticated CAD, 3-D modelling, 
estimating, scheduling, management, and communications tools all exist today, but they 
exist to a great extent in isolation from each other. What is still missing are logically con-
sistent environments for concurrent engineering processes based on comprehensive and 
interoperable conceptual models, offering rigorous control of the responsibilities in the 
coordination, integration and collaboration work within construction projects, along with 
well-structured Internet-based solutions for effective communication management. 

Once again, the major problems that need yet to be solved appear to lie with the conceptual 
models that should provide the foundation of such coherent environments. 
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2.3 P D T as Enabling Information Infrastructure for Concurrent 
Engineering 

In spite of its currently modest penetration in building design and construction practice, 
PDT is best positioned to take over the role of an enabling information infrastructure for 
concurrent engineering. The benefits of theoretically founded conceptual models are 
widely acknowledged in the research community, and are gaining increasing attention by 
the industry as well (cf. Beucke & Ranglack 1993; CIRIA 1995; Howard 1996). In fact, the 
main reasons for the lack of comprehensive PDT based systems are not in disagreements or 
disbelief in the basic ideas, but in the lack of standardised, generally accepted models, and 
sufficiently clarified concepts for the construction of large modelling frameworks spanning 
over a large number of processes, technologies and application tools*). 

The foundation of PDT is provided by the theory of information modelling which 
originated in the area of database research. Therefore, to gain a better understanding of the 
capabilities of PDT today, it is useful to look at the development of information modelling 
as an academic discipline from two perspectives: (1) historically, and (2) from the 
viewpoint of the categories identified in contemporary research efforts. 

2.3.1 Short historical review of information modelling 

Information modelling is typically the first stage in the process of developing database 
applications (Ullman 1988) and is currently acknowledged as the necessary basis for any 
more sophisticated computer systems (cf. Rumbaugh et al. 1991). Its theory matured in the 
1980s but the importance of information models had been recognised already in the 1970s. 
Unfortunately, the relationship of conceptual models to engineering design has not been 
apparent for many years. 

In the early days of computer use in the building industry, i.e. in the period 1960-1969, 
research and development efforts were concentrated mainly on numerical methods 
enabling the automation and more precise solution of difficult analysis tasks, such as FEA, 
optimisation problems, transient heat analysis etc. A few remarkable systems, such as 
STRESS#) and ICES STRUDL##), featured comprehensive structural models which are still 
unbeaten w.r.t. many detailed concepts. However, these models were developed without 

                                                 
*) Other industries with large key organisations and respectively larger and better coordinated 

investments in IT development, such as the automotive, aerospace, process plant and defense 
industries, have already achieved measurable results in the development and standardisation of 
large conceptual models, as well as in the implementation of comprehensive PDT based 
environments. Significant examples are the STEP APs 203 (ISO 10303-203 1994) and 214 
(ISO 10303-214 1997) in the automotive industry and AP 227 (ISO 10303-227 2000) in the 
process plant industry. However, several modelling problems related to the operability of 
fielded environments are still open issues and one of the main targets of current research and 
development activities there as well (cf. West & Fowler 1996; ISO 18876-1/-2 2000). 

#) Developed by Steve Fenves. 
##) Developed at MIT by a team around Robert Logcher. 
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theoretical modelling basis and suffered from the limited capabilities of the programming 
languages (FORTRAN) and the computer hardware at that time. Thoughts for relating 
them to other efforts, e.g. from architecture or mechanical engineering, and to provide for 
greater flexibility and extensibility of the software had not yet ripened. 

In the period 1970-1984 the appearance of CAD systems in the engineering domain and 
the proliferation of database systems for information storage and retrieval provided new 
opportunities for computer-supported design work and management. 
However, the CAD systems of that time focused primarily on the results of design, i.e. the 
drawing plans. Consequently, they were built around geometry models that enabled 
efficient performance w.r.t. complex geometry operations but ignored the semantic 
meaning of the symbols comprising a drawing, leaving that task to human perception. 
Relationships to emerging database technologies and conceptual models of the goal of 
design, i.e. the building as a product, were not recognised. 
In database application, due to the objective of information capture for limited, but versatile 
tasks in many industry sectors, a more general understanding of the principles of information 
modelling emerged. Detailed representation concepts were worked out, and a general 
framework for DBMS realisation was defined. This framework, known as the ANSI/SPARC 
model (Tsichritzis & Klug 1978), is still valid today. However, in that area too, there were no 
thoughts yet to extend the technology to support technical development processes. 

Towards the middle of the 1980s it was recognised that many of the problems experienced 
by CAD, CIM and CIC were in fact conceptual modelling and database problems  
(Robinson 1988). At the same time, research in database theory, artificial intelligence and 
programming languages suggested new powerful representation methods that seemed 
suitable for the realisation of more ambitious goals. A number of successful pilot projects 
brought growing interests and optimism that culminated in the inauguration of the  
ISO STEP standardisation effort in 1984 with the following objectives (cf. Fowler 1995; 
Owen 1997): 
− the creation of a single standard, covering all aspects of CAD/CAM data exchange; 
− the implementation and acceptance of this standard by industry, superseding various 

national and de facto standards and specifications; 
− the standardisation of a mechanism for describing product data, throughout the life of a 

product, and independent of any particular system; 
− the separation of the description of product data from its implementation, such that the 

standard would not only be suitable for neutral file exchange, but also provide the basis 
for shared project databases, and for long-term archiving. 

The optimism of these lines is obvious, especially when we consider that some of the 
above objectives are far from being reached even today. However, in spite of some pro-
blems with its practical application and its overall architecture which shall be addressed 
later on, STEP contributed enormously to the development of information modelling at 
least in the following five aspects. 
First, it inspired the research community to focus on the definition of conceptual schemas 
using formalised techniques, rather than prototype development. 
Second, it defined a neutral, computer interpretable information modelling language 
(EXPRESS) which was a significant innovation to conceptual modelling at that time. 
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Third, it defined a neutral file format for the exchange of data which overcomes many of 
the limitations of all prior data exchange efforts, such as DXF.  
Fourth, it defined a set of conceptual model schemas, the so called Integrated Resources 
(ISO 10303, parts 41 to 49), covering a broad spectrum of information requirements that are 
common to all industry sectors. 
Last but not least, it promoted PDT as the basis for advanced CAD and information 
management systems. 

Around 1988-1991 first proposals for the principal structuring of the information about 
building products were made. A number of research papers by Eastman (1988), Turner 
(1988), Björk (1989), Garrett (1989) and others introduced the product modelling approach 
into building construction and suggested it as a key technology for construction infor-
mation exchange and computer integrated construction. Several generic data models, such 
as the GARM model (Gielingh 1988b) and the BSM model (Turner 1990), intended as 
input to STEP, the Swedish KBS model (Svennson 1991) etc., developed ideas that are still 
influential. At the same time, in academic prototype systems, e.g. IBDE (Fenves et al. 
1989), DICE (Sriram 1991) and ICADS (Pohl et al. 1992), advanced AI-based representa-
tional and computational methods were investigated, and more ambitious requirements and 
goals were identified. 

In the following years, i.e. 1992-1995, result-oriented projects such as ATLAS, COMBI, 
COMBINE, PISA etc. (see section 1.3) developed prototype environments that not only 
proved the principal validity of the PDT approach, but also actively used and improved 
technologies and methods related to STEP. These efforts brought about better under-
standing, greater consensus and higher degree of belief in the benefits of PDT. This led to 
the birth of the IAI in 1995 (cf. IAI 1999a). 

Today, PDT is a widely accepted overarching research discipline which addresses many 
aspects of CAE/CIC including not only data exchange problems but also CAD (Junge et  
al. 1995a) and engineering databases (Encarnação & Lockemann 1990; Eastman 1992), as 
well as the construction of large modelling architectures for distributed information 
management systems for various purposes (cf. Fisher & Froese 1996, Junge & Liebich 1998, 
Turk et al. 2000). 

2.3.2 Contemporary components of PDT in the building construction domain 

Research in conceptual modelling in the 1990s has identified several data representation 
layers of different complexity and scope. Björk (1995) proposes five distinct layers of 
conceptual modelling efforts that are now generally accepted. However, to reflect better 
the design of specific large-scale systems, such as CEE, I suggest to enhance Björk’s 
classification by two more categories. This results in the structure presented in fig. 2.5 
below. 
Björk does not include the innermost and the outermost layers shown in the proposed 
structure, and mentions that the application layer is too specific and thus not a subject for 
research. 
Other authors provide similar classifications. For example, Hakim (1993) discusses four 
categories: general-purpose semantic data models, semantic models for engineering design, 
semantic models for specific design domains, and data schemas for modelling frameworks 
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(the last category is given a different name, but the idea is generally that of a framework); 
Junge and Liebich (1998) principally agree with Björk but propose to look at the problem 
from a different perspective and introduce the term “consolidated model” which is similar 
to the outermost layer in the below figure; STEP adopts (somewhat freely interpreted) the 
three layers of the ANSI/SPARC model etc. 

However, I think that the “7-layer hierarchy” introduced on fig. 2.5 expresses better the 
fact that each layer depends in a top-down manner on the representations and the decisions 
undertaken on the previous layers, and that the scope and the level of detail of these layers 
increases from top to bottom. 

M o d e l l i n g  f r a m e w o r k

Application data models

Aspect data models

Building kernel model

Generic product model

Modelling paradigm and language

Information Requirements

M o d e l l i n g  f r a m e w o r k

Application data models

Aspect data models

Building kernel model

Generic product model

Modelling paradigm and language

Information Requirements

 

Fig. 2.5: Principal information modelling layers 

The first layer (information requirements) is the one which is paid least attention as it is 
usually assumed that requirements are external input to modelling and an obvious develop-
ment step for any of the other layers. This is principally correct but only part of the truth. 
Indeed, information requirements of end-users are first acquired and categorised, but they 
are then “translated” by an information modeller to specific modelling and IT requirements 
which provide the basis for a solution hypothesis and influence the whole modelling 
approach. Besides this, there exist formal approaches for requirement capture, as well as 
presentation formalisms such as IDEF0 and SADT. In fact, even if not explicitly recog-
nised as a separate research issue, requirements to engineering data models have attracted 
the attention of many researchers (cf. Eastman 1993; Scherer & Katranuschkov 1994; 
Hannus et al. 1995b etc.). Many such efforts have helped to discover problems that have 
not been identified in “pure” computer science research. 

The second layer basically deals with the expressiveness of modelling languages 
supporting respective modelling paradigms. However, it is important to notice that a 
language is only a means, whereas the paradigm is a method of representing a UoD.  
Thus, a language may be good or bad, easy or difficult to learn and use, but it can never 
show more concepts than defined by the underlying modelling paradigm. 

In the present time widest acceptance has gained the object-oriented modelling paradigm 
(OOM). However, it includes several variations with respect to the treatment of relation-
ships, associations and multiple inheritance which resulted in different non equivalent formal 
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representations such as OMT (Rumbaugh et al. 1991), UML (Rumbaugh et al. 1998),  
and partially EXPRESS*)  (ISO 10303-11 1994). 
Earlier modelling paradigms include the relational data model (Codd 1970) and the entity-
relationship (ER) model introduced in (Chen 1976) which was also initially adopted in 
STEP (and de facto silently replaced by the object-oriented paradigm in later years).  
A good overview of these and other related approaches is provided in (Hakim 1993).  
They are seldom used for engineering data modelling today because of several deficiencies 
of their representational capacities. 
More advanced representation paradigms originated in the field of AI, such as the frame-
based paradigm, the KL-ONE family of terminological knowledge representation etc. 
Good overviews of such approaches are presented e.g. in (Cunis 1992) and (Russel & 
Norvig 1995). However, due to the academic character of most efforts, they do not provide 
appropriate information modelling languages, and are realised in overlays to standard 
programming languages, most notably LISP and PROLOG. 

The third layer (generic product model) also deals with high-level modelling concepts but 
its goals are related to the methods of information structuring for the description of 
artefacts designed and manufactured by man. 
Outstanding efforts for the definition of generic product data models include the “General 
Architecture, Engineering and Construction Reference Model” (GARM) developed by 
Wim Gielingh (Gielingh 1988a, b), the “AEC Building Systems Model” (BSM) developed 
by James Turner (Turner 1990) and the “Engineering Data Model” (EDM) of Charles 
Eastman (Eastman et al. 1993, 1995a). 
GARM uses a unique modelling approach organising construction project information at a 
very high level of abstraction. Its key idea is featured by the abstract object called  
Product Definition Unit (PDU) which is intended to be specialised (at different times!)  
to its subtypes Functional Unit (FU), representing the data as designed, and Technical 
Description (TS), representing product data as required. Originally, GARM proposed  
a classification of seven subtypes (as required, as designed, as planned, as built, as used,  
as altered and as demolished) which emphasised the life cycle stages and the different 
representation aspects undergone by building products. As a whole, it is a very general 
model which is not appropriate for short and medium term implementation, and thus was 
not accepted by STEP. On another side, it is the first model that recognised the relationship 
between top-down design processes, with the designers endeavouring to satisfy functional 
requirements, and bottom-up construction realisation, with product manufacturers 
providing their products as technical solutions for such requirements. This idea has been 
further developed on more pragmatic level in later modelling efforts such as the proposed 
“Realization Model” in (Wittenoom 1997). 

                                                 
*) EXPRESS is in fact not a pure object-oriented modelling language as it does not include some 

recognised object-oriented concepts like polymorphism and encapsulation. However, on data 
level, it provides sufficient constructs to create comprehensive object-oriented models. It sup-
ports modelling principles like classification, abstraction, aggregation and inheritance which 
form the basis of such models. With some additional flavours, as proposed in the PISA project 
(Braun et al. 1994), EXPRESS fulfils most of the requirements related to the modelling effort 
attempted in this thesis. 
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In contrast to GARM, BSM deals explicitly with buildings and adopts a top-down systems 
approach by which the separate functional systems that make up a building (spatial, 
structural, mechanical etc.) are also separately modelled, and are supposed to be “glued” 
together by a high-level AEC building systems model. This approach is oriented towards 
the functions of building parts, and not the technical products or materials chosen.  
It appeared to be more natural to designer thinking and was one of the main precursors of 
the kernel-aspect model architectures. 
The core of EDM*) is situated somewhere between the second and the third layer. It uses sets 
and first-order logic and is capable of modelling both relationships between objects and 
value constraints to object attributes. The representation is based on a small number of 
primitive constructs (domain, aggregation and constraint) which are used to build high level 
forms modelling the actual building semantics. A domain is defined by a name and a set of 
possible values (attributes). Aggregations are composed of variable-domain pairs, where a 
variable may have zero or more values including aggregations and domains. A constraint is 
defined by a name, a predicate expression and a list of variables occurring in the expression. 
The high level forms include functional entities, accumulations and compositions. 
Functional entities are roughly equivalent to the usual meaning of objects but differ in the 
treatment of specialisation in that both classes and instances can be specialised. Accumu-
lations provide 1:N relationships between the properties of a composite object and its parts 
and enable more explicit treatment of “part-of” links than conventional object-oriented 
approaches. At last, compositions define sets of accumulations that all apply to the same set 
of functional entities. 
As a whole, EDM overcomes many known difficulties in the development of engineering 
data models. In contrast to the data-centric approach of STEP and IAI, it supports both 
design data representations and functional features. However, although it proposes a 
comprehensive framework, EDM is not sufficiently modular which provides some concerns 
about the flexibility and scalability of the approach. 
Another interesting development similar to EDM w.r.t. the modelling scope is SHADES 
(Hakim 1993). It is based on the description logic paradigm and provides an object-centred 
approach which solves many of the problems of object-oriented models. SHADES 
supports object evolution, schema evolution, incomplete representations and dynamic 
recognition and classification of objects. It is capable to accommodate several hierarchies 
of design aspects within the same environment, automatically enabling their interopera-
bility. However, it provides similar concerns w.r.t. flexibility and scalability as EDM. 

The fourth layer (building kernel model) attracted great attention in the last years when it 
was recognised that a successful definition of an adequate kernel may be the key to success 
for the modelling of large-scale IT environments. The idea emerged bottom-up, from the 
development and successful prototype implementation of several discipline-specific aspect 
data models. Detailed examinations of these models showed that if they are developed 
independently and without commitment to common higher level concepts, there is little 
hope that any reasonable link among the model worlds would ever be achieved. 

                                                 
*) EDM proposes a complete environment, based on a set of core concepts, but there are no 

distinct names of the separate layers of the EDM framework. 
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The purpose of the kernel data model is threesome: (1) interpretation of common require-
ments, (2) specification of common data, and (3) development of a common framework 
(Wix 1996). From that point of view, a framework should be understood as a consistent 
basis for the development of more specific domain data models, and not as the conso-
lidated model structure of an implemented IT environment. 
However, whilst the purpose of a kernel data model seems to be quite clear, its content is 
not. There are at least three distinct strategies for the design of a kernel model schema:  
(1) top-down definition of constructs capturing basic relationships, expected to be sup-
ported by all domain-specific data models, (2) bottom-up integration of overlapping 
domain data, and (3) autonomous domain model schemas linked through a kernel that  
does not define common objects classes, but a common communication paradigm for the 
software tools implementing the domain schemas. 

The first strategy follows the idea of the BSM approach and assumes a pre-harmonised 
model world. 

The second strategy is similar to the principal methodology of constructing multidatabases 
(cf. Kim 1995; Dadam 1996) and assumes a homogeneous model world. 

The third strategy is related to distributed agent systems and assumes a heterogeneous 
model world, along with intelligent agents capable of “talking” to each other. 

A very popular variation of the first strategy is the so called minimal approach introduced in 
(de Vries 1991). Its key objective is to keep the kernel extremely small in order to allow for 
greatest possible flexibility and adaptability to different domain needs. Thus, different types 
of building elements are not modelled as separate classes, but are included as the values of a 
building component type attribute of a generic building component class. A more pragmatic 
realisation of this idea is provided by the IFC Kernel Model (IAI 1999a, b). It adopts in 
principle the minimal approach but extends the number of kernel objects with additional 
constructs, such that envisioned software implementations would be less difficult to achieve. 
The second strategy is suggested by STEP where every domain data model can only use 
and further constrain definitions already provided in the Integrated Resources. It has been 
attempted e.g. in the ATLAS project, but the invested modelling efforts have shown that 
the definition of a general kernel model meeting the requirements of ISO STEP is a 
difficult task entailing a huge amount of resources, and mapping to discipline-specific 
models is nevertheless unavoidable. Therefore, unlike other industries, the acceptance of 
this strategy in building construction is at best moderate. 
The third strategy has been explored in academic research in the AI area, e.g. in the 
ACL/KIF approach (Khedro et al. 1994). It has been successfully applied in practical 
systems of limited scope and well-defined narrow goals, as e.g. in the ARCHON project, 
as well as in several subareas of computer-aided manufacturing (cf. Müller 1993). 
However, due to the complexity of the implementation and the strong requirements to 
application tools, it has not been tried on a more general level. 

A mixed strategy of (1) and (2) seems to be implemented by the COMBINE project, and  
a strategy combining (1) and (3) has been explored in the COMBI project. 
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The fifth layer (aspect data models) addresses the definition of information structures for 
particular disciplines and/or phases of building construction*). 
Aspect (or domain) data models typically inherit or copy many information constructs of the 
kernel model layer, but there are also other possible approaches as demonstrated in SHADES 
and, partially, in COMBI. Such data models are often developed within the frames of larger 
projects for several domains at a time, as e.g. in the ATLAS and the COMBINE projects. 
However, there are also successful “self-contained” realisations with very specific goals and 
without consideration of potential overarching environments requiring kernel model const-
ructions. Examples of such efforts include the CIMSTEEL model (Watson & Crowley 1995) 
and the German structural steel model originally proposed in (Haller 1994). 

The sixth layer (application data models) includes the explicit or implicit conceptual 
schemas implemented in individual software applications. It is generally excluded from 
research and standardisation efforts because of the low possibilities to reuse such schemas. 
However, there are two different situations to be considered here. 
In the first case, the application is typically developed when an appropriate aspect data 
model is already available, and its conceptual schema can easily be adapted to that aspect 
data model by means of standard object-oriented techniques. 
In the second case, the application has been developed before the aspect data model, and 
its native data structures, often utilising a very different paradigm, cannot be changed.  
This is the more difficult and, unfortunately, more frequent situation to date. The related 
problems are insufficiently investigated because it is generally assumed that the necessary 
model transformations can be accomplished only by specific conversion software which is 
on the responsibility of the application providers. However, whilst there is certainly very 
little that can be done for the harmonisation of the data, it is possible to implement 
mechanisms that can help to conceptualise and automate the mapping process. Such efforts 
have been undertaken e.g. in the COMBI project (cf. Ammermann et al. 1994). 
The last, seventh layer comprises the modelling framework. Many researchers define it as 
the totality of the other already discussed layers and thus do not see a necessity to examine 
it as a separate category. I think that it has its own principles and design methods that need 
to be considered separately. 
The specific issues addressed at the modelling framework layer encompass: 
1) the strategy for achieving the interoperability of the other model layers, 
2) representation constructs enabling the realisation of this strategy in general,  and  
3) implementation forms and methods enabling its realisation in particular, i.e. in a practi-

cal IT environment. 
The largest initiatives developing principal concepts for the construction of comprehensive 
modelling frameworks relevant to AEC are ISO STEP and IAI/IFC. They are shortly 
discussed in Appendix VII, along with the various specific reference models used for 
validation of the concepts developed in this thesis. 

                                                 
*) In the ATLAS project the name “view type models” is used, whereas COMBI defines “partial 

models”, and IAI speaks about “domain models”, but the idea is generally the same. Whilst in 
this thesis I mostly use the term “domain (data) model”, in this particular section “aspect 
model” is preferred to preserve the terminology provided by Björk (1995). 
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Especially the IFC framework, which closely follows the principal information modelling 
layers shown on fig. 2.5, appears to be well suited for the envisaged concurrent engineering 
environment even if there are no specific hints in that respect in the IAI documentation. 

2.3.3 PDT application in other industry branches 

In chapter 1 it was mentioned that other industries have several advantages w.r.t. the 
development and the practical realisation of environments for concurrent engineering, 
mainly due to the existence of global key organisations playing the role of research and 
technology drivers. Therefore, without going into a detailed analysis that might take 
dozens of pages, it is interesting to examine major efforts in other industry sectors and 
compare these to building construction. 
Characteristic for the automotive, aerospace and defense industries is the development of 
large-scale systems built around large, tightly integrated modelling frameworks. Such 
frameworks typically guarantee a high level of internal consistency, whereas external inter-
model operability is mostly limited to file-based data exchange accomplished with the help 
of dedicated sophisticated translators. 
An outstanding example of a commercially available, widely used system of that kind is 
METAPHASE (SDRC 2000). It provides specific solutions for each of the above-
mentioned industries by incorporating a number of capabilities to support concurrent 
engineering processes, such as product data management, configuration management, 
change management, scheduling, systems engineering and requirements management, 
along with interfaces for design collaboration to major CAD systems (I-DEAS, CATIA, 
AutoCAD) and the STEP AP 203. However, just as other similar systems, its conceptual 
design does not provide for an easy method to adapt the system’s features to the needs of 
the AEC sector. 
Research and development work in the area of conceptual modelling and standardisation 
basically adopts the STEP harmonisation strategy aiming at the specification of fully 
homogeneous and consistent data models. The results of such activities include the STEP 
APs 203 (ISO 10303-203 1994) and 214 (ISO 10303-214 1997) documented on several 
thousand pages - an unreachable effort for other domains. 
Software implementations are concentrated on the application of suitable methods for 
multidatabase integration and distributed object-oriented processing using CORBA 
technology. However, whilst such technical solutions are in principle valid for building 
construction as well, the amount of work needed makes them practically not applicable. 
More interesting are therefore the achievements in industry sectors that are closer to 
building construction w.r.t. their general economic and technical parameters, such as the 
shipbuilding and the process industries. 
Intensive research and development efforts in the shipbuilding domain, in conjunction with 
a set of international projects started with the European MARITIME project (de Brujin et 
al. 1995), have led to a unique solution approach, known as the “MARITIME AP Factory”, 
which takes an intermediate way between the “pure” STEP approach of strictly harmonised 
models and the pre-harmonisation idea followed by the IAI (cf. Wix 1996). Its essence is 
in the use of generic templates as building blocks for AP development which capture not 
only representational but also behavioural and reactive features. The definition of such 
templates is accomplished with the help of a dedicated modelling language, GEM, that 
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incorporates both activity and data modelling constructs. Model integration and interopera-
bility basically follow the STEP approach but enable tighter coordination of process and 
product information and take in consideration several system implementation features. 
Thus, in contrast to STEP APs, the MARITIME models are meant to be “directly imple-
mentable” in IT environments. 
The efforts associated with the development of such models also seem to exceed the limited 
resources that can be afforded in building construction but the idea of using meta data 
templates for the construction of more complex semantic concepts provides interesting 
possibilities that are worth considering. In fact, it is to a certain extent analogous to the idea 
of using mapping patterns proposed in this thesis, which will be presented in chapter 5. 
Most closely related to the conceptual modelling approach adopted in building con-
struction is the development work in the process plant industry sector, carried out in 
conjunction with the POSC/CAESAR initiative in the frames of the EPISTLE project 
(Angus & Dziulka 1998). The undertaken efforts draw upon previous work by Gielingh 
(Gielingh 1988a, b) and West (West 1994) and have culminated in a standardisation pro-
posal (ISO 18876-1/-2 2000) for the construction of a comprehensive integration model of 
general applicability, which has great similarity to the strategy of the IAI. In this proposal, 
known under the name IIDEAS, along with the specification of a meta model and a core 
model, greatest attention is paid to the mapping methodology needed for bi-directional data 
transformations between the integration model and application-specific data models, as 
well as to the problems related to data consolidation. To tackle these problems, an 
integration procedure is proposed whose essence is in updating the integration model in 
such way, as to allow the unambiguous derivation of an integration model subset, or 
application view model, that can then easily be mapped to/from the application-specific 
data model at run-time. This procedure is schematically illustrated on fig. 2.6 below. 
Thus, in the process industry as well, the efforts for the implementation of interoperable 
environments are mainly focused on techniques related to database integration, requiring 
considerable implementation efforts. 

 

Fig. 2.6: The IIDEAS integration process  / after (ISO 18876-1/-2 2000) / 



46 A Mapping Language for Concurrent Engineering Processes 

2.4 Benefits of the Use of a PDT Based Framework for CEE 

The methods used for the representation of construction project processes and data have 
evolved over centuries, shaped by the efforts of designers and contractors to find a suitable 
format for the coordination of decisions and descriptions about the constructed facilities. 
Until recently, this suitable format was that of documents on paper. 
Today, with the existing capabilities for digital processing of electronic documents, the 
efficiency of document production and the effectiveness of their distribution and co-
ordination are enormously improved. However, taken alone, this kind of information rep-
resentation is no longer adequate for the complex production processes and the increased 
customer demands of the present time. It does not guarantee completeness and consistency 
of the project data and it does not provide an objective model of the product of design. 
Thus, before a building is erected, it is only a virtual collection of incomplete “mind 
models” of the involved professionals, only partially supported by projections of these 
models in reports and drawing plans. The process of model realisation is insufficiently 
coordinated and bears many unexpected risks. As a consequence, concurrent engineering 
cannot be efficiently practised. 
With the use of information systems based on PDT such problems can be greatly overcome 
because: 
1) A PDT based system would enable the modelling of all types of technical data 

explicitly, by using unified and logically consistent representation methods, and not 
implicitly, through textual descriptions and drawing; 

2) It can cover the information needs of a variety of IT tools due to the availability of rich 
semantic concepts as compared to the limited representation capabilities of document 
and geometry models; 

3) It can enable the integration of common data across disciplines and applications at 
more detailed levels than a document based approach; 

4) It can provide just-in-time information in appropriate presentation formats due to the 
capabilities for clear separation of semantic and presentation features; 

5) It can facilitate the coordination of decisions, processes and data at any time because of 
the constantly maintained up-to-date state of the model data. 

A comprehensive modelling framework, reflecting the architecture suggested on fig. 2.5, 
would be able to provide all the above features. Of course, the construction of such a 
framework is not an easy task. The move from document-based design to model-based 
project realisation cannot be expected to happen in only a few years, but the progress made 
with ISO STEP, IAI/IFC and the many successful research and development projects of the 
last years shows that a paradigm shift is under way. 
However, STEP currently suggests only a very general methodology, and provides little 
hints as to how it should be implemented. On the other hand, this methodology obliges 
possible STEP-based environments to follow a more or less pre-defined schema. 
IAI/IFC provides a set of specific modelling principles which should guarantee the high 
level of harmonisation of the existing (and future) components of the framework, but does 
not define any enabling methods or supporting conceptual schemas w.r.t. the operability of 
IFC-based concurrent engineering product development environments. 
Exactly these missing features are addressed in the interoperability methods for CEE 
proposed in this thesis. 
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Chapter 3: Outline of the Proposed Concurrent 
Engineering Environment 

Jack considers M to be a good model of A to the extent that  
he finds M useful for answering questions about A . 

– Marvin Minsky, The Society of Mind 

This chapter introduces an environment in which the model mapping approach 
developed in this thesis can most efficiently be applied. Presented are the principal 
features of an IT system for concurrent engineering that goes beyond looking at the 
technical products, processes, documents and information to observe the environment 
as a whole, including the people, the technology and the information management 
issues involved. On the basis of outlined specific concurrent engineering requirements 
to PDT and an anticipated multi-tier client/server architecture, a wider framework for 
environment modelling is proposed. It comprises not only the representation of the 
product data describing a construction facility, but includes also the modelling of system 
related aspects, such as actors, roles, access rights etc., and the modelling of the 
information about the information system itself (clients, servers, communication model). 
Suggested is a hierarchical architecture comprised of a high-level meta model, a set of 
layered product data models, and a set of models and methods supporting the 
operability of the environment. 
The emphasis of the proposed approach is not on the modelling of the “objective 
reality” of construction products and processes themselves, but on the interoperability 
of the envisaged software system. Therefore, requirements and problems related to 
“pure” product modelling are only briefly covered (as it is assumed that the models 
developed by the IAI and STEP will soon penetrate into building construction practice), 
but the interoperability problems related to the environment are discussed in depth, 
and a modular approach for their solution is outlined. The latter forms the core of the 
developed concepts, presented in detail in the following four chapters of the thesis. 

3.1 Preliminary Remark 
The development of a CEE system is hardly a task for one person. Its design is a complex 
process which involves simultaneous consideration of many cross-domain aspects, such as 
(1) the general requirements and characteristics of the target industry area, (2) end-user 
requirements of the relevant engineering disciplines, (3) technical requirements to the 
features of the models and tasks that need to be supported, (4) operability requirements 
w. r. t. data management, consistency, system interfaces, performance etc. Practical software 
realisation adds aspects like available technology, requirements and constraints of existing 
applications, adequate consideration of relevant data processing standards, hardware and 
software resources and so on. Typical for such broad systems are design decisions that 
cannot be deduced analytically. Also typical is the possibility of different solution 
approaches, emphasising more strongly one or another aspect of the set up overall goals. 
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The concepts of the CEE system outlined in this chapter have been refined gradually, 
taking into account past cooperative efforts undertaken in the COMBI and the ToCEE 
projects. The aims of these projects have been somewhat different, but the general vision 
has been largely the same, i.e.: 
1) To provide a flexible framework capable to support a wide range of engineering 

applications; 
2) To enable the use of not fully harmonised data models, taking into account the hetero-

geneous, fragmented and multidisciplinary nature of AEC,  and 
3) To enable independent work on local model views as appropriate for the different 

discipline-specific tasks involved in the building design process. 
These envisaged features have been used as baseline for the decisions taken during the 
conceptual design of the CEE system suggested herein. It is a generalisation of the 
environments developed in COMBI and ToCEE, with special emphasis on a number of 
interoperability problems that have not been investigated in these projects. Its architecture 
and the underlying modelling framework set up the stage for a deeper discussion of the 
developed model mapping approach for concurrent engineering processes, which is the 
main subject of this thesis. 
However, many of the addressed interoperability aspects are not specific for the proposed 
CEE system, but are also relevant for other possible system architectures (cf. Böhms & 
Storer 1994; Amar et al. 1997; Thomson 1998; Crowley & Watson 2000; ISO 18876-1/-2 
2000). Therefore, for the overall objectives of the research, the CEE system itself is in fact  
a subordinate issue. In accordance with that, its presentation is kept concise, and most 
requirements and design decisions are reported without going into the specific details of why 
and how they have come about. Some critical issues are discussed in section 3.8 at the end 
of this chapter. More details are provided in (Karstila, Katranuschkov & Mangini 1996) 
and in (Scherer 1997a). 

3.2 Requirements to the CEE System 
In chapter 2, the basic features of the concurrent engineering methodology and their 
relevance to building construction practice were identified. In the discussion of these 
features a few broadly formulated requirements to information technology could be 
identified. However, as pointed out in section 2.3.2, in order to develop a successful 
concept for a comprehensive CEE system, these informal requirements have to be synthe-
sised to specific conceptual, software development and performance requirements related 
to the information system as such. 
This synthesis has led to a set of specific IT-related requirements which are summarised in 
table 3.1 below. 
By examining this table, it can be noticed that integrated project data models, which have 
been the main purpose of many development efforts in the area of PDT, are an important, 
yet not the only data set, nor the only conceptual issue required to solve the problems 
related to concurrent work. 
Therefore, for the successful application of an IT system for concurrent engineering it is 
necessary to observe all related system components as coherent parts of a much wider 
framework for environment modelling. The basic characteristics of this framework and a 
principal approach for its construction are presented in the following sections. 
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Table 3.1: Concurrent engineering features and their implications to model-based project 
data management 

Concurrent engineering 
features 

Project data management issues Relevance 
to this study

Collaborative work of 
distributed design teams 

• Integrated data model 
• Common product data repositories 
• Distributed client/server environment 

+ 
+ 
+ 

Concurrency • Concurrent multi-user access to the product 
data repositories 

• Availability of local data allowing independent 
work in the individual engineering domains 

• Change management and versioning 

+ 
 

+ 
 

+ 

Efficient inter-discipline 
communication and 
information sharing 

• Flexible client/server interfaces 
• Comprehensive set of available server 

functions 
• Consistent support of interoperability aspects 

+ 
+ 
 

+ 

Life cycle management • Comprehensive set of harmonised data models 
• Modelling representation enabling model 

evolution and different levels of repr. detail 

- 
(+) 

Robust project 
management 

• Capturing of key project management data in 
appropriate modelling objects 

• Linking to process and workflow data 

- 
 
- 

Consideration of 
responsibilities and 
access rights 

• Capturing of legal issues like contracts, order 
assignments, approvals, access rights etc. 

• Appropriate linking to documents, the main 
holders of legally binding data 

- 
 
- 

Simulation, monitoring 
and forecasting 

• Adequate interfaces and mapping facilities to 
dedicated advanced software tools 

(+) 

3.3 Basic Design Principles 

Within a CEE system, basically three types of information are generated and manipulated 
(cf. Turk et al. 1997): 

1) The information about the constructed facilities, including construction products, con-
struction processes, construction codes, regulations and requirements etc. Information 
in this section relates to real-world material objects and is not associated or influenced 
by IT. For example, when we model the reinforcement of building elements, we are not 
necessarily interested of how this information is stored in documents, databases, or how 
it is versioned, updated, accessed and so on. 
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2) The information about the CEE system itself, including information products (docu-
ments, databases), information processes (tasks, activities), and the environment as 
such (hardware, software, servers, clients, persons, applications). Concepts of this type 
are largely generic. They are related to construction concepts, but their discriminating 
feature is domain independence, because their actual domain is the IT system itself, and 
not any of the physical domains it supports. 

3) The information about the information itself, i.e. concepts like information ownership, 
authorship, versioning, and even the more abstract concept of a model as such. 

A CEE system stores information as CEE data. This data can be stored in various kinds of 
databases, such as relational or object databases, or simply in a flat file database. 

The types of CEE data are defined in a CEE schema. This schema is comprised of several, 
not necessarily harmonised component schemas, fitting into a CEE modelling framework 
(CEEMF). All these components must be “somehow” inter-related; hence the singular 
“schema”, and not the plural “schemas” is used for CEEMF. The challenge here is to 
define what does this “somehow” actually mean. 

The modelling framework (CEEMF) must define how to decompose the CEE information, 
i.e. it defines the decomposition principles, the decomposition itself, the main features of 
each component and the general interfaces between the components, which should enable 
the overall operability of CEE. 

However, before looking into how to organise the CEE system information, some basic 
decomposition criteria need to be defined. These criteria are suggested as follows: 

 Simplification  
The decomposition should simplify the modelling and consequently the implementation 
of CEE without sacrificing features required for its functionality. 

 Autonomy  
The details of each component should be largely autonomous, so that they can be 
developed and implemented with little reference to other components. 

 Domain knowledge separation  
The decomposition should “follow” knowledge domains. Components should separate 
general knowledge from domain-specific knowledge, so that experts in each field can 
easily work in an encapsulated context of their domain expertise. 

 Rich intra-component relationships  
The information within a component should comprise a rich set of reference types 
(uses, used by, specialised, part-of, is-a, contains etc.) for the representation of the 
relationships within the component. 

 Lean inter-component relationships  
The information within each component should have as few as possible external 
references to other components so that data inter-dependencies and data transfor-
mations, as well as the overall consistency of the full set of component models would 
be easier to manage. This principle is in fact broadly analogous to the method of sub-
structuring mechanical systems in structural engineering. It is not of much importance 
for a system where fully consistent harmonised data models are available, but it can 
greatly facilitate mapping tasks in non homogeneous systems where this is not the case. 
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 “Use” instead of “include”  
The components should “use” rather than “include” knowledge which is not component 
specific. For example, products need not know about the properties of the documents in 
which their own properties are presented or archived, but if necessary can “use” these 
documents to service a “viewing” request. Such relationships can be achieved by the 
concept of “delegation”. Deep “is-a” hierarchies are undesirable, because, at the imple-
mentation level, they tend to bind more tightly than delegation. The rationale for this 
principle is similar to the previous one, but the aim is to facilitate interoperability at 
software component level and not at the level of semantic modelling. 

The decomposition of CEEMF follows the general idea of duality of information processes 
and construction processes (Scherer 1997a), which is expressively illustrated in the high-
level reference model of the general CEE system process suggested in (Björk 1999). 
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Fig. 3.1: High-level reference process model of the CEE system in IDEF0 
/ after (Björk 1999) / 

In the explanation to his original figure, Björk uses the abstraction of material processes 
and information processes. Material processes change the material world (e.g. pouring 
concrete into a formwork), whereas information processes process the information about 
these material processes (e.g. how much concrete is needed, when and by whom). 
Information processes control the material processes and monitor their output, and the 
material processes provide feedback data to the information processes. 

Following this observation, a CEE system for building design can be seen as a generalised 
information process that supports, with the help of IT, both the information and the 
“material” design activities. In accordance with that, a principal decomposition matrix  
for CEEMF can be defined. 

Table 3.2 shows the proposed matrix “populated” with some sample objects. It is divided 
row-wise into construction specific information, CEE system information and generic 
concepts. 
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Construction information is further decomposed into product, process, document and legal 
(or requirement) information. Similarly, CEE system information is decomposed into  
CEE system product (which is information) and CEE system process (during which this 
information is created or modified). 

Table 3.2: Modelling framework decomposition 

Information 
type 

Information  
subtype Sample concepts Further decomposition 

Product information Project, building, storey, 
site, element, connector, 
space, wall, slab, column, 
equipment, opening, door, 
window, material, ... 

By specialisation, using the 
systems approach 
(kernel, aspect, application 
models) 

Process / activity 
information 

Construction process, 
person,  organisation, 
work schedule,  work 
section,  work group,  
work task, ... 

By specialisation and by 
building life cycle stages 
(brief, scheme design, 
tender, construction, ...) 

Documents Bill of quantities, cost schedule, drawing plan,  
request for information, contract, ... 

Construction 
information 
 

 
 

Legal data 
 

Regulation, requirement, clause, provision,  
authorisation, ... 

Product information Information container, repository, file, message, 
generic document ... 

Process / activity 
information 

Client,  server,  actor,  user,  application,  
communication event,  transaction,  request, 
response,  input,  output, ...  

CEE system 
information 
 

 
 Legal data Access rights,  approval,  authentication,  

notification of receipt,  digital signature, ... 

Meta information Owner,  lock,  version,  status,  configuration,  
view, ... 

Generic 
information 
 

 

Object model Model,  schema,  class,  object,  attribute,  relation, 
operation, ... 

Fig. 3.2 shows a respective high-level reference model of CEE system information, derived 
from fig. 3.1 and the decomposition principles outlined above. 
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Fig. 3.2: High-level reference information model of the CEE system in EXPRESS-G 

The important output of the information processes (represented in this perspective as 
information items themselves) are information container objects. 

An Information Container can be generally defined as “the smallest chunk of data with 
its own meta information”. In this general treatment of the information in the CEE system, 
an analogy to the “knowledge chunks” proposed in the area of artificial intelligence  
(cf. Newell 1982; Cunis 1992) can be observed. 

The data in an Information Container is about construction products or construction 
processes which fit into the schemas related to the first row in table 3.2. This data is 
associated with meta information which is about who, when, how created the Information 
Container and how it is related to other data in the framework. 

Examples of Information Containers include high-level concepts like documents, or even  
a whole model as such, but also simple entities or attributes of entities. Information 
Containers are both the input and output of information processes which are performed by 
actors who may be persons or applications. 

In a distributed CEE system, Information Containers are the input and output of client/server 
interactions, and these interactions themselves (requests, responses, transactions). However, 
Information Containers provide only a high level of representation that does not tell much 
about the particular content. Their main purpose is to provide a uniform method for 
information transport, and not to support domain/application semantics. Therefore, to be 
able to satisfy the information requirements of specific design tools, a structured modelling 
framework is needed, enabling different representational levels of detail. 

Product 
model data 

Non product 
model  data 
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3.4 Modelling Framework 

Fig. 3.3 presents a proposed principal modelling framework for CEE developed by the 
author together with R. J. Scherer as part of the research work performed in the projects 
COMBI (Katranuschkov 1995; Scherer 1995) and ToCEE (Katranuschkov & Scherer 1997; 
Hyvärinen, Katranuschkov & Scherer 1997; Katranuschkov & Hyvärinen 1998). It is charac-
terised by the following features: 

1) It corresponds to the design principles identified in the previous section; 

2) It provides a broad scope of information types that have to be dealt with in a CEE 
system; 

3) Its structure is almost fully compatible with the IFC modelling architecture (which 
allows to examine the applicability of the IFC models for CEE by performing only a 
few additional tests, and not re-implementing the full model structures); 

4) Unlike the currently only available STEP AP in the area of building construction  
(ISO 10303-225 IS 1999), it is not fully harmonised and therefore allows the investi-
gation of interoperability issues related to a distributed, non homogeneous model 
world, typical for the distributed, highly-fractured domain of AEC (cf. IAI 1999a); 
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Fig. 3.3: Reference architecture of the modelling framework 

The suggested “implementable” framework is structured in five hierarchical layers as 
follows: 

 The Meta model layer defines explicitly the basic principles of the modelling paradigm 
with system-wide applicability. 

 The Kernel model layer defines high-level generic concepts which are common to all 
lower level models representing product, process and document related information. 

 The Neutral model layer extends the kernel layer by defining high-level concepts for 
each modelling perspective, i.e. Neutral Product Model, Neutral Process Model, 
Neutral Document Model etc. 
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 The Domain model layer further specialises the neutral model layer. However, because 
of the different granularity of product, document and process data, domain models 
currently exist only for product related information. This layer corresponds to the 
systems approach of the “AEC Building Systems Model” (Turner 1990), subdividing 
the model domain according to the different domain aspects of design (architectural, 
structural, HVAC, and so on). 

 At last, the Application model layer contains the native models of the applications to 
be used in the CEE system. Unlike the models on the other layers, which can be 
standardised and, at least hypothetically, fully harmonised, the application models will 
always remain “external” to the other parts of the framework, because the scope and 
number of the application systems to be integrated in CEE is unpredictable in advance 
(Hannus et al. 1995b). Therefore, at least at that level, the tackling of related mapping 
problems needs to be considered. 

With respect to the operability of the envisaged overall environment, greatest interest 
provides the Meta model layer. It is the component that “glues” together the system by 
representing explicitly the rules by which the other model layers are constructed, and not 
implicitly, by means of an external to the system modelling language paradigm. 

The principal structure of the Meta model and its explicit usage by the lower levels of the 
framework is shown schematically on fig. 3.4. 
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Fig. 3.4: Principal structure of the Meta model and its relationship  
  to the lower layers  of the modelling framework 

Its main features are as follows: 

1) It provides a basic Concept class which defines not only attributes but also operations, 
allowing to add functionality to the data models; 

2) It provides a Model class which defines the meta data associated both with data model 
schemas and instantiated models, which enables their treatment as a whole, by dedi-
cated model-level operations. 
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These features of the Meta model are of great importance for the overall interoperability in 
the CEE system. They are discussed in more detail in the next section and in chapter 4. 

3.5 System Architecture 

In accordance with the requirements for collaborative work of distributed project teams, the 
choice of an Internet-enabled client/server system is proposed. 
Indeed, client/server solutions making full use of the Internet are state of the art for distributed 
project development processes, as are typical for the virtual enterprise in building con-
struction. However, there are quite a few different architectures that can be envisioned for  
a concurrent engineering environment based on the client/server model. 
On the client side a variety of tools have to be supported, such as: 
− Legacy application with embedded Internet functionality  (fat client), 
− Stand-alone legacy application – Client adapter  (a variation of the above fat client), 
− “Thin client” application, relying heavily on centralised product data services, 
− On-line services, such as Applets embedded in a WWW-Browser  etc. 
On the server side, the following alternatives can be envisaged: 
1) All-in-one Project Data Server  

This is, conceptually, the simplest possible server design. It has the benefits, but also the 
drawbacks of not being dependent on any other services. To satisfy the requirements of 
concurrent engineering, the server implementations must embed many features that go far 
beyond pure data management functionality, such as process and workflow management, 
actor authentication etc. These features can make the server architecture difficult to 
achieve and insufficiently flexible for future enhancements. 

2) Object Request Broker  –  Project Data Server  
In this approach, the Object Request Broker takes over all communication related tasks, 
and the Project Data Server takes over the data management tasks. By modularising the 
architecture in this way, a conceptually clear extensible structure can be accomplished. 
Moreover, a set of dedicated servers, e.g. for document, process or regulation management 
could easily be “plugged-in”, providing the features that are not in the scope of product 
data management. 

3) Object Request Broker – Project Data Server – Project Data Agents  
This enhancement of the above architecture, shown schematically on fig. 3.5 below, 
provides a further level of flexibility, allowing the integration of intelligent server-side 
agents capable of accomplishing sophisticated data management tasks. Such tasks include: 
matching of two or more model versions, consistency checking or code checking services, 
or even more complex server-side processes such as conflict management. In addition,  
by specifying a common agent-server communication paradigm, it would even be possible 
to implement knowledge-based agents “wrapped around” a traditional database server 
using relational or object-oriented technologies. 

I consider the last of these alternatives as the most appropriate for the needs of CEE because: 
1) It enables the coherent use of traditional object-oriented methods along with symbolic 

and rule-based processing for the tackling of complex data management tasks, which is 
of utmost importance for the realisation of sophisticated model transformation methods 
and advanced view generation mechanisms. 
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2) It ensures that different types of engineering applications using different representation 
paradigms can be plugged into the system because the details of the server functionality 
need not be known to the clients. 

3) It provides a high level of modularity since agents can encapsulate appropriate 
autonomous actions. Moreover, such actions can be executed automatically and 
concurrently, in dependence of the actual state of the data in the common project data 
repository of the system. In this way, different consistency problems can be solved 
more efficiently, server response times can be improved, and a more “intelligent” 
behaviour of the system can be achieved. 

4) Last but not least, it enables the realisation of cooperative problem solving methods. 
Whilst such issues have not been in the scope of this study, in a comprehensive CEE 
system various tasks requiring distributed problem solving methods may be envisaged, 
as e.g. inter-discipline planning or constraint satisfaction methods. 

Therefore, this is the architecture adopted as basis for the interoperability approach developed 
in this thesis. 
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Fig. 3.5: Principal architecture of the proposed client/server CEE system 
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3.6 System Interoperability 

A highly flexible, distributed CEE system leads – due to the necessarily non harmonised 
models and heterogeneous software components – to a number of serious interoperability 
problems that need to be solved. In a broad analogy to the upper layers of the general 
ISO/OSI model of communication (cf. Rose 1989), they can be categorised as follows: 

 Systemic interoperability, which has to deal with 
problems related to communication; 

(session/transport layer)

 Semantic interoperability, which has to deal with  
problems related to perception; 

(presentation layer)

 Functional interoperability, which has to deal 
with problems related to performance. 

(application layer)

In particular, systemic interoperability has to tackle the problems of the communication 
between a model-based project data server and an extensible set of heterogeneous 
applications, using different modelling paradigms and data structures that may not be 
known when the system is initially designed. This requires methods by which data is 
transported between the clients and the server, enabling the components of the CEE system 
to “talk” to each other. 
Semantic interoperability has to tackle the problems of model data transformations 
between non harmonised models in a distributed model world. This requires methods by 
which the data can be adequately presented to each component of the system, enabling 
these components to “understand” each other. 
At last, functional interoperability has to tackle the problems related to conflicting data 
resulting from concurrent user actions. This requires methods by which changes to the data 
can be appropriately applied, enabling the information processes to “react” to the changes 
in the material world. 
As a whole, these three interoperability categories can be processed in a similar way as the 
ISO/OSI layers in a communication system, in the sequence “talk” – “understand” – “react”. 
They present the main focus of this research and will be discussed in much more detail in the 
next five chapters*). 
By this suggested modularisation of the interoperability problems in CEE, i.e.  
systemic – semantic – functional interoperability, a more comprehensive coverage of 
different data management tasks can be achieved, and separate concepts for the different 
types of problems can be developed. However, it is necessary to find methods to treat the 
individual interoperability tasks consistently, as part of a logically connected overall 
process. For this purpose, the use of a high-level system-wide ontology based on an initial 
idea from (Katranuschkov et al. 1997b) is proposed. 

                                                 
*) The concepts related to systemic interoperability are presented in chapter 4, and the concepts 

related to semantic interoperability are covered in chapters 5 to 7. Functional interoperability, 
which is not a conceptual but an implementation issue, is considered only partially in the scope 
of the work. However, the use of functional interoperability operations in the implemented 
prototype system is shown in the detailed example in chapter 8, and the formal definitions of 
these operations, as well as their relationships to model data states are presented in Appendix V. 
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An ontology is an explicit specification of a conceptualisation (Gruber 1993). The term is 
borrowed from philosophy, where an ontology is a systematic account of existence. In the 
CEE system, this means that what “exists” is that which can be represented. 
The ontology of the CEE system is defined by a set of representational terms. These terms 
correspond to a well-defined subset of the objects of the modelling framework presented in 
section 3.4. 
The ontology is used to describe the ontological commitments of the clients and the 
server in the CEE system, so that they can communicate about a mutual domain of 
discourse, the objects on the ontology level. A client commits to the ontology if its 
observable actions are consistent with the definitions in the ontology*). 
Pragmatically, this means to define a common vocabulary with which queries and 
assertions can be exchanged in client/server interactions. 
To be more explicit, let us consider what may happen when a client application requests 
information about a wall, for example to check code compliance for fire resistance. In an 
IFC-based modelling environment this information will be stored in the shared repository 
of the system as an IfcWall object and a number of related resource objects, such as 
IfcMaterial, IfcPropertySet, IfcPoint etc. An appropriate query to the project data server 
can easily be defined, but due to the different structuring and partially different semantics 
of a “wall” as understood by the server and the client, it is not so obvious as to what should 
be the server response. 
One possibility is that the server “knows” the format and the content of the data needed by 
the client and translates the IFC objects accordingly. The drawback of this approach is that 
it would most probably lead to a dedicated server-side agent for each client application 
which would make application integration a complex and inefficient process. 
Another possibility is that the server sends the IFC data in their original representation 
form and the application takes care to translate them to its internal data structure. In fact, 
this is how currently most known systems operate. However, this approach also leads to a 
dedicated translator for each application. The difference to the first approach is basically 
in shifting the implementation of the data transformations and the computational load from 
the server to the clients. A reduction of the number and the complexity of the required 
translators cannot be achieved. 
A radical solution would be provided if each client commits to the full modelling 
framework which eliminates the need of any data transformation modules. Unfortunately, 
this solution has two problems. The first is the lack of comprehensive frameworks that can 
cover the information needs of a wide range of applications as needed in a general CEE 
system. The second is that even when such a framework is available, its schemas would 
normally be laid out for a broader scope, which makes them inefficient and verbose from 
application point of view. Therefore, in its pure form this approach is suitable only for 
systems with clearly defined, narrow scope and goals. 

                                                 
*) This idea is based on the Knowledge-Level perspective, introduced by Newell (1982) in the 

domain of distributed artificial intelligence. The knowledge level is a level of description of the 
knowledge of an agent that is independent of the symbol-level representation used internally by 
this agent. 
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The problems with the above approaches can be greatly overcome with the help of the 
suggested system-wide ontology. It provides for a more flexible, intermediate way for 
client/server interaction where the clients and the server have a common understanding of 
the high-level concepts of the environment to which they have committed, but may “use” 
these concepts differently at a lower level. The advantage of this approach is that common 
concepts can be more general and lean, encompassing just the necessary functionality to 
enable the discourse. It does not eliminate the need for appropriate translators - in fact, 
such translators are required now both at the server and at the client side. However, their 
realisation can be modularised and, consequently, considerably simplified because, 
different from the other described approaches, they can all (re-)use the common generic 
specifications provided by the ontology. 
For the given example this would mean to define the concept of a wall in an unequivocal 
way which is independent of the specific (and probably different) data definitions of the 
server and the client, but provides sufficient means to execute operations on wall objects 
and to interpret the results of these operations properly. 
How can this be accomplished? 
Unfortunately, a commitment to a common high-level ontology guarantees only the 
consistency, but not the completeness of the discourse. Therefore, it is important to define 
the level at which the ontology is specified. This representation level is chosen on the basis 
of two criteria: (1) lean content (the client/server interaction should not be overburdened 
with too many concepts), and (2) sufficiency (the representation should be sufficient for 
unambiguous error-free discourse). 
In accordance with that, in the proposed modelling approach for CEE the following 
components of the ontology level are suggested:*) 
 Meta model  

(to provide a common explicit representation paradigm) 
 Information Container  

(to provide a common method for packaging and transferring object data, regardless of 
their underlying model schemas) 

 Generalised communication model  
(to provide a common communication mechanism, independent of the specific under-
lying network protocols) 

 Operations  
(to provide the basis for distributed object processing, as well as for mapping of remote 
methods to TCP/IP based requests/responses) 

 Knowledge-based queries  
(to provide an advanced vocabulary for sophisticated agent-driven functions). 

Thus, with the introduction of a system-wide ontology, a more specific and better 
“implementable” model of the information processes can be obtained, as shown on  
fig. 3.6. 

                                                 
*) These components and their inter-relationships are discussed in detail in chapter 4. 
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Fig. 3.6: Principal process model of client/server interaction in the CEE system in IDEF0 

3.7 Concurrency 

The last problem related to the suggested approach for the construction of a generalised 
conceptual framework for a distributed client/server CEE system, centered around a set of 
standardised conceptual data models, is the problem of concurrency. 

In traditional integration approaches most often a shared project repository is proposed. 
However, in design work this may be counterproductive if the requirements for data 
consistency cannot be efficiently observed. 

In a discussion about software design James Rumbaugh (1996) defines the “myth of the 
shared repository” in the following way: 

“A popular approach to parallel development by multiple developers is the shared 
repository, in which each developer sees the latest version of each model element 
(classes and methods) in the entire project. Several development tools support this 
approach. This is bad for anything but a small project. Different developers get in 
each other’s way because their temporary changes are visible to everybody 
immediately. Each developer or development team needs a private workspace in 
which the developer can work with a stable version of the system until his or her 
changes can be ready to be shared with everybody.” 

In the above quotation, by substituting “classes” and “methods” by “slabs” and “beams”, 
“developer” by “designer”, and “software” by “building”, it is easy to see that much the 
same problems are relevant to building design as well. 
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In order to tackle these problems, a structuring of the concurrent design process by 
discrete coordination points is suggested, as illustrated on fig. 3.7. This means that 
instead of trying to guarantee a continuous consistency, coordination and reconciliation of 
diverging data is done by the designers themselves - “when needed” and “as needed”. This 
coordination process should be supported by appropriate change management tools. The 
consistency of the data is thereby not automatically guaranteed, but methods can be 
provided for user-driven monitoring and control. In this way, a high degree of concurrency 
of the “material” system, i.e. the real design environment is hoped to be achieved*). 
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Fig. 3.7: Structuring of the concurrent project processes by explicit coordination points 

                                                 
*) The prototyped supporting tools for that kind of problems only provide some initial evidence  

of the validity of the suggested methods. Because data conflicts in complex data models can be  
of many different kinds, much research is still needed to determine the boundaries of the 
approach. 
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3.8 Discussion 

Distributed software architectures have been intensively studied in the last years. There 
exist many successful applications for a large number of business cases in a wide range of 
society areas. The current trend is to install some kind of a client/server system on the 
World Wide Web to enable the creation of common virtual portals for cross-company 
collaborative work, facilitating document sharing, team communication and project-wide 
workflow management, as well as fast and secure information exchange. Less work has 
been done to provide product model based design environments, but projects like ToCEE, 
VEGA, RISESTEP and PIPPIN have developed convincing prototype solutions verifying 
the applicability of a model based approach. 
By looking at such currently available developments, the choice of an Internet-enabled 
client/server system for CEE seems to lie on the hand. However, it would be superficial to 
assume this automatically as the only possible, or the most suitable solution. Besides, in 
order to determine the specific features of the system, available principal alternatives need 
first be examined. Therefore, many of the issues mentioned in the preceding sections had 
to be studied in detail before such decisions could be made. Three of these issues are 
revisited with a brief discussion below. 

Enabling the collaborative work of distributed design teams 
It is a common understanding that collaborative work requires an integrated data model 
and a common data repository (cf. West 1994; Hannus et al. 1995b; Wix 1996), but the 
need of a client/server architecture is less apparent. For example, if the objective is to 
support collaborative work in a single organisation at one physical location, a LAN 
solution providing faster access to the available computer resources may be preferred, and 
if cooperative decision making processes are of primary importance, agent-based archi-
tectures should also be considered. However, in my opinion, the client/server model 
provides the most general approach. 
In contrast to a network solution, where the user is aware that there are several machines, 
and their location, storage replication, load balancing and functionality is not transparent,  
a client/server system appears as a single local machine, even when there are hetero-
geneous hardware and software components involved. This hides the complexity of the 
system from the end-users and allows them to concentrate on their real design tasks.  
It enables also more flexible software configuration because the possible heterogeneity of 
the components is abstracted by the underlying communication protocols. 
These advantages of a distributed system to a networked system are manifested by agent-
based systems as well. Moreover, the agent-based approach provides more powerful 
features because agents can act autonomously and proactively. Why, then, not an agent-
based approach? 
The reasons to prefer the simpler, “more conservative” client/server model are twofold. 
First, agent systems basically presume a well-defined closed model world. However, as 
already mentioned, such assumption cannot be made for a general-purpose environment 
where the component applications and their requirements cannot be predicted in advance*). 
                                                 
*) In fact, agent systems for non deterministic, dynamic environments have also been investigated in 

the area of distributed AI (cf. Russel & Norvig 1995). However, such systems are extremely 
complicated and are therefore hardly applicable for a practical CEE system in building design. 
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Second, in order to cooperate efficiently, agents do require more sophisticated 
architectures, computational methods and communication paradigms. By imposing such 
requirements on the clients of an integrated CEE system, the range of applications that can 
qualify for this approach would considerably be reduced, and valuable engineering 
software developed by traditional programming methods would not be possible to use. 
In summary, the reasons to reject a pure agent-based approach are more of practical than of 
theoretical nature. However, as suggested in section 3.5, agent technology can also be 
applied in the frames of a client/server architecture provided that an adequate distribution 
of the roles and functions of the clients and the server is established. 

Client/server roles and functions for efficient inter-discipline communication and infor-
mation sharing 
In principle, each distributed system includes three categories of functions: (1) presentation 
functions, (2) application functions, and (3) data management functions. Obviously, in a 
client/server system the presentation functions are most closely related to the end-user 
interfaces and must at least partially be allocated to the clients, whereas the data management 
functions, which should support the multi-user access to shared data, must be allocated to the 
server. So where is the dividing line? 
There is no single answer to this question as illustrated on fig. 3.8 below. 

Presentation Application Data management

Client Server

1 2 3 4 5

Division of client-server functionality by 
the suggested client-broker-server-agents
architecture

Presentation Application Data management

Client Server

1 2 3 4 5

Division of client-server functionality by 
the suggested client-broker-server-agents
architecture

 

Fig. 3.8 Client-server role distributions 
(principal alternatives and suggested approach for the envisaged CEE system) 

The first principal option, shown by cut 1 on the above figure, leads to a distributed 
presentation as provided by the X-Windows system. This is a useful basic technology, but it 
is not of any particular relevance to the needs of CEE. 
The second option (cut 2) leads to a remote presentation system as provided e.g. by 
Microsoft’s Terminal Server. It is also a basic technology, not directly relevant to the specific 
problems of CEE. 
The third option (cut 3) represents a distributed processing paradigm which is characteristic 
for most agent-based approaches (cf. Müller 1993), as well as for all distributed object model 
architectures (cf. Harold 1997; Orfali et al. 1997). In contrast to the first two options, the 
specific interpretation of this kind of role distribution is of utmost importance to the overall 
functionality of the CEE system. Therefore, it will be separately discussed further below. 
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The fourth option (cut 4) represents remote database access solutions which are typically 
realised by using high-level languages such as SQL. This approach can easily be applied for 
STEP based product data as well, either on the basis of SDAI (ISO 10303-22 1998),  
or by implementing light-weight remote procedures to store/retrieve STEP physical files 
(ISO 10303-21 1994). In fact, this latter possibility has been successfully applied e.g. in the 
ATLAS and the COMBI projects. However, it provides very limited server functionality and 
is of almost no help for the tackling of the interoperability problems outlined in section 3.6. 
The last option (cut 5) is again of little interest. Here the server plays merely the role  
of a file server providing no further functionality except explicitly requested file 
download/upload. 
Thus, of all possible options for the distribution of the client-server roles in a CEE system, 
only the third option is effectively of interest. Its particular realisation strongly influences the 
overall design of the system and the methods by which interoperability can be achieved.  
A basic implementation approach is provided here by the three-tier architecture suggested by 
CORBA, which enables the distribution of application functionality by means of remote 
method invocation and a high-level interface definition language ensuring platform and 
programming language independence (cf. Orfali et al. 1997). However, it also restricts client-
server communication to actively issued method calls by the clients, whereas the server takes 
only a passive role. This provides the needed functionality for many practical tasks, but is 
insufficient where interoperability and data consistency tasks are concerned. The tackling of 
such tasks requires an appropriate reaction of the server to changes in the data state, and not 
only in response to explicit client requests. For that purpose, the use of the agent paradigm as 
an extension to basic distributed object processing is more appropriate. 
Beside the advantages mentioned in section 3.5, this architecture provides at least two more 
implementation related benefits: 
1) It enables the separation of basic data management from advanced server functionality 

which makes the server realisation more modular and easier to extend; 
2) It allows more flexible distribution of the client/server roles, as schematically shown on 

fig. 3.8, so that decisions of where and how to implement each particular function can be 
driven by actual technical demands and not by the basic software technology used. 

However, what kind of agents are adequate to use? In (Russell & Norvig 1995) the following 
categories are identified: (1) simple reflex agents, acting according to situation-action rules, 
(2) reflex agents that keep track of the world by observing changes in the environment and 
continuously updating an internal data state, (3) goal-based agents which try to satisfy preset 
goals by means of search and planning algorithms, and (4) utility-based agents which 
evaluate the state of the environment to weigh up the likelihood for a successful action 
against the importance of its goals. A more general classification defines the first two 
categories as reactive agents, and the second two as deliberative agents (cf. Müller 1993). 
For certain specific tasks any of these agent types may be most appropriate, but the typical 
case for the client-server model is that of a reflex agent with internal state which represents a 
part of the system that performs information preparation and exchange on behalf of a client 
or on behalf of the server (cf. Orfali et al. 1999). In my opinion, this approach fits best into 
an object-oriented PDT environment. Therefore, it has been adopted for the server prototype 
developed in this thesis. The suggested method to address such agent functionality is 
discussed in section 4.7 of chapter 4. 
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Adequacy of the IFC models for CEE 

In section 2.3.2 it was mentioned that the IFC models seem to be adequate for the envisaged 
CEE system as they closely follow the decomposition approach providing the needed 
modularisation of the CEE data structures. This is also schematically shown on fig. 3.3 in 
section 3.4. However, this figure shows also that IFC was not expected to provide all 
information needed for CEE. Therefore, before taking a final decision to use IFC as basic 
reference model, a more detailed examination of the IFC framework had to be carried out. 
For this purpose, the principal decomposition matrix for CEEMF proposed in section 3.3 has 
been used as baseline. The results of the undertaken study are summarised in table 3.3 
below. 

Table 3.3: Adequacy of the IFC models for CEE 

Information type Information subtype Provided by IFC 

Product information Yes 

Process / activity information Partially 

Documents Meta data  
partially provided 

Construction 
information 

Legal data No 

Product information No 

Process / activity information Partially 

CEE system 
information 
 

Legal data No 

Meta information No Generic 
information 

Object model implicit 
(EXPRESS) 

The performed qualitative evaluation showed that the IFC models are indeed well suited for 
a prototype environment for validation purposes, especially as far as the overall structure and 
construction product information are concerned. Due to the currently weak harmonisation 
w.r.t. software applications they provide also a good test-bed for the model mapping 
approach proposed in this thesis. 
However, there are also many gaps that need to be filled before an IFC based CEE  
system can be used in practice. Of these, most strongly missed is the representation of  
CEE system information. This aspect is only partially seen in the scope of IFC development, 
but it is of utmost importance both for the conceptual design and for the implementation of 
an interoperable CEE system. The next chapter presents a novel approach to fill some of 
these gaps. 
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Chapter 4: Systemic Interoperability 

You see, wire telegraph is a kind of a very, very long cat. You pull 
his tail in New York and his head is meowing in Los Angeles. Do you 
understand this? And radio operates exactly the same way: you send 
signals here, they receive them there. The only difference is that 
there is no cat. 

– Albert Einstein (in an interview, when asked to describe radio) 

Systemic interoperability presents the first category of interoperability problems that 
need to be tackled in a concurrent engineering environment. It is the basis upon which 
all other methods are built. 
In this chapter a formal approach for the solution of the main systemic interoperability 
problem is proposed, i.e. the tackling of the communication between a model-based 
project data server and an extensible set of heterogeneous applications, using different 
modelling paradigms and data structures that may not be known when the system is 
initially designed. The developed approach provides a methodology for the represen-
tation and exchange of all types of information supported by the system, and facilitates 
the use of object-oriented and knowledge-based functionality in a unified, platform-
independent way. 
The structure of the presentation follows the logic of the suggested layered set of 
upward-linked specifications. 
At first, following a brief introduction to the basic ideas of the approach, the concept of 
Information Containers is detailed. It provides a simple method for representing any of 
the data types that may be dealt with in CEE. On its basis, the ontological commitment 
of all components of the system is achieved. 
Second, the proposed generalised Communication Model is presented. It utilises the 
Information Container data structures to provide a specification of client/server trans-
actions on a high level of abstraction. This allows uniform coverage of many basic 
communication techniques, such as TCP/IP sockets, remote procedure calls, URL-
based queries and so on. 
Third, the concept of language independent object-oriented project data operations is 
introduced, and a set of functions that can be used as “building blocks” for the provision 
of more advanced project data services is identified. The discussion includes principal 
suggestions for the proper maintenance of the model data states within and between 
client/server sessions, in accordance with the concurrent engineering requirements 
identified in the previous chapter. 
As a further logical step, a formalism for the representation of knowledge-based queries 
and assertions is defined, and a technique for packaging them in Information Containers 
is presented. The developed specification enables the access to advanced knowledge-
based functions of the project data server by all kinds of client applications. Some of the 
capabilities of this approach are demonstrated by a number of illustrative examples. 
At the end of the chapter, the scope and the applicability of the developed concepts are 
briefly discussed, and envisioned future extensions are outlined. 
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4.1 Basic Concepts 

In short, systemic interoperability can be defined as the ability of the system components 
to work together in a coherent way for the solution of complex tasks that cannot be solved 
individually. This “ability” requires more than simple “tell and ask” sequences using a 
prescribed presentation format. 
Indeed, in the envisaged client/server system, comprised of a central project data server 
and a number of heterogeneous applications, a primary concern obviously is the estab-
lishing of adequate communication methods to link these applications with the server. 
From the standpoint of application developers and end-users of the CEE system, this kind 
of interoperability can be seen simply as a problem of “asking questions” and “receiving 
answers”, similar to telephone connection. However, the requirement for concurrent access 
to shared data raises more serious systemic interoperability problems at the server side, 
which cannot be solved merely by appropriately chosen and implemented communication 
techniques. Most of these problems are in fact a matter of appropriate conceptualisation. 
In general, a client/server architecture is a simple software model based on the following 
three design principles (cf. Tanenbaum 1988; Jamsa et al. 1996): 
1) Roles and functions are asymmetric, i.e. the initiative to start an interaction is always at 

the client side, whereas the server is responsible to listen to client requests and perform 
the requested services. 

2) The topology of the system is N:1 (N clients, 1 server), with the server acting as a static 
component, and the clients as dynamic components of the environment that cannot be 
configured in advance. Consequently, the services a server can perform and the 
protocols used to talk with it must always be known in advance, i.e. the clients adapt to 
the server, and not the server to the needs of the clients. 

3) Client/server interaction always consists of the three steps Request-Perform-Respond, 
as shown on fig. 4.1. 

Client Server
1. Request

2. Perform

3. Respond

ClientClient ServerServer
1. Request

2. Perform

3. Respond  

Fig. 4.1: Principal client/server interaction 

However, as illustrated on the next fig. 4.2, in practice this does not work as simple as that. 
First, the CEE system may have to deal with very different applications, for which 
different communication techniques may be suitable. A highly interactive application may 
prefer an interactive communication method, where the user is enabled to “talk” to the 
server directly, e.g. by means of a URL-based connection utilising the HTTP protocol; an 
analysis program may need to access the server data without any user interaction, which 
makes FTP or direct socket communication more appropriate; an advanced knowledge-
based application may want to trigger sophisticated queries and integrate the results 
directly in its data structures, which makes the use of a distributed object model paradigm 
the appropriate choice, and so on. 
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This results in a requirement to support different communication paradigms which is not at 
all typical for standard client/server implementations. 
Secondly, according to the requirement for concurrent access, simultaneous requests for 
changing the data of one and the same object have to be tackled. Even though it was 
suggested that the model data of the individual users should be kept and processed separate 
from each other, they are nevertheless representations of the same physical objects and 
have to be maintained consistent. This results in a requirement for data consistency as by 
distributed DBMS realised on the basis of the client/server paradigm (cf. Dadam 1996). 
Thirdly, in engineering design a logically non separable unit of work normally requires a 
great amount of information for a long period of time (hours, days, or even weeks). When 
this information is retrieved from the server, it will normally not remain unchanged. 
However, during the same time it may also be needed (and modified) by others. 
Unfortunately, the usual transaction mechanisms provided by database systems are 
inappropriate for this normal design procedure*), and the standard implementation of “write 
locks” is even counterproductive**) (Rumbaugh 1996). Thus, it is necessary to support long 
transactions, check-in/check-out methods and versions to enable concurrent update ope-
rations over long periods of time (cf. Encarnação & Lockemann 1990; Herrmann 1991). 
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Fig. 4.2: The general systemic interoperability problem on the example of requests for the 

data of the object “Column.1” 

In addition to the above, sophisticated engineering applications may need to cooperate with 
the server actively, by requesting complex sets of data that can only be provided by 
advanced server-side functionality. There are at least three reasons for this requirement: 
                                                 
*) Standard transaction mechanisms used in business DBMS are not satisfactory for engineering 

design work because (1) they are normally transient and may be lost e.g. by system crashes, 
and (2) encountered consistency conflicts automatically abort a transaction, instead of creating 
a new version of the conflicting data in order to try to recover consistency later. 

**) A normal write lock inhibits any further update operations on the locked data until the 
application that locked them removes the lock. Hence, a designer, e.g. the structural engineer, 
may have to wait for days to get access to the data of another designer, e.g. the architect. This 
will result in a largely sequential design process, far from the objectives of CEE. 
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– reduction of communication bottlenecks (instead of constantly querying individual 
properties of the data, the application can receive the full information it needs in a 
single transaction), 

– providing extended features of the model data that are not explicitly represented in the 
model data structures, but can be deduced by appropriate procedures (making the 
models “intelligent participants” in the design process),  and 

– utilising the local access of the server to all project data, which may be difficult for or 
even forbidden to the application. 

In order to satisfy these requirements, the design of an interoperable CEE system must 
incorporate: 

1) an appropriate software architecture, which is adaptable to different communication 
techniques and different project configurations, with different users and applications; 

2) description methods enabling the uniform treatment of all possible types of 
client/server interactions; 

3) an appropriate model of the project data repository enabling the maintenance of its 
consistency, but not restrictive w.r.t. the concurrency in the design team work; 

4) implementation methods providing the use of the developed concepts in the running 
system. 

The proposed systemic interoperability approach detailed in the following sections com-
bines all these design aspects in a coherent way. Its key ideas include: 

1) The development of a consistent high-level representation of the data transferred 
between the client applications and the server on the basis of the principle of a system-
wide ontological commitment introduced in the previous chapter (this issue is provided 
by the Information Container specification presented in section 4.2, and the generalised 
communication model presented in section 4.3); 

2) The development of a formal method for the definition and implementation of object-
oriented operations, enabling the use of different communication paradigms, and pro-
viding controlled access to the data repository of the project data server (this issue is 
covered in sections 4.4 and 4.5, where the principal approach for the definition and 
implementation of operations is detailed, and a set of basic data management operations 
is suggested); 

3) The alignment of the proposed types of operations with the management of the data in 
the project data repository, including the tackling of access rights, data states, availa-
bility of the operations w.r.t. data states etc. (this issue is discussed in section 4.6); 

4) Extending the basic object-oriented functionality provided by the introduced concept of 
operations by a formalism to specify knowledge-based expressions, and an appropriate 
representation of the data models at the project data server, which is capable to 
accommodate knowledge-based functionality (the suggested formalism for the use of 
knowledge-based search expressions embedded in object-oriented operations is detailed 
in section 4.7, and the knowledge representation approach applied for the project data 
server is discussed in chapter 8, after the introduction of all conceptual issues related to 
the environment); 

5) Alignment of all component specifications in a layered, coherent representation. 
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4.2 Information Container 

The “Information Container” concept introduces the most fundamental data representation 
types that can be consistently used on the ontology level of the proposed environment.  
Its goal is to enable the packaging of any supported data definitions by a uniform 
representation formalism, such that the specification of a generalised client/server model 
of communication, and the coherent definition of more specific project data operations can 
be achieved. The objectives of that formalism are defined as follows: 

1) Provide a neutral form for compact representation of the data contained in EXPRESS 
models, including both full and partial object instantiations; 

2) Enable the exchange of individual product data and of models as a whole, including the 
use of different data exchange formats, such as STEP physical files, VRML, XML etc.; 

3) Develop a structured representation, enabling the implementation of object-oriented 
APIs for use by applications written in object-oriented languages; 

4) Provide a possibility for the embedding of expressions, enabling the use of knowledge-
based server functionality and the construction of complex queries; 

5) Define a syntax enabling the externalisation of all data structures to support stream-
based information exchange with applications that are not using the object-oriented 
paradigm; 

6) Ensure flexibility and extensibility of the specification. 

As the proposed environment is based on EXPRESS, a natural idea to approach the 
problem would be to use the SDAI dictionary schema specified in STEP (ISO 10303-22 
1998). Indeed, this schema can provide a useful basis, as it defines a data dictionary, 
capturing the meta information about the data instances in models contained in data stores. 
SDAI implementations typically utilise this schema in order to provide the necessary 
flexibility and the independence of the data access operations from the particular data 
models in use. Details of this approach are discussed e.g. in (Loffredo 1998). However, 
taken alone, the SDAI dictionary schema is not sufficient to provide the functionality 
suggested by the above objectives as it does not address several required features, such as 
concurrent access by multiple applications, access to remote data, global model identi-
fication, long transactions. Besides, SDAI is mostly used for working form, i.e. in-memory 
implementation of STEP APs. Research on its possible use in database or knowledge-
based environments is up to now limited to a very few efforts (cf. Krebs & Lührsen 1995; 
Loffredo 1998). Therefore, a reduced, but sufficient adaptation of the data dictionary 
schema is applied. It provides a consistent basis for the overlaid specifications that will be 
introduced in later sections. 

In this section, the structure, the components and the formal syntax of the Information 
Container externalisation are presented. 

The details of the prototyped Java language binding for the proposed Information 
Container API, tested in the developed sample clients, is provided in Appendix II. 
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4.2.1 Structure and components of the Information Container specification 

The Information Container specification is comprised of a small number of basic data types, 
structured as shown on fig. 4.3 below. EXPRESS-G is used to emphasise the strong relation 
to EXPRESS data types, as well as to maintain the uniformity of all specifications. However, 
the Information Container data types are not elements of an EXPRESS data model in the 
usual sense. Rather, they provide a method for the explicit formulation of meta model 
concepts, enabling the development of a variety of services for various purposes. 

 
Fig. 4.3: Overview of the Information Container data structures in EXPRESS-G 
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The main element of the representation is the Information Container object itself. Each of 
its instances is addressable by a unique label, which can be a symbol or a reference to any 
type of data, supported in the environment (a high-level concept, an object class, a specific 
object in a model, or even that model itself). 
The content of an Information Container is provided by a set of features. Each such feature 
is represented by a name-value pair, where the name is a symbol, and the value can be of 
any of the data types defined in the Information Container schema, including Information 
Container, but excluding feature*). This allows the reference of object attributes by name, 
providing an option for the representation of incompletely instantiated objects, and even 
for the definition of ad hoc properties of objects. 
The value of a feature can be of one of the following categories: (1) simple data type,  
(2) structured data type, or (3) Information Container. 
A simple data type cannot be further decomposed. This category includes the basic 
EXPRESS data types, along with object references, references to binary large objects 
(BLOBs)  and  expressions.  In addition, the type symbol is defined in order to distinguish 
between strings and names, such as class/attribute names and enumeration items. This is 
not only conceptually preferable, but enables also the use of symbolic processing. 
An object reference (Obj_Ref) provides the mechanism to address remote data objects, or 
to execute remote operations on remote data objects. 
A BLOB reference (BLOB_Ref) provides the mechanism to process data files by Informa-
tion Container based operations. By associating BLOBs with upload/download operations 
the transfer of exchange files can be achieved in a transparent way. 
An expression provides the possibility to embed processing instructions in Information 
Container objects, enabling the specification of more sophisticated server operations**). 
The structured data types include aggregation and select. 
An aggregation is a set of data of one and the same type. This can be any data type 
defined in the schema, including Information Containers and aggregations. Thus, an 
aggregation can be used to construct multidimensional vectors of any type. The 
requirement for uniformity of the underlying element type is not a conceptual restriction, 
but a language feature. 
Finally, a select is identical in meaning to the EXPRESS select type and is introduced for 
the same purpose. 

                                                 
*) The rationale for excluding features is: (1) to provide for a simpler, easier to parse syntax, and 

(2) to reduce the complexity of the model by eliminating the possibility to define “attributes of 
attributes”, which is possible by some advanced representations, e.g. frames, but is not 
provided in the classical object-oriented approach. 

**) The prototype implementation of the Information Container schema developed in this thesis 
allows only the use of Common LISP expressions (cf. Steele 1990). This provides a simple 
method to define more complex queries, but limits cross-platform applicability to implemen-
tations written in Common LISP. Therefore, lisp expressions are not supported bi-directionally 
in the communication model presented in section 4.3. Thus, whilst a client can submit requests 
containing lisp expressions, which will be “understood” by the project data server as its 
implementation is based on Common LISP, the use of lisp expressions in responses is not 
possible. 
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4.2.2 Formal syntax specification of the Information Container externalisation 

The technical specification of the syntax for Information Container externalisation is 
comprised of three parts:  (1)  tokens, providing low-level definitions for the allowed lexical 
elements, (2) grammar rules presenting all high-level structures, and (3) informal 
propositions, including additional information not covered in the formal specifications for 
conciseness, or because it presents imported constructs described in other literature sources. 
From hierarchical viewpoint, corresponding to the schema provided on fig. 4.3 above,  
the primary rule of the Information Container syntax is rule (28). 

Tokens 
The following productions define the tokens used in the Information Container exter-
nalisation. Except where explicitly stated, no whitespace characters are allowed within 
the text matched by a single syntax rule for a token. 
Character classes: 

(1) whitespace   = ASCII-SP | ASCII-HT | ASCII-CR | ASCII-LF | 
               ASCII-FF . 

(2) letter       = 'a' | 'b' | 'c' | 'd' | 'e' | 'f' | 'g' | 
               'h'.| 'i' | 'j' | 'k' | 'l' | 'm' | 'n' | 
               'o' | 'p' | 'q' | 'r' | 's' | 't' | 'u' | 
               'v' | 'w' | 'x' | 'y' | 'z' | 
               'A' | 'B' | 'C' | 'D' | 'E' | 'F' | 'G' | 
               'H'.| 'I' | 'J' | 'K' | 'L' | 'M' | 'N' | 
               'O' | 'P' | 'Q' | 'R' | 'S' | 'T' | 'U' | 
               'V' | 'W' | 'X' | 'Y' | 'Z'. 

(3) digit        = '0' | '1' | '2' | '3' | '4' | '5' | '6' | 
               '7' | '8' | '9' . 

(4) special_char = '!' | '”' | '$' | '%' | '&' | '.' | ',' | 
               '*' | '+' | '-' | '(' | ')' | '[' | ']' | 
               '{' | '}' | '<' | '>' | '=' | '@' | '?' | 
               '#' | '^' | ':' | ';' | '’' | '`' | '~' | 
               '|' | '/' | '_' . 

(5) escape_char  = '\' . 
(6) escape_seq   = '\n' | '\r' | '\t' | '\\' . 
(7) quote_char   = '\”' . 
(8) non_q_char   = letter | digit | special_char | escape_seq . 

Keywords: 

(9) TRUE    = 'true'. 
(10) FALSE   = 'false'. 
(11) UNKNOWN = 'unknown'. 

(12) BLOB    = 'BLOB'. 
(13) OREF    = 'oRef'. 
(14) LISP    = 'LISP'. 

Lexical elements: 

(15) boolean = TRUE | FALSE . 
(16) logical = TRUE | FALSE | UNKNOWN . 
(17) longint = [ sign ] { digit }+ . 
(18) real    = [ sign ] { digit }+ '.' { digit }*  

          [ { 'E' | 'e' } [ sign ] { digit }+ ] . 
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(19) string  = '"' { non_q_char | quote_char | ' ' }* '"' . 
(20) symbol  = letter { letter | digit | '_' }* . 
(21) keyword = [ '_' ] symbol . 
(22) refID   = modelID | objID . 
(23) modelID = ID . 
(24) objID   = [ modelID ':' ] ID . 
(25) ID      = symbol [ '.' { symbol | longint } [ version ] ] . 
(26) version = ';' longint . 
(27) sign    = '+' | '-' . 

Grammar rules 

The following high-level production rules specify how the tokens can be combined into valid 
Information Container constructs. To avoid ambiguity, where necessary whitespace 
characters may be used as separators between the individual tokens. 

(28) InfoContainer       = label '(' { feature }* ')' . 
(29) label               = symbol | refID . 
(30) feature             = symbol ':' valueSelect . 
(31) valueSelect         = typedValueSelect | InfoContainer . 
(32) typedValueSelect    = simpleValueType | structuredValueType . 
(33) simpleValueType     = literal | Obj_Ref | BLOB_Ref | expression . 
(34) structuredValueType = aggregation | select . 
(35) aggregation         = '[' { valueSelect }* ']' . 
(36) select              = symbol '(' selectValueType ')' . 
(37) selectValueType     = literal | Obj_Ref | structuredValueType . 
(38) literal             = boolean | logical | longint | real | 

                      string | symbol . 
(39) Obj_Ref             = OREF '(' refID ')' . 
(40) BLOB_Ref            = BLOB '(' refID ')' . 
(41) expression          = lisp_expr . 
(42) lisp_expr           = '(' LISP lisp_form ')' . 

Informal propositions 

1) In accordance with the given syntax specification a straight-forward mapping of 
entities defined  in EXPRESS data models to Information Container elements 
is possible, as follows: 
− class names and attribute names are represented as symbols; 
− enumeration items are also represented as symbols - this does not contradict  

to the EXPRESS syntax because class names and enumeration items are not 
allowed to have identical names within the same data model; 

− user-defined data types are represented with their underlying base types  
(similar to the ISO 10303-21 format); 

− SELECT types are always prefixed with the name of the selected element,  
e.g. IfcPositiveLengthMeasure(3.5); 

− lists, sets, bags and arrays are represented through aggregation structures; 
− references to object instances are represented by using the OREF construct; 
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− INTEGER is represented as longint, and NUMBER is represented according to 
the respective actual value (longint or real); 

− BOOLEAN, LOGICAL, REAL and STRING are represented according to rules (15), 
(16), (18), and (19). 

2) longint values may contain as many digits as permitted in the internal repre-
sentation of long integer numbers, normally in the range [ -264 ; 264 –1 ]. 

3) real values should be interpreted as double precision floating point numbers in any 
specific Information Container implementation. 

4) lisp_form, as introduced in rule (42), is an external construct intended as a sub-
stitute for any special rules for the definition of arithmetic or relational expressions. 
A lisp_form can be a valid self-contained Common LISP top-level form or a lambda 
expression as defined in (Steele 1990), but should always return a single Infor-
mation Container construct. Only local variable bindings are allowed in a lisp_form 
used as simpleValueType in an Information Container construct. 

5) An internal representation for each keyword in the form '_symbol', as specified in 
rule (21), is provided for the cases where a reserved word from the Information 
Container specification exists also as a name of an element in an EXPRESS schema 
and thus cannot be resolved unambiguously by the Information Container Parser. 
For example, if the name “BLOB“ exists in a data model, '_BLOB' instead of 
'BLOB' should be used to refer to a BLOB element in an Information Container. 

6) Finally, although the Information Container syntax itself does not impose explicitly 
any case-sensitivity rules, upper and lower case in all names defined in EXPRESS 
schemas should be preserved because an implementation written in a language like 
C++ or Java may rely on such case-sensitive names. 

4.2.3 Information Container examples 

Example  1: adapted from (ISO 10303-42 1994) 

Given the specification of the following geometric entities: 
ENTITY line; 
  pnt : cartesian_point; 
  dir : vector; 
END_ENTITY; 
ENTITY vector; 
  orientation : direction; 
  magnitude   : length_measure; 
END_ENTITY; 
ENTITY direction; 
  direction_ratios : LIST [2:3] OF REAL; 
END_ENTITY; 
ENTITY cartesian_point; 
  coordinates : LIST [1:3] OF length_measure; 
END_ENTITY; 

TYPE length_measure = REAL; 
END_TYPE; 
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the line instance L1, defined by L1(u) = P1 + u V1, 
where P1 = < 0.0 0.0 0.0 >, V1 = < 1.0 1.0 0.0 > and 0 ≤ u ≤ 2.5, 
can be represented by the following four Information Container: 

1. line.L1(pnt:oRef(P1) dir:oRef(V1)) 
2. cartesian_point.P1(coordinates:[0.0 0.0 0.0]) 
3. vector.V1(orientation:oRef(D1) magnitude:2.5) 
4. direction.D1(direction_ratios:[1.0 1.0 0.0]) 

Comment: 

This simple example illustrates how different types of attributes (real numbers, lists, object 
references) can be mapped to Information Container constructs. For comparison, the same 
example data would have the following representation in STEP physical file format (ISO 
10303-21 1994): 
#1 = LINE(#2,#3); 
#2 = CARTESIAN_POINT((0.0,0.0,0.0)); 
#3 = VECTOR(#4,2.5); 
#4 = DIRECTION((1.0,1.0,0.0)); 

The key differences between these two representations are as follows: 

1) In the Information Container specification attributes are referenced by name, whereas 
in ISO 10303-21 they are positional. This allows the representation of evolving data 
which is not possible with the STEP physical file format. 

2) The object class is not included in the Information Container representation. It can be 
deduced from the assumed rules for constructing object identifiers, and is also expli-
citly represented in a client request, as detailed in section 4.3 below. 

3) On the opposite, with Information Containers the system-wide object identification 
does always participate in an exchange structure, whereas in the STEP physical file 
format objects are only identifiable in the scope of the exchange file. This particular 
feature is of utmost importance for maintaining the data integrity in the total system.  
In a STEP physical file references to other objects are interpreted as pointers to the 
respective lines in the file where these objects are specified. In contrast, an oRef  
in an Information Container is a reference to the respective actual object in the model 
itself, i.e. an oRef does connect Information Container meta data with the real object 
data in the data store. 

4) A STEP physical file represents the whole model data, or at least a self-contained 
portion of this data with no unresolved pointers to external objects, whereas the four 
Information Containers shown above are in fact four independent data structures. The 
sample object reference values and the respective labels of the Information Containers 
(e.g. oRef(V1) and vector.V1) are given similar names only for the purpose of a 
more explicit illustration of the links between the objects in the EXPRESS schema. 
However, the actual links are provided through the actual object instances, and not 
through the Information Container labels. The option of using an object reference as a 
label is important for the object-oriented realisation of the Information Container API 
presented in Appendix II, and not for the Information Container externalisation. 
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Example  2: adapted from IFC 2.0 (IAI 1999c) 

“Beam” objects are defined in IFC 2.0 as follows (arrows indicate the inheritance path 
down to IfcBeam): 

ENTITY  IfcRoot ; 
  GlobalID : IfcGloballyUniqueID; 
  OwnerHistory : IfcOwnerHistory; 
  Label : OPTIONAL STRING; 
END_ENTITY; 
ENTITY  IfcObject  SUBTYPE OF (IfcRoot); 
  UserDefinedType : OPTIONAL STRING; 
  DocumentReferences : SET [0:?] OF IfcDocumentReference; 
  ... 
END_ENTITY; 
ENTITY  IfcProduct  SUBTYPE OF (IfcObject); 
  LocalPlacement : IfcLocalPlacement; 
  Representations : SET [0:2] OF IfcProductRepresentation; 
  ... 
END_ENTITY; 
ENTITY  IfcElement  SUBTYPE OF (IfcProduct); 
  ... 
END_ENTITY; 
ENTITY  IfcBuildingElement  SUBTYPE OF (IfcElement); 
  HasMaterial : OPTIONAL IfcMaterialSelect; 
  ... 
END_ENTITY; 
ENTITY  IfcBeam  SUBTYPE OF (IfcBuildingElement); 
  calcBeamSectionArea : OPTIONAL IfcAreaMeasure; 
  calcBeamVolume      : OPTIONAL IfcVolumeMeasure; 
  ... 
END_ENTITY; 

TYPE IfcGloballyUniqueId = STRING; 
END_TYPE; 

According to this specification, an entity instance of IfcBeam may e.g. have the following 
representation as an Information Container: 

 IfcBeam.12345 ( 
   GlobalID:"12345"  
   OwnerHistory:oRef(IfcOwnerHistory.1175223) 
   LocalPlacement:oRef(IfcLocalPlacement.9731211) 
   calcBeamSectionArea:1200.0 
   Label:"BEAM-1" ) 

Comment: 

From this example, using a simplified form of the IFC definition for beam objects, it is 
evident that only attributes that have actual values are contained in an Information 
Container for a given object instance. Thus, it is possible e.g. to exchange the information 
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about a beam in an early design phase where it may already have a defined location and 
cross section area, but other properties are not yet available. Moreover, the Information 
Container for the IfcBeam.12345 instance contains only the top-level structure defined 
in the IfcBeam class. References to related objects, if existing, are provided as oRefs and 
can, but must not be queried by the client application. In this way, the transmission of data 
along a communication channel is reduced to the minimal necessary content, which 
contributes to the avoidance of communication bottlenecks. 
Because the attribute representation is not positional, their order within the Information 
Container is unimportant. In the object model of the Information Container API for Java*), 
a set of methods are provided which enable the easy access and processing of all its 
components by client applications. 

4.3 Generalised Client-Server Communication Model 

The generalised client-server communication model presents the second fundamental 
information representation concept in the proposed approach. Its objectives are as follows: 
1) Provide a high-level abstraction of client/server communication, enabling the identi-

fication of hardware (host server, clients), software and users, and the construction of 
sessions in which authentication, access rights and transactions can be properly 
managed; 

2) Provide a conceptual specification of request and responses, enabling the coverage of a 
wide range of communication paradigms used on the Internet, such as socket connec-
tion, remote procedure calls, remote method invocation à la CORBA or Java RMI, and 
HTTP-based CGI-scripts (cf. Jamsa et al. 1996); 

3) Enable the use of Information Container data structures in request/response messages, 
and the linking of this data with the model data of the server and the client applications; 

4) Enable synchronous/asynchronous execution of short and long transactions. 

This section presents the formal specification of a proposed communication model schema 
satisfying the above objectives, as well as two illustrative examples of its suggested use. 
Further considerations w.r.t. the relationship of the developed communication objects to 
the operations on the model data are provided in sections 4.4 - 4.6. 

4.3.1 Structure and components of the communication model 

The principal structure of the communication model is shown on fig. 4.4 below. 
The main component of the schema is the abstract entity CommunicationEvent, with its 
subclasses Request and Response. Each Request object is associated with a CEEsession, and 
each Response is linked with its corresponding Request. 
A CEEsession object may itself be associated with several CommunicationEvents, which 
allows the grouping of client-server communication in sessions, overcoming the limitations 
of stateless protocols, such as HTTP. It contains information about the user, the client 
application, the host computer running the application, and the specific communication 
methods supported by the application. The external resources referenced by CEEsession 

                                                 
*) see appendix II. 
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are taken from the IFC 2.0 project model specification (IAI 1999c) for the purpose of 
better harmonisation with the IFC Project Model. This does not imply any design 
compromise as both IfcApplication and IfcActorSelect, enabling the access to IfcPerson, 
IfcOrganization, IfcPersonAndOrganization and IfcActorRole objects, provide adequate 
specifications for the derivation of the actual user access rights needed in the CEE system. 

CommunicationEvent objects, i.e. Requests and Responses, are created by the Request 
Broker on the basis of the Communication Model schema. Their externalisation is pro-
vided by representing them as Information Containers, and their object-oriented use is 
supported by the object classes of the Information Container API, and the capability for 
remote method invocation provided by the generic execMeth method of the ObjectRef class 
(see Appendix II). 

The inherited top-level attributes of Requests and Responses present the necessary 
abstraction enabling the definition of operations on the ontology level of the framework. 
The attribute concept allows to reference meta object information explicitly, and not only 
by implicitly imposed programming rules, OID provides the link to the object that is 
responsible for the execution of the requested operation, and meth provides the name of the 
operation itself. The optional attribute localID can be used to relate the system-wide object 
identifiers maintained by the project data server with persistent local identifiers that may 
be supported (or required) by certain applications. 

4.3.2 Scope and extent of the communication model data structures 

The scope and visibility of the symbols contained in communication model objects is 
governed by the rules of the underlying Information Container schema. 

Thus, each CommunicationEvent object is self-contained, i.e. it defines a lexical closure for 
all symbols used in its Information Container based representation. According to that, a 
reference to an Information Container object, e.g. in the inParams attribute of a Request, 
effectively means to embed this Information Container in the Request and ensure that all 
names involved in the embedded structure are unambiguously resolved. 

The dynamic extent of the communication model objects, i.e. their existence in time, 
depends on their specific semantics as follows: 

1) CommunicationEvent instances, i.e. requests and responses, exist from the time of their 
creation until the end of the transaction*) in which they were created; 

2) A CEESession object is constructed either explicitly, by an openSession operation 
issued by a client (see Appendix V, Table V.4), or implicitly, by means of the con-
structor of the CEEsession class in the Information Container API (see Appendix II).  
It exists until the session is closed by an explicit closeSession operation or by an 
unexpected event, e.g. lost connection, timeout, system crash etc.; 

3) User, Client and Host are considered quasi-static elements of the environment and are 
maintained persistently in the server’s data store for the full duration of a project. 

                                                 
*) Transactions are not elements of the Communication Model, but special-purpose operations. 

They are discussed in detail in section 4.6. 
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Fig. 4.4: Overview of the communication model data structures in EXPRESS-G 
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4.3.3 EXPRESS schema specification 

The EXPRESS schema of the generic client-server communication protocol given in “short 
form” below, i.e. without resolution of external schema references, is intended to serve as a 
formal reference model of the involved data structures. It should not be understood as a 
basis for a “STEP-like” implementation, because its purpose is quite different. Thus, whilst 
instances of the modelling objects defined in the schema would really exist on the project 
data server for a particular project, they are not subject to data exchange or sharing with 
applications - neither through STEP physical files, nor through SDAI-like requests or other 
project data operations. Rather, they represent the information about the information to be 
exchanged, i.e. the meta data structures allowing the uniform handling of any model data 
in (almost) any specific project environment. 

SCHEMA CommunicationModel; 

REFERENCE FROM IfcActorResource (IfcActorSelect); 
REFERENCE FROM IfcUtilityResource (IfcApplication); 
REFERENCE FROM InfoContainer (InfoContainer); 

TYPE comm_protocol_enum = ENUMERATION OF (CORBA, HTTP, RMI, TCP); 
END_TYPE; 
TYPE request_status_enum = ENUMERATION OF  
  (acknowledged, deferred, executing, failed, finished, sent); 
END_TYPE; 
TYPE response_status_enum = ENUMERATION OF (notOK, OK); 
END_TYPE; 
TYPE sync_mode_enum = ENUMERATION OF (async, sync); 
END_TYPE; 
TYPE refID = STRING; 
END_TYPE; 

ENTITY CEEsession; 
  id          : refID; 
  user        : User; 
  client      : Client; 
  fromHost    : Host; 
  commEvents  : SET [0:?] OF CommunicationEvent; 
UNIQUE 
  UR1: id; 
END_ENTITY; 

ENTITY User; 
  login       : STRING; 
  password    : STRING; 
  isUniqueActor : OPTIONAL BOOLEAN; 
  relatedActor  : IfcActorSelect; 
  parent_user : OPTIONAL User; 
INVERSE 
  child_users : SET[0:?] OF User FOR parent_user; 
END_ENTITY; 
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ENTITY Client; 
  supported_protocols : SET [1:?] OF comm_protocol_enum; 
  application : IfcApplication; 
END_ENTITY; 

ENTITY CommunicationEvent 
 ABSTRACT SUPERTYPE OF (ONEOF(Request,Response)); 
  concept     : OPTIONAL STRING; 
  OID         : refID; 
  localID     : OPTIONAL refID; 
  meth        : STRING; 
INVERSE 
  session     : CEEsession FOR commEvents; 
END_ENTITY; 

ENTITY Host; 
  IPaddress   : STRING; 
  IPname      : OPTIONAL STRING; 
END_ENTITY; 

ENTITY Request 
 SUBTYPE OF (CommunicationEvent); 
  status      : request_status_enum; 
  syncMode    : sync_mode_enum; 
  inParams    : OPTIONAL InfoContainer; 
END_ENTITY; 

ENTITY Response 
 SUBTYPE OF (CommunicationEvent); 
  responseTo  : Request; 
  status      : response_status_enum; 
  content     : InfoContainer; 
  exceptionMessage : OPTIONAL STRING; 
END_ENTITY; 

END_SCHEMA; 

4.3.4 Examples 

The client-server request/response sequences in the two examples provided below illustrate 
in textual form the information exchange messages based on the definitions of the 
developed generalised communication model. They are taken from a simple line-oriented 
test client implementation using the TCP/IP communication method and the Information 
Container externalisation described in section 4.2. Further options of the use of different 
project data services in client-server communication are given in Appendix V, detailing the 
developed server operations. 

In the shown selected examples, user input is indicated in italics, whereas program output, 
i.e. the server responses, is in regular font. 
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Example  1: 

This example demonstrates the packaging of a simple client query and the corresponding 
server response into respective Request/Response objects. The requested operation 
retrieves the value of the attribute “GenericType” of a specific IfcBeam instance. 

Input> Request1(session:oRef(session.1)  
                OID:"MODEL.STRUCT_1:IfcBeam.232" 
                meth:"getAttribute" 
                inParams:InfoContainer(attName:"GenericType")  
                localID:"BEAM-1" 
                syncMode:sync 
                status:sent) 
Sync request accepted. Request name: "Request.43" . 
 
Server response: 
Response1( 
  responseTo:oRef(Request.43) 
  status:ok 
  content:outParams(attName:"GenericType" attContent:TRUSS) 
  session:oRef(session.1) 
  OID:oRef(MODEL.STRUCT_1:IfcBeam.232) 
  localID:"BEAM-1" 
  meth:"getAttribute") 

Comment: 

As the example shows, the server response is returned in the form of an Information 
Container in accordance with the definition of the Response entity in the EXPRESS 
specification of the communication model. If needed, the client application can sub-
sequently map this Information Container to some other format*). 
The response is somewhat verbose, but this can be useful for faster parsing of the data by 
the client. 

Example  2: 

This example demonstrates the retrieval of a full product model from the server as a STEP 
physical file. This is done in asynchronous mode because the operation is assumed to take 
longer time to execute. 

To illustrate the procedure in more explicit form, a sequence of five inter-related requests 
is presented. The first request is to create a STEP physical file for the specified model on 
the server, the second and the third query the execution status of the first, the fourth fetches 
the stored result of the “retrieve” operation from the server, and the last performs the actual 
file download. 

                                                 
*) For the case that the client application is written in Java, this can easily be done with the help of 

the object classes of the Information Container API for Java presented in appendix II. 
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Input> Request1(session:oRef(session.2)   -- issues the async request 
                OID:"MODEL.STRUCT_1" meth:"retrieve" 
                syncMode:async 
                status:sent) 
Async request accepted. Request name: "Request.44" . 
Input> Request2(session:oRef(session.2)   -- queries the request status 
                OID:"Request.44" meth:"getRequestStatus") 
Sync request accepted. Request name: "Request.45" . 
Server response: 
Response2( 
  responseTo:oRef(Request.45) 
  status:ok 
  content:outParams(requestStatus:executing) 
  session:oRef(session.2) 
  OID:oRef(Request.44) 
  meth:"getRequestStatus") 

Input> Request3(session:oRef(session.2) -- repeat query until status=finished 
                OID:"Request.44" meth:"getRequestStatus") 
Sync request accepted. Request name: "Request.46" . 
Server response: 
Response3( 
  responseTo:oRef(Request.46) 
  status:ok 
  content:outParams(requestStatus:finished) 
  session:oRef(session.2) 
  OID:oRef(Request.44) 
  meth:"getRequestStatus") 

Input> Request4(session:oRef(session.2)      -- get the result 
                OID:"Request.44" meth:"getResponse") 
Sync request accepted. Request name: "Request.47" . 
Server response: 
Response4( 
  responseTo:oRef(Request.47) 
  status:ok 
  content:outParams(repositoryRef:BLOB(STRUCT_1)) 
  session:oRef(session.2) 
  OID:oRef(Request.44) 
  meth:"getResponse") 

Input> Request5(session:oRef(session.2)  -- download the referenced BLOB 
                OID:"MODEL.STRUCT_1" 
                meth:"download" 
                inParams:ic(repositoryRef:BLOB(STRUCT_1))) 
Sync request accepted. Request name: "Request.48" . 
Server response: 
Response5( 
  responseTo:oRef(Request.48) 
  status:ok 
  session:oRef(session.2) 
  OID:oRef(MODEL.STRUCT_1)      user input: local file on the client system 
  meth:"download")              
Local file name for storing BLOB(STRUCT_1): c:\test\s1.spf 
Downloading BLOB(STRUCT_1) ... done. 
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Comment: 

The presented request/response sequence is more complicated compared to the first 
example because of the first asynchronous request. In the following synchronous 
requests/responses the communication mode is not specified explicitly as "sync" is the 
default mode. The request status is also not specified as it defaults always to "sent". This 
feature is provided primarily to enable querying the execution status of asynchronous 
requests, with possible server responses "acknowledged", "deferred", "executing", "finished" 
and "failed" (see requests 2 and 3). 
The last shown request differs from the normal procedure. This is seen at the server 
response as well, which does not contain any detailed output. In fact, since the server is not 
allowed to write directly to a local file on the remote client, it sends the requested file to an 
additional socket stream reserved for BLOB upload/download. It is on the responsibility of 
the client application to read this stream and store the data in a file. The request itself is 
only necessary to obtain the required permission to download the prepared data*). 

4.4 Object-Oriented Project Data Operations 

Operations are the third fundamental information representation concept provided at the 
ontology level of the environment. Without explicitly defined public operations, the 
exchange and sharing of data will still be possible, but in a form in which the model data 
will be independent of the applications, and the applications will be “external” to the data 
models, “inhibiting the 'smart' participation of the data models in the process of project 
realisation” (Wittenoom 1998). 

In order to enable the implementation and the use of intelligent capabilities at the project 
data server managing the data models of the CEE framework for all design disciplines and 
all involved applications, in this section an approach for the specification and imple-
mentation of operations is proposed that allows to: 

1) Provide a high-level abstraction of object-oriented server methods, which is compatible 
with distributed object technology, as proposed by CORBA (Orfali et al. 1997) or Java 
RMI (Harold 1997), but is also applicable to non object-oriented design tools; 

2) Align the representation of operations with the representation of Information Containers 
and the developed generalised communication model, ensuring the overall coherence of 
the components of the ontology; 

3) Align the definition of operations with the specification of EXPRESS data models to 
enable common understanding on the level of model development and specification. 

In fact, the use of operations was already silently introduced in the two examples given in the 
previous section, but the principles of their specification, implementation and usage by client 
applications need yet to be explained. 

                                                 
*) This procedure is much easier to implement by Java RMI based communication with the help 

of the BLOB method saveAsFile, and is automatically provided by WWW-Browsers. 
 For file upload, done in a similar way, the BLOB methods involved are getInStream and 

loadFromFile (see Appendix II). 
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The key ideas of the suggested approach are as follows: 

1) Operations are not defined by a separate representation formalism, but utilise the 
specifications provided in the Meta model, the Information Container and the 
communication model schemas. On the high-level, i.e. in the Meta model, they are 
defined generically, as part of the meta class Concept, and thus are available for any 
object in any data model. 

2) The specific operations associated with the representations of the particular classes of a 
data model supported by the project data server are specified with the help of a  
subset of the EXPRESS-C notation developed in the European PISA project  
(cf. ISO/TC184/SC4/WG5/N202 1994)*). This enables the language-independent speci-
fication of object methods, ensures conformance with the EXPRESS data models, allows 
formal parsing of the models including the defined operations**), and provides a basis for 
language bindings for the implementation of distributed object processing in the sense of 
CORBA. 
The definition of the arguments of an operation is done in one of the following two 
ways: (1) by using basic EXPRESS data types and the components of the respective 
EXPRESS data model, or (2) by using the components of the Information Container 
schema. 
The first method is more specific and assumes that all applications that will use the 
operation will have the same “understanding” of the referenced data structures. The 
second method is more generic and assumes that the input and the output of the 
operation will be “interpreted” by the application in accordance with its specific 
functionality and the specific context in which the operation is executed, i.e. the 
particular object instance being addressed#). 

3) The realisation of the EXPRESS-C specifications in the CEE system is achieved 
according to the principle of method delegation (see fig. 4.5). 
Method delegation establishes a regime of object-to-object communication allowing 
one object to have enhanced capabilities by acting as an extension of another object  
(cf. Zucker & Demaid 1992). With the approach suggested herein, it is possible to 
extend these capabilities across platforms and applications. For example, a structural 
analysis application containing data structures for the representation of linear building 
elements, but not for beams and columns, may delegate the task of providing the cross 
section properties of its linear building elements to the “beam” and “column” objects 
on the project data server. Another possibility, which has been realised in the 
prototyped environment, is to implement a high-level operation for the geometric 
presentation of all tangible objects in an application, which is then delegated to the 
server data objects that may even not coincide with the objects of the client application. 

                                                 
*) The EXPRESS-C signature of an operation consists of the operation name, along with the 

specification of input and output arguments. Output arguments are distinguished by the 
keyword VAR, optional arguments are denoted by the keyword OPTIONAL. 

**) For example, with the help of the ECCO toolkit developed at the University of Karlsruhe in the 
frames of the PISA project. 

#) This “more generic” method has been used for all operations in the prototype implementation 
of the project data server presented in chapter 8. 



88 A Mapping Language for Concurrent Engineering Processes 

 

This functionality is accomplished in the following way: 
First, a generalisation of the attributes of an operation to Information Container data 
structures is made on the ontology level. In this way both the uniformity of the 
representation across applications and data models, and the use of operations by these 
applications, regardless of their internal data structures, is achieved. 
Secondly, the object methods corresponding to the defined EXPRESS-C operations are 
implemented on the project data server, using its native program structures. The input 
and output parameters are provided according to the generalised operation signatures in 
terms of appropriate Information Container data types. For this purpose, generic 
“wrapper” code, simplifying the software realisation, has been applied. 
The implementation of each operation may take full advantage of the object-oriented 
structure of the data models and the generalised form of the operation specifications. 
Thus, it is possible to define polymorphic methods on high-level, specialising them in 
specific lower level objects. A typical example of such implementation is provided by 
the operation “view”, which is defined with an empty body at the level of the abstract 
IfcProduct object and is then specialised to retrieve the geometry of any “product” 
object in appropriate way. This method is utilised by the “view” operation working at 
model level, which simply scans the model data and applies consecutively the 
IfcProduct “view” operation to all “product” objects found. 
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Fig. 4.5 Achieving the specific functionality of public objects by method delegation 

4) At run-time, a server method can be invoked by client applications either indirectly, by 
using the procedure described in the previous section, i.e. by embedding it in a res-
pective Request, with the object reference provided in the OID parameter of the 
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request, the method name provided in the meth parameter, and the method parameters 
packaged in an Information Container; or directly, by using remote method invocation. 
In the latter case, there are two further alternatives: 
– if the client application implements internally a different object structure, a 

realisation with the help of Information Containers will be necessary, along with 
pre- and post-processing of the sent/received data; 

– if the client application implements internally the same data object(s) as the server, 
and does not require any conversion utilities, a “true” object-oriented realisation in 
the sense of CORBA will be possible. 

A rough analogy of these alternatives to the data access techniques developed for 
relational databases is the use of SQL, embedded SQL and ODBC respectively (cf. 
Lockemann et al. 1993). 
However, in all cases the top-level parameters of a request need to be provided, as they 
ensure the authorisation to execute a particular operation (user, role), the mode of the 
operation (synchronous, asynchronous), and the correct performance of update ope-
rations in client/server transactions. 

Fig. 4.6 schematically illustrates the overall approach, and provides an idea of the realisation 
procedure. 

ENTITY IfcProduct
SUBTYPE OF (IfcObject)

. . .

OPERATIONS
view
(viewType : symbol;
OPTIONAL representationType : symbol;
OPTIONAL localFileRef : BLOB_Ref;
VAR repositoryRef : BLOB_Ref);

(* 
inspect, retrieve, getAttribute, …
- inherited from IfcRoot
getRelations, getPropertySets, …
- inherited from IfcObject
*)

. . .

END_ENTITY;
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Fig. 4.6: Schematic presentation of the specification, implementation and usage  

of operations 
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Operations may be developed on different levels of the modelling framework (kernel, 
neutral, domain models). However, most important to the overall data management capa-
bilities of the CEE system is the definition of operations on the Meta Model level, and 
especially for the meta object MODEL, providing the requisite meta information needed to 
manipulate models as a whole. 
This is due to the following reasons: 
– the assumed structuring of the information in a set of inter-linked models, enabling the 

implementation of a private workspace for each designer, and not in a single large 
shared model; 

– the prevailing operations on large portions of the data, such as a whole building, a 
building storey, or a building system, which are more conveniently specified on model 
level; 

– the typical use of CAD systems where the transfer of whole models by means of data 
exchange files is most commonly practised,  and 

– last but not least, the specific character of the design process, requiring long periods of 
work on one and the same data set, as opposed to the short transactions typical by 
business databases. 

Fig. 4.5 provides a hint that operations can be delegated to a model as a whole. In fact, 
most such operation are valid for any model, because the specific underlying schemas are 
not relevant for the specification of generic model-level operations. 
Of course, operations can be defined also for any object class in any of the data models 
“known” to the project data server. However, depending on the type of the object class 
w.r.t. its operations, their use may be different. 
In principle, irrespective of the object classifications provided in the data model schemas, 
the following three categories of objects can be identified: (1) registered public objects,  
(2) addressable objects, and (3) private objects. 
Registered public objects are all objects that are known to the Request Broker and are part 
of the system ontology. They can be accessed directly by their object IDs, and all their 
operations are visible to all client applications (provided that there is no restriction in the 
access rights). Operations on such objects can be performed explicitly, by issuing respec-
tive requests, or by using remote method invocation. 
In contrast, addressable objects are objects that are not known to the Request Broker and 
are not part of the system ontology. They can be accessed by applying method delegation. 
This is accomplished by first obtaining their reference IDs from the project data server, 
and then using these IDs in subsequent operations*). Remote method invocation is only 
possible through the execMeth method of the object reference. Another principal difference 
between addressable and public objects is that public objects are persistently maintained 
during a client/server session and may be accessed repeatedly, without affecting the state 
of the model data in the data store, whereas addressable objects are retrieved anew by each 
single operation. 
However, there is no conceptual restriction in the functionality of addressable objects 
compared to public objects. The rationale for the introduction of this category is to reduce 

                                                 
*) A detailed example of this technique is presented in appendix II, section II.3. 
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the computational load of the Request Broker w.r.t. name resolution, to provide a 
structured method for the definition of access rights, and to separate application domains. 
This is especially important for an environment comprised of hundreds of object classes, 
structured in a number of layered data models. 
At last, private objects are all objects that cannot be accessed directly through operations 
issued by client applications. Such objects may still possess methods that serve other 
objects, but these methods can only be used implicitly, as side effects of other operations. 
The classification of the object classes in the data models in accordance with the above 
aspects is an implementation feature. It is done on meta level and does not affect the public 
EXPRESS-C specifications provided in the model schemas. However, this classification 
can be undertaken in different ways, and it does affect the functionality of the system. 
As an example, the classification of IFC object classes which has been assumed for the 
prototyped CEE implementation is presented in table 4.1. This classification is very 
generic, with only a few object classes declared as public. It leads to a lean Object Request 
Broker, shifting much computational load to the clients. Obviously, for a practical CEE 
system, using specific project data models, such as IFC, additional considerations, tests and 
experimentation may be needed to achieve optimal performance. 

Table 4.1: IFC object types with respect to systemic interoperability 

Registered public objects Addressable objects Accessible objects 

Meta model: 
Concept, Model, 
ModelSchema, 
MappingSchema 
Kernel model: 
IfcRoot, IfcRelationship, 
IfcRelGroups, IfcObject,  
IfcProject, IfcProduct 

All other objects of the 
Kernel Model,  and  all 
objects in domain-specific 
models  ( architectural, 
structural, HVAC  etc.) 

All resource objects and all 
application schema objects 

4.5 Project Data Services 

On the basis of the general approach for the specification of operations, any kind of 
functionality can be provided.  In principle, even operations like 
 doStructuralAnalysis (forModel: Obj_ref, loads: BLOB_Ref,   
     controlData: BLOB_Ref, output: BLOB_Ref, mode: String);  
can be imagined. 
However, this should be done in a structured way as well, in order to enable modular 
implementation of the project data server and to separate basic server operations that are 
more closely associated to data management aspects from advanced services that can be 
more appropriately implemented as stored procedures (cf. Lockemann et al. 1993), or even 
as knowledge-based agents (cf. Russel & Norvig 1995), complementing the basic server 
functionality. 
For this purpose, the following categorisation of project data services is proposed: 
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(1) general data management services on object level; 
(2) general model management services; 
(3) specific services for access control; 
(4) interoperability services; 
(5) services for session and transaction management; 
(6) advanced services. 

The first five categories are realised as basic operations in accordance with the principles 
presented in the previous section. However, albeit being categorised as basic, some of 
these operations are not at all simple. For example, the map operation included in the 
fourth category requires complex server actions and heavy computational resources, and 
may take a lot of time to execute. Nevertheless, it is a basic operation as it is directly 
related to the management of the data in the environment, and does not require specific 
engineering knowledge for its practical realisation. 
The key idea of the first category is to provide read/write access to individual object 
instances and their attributes on the basis of short transactions. 
The second category is proposed for the management of the data in a model as a whole, 
including such features as checking in/out the model, retrieving different presentation 
views  etc. 
The third category provides the necessary operations to maintain access control lists (ACL) 
for modelling objects and operations, i.e. to create and modify “users” and “roles”, and to 
set, unset and query their respective access rights. 
The fourth category is dedicated to sophisticated operations for the maintenance of the 
integrity and the consistency of the project data, as well as for facilitating user-driven 
coordination and reconciliation processes. 
The fifth category includes control operations. Their purpose is not to examine or change 
the data in the repository, but to provide facilities for the management of the communi-
cation process itself. 
The last category includes, conceptually, stored procedures and agents that can be of 
arbitrary complexity. Whilst the realisation of such services has not been the intention of 
this work, I believe that with the provision of a set of basic operations, they can be easier 
achieved as they can use the basic operations as “building blocks”, and implement all more 
sophisticated functionality on top of them, without bothering about low level data manage-
ment. 
Before the execution of all suggested basic operations the following procedure is applied: 
– first, the user access rights are checked; 
– second, depending on the access rights and the model state, the availability of the data 

is determined and compared to the type of the requested operation. 

The operation is performed only if these two checks are passed successfully. 

Table 4.2 below presents a list of basic services suggested for CEE. Detailed specifications 
of the operations implemented in the prototyped environment are provided in appendix III. 
Model states and access rights are discussed in the following section. 
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Table 4.2: Basic project data services 

Category Suggested Operations 

General data management services on 
object level 

Create instance,  
Retrieve, Update, 
Inspect, Find, 
Get/set/unset/test attributes, 
Get instances, Get relations, 
Get methods, Get Status,  
View, Group, Ungroup, … 

General model management services Create model, Delete model,  
Retrieve model, 
Check in, Check out, 
Find in model, 
Get model objects, Get product objects, 
Get views, Get groups, Get versions, 
Status, View, … 

Specific services for access control Create/remove user, 
Create/remove/assign role, 
Get/set/unset access rights, … 

Interoperability services Map models, Match model versions, 
Check consistency, Merge models, 
GetMappingSchemas,  
Get related documents, … 

Services for session and transaction 
management 

Open/close session, 
Begin transaction,  
Commit, Rollback, Abort, 
Get request status, Get Response, … 

4.6 Transactions and Model States 

Most of the above object-oriented operations will access the data repositories of the project 
data server, possibly attempting to update its content. Thus, from the point of view of 
information sharing these operations can be seen as elementary transactions. 
In database terminology a transaction is usually understood as a logical block of one or 
more elementary operations, which appears as one single operation w.r.t. the data store. 
Normally, the packaging of operations is related to performance aspects as it can help 
reduce the client/server interactions and optimise the actual data access routines. 
In the context of the proposed systemic interoperability approach the concept of trans-
actions is even more important as it enables the realisation of more sophisticated services 
on top of a potentially large number of basic operations. 
All transactions are characterised by the following four features, also known as their ACID 
properties: (1) atomicity, (2) consistency, (3) isolation, and (4) durability (cf. Gray & 
Reuter 1993). 
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Atomicity means that all operations packed in a transaction should be seen as one single 
operation. The transaction is successful if and only if they are all successfully completed. 
Consistency means that a completed transaction should not violate the consistency of the 
data store. 
Isolation means that if a transaction needs to be undone (rolled back), there should be no 
other transactions that would have to be undone as well, i.e. the transaction must not have 
any inter-dependencies with other transactions*). 
At last, durability means that the changes of the data store caused by a transaction must 
remain persistent after the transaction, and should not be influenced by system crashes and/or 
recovery operations from system crashes. 
These basic features of client/server transactions have to be observed by the execution of 
all operations. However, as already mentioned in section 4.1, in the envisaged CEE system 
it would be necessary to support long transactions related to the transfer of large amounts 
of data and their processing over long periods of time. 
Unlike short transactions executed within a single client/server session, long transactions 
are characterised by an asymmetric two-step check-in/check-out procedure and require the 
maintenance of appropriate long duration locks (cf. Herrmann 1991; Dadam 1996). 
There is no principal difference between a “normal” read lock (R) and a long read lock 
(LR), but the semantics of write locks is not the same. Whilst a “normal” write lock (W) 
locks the data during the whole update operation, in a long transaction the update is split 
into two parts. When a client requests a change of the data, it acquires a long write lock 
(LW), and the data is copied to a private workspace accessible only to that client. The LW 
lock is automatically converted to an exclusive check-in lock (CI) when the data is checked 
in again. However, even with this improvement of server responses to requested long 
duration transactions, the procedure is still very restrictive for the purposes of cooperative, 
concurrent work. As shown in table 4.3, it allows quite a few types of simultaneous 
operations, and does not provide a method for concurrent changes of the data. Thus, if a 
designer locks a whole building by a long write transaction, no other designer will be able 
to modify any of the building data before the first designer checks it in again. Concurrent 
access will be inhibited for a number of days, and there will be no possibilities for creating 
and comparing alternative solutions. 

Table 4.3: Compatibility matrix of model locks / after (Dadam 1996) / 

Lock type R W LR LW CI 
R + - + + - 
W - - - - - 
LR + - + - - 
LW + - - - - 
CI - - - - - 

Key: R  =  Read Lock;  W = Write Lock;  LR = Long Read Lock;  
LW = Long Write Lock;  CI =  Check In Lock 

                                                 
*) This property is especially important for the serializability of parallel, overlapping operations 

that can be very frequent in the case of long transactions. 
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In order to tackle such issues, the concept of model states and versions is introduced.  
The proposed method for dealing with the problems of long transactions is principally 
valid for individual objects as well, but its application is intentionally suggested only on 
model level. This is due to the following reasons: 
− theoretical and practical investigations of most of the aspects related to long trans-

actions in engineering databases are still in their infancy (cf. Dadam 1996); it is 
therefore useful to first examine simpler cases; 

− the management of versions on object level is much more complicated than on model 
level, which makes it a research issue in its own right (cf. Sieberer & Keber 1997); 

− typical design tasks update the model data in large batch transactions, affecting many 
of the objects they contain. 

The essence of the proposed method is as follows: 
The defined operations (which are in fact also objects) are classified in the following 12 
categories: create model, delete model, open model, close model, (short) read, (short) write, 
long read, long write, rollback, commit prepare, commit and merge. In addition, there are 
also control operations that set temporary exclusive locks, but do not affect the model’s state. 
Model states and the respective model locks are extended by three new types: Ready to 
commit (RC), Commit (COM) and Merge (MRG)*). 
This leads to the state transition diagram presented on fig. 4.7 below. 
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Fig. 4.7: Model states and principal operations causing state transitions 
                                                 
*) Closed and Open are self-explanatory and are presented only for completeness. 
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Whilst by themselves these proposed new model states and locks do not provide additional 
flexibility for concurrent model updates, they become important when model versions and 
user access rights are considered as well. 
The user access rights are maintained in respective access control lists (ACL), as meta 
data associated to the models. Each model is assigned a role, for example “architect”, and 
each role is associated with one or more users. Of these users, there is exactly one declared 
as owner of the model, whereas all others are “normal” users with standard access rights. 
In addition, superuser access rights are assigned to the system administrator or information 
manager, providing him with the privilege to access and update all data at all times. 
The access rights themselves are similar to the typical access rights maintained by 
operating systems, i.e. “read”, “write” and “execute” (enabling/disabling the execution of 
operations). 
The rationale of defining specific owner rights is to provide exactly one user with the 
ability to execute short write transactions (W), which are reflected directly in the model 
data, and do not lead to new model versions. In contrast, all other users may at most have 
the right to execute long write transactions, which are always associated with the gene-
ration of new model versions. 
Update operations are not executed immediately, but are explicitly committed by using a 
“safe” two phase commit protocol (2PC) adopted from distributed database technology 
(Özsu & Valduriez 1991; Gray & Reuter 1993). However, whilst in distributed databases 
2PC-protocols are usually used to ensure the success of global transactions where one 
client simultaneously updates data in more than one databases on more than one servers, 
here the idea is to avoid inconsistencies because of possible system crashes during “long 
updates” associated with the generation of new model versions, with the merging of two or 
more model versions, or with the linking of all domain-specific models for the creation of  
a new, consistent project data context. 
According to that approach, a model that is checked out for modification, i.e. changing the 
properties of the design objects, is first put in long write state (LW). When checked in 
again, the LW lock is released, and a new model version is created. Thus, the result of a 
check in operation are two model versions: the old (unchanged) model version, marked as 
“open”, and the new (changed) version, marked as “checked in”. As indicated on fig. 4.7, 
both these versions are accessible to a number of concurrent operations. However, after a 
commit prepare, the checked in model is provided with an exclusive RC-lock, disabling 
any other operations except commit and rollback. On the server, the model data is linked 
with all models related to it in a temporary workspace. The ready to commit operation is 
acknowledged if and only if the update is successful. Thus, whilst the client still “believes” 
that the data is not committed, the update operation is executed already before the commit 
request is made. In this way, the actual commitment is simplified to local adjustment of the 
version names and the model locks by the server, which minimises the risk of failure. 
In addition, different versions of one model can be matched to discover the differences in 
the modelling objects, or they can be manually reconciled and then merged to obtain a new 
overall consistent project model version. 
In this way, much greater possibilities for concurrent access are provided, as shown on 
tables 4.4, 4.5 and 4.6. 
The properties of the prototyped operations with respect to model states and permissible 
execution modes are detailed in appendix V, table V.5. 
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Table 4.4: Compatibility matrix of permissible concurrent operations by the application of 
model versions 

Lock type R W LR LW CI RC COM MRG 
R + - + + + + + - 
W - - - - - - - - 
LR + - + + + + + - 
LW + - + + + + + - 
CI + - + + + + + - 
RC + - + + + - - - 
COM + - + + + - - - 
MRG - - - - - - - - 

Key: R  =  Read Lock; W = Write Lock; LR = Long Read Lock; LW = Long Write Lock;   
  CI =  Check In Lock;  RC = Ready to Commit Lock;  COM = Commit Lock;   
  MRG = Merge Lock. 

Table 4.5: Compatibility matrix of permissible concurrent operations on different models 

Lock type Model B  
Model A    

R W LR / LW / 

CI 
RC COM MRG 

R + + + - + - 
W + + + - - - 
LR / LW / CI + + + - + - 
RC - - - - - - 
COM + - + - - - 
MRG - - - - - + 

Note: All abbreviations are the same as in table 4.4. 

Table 4.6: Permissible initial model states for the different operation types 

Operation type Permissible model states for the execution of the operation 
Read Open / Read / LongRead / LongWrite / CheckIn / Commit 
Write Open 
LongRead Open / Read / LongRead / LongWrite / CheckIn / Commit 
LongWrite Open / Read / LongRead / LongWrite / CheckIn / Commit 
CheckIn LongWrite 
ReadyToCommit Write / CheckIn 
Commit ReadyToCommit 
Merge Open 
Control op. Open / Read / LongRead / LongWrite / CheckIn 
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In the prototype implementation of the project data server, transactions are realised through 
the operations beginTransaction, commitPrepare, commit and rollback. In addition, in 
order to simplify client implementation, a background transaction is introduced, i.e. all 
operations which are not enclosed in a “beginTransaction-commit/rollback” block are 
treated as background operations which are implicitly committed at once. 
A comprehensive treatment of model versions has not been developed, but methods have 
been provided to facilitate version reconciliation. These methods include formal light-
weight consistency checking of the model data, model matching and model merging. They 
are briefly discussed in chapter 8. 

4.7 Extension of the Generalised Client-Server Communication Model  
with Knowledge-Based Queries and Assertions 

Many specific concurrent engineering tasks can be tackled more efficiently with the 
application of advanced knowledge-based methods built upon the basic object-oriented 
project data services, as for example model mapping and matching (Khedro et al. 1994; 
Katranuschkov & Scherer 1997), building code services (Han et al. 1999), information 
searches in the full project space (Scherer 1998b) etc. These tasks are difficult to achieve by 
using pure object-oriented technology because of the following restrictions of the object-
oriented modelling approach (cf. Woods 1991, Hakim & Garrett 1994, Borgida 1991, 1995): 
– the lack of automatic classification mechanisms, 
– the limited ability to represent partial object descriptions, 
– the static representation of object-to-object relationships which does not allow to deduce 

indirect “links by value”, 
– the limited representation and checking capabilities for integrity and consistency 

constraints,  and 
– last but not least, the lack of deductive reasoning capabilities. 
Needs for these missing features typically occur in the early design phases where object 
evolution has to be considered, and the modelling objects are often not fully defined. 
Therefore, the implementation of a project data server for concurrent engineering support 
needs to incorporate more advanced representation methods, such as rule-based reasoning 
or description logic. 
However, in order to accommodate knowledge-based processing in an inherently object-
oriented modelling environment, it is necessary to provide an adequate representation 
formalism that can be embedded both in the object-oriented server methods and in the 
client-server information exchange based on the described generalised communication 
model. In this context, the requirements for this formalism can be defined as follows: 
1) It has to provide possibilities to use the knowledge-based features of the server by 

means of queries and assertions that can be easily constructed and interpreted even by 
non knowledge-based applications; 

2) It has to enable querying and filtering of model data according to ad hoc criteria which 
may not be explicitly available in the underlying data structures; 

3) It has to be consistent with the Information Container model to ensure the integrated 
use of object-oriented and knowledge-based methods in a uniform manner; 

4) It has to be simple so that existing applications can be easily upgraded without much 
development effort. 
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This section presents the specification of the proposed knowledge-based extensions to the 
generalised communication model developed in correspondence with the above require-
ments as part of this thesis. 
Its basic idea is in the definition of a set of parameterised knowledge-base templates that 
can be used as building blocks for the assembly of more complex queries and assertions. 
The main emphasis is on the definition of search expressions that can be embedded in 
object-oriented operations to return “normal” object-oriented data structures that can be 
readily processed by object-oriented applications. 

4.7.1 Structure and components of the proposed knowledge-based extensions 

Fig. 4.8 below presents the top-level structure of knowledge-based expressions intended to 
be embedded in client requests. Its basic element is the concept of search expression, 
which is associated with a search template and a set of one or more variables that 
accommodate the result of the search. 

 

Fig. 4.8: Overview of the high-level data structures for the proposed 
  knowledge-based extensions in EXPRESS-G 
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Knowledge-base templates are directly related to the structure of the underlying EXPRESS 
data models. However, they present additional means to query these structures with the 
help of an inference engine implemented by the project data server. In this way, 
relationships that are not explicitly represented in a data model can be derived. 
To achieve that functionality, a set of basic templates is defined. These templates act as 
logical predicates enabling to determine if a data object, dynamically bound to a specified 
free variable, is a subclass or an instance of a given class, if it defines a specific attribute, if 
the value of this attribute is set, or if it is equal to a given constant value. In addition, three 
cardinality templates provide a capability to check if an aggregate attribute (list, set) contains 
more, less or equal number of elements compared to the value of a given integer constant. 
These basic templates can be used to construct complex templates, comprised of one or 
more component (basic or complex) templates and linked by a template operator. 
The purpose of the template operators is to combine the results obtained by the individual 
templates. The ALL operator indicates that each template has to evaluate to true for all 
tested objects, and NONE indicates that all related templates have to evaluate to false for 
all tested objects. NOT, AND and OR represent the usual logical expression connectors. 
At last, a special constraint template enables the comparison of the values of two or more 
templates by means of relational operators ( = , < , > , <= , >= , <> , :=: ). The 
last of these operators, :=:, checks the “identity of two data structures, whereas the first 
checks their equality, in a similar way as the Common LISP functions eq and equal, 
respectively. 
The syntax of the knowledge-base templates is partially borrowed from the TellAndAsk 
language of the KEE system (Intellicorp 1994). The actual prototype implementation of 
knowledge-based queries and assertions uses the inference engine provided by KEE. 

4.7.2 Syntax Specification 

The syntax specification for knowledge-based expressions is comprised of three parts:  
(1) tokens, providing low-level definitions for the allowed lexical elements, (2) grammar 
rules presenting all high-level structures, and (3) informal propositions, including 
additional information not covered in the formal specifications for conciseness, or because 
it presents imported constructs described in other sources. The primary production rule of 
the syntax specification is rule (64). 

Tokens 
The following productions define the tokens used for the specification of knowledge-based 
expressions in the proposed environment. Except where explicitly stated, no white space 
characters are allowed within the text matched by a single syntax rule for a token. 
Character classes: 

The character classes used in knowledge-based expressions are exactly the same as for the 
Information Container API - see page 74, production rules (1)-(8). 
Keywords: 

In the below list, the production rules (10), (11), (13), (15), (17), (22), (25)-(29), (31)-(33), 
(35)-(41) and (44) define reserved words, whereas all other keywords are positional, i.e. 
they are meaningful as such only in their respectively defined context. 
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However, even though the use of these positional keywords for symbol and variable names 
does not violate the given syntax rules, it is better to avoid them for such purposes. Instead, 
where necessary, the alternative option given by rule (59) further below should be used. 
 
(9) A        = 'A'. 
(10) ALL      = 'ALL'. 
(11) AND      = 'AND'. 
(12) AT       = 'AT'. 
(13) BOOLEAN  = 'BOOLEAN'. 
(14) CLASS    = 'CLASS'. 
(15) DO       = 'DO'. 
(16) EXACTLY  = 'EXACTLY'. 
(17) FALSE    = 'false' |  
                'FALSE'. 
(18) FOR      = 'FOR'. 
(19) HAS      = 'HAS'. 
(20) IN       = 'IN'. 
(21) INSTANCE = 'INSTANCE'. 
(22) INTEGER  = 'INTEGER'. 
(23) IS       = 'IS'. 
(24) LEAST    = 'LEAST'. 
(25) LISP     = 'LISP'. 
(26) LISTOF   = 'LISTOF'. 

(27) LOGICAL  = 'LOGICAL'. 
(28) MAX      = 'MAX'. 
(29) MIN      = 'MIN'. 
(30) MOST     = 'MOST'. 
(31) NONE     = 'NONE'. 
(32) NOT      = 'NOT'. 
(33) NUMBER   = 'NUMBER'. 
(34) OF       = 'OF'. 
(35) ONEOF    = 'ONEOF'. 
(36) OR       = 'OR'. 
(37) REAL     = 'REAL'. 
(38) SETOF    = 'SETOF'. 
(39) STRING   = 'STRING'. 
(40) THIS     = 'THIS'. 
(41) TRUE     = 'true' | 'TRUE'. 
(42) TYPE     = 'TYPE'. 
(43) VALUE    = 'VALUE'. 
(44) UNKNOWN  = 'unknown' | 
                'UNKNOWN'.

Lexical elements: 

As can be easily seen, most of the lexical elements detailed below are very similar or 
exactly the same as in the Information Container specification shown in section 4.2. The 
definition of variable introduces the possibility for using free variables within 
knowledge-based expressions. Such variables are bound at execution time to the result 
values of knowledge-base terms or templates. Operators (template_op, term_op, 
rel_op)  provide for greater flexibility and can be used to construct complex expressions 
by combining the basic templates defined in rules (68)-(76) in many different ways. 
(45) boolean     = TRUE | FALSE . 
(46) logical     = TRUE | FALSE | UNKNOWN . 
(47) longint     = [ sign ] { digit }+ . 
(48) natural_number  =  { digit }+ . 
(49) real        = [ sign ] { digit }+ '.' { digit }*  

              [ { 'E' | 'e' } [ sign ] { digit }+ ] . 
(50) string      = '"' { non_q_char | quote_char | ' ' }* '"' . 
(51) simpleType  = BOOLEAN | INTEGER | LOGICAL | NUMBER | REAL |  

              STRING . 
(52) symbol      = letter { letter | digit | '_' }* . 
(53) refID       = modelID | objID . 
(54) modelID     = ID . 
(55) objID       = [ modelID ':' ] ID . 
(56) ID          = symbol [ '.' { symbol | longint } [ version ]] . 
(57) version     = ';' longint . 
(58) variable    = '?' symbol . 



102 A Mapping Language for Concurrent Engineering Processes 

 

(59) keyword     = [ '_' ] symbol . 
(60) template_op = ALL | NONE | NOT | AND | OR . 
(61) term_op     = ONEOF | LISTOF | SETOF | MAX | MIN . 
(62) rel_op      = '=' | '<' | '>' | '<=' | '>=' | '<>' | ':=:' . 
(63) sign        = '+' | '-' . 

Grammar rules 

The following high-level production rules specify how the above tokens can be combined 
to form valid knowledge-based expressions. In order to avoid ambiguity, whitespace 
characters may be used as separators between the individual tokens. 
(64) searchExpression = '(' FOR { ALL | { variable }+ } DO  

                       KB_Template ')' . 
(65) KB_Template      = basicTemplate | complexTemplate |  

                   constraintTemplate . 
(66) basicTemplate    = subclassTemplate | instanceTemplate | 

                   attrExistenceTemplate |  

                   attrValueTemplate | attrTypeTemplate | 
                   maxCardinalityTemplate | 
                   minCardinalityTemplate | 
                   eqCardinalityTemplate . 

(67) complexTemplate  = '(' template_op { KB_Template }+ ')' . 
(68) subclassTemplate = '(' subclass IS A class ')' . 
(69) instanceTemplate = '(' instance IS [ INSTANCE ] OF class ')' | 

                   '(' instance IS IN [ CLASS ] class ')' . 
(70) attrExistenceTemplate  = '(' attr OF instance ')' . 
(71) attrValueTemplate      = '(' attr OF instance 

                             HAS VALUE KB_Term ')' . 
(72) attrTypeTemplate       = '(' attr OF instance  

                             HAS TYPE v_Type ')' . 
(73) maxCardinalityTemplate = '(' instance HAS AT MOST 

                             natural_number  attr ')' . 
(74) minCardinalityTemplate = '(' instance HAS AT LEAST 

                             natural_number  attr ')' . 
(75) eqCardinalityTemplate  = '(' instance HAS EXACTLY 

                             natural_number  attr ')' . 
(76) constraintTemplate     = '(' KB_Term rel_op KB_Term ')' . 
(77) KB_Term          = valueSelect | variable | 

                   '(' term_op { KB_Term }+ ')' . 

(78) valueSelect      = literal | KB_Template | lisp_expr |  
                   refID | THIS . 

(79) v_Type           = symbol | simpleType . 
(80) class            = symbol | variable | THIS . 
(81) subclass         = symbol | variable | THIS . 
(82) instance         = refID | variable | THIS . 
(83) attr             = symbol | variable . 
(84) literal          = boolean | logical | longint | real | string | 

                   symbol . 
(85) lisp_expr        = '(' LISP lisp_form ')' . 
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Informal propositions 

Most of the propositions regarding the Information Container specification detailed in 
section 4.2 hold true here as well. The main differences are in the treatment of some of the 
EXPRESS data types, in the use of LISP forms, and in statements (7) to (10) below, 
concerning the use of searchExpression, KB_Template and KB_Term. 

1) The mapping of entities defined in EXPRESS data models is done as follows: 
− Class names are represented as symbols; 
− Enumeration items are also represented as symbols; this does not contradict to the 

EXPRESS syntax because class names and enumeration items are not allowed to 
have identical names within the same data model; 

− User-defined data types are represented with their underlying base types; 
− The SELECT type is always represented with one of its actual underlying data 

types. For example, when using the attrTypeTemplate  
  (attr OF instance HAS TYPE v_Type)   
with v_Type corresponding to a SELECT, just one of its possible underlying types 
may be chosen. If more than one of the underlying types are needed, a complex 
template of the form  
  (OR (attr OF instance HAS TYPE type1) ...   
      (attr OF instance HAS TYPE typek))  
should be used for the desired subset of underlying types defined by the SELECT; 

− Lists and Arrays are represented with the help of the term operator LISTOF, 
whereas sets and bags are represented with the help of the SETOF operator, e.g.  
  (LISTOF 1 2 3 5 7 11) or  
  (SETOF IfcBeam.1170 IfcBeam.34993 IfcBeam.19288) 

− References to object instances are represented simply by their refID’s; 
− INTEGER is represented as longint, and NUMBER is represented according to the 

respective actual value (longint or real); 
− BOOLEAN, LOGICAL, REAL and STRING are represented according to rules (45), 

(46), (49) and (50) respectively. 

2) longint values may contain as many digits as allowable in the internal repre-
sentation of long integer numbers, i.e. a longint should represent a valid integer 
number in the range [ -264 ; 264 –1 ]. 

3) real values are interpreted internally as double precision floating point numbers. 

4) lisp_form, referenced in rule (85), is an external construct which stands as a sub-
stitute for any special rules that might be needed for the specification of arithmetic 
or relational expressions. A lisp_form can be a valid Common LISP top-level form 
or a LAMBDA expression as defined in (Steele 1990), but should always return the 
value type required at the place where it is used. It may include: 
− local variable bindings introduced by the Common LISP LET construct; 
− free variables as defined in rule (58) above; 
− any of the standard Common LISP functions, as far as they do not refer to 

additional user-defined routines. 
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5) An internal representation for each keyword in the form '_symbol', as given by 
rule (59), is provided for the cases when a keyword exists also as a name of some 
element in an EXPRESS schema. For example, if the name “INSTANCE“ exists in a 
data model, '_INSTANCE', instead of 'INSTANCE' should be used if necessary to 
avoid ambiguity. 

6) Upper and lower case in all names defined in EXPRESS schemas should be 
preserved because a client implementation written in a language like C++ or Java 
may rely on such case-sensitive names. The syntax specification itself does not 
impose explicitly any case-sensitivity rules. 

7) KB_Template, as defined in rule (65), can be used not only in queries, but also to 
make new assertions for a given product model. As a general rule, if a KB_Template 
does not include a free variable, it represents a fact which is added to the product 
model as new data, provided that it does not already exist and does not contradict to 
the definitions in the underlying model schema. On the contrary, if a free variable is 
specified for a class, subclass, instance or attribute, the KB_Template expresses a 
query w. r. t. this free variable. For example, the template  
 (UserDefinedType OF IfcBeam.123 HAS VALUE "Simple Beam")  
may fill the attribute UserDefinedType of instance IfcBeam.123 with the value 
"Continuous Beam", if no value of this attribute yet exists, whereas the template 
 (UserDefinedType OF ?B HAS VALUE "Simple Beam")  
will bind ?B to a list of all instances with UserDefinedType = "Simple Beam". 

8) In contrast to templates, searchExpression  is used basically for query purposes. 
A search expression returns a list of the values of the free variables defined in its 
FOR-clause or, when the form 'FOR ALL' is used, of all free variables introduced in 
the associated KB_Template.  
 

For example, the expression  
 

 (FOR ?A DO  
         (AND (?B IS INSTANCE OF IfcBeam)  
              (UserDefinedType OF ?B HAS VALUE ?A))  
  )  
 

will return a list of all values of the attribute UserDefinedType of all existing 
“beam” instances, whereas the expression:  
 

 (FOR ALL DO  
          (AND (?B IS INSTANCE OF IfcBeam)  
               (UserDefinedType OF ?B HAS VALUE ?A))  
  ) 
 

will return two parallel lists – one with the values of UserDefinedType,  
and one with the refID’s of the “beam” instances themselves.  
 

It is an error if a free variable is specified in the FOR-clause of a search expression, 
but does not appear in the associated template(s). 

9) Assertions through knowledge-based templates are intended mainly for rules that 
would be implemented on the server.  
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Assertions of new facts by a client application can be done only as “side effects” of a 
query, e.g.: 
 (FOR ALL DO  
          (AND (UserDefinedType OF IfcBeam.123  
                    HAS VALUE "Continuous Beam")  
               (calcBeamSectionArea OF IfcBeam  
                    HAS VALUE ?A))  
  ) 

Here the first template asserts a fact, whereas the second represents the actual query. 

10) At last, the keyword THIS is foreseen for embedding of search expressions in 
Information Container based requests and in mapping specifications.  
In the first case, THIS is automatically bound to the object that is issuing the request 
and can be used in the place of class, subclass or instance in a KB_Template; 
when used as class or subclass it will be substituted with the name of the class of 
the actual instance, and when used as instance - with its respective refID.  
In the second case, THIS is bound to the currently processed instance of a source class 
in an inter-class mapping definition and can be used in any mapping construct where 
a simpleTemplate is referenced*). 

4.7.3 Examples 

The developed representation approach allows to perform knowledge-based search directly, 
i.e. through the user interface of the project data server, or to embed search expressions in 
any server routine, in Information Container based requests, in rules and in mapping 
specifications. The small examples given below demonstrate some of these capabilities. 

Example  1: adapted from ToCEE 

In order to retrieve the object references of all simple beams contained in a structural 
domain model, i.e. all instances of IfcBeam which are defined with the GenericType 
SIMPLEBEAM, the following search expression can be specified: 

(FOR ?X DO (AND (?X IS INSTANCE OF IfcBeam) 
                (GenericType OF ?X HAS VALUE SIMPLEBEAM)) 
 ) 

Use of the above search expression in the server operation ‘find’: 

request (OID:"TC_MODEL.Struct_Model_1" meth:"find"  
         inParams: 
          ic(searchExpr: 
             "(FOR ?X DO  
                   (AND (?X IS INSTANCE OF IfcBeam) 
                        (GenericType OF ?X HAS VALUE SIMPLEBEAM)))" 
             ) 
         ) 

                                                 
*) This issue is discussed in more detail in chapter 6 presenting the CSML mapping language 

developed in the thesis. 
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Use of the above search expression in the prototyped sample project data client: 

 
Fig. 4.9: Screenshot of a prototyped client showing the use of search expressions 

Comment: 
This fairly simple example demonstrates a common filtering case (similar to a projection in 
database terminology). It is included here because (1) such SQL-like constructions are 
assumed to be useful in quite a few situations, (2) it shows the basic procedure for 
embedding search expressions in server requests, and (3) it gives an impression how a GUI 
can be constructed to enable interactive user input of knowledge-based queries. 

Example  2: adapted from ToCEE 

In order to find out if there exist rooms in a building with area > 30 sq. m (a query actually 
used by the facility management system in the prototype ToCEE environment), the 
following request can be specified: 
request (OID:"IfcSpace" meth:"find" 
         inParams: 
           ic(searchExpr: 
               "(FOR ?S DO  
                  (AND (?S = THIS) 
                       (calcTotalArea OF ?S HAS VALUE ?A) 
                       (?A > 30.0)))" 
              forModel:oRef(TC_MODEL.Arch_Model_X))) 

Comment: 
In this example the keyword THIS represents any instance of IfcSpace. The free variable 
?A is used within the search expression only as intermediate storage for values passed from 
the second to the third template. It is not returned by the find operation. If the values of ?A 
are also needed, the FOR clause should be modified to (FOR ?S ?A DO ... ). 
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Example  3: adapted from (Scherer & Katranuschkov, 1999) 

This example shows how knowledge-base templates can be used in rules. The simple rule 
presented below has been experimentally prototyped to examine the usefulness of 
automatic monitoring of the states of the project models on the project data server, in 
conjunction with the issues discussed in section 4.6. 

Each time when a modified version of an instantiated model (M1) is checked in at the 
server and its status is set to check-in (CI), e.g. through a respective remote method call 
from a client application, the rule will be automatically triggered, allowing a separate 
process to determine all changes done to the model (compared to any other “active” 
instantiated model version with the same projectID), and notify the affected client(s) 
and/or user(s). 

IF (AND 
   (modelState OF M1 HAS VALUE CI)    ;; trigger (CI=CheckIn) 
     (?n IS INSTANCE OF MODEL) 
     (modelState OF ?n HAS VALUE ?ns) 
     ((projectID OF ?n) = (projectID OF M1)) 
     (NOT (?ns = (ONEOF W COM RC)))    ;; not Write/Commit/RtC 
   ) 
THEN 
   ;; set temporary exclusive lock for a match operation 
   (modelState OF M1 HAS VALUE EXCLUSIVE-TEMP-LOCK) 
   (modelState OF ?n HAS VALUE EXCLUSIVE-TEMP-LOCK) 
   ;; execute the matching operation using a wrapper 
   ;; for the resp. public operation defined in EXPRESS-C 
   (LISP 
    (exec.operation 'match'(OID:M1 inParams:ic(refModel:oRef(?n)))) 
    ) 
   ;; restore the model locks 
   (modelState OF M1 HAS VALUE CI) 
   (modelState OF ?n HAS VALUE ?ns) 

Comment: 

Five templates are used in the rule premise here, specifying the necessary conditions for the 
rule to fire. In addition, one basic template (modelState ... ) is used four times in the 
rule conclusion to assert the new fact, illustrating how templates can be used not only for 
queries, but also for manipulating the data in the project data repository. 

Exec.operation  is a generic method implemented on the project data server to enable 
local calls of the server operations; in this case it invokes the operation  match  used  to 
compare two versions of a model*). 

                                                 
*) The model matching method is outlined in chapter 8; the specification of the 'match' operation 

in its general, Information Container based format is given in appendix V. 
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Example 4: adapted from  COMBI 

Assuming that the axes of building elements are always defined by topological edge entities 
with vertex points specified in a global coordinate system, the following expression can be 
used to collect all building elements that lie on a given plane z = 3.60 m. 

(FOR ?X DO 
  (AND (axis OF ?X HAS VALUE ?A) 
       (coordinates OF (point OF (edge_start OF ?A)) HAS VALUE ?P1) 
       (coordinates OF (point OF (edge_end OF ?A)) HAS VALUE ?P2) 
       ((LISP (THIRD ?P1)) = (LISP (THIRD ?P2))))) 

Comment: 

This example shows how entities can be grouped in sets with the help of knowledge-base 
templates, even if such grouping is not explicitly defined in the underlying model schema. 
The third and the fourth line demonstrate how basic templates can be combined into more 
complex expressions without the need to introduce intermediate variables. The last line 
shows how LISP expressions can be used; in this case - to access the third element in each 
list of coordinates bound to ?P1 and ?P2. 

Example  5: use of a search expression with IFC model data (IAI 1999c) 

In order to retrieve all load-bearing elements contained in an IFC-based building model, 
regardless of whether they are beams, columns, walls or slabs, the following search 
expression can be used: 

(FOR ?X ?P DO (?P = (PerformedFunctions OF ?X HAS VALUE SUPPORTING))) 

Comment: 

The purpose of this search expression is in principle very similar to that used in example 5. 
It is included here basically to demonstrate that different product models can be processed 
in much the same way, as well as to give a hint for the possible practical benefits of the use 
of search expressions in IFC-based applications. In the given case, the needed result is 
achieved with one single line of code which can be embedded as a string in a 'find' request 
to the project data server, in a language and platform independent way. In a more 
traditional approach, an iteration over the instances of all object classes, involving several 
SDAI-like requests to the project data server and a notable communication overhead, 
would be needed to obtain the same result. 

Fig. 4.10 on the next page demonstrates the interactive use of the search expression with 
the GUI of the project data server. This can be helpful for examining the model data 
structures directly on the server by an authorised person, such as a system administrator, an 
information manager or the project manager. Such activities are facilitated by the 
uniformity of the representation of operations (with the unavoidable differences from 
specific language bindings). 
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The data structure can be examined from the „View“ menu;
an option allows to enter a search expression as LISP code.

The result of the search is displayed in an output window. All objects drawn in bold font
are selectable with the mouse and can be further examined with the help of the display
options provided by the “Unit commands” pop-up menu.

The data structure can be examined from the „View“ menu;
an option allows to enter a search expression as LISP code.

The result of the search is displayed in an output window. All objects drawn in bold font
are selectable with the mouse and can be further examined with the help of the display
options provided by the “Unit commands” pop-up menu.

 
Fig. 4.10:  Use of a search expression with the GUI of the project data server 

4.8 Discussion 

Whilst in the basic client/server model, shown on fig. 4.1 at the beginning of this chapter, 
the only actual concern is to establish an appropriate communication protocol for 
client/server interaction, in a distributed, highly flexible CEE system for building design 
there are many challenging problems that need to be resolved. Major problems provide: 
– the heterogeneity of the system components, 
– the use of different communication paradigms, 
– the use of different data exchange formats and different data transmission and data 

transaction modes (synchronous/asynchronous, batch/interactive, long/short read/write 
transactions), 

– the possibly different data representation paradigms of the component applications,  and 
– the specific concurrent engineering requirement for simultaneous access to shared data, 

along with independent local processing of this data. 
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Many of these problems have been intensively studied in computer science research. 
However, while a number of principal solutions for different systemic interoperability 
aspects exist, none of these solutions is capable to cover the full range of requirements to a 
CEE system. 
For example, the CORBA model (Orfali et al. 1997) provides a comprehensive solution for 
a distributed object system, enabling platform and language independent remote method 
invocation, but it does not define which methods of which objects are appropriate to be 
used remotely. Similar, yet different solutions are provided by Java RMI and the Microsoft 
DCOM model, but they also do not give any hints as to what should be the content and the 
functionality of the distributed objects in the system. In fact, while each of these 
approaches can be helpful for CEE, altogether they increase the complexity of the system 
as they all need to be simultaneously supported. Other communication methods, such as 
“raw” TCP/IP, HTTP and FTP also bring more problems than remedy. 
Much the same situation exists with respect to data exchange. STEP provides both a 
standard data access interface, SDAI (ISO 10303-22 1998), and a file exchange format 
(ISO 10303-21 1994), but does not go on to define any objects and methods to utilise these 
specifications. IFC uses the same approach, but also does not proceed to define implemen-
tation methods w.r.t. a run-time system. Other formats that might need to be supported, 
such as VRML or DWF, only make the situation worse because of the different represen-
tation paradigms they use. 
Similar problems appear with respect to data sharing. For example, SDAI defines the 
concepts of sessions and transactions, but does not deal with problems related to long 
transactions where a large portion of a model is checked out for local processing for a 
longer period of time. Other solutions known from database research can provide help in 
that respect, but they are mainly developed for the relational data model which is not 
directly compatible to EXPRESS (cf. Dadam 1996). 
Thus, the main systemic interoperability problem lies in fact in the necessity to consider all 
component aspects in their entirety, as part of a coherent overall solution. 
This problem can be largely overcome with the developed approach of inter-linked specifi-
cations and communication and data management methods presented in this chapter, as: 
1) It provides a consistent realisation of the idea of Information Containers outlined in 

chapter 3 and suggests an efficient, simple to implement method for the use of various 
communication paradigms for the execution of different project data related operations. 

2) Through the definition of the concept of MODEL objects, capabilities for data exchange 
both on “macro” level (with data exchange files, such as STEP physical files) and  
on “micro” level (with SDAI-like operations) are provided in a uniform way. 

3) The developed “light-weight” formalism for the specification of knowledge-based 
queries enables the use of advanced server features by traditional procedural or object-
oriented applications without any reasoning capabilities. This pragmatic approach 
provides less functional features than comprehensive solutions such as ACL/KIF 
(Khedro et al. 1994), or the knowledge-based extensions integrated externally in the 
ATLAS project (Poyet et al. 1994b), but it allows easy integration of many typical 
engineering tools with limited cognitive capabilities. Thus, in the performed case studies, 
and in the frames of the ToCEE project, a tool for foundation design, a structural analysis 
system and a facility management system could utilise the server functionality with 
minimal development efforts (Scherer 2000). 
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4) By a suggested XML externalisation of the high-level data structures (Information 
Containers, Requests, Responses), presented in Appendix III at the end of the thesis, 
pure WWW-based communication and data exchange can be accomplished in addition 
to the methods of discourse on application level, enabled by the generalised communi-
cation model. In this way, fully transparent, independent of the network protocols 
client-server interaction can be realised. 

As a whole, the approach is easily extensible, because on the basis of a lean meta model, a 
standard kernel model (IFC) and a set of basic operations, various project data services can 
be realised, as suggested in section 4.5. The aligned specifications for Information 
Containers, communication data structures, object-oriented operations and knowledge-
based extensions are fully implementable and have been verified in the prototyped 
environment described in chapter 8. However, the main advantage of the developed 
approach is not so much in the proposed specifications, but in the overall consistent 
treatment of the full spectrum of systemic interoperability problems listed at the beginning 
of this section. The alternative XML based syntax for Information Containers, Requests 
and Responses – developed in only a few days on the basis of the conceptual Information 
Container and Communication model schemas – underpins the value of the suggested 
principal solution concept. Another contribution provide the methods enabling long 
transactions which build the basis for the tackling of concurrent building design processes, 
as outlined in section 3.7. 

However, a final solution even on this basic interoperability level is not yet achieved. Further 
work can be envisaged at most component level, as suggested below. 

1) Information Containers 
On the level of Information Containers, an extension of the XML externalisation is worth 
considering. It would be interesting to examine the possibility to use the proposed new 
XML Schema (Fallside et al. 2000) instead of the currently suggested XML DTD to 
provide better coverage of the Information Container semantics. Useful ideas for further 
improvements can be obtained also from the work on a XML specification for 
EXPRESS-driven data undertaken in ISO STEP (ISO 10303-28 1999). A mapping of 
Information Containers to other data formats, such as XHTML, is another topic that can 
be studied. 

2) Communication model 
On the level of the communication model, a multi-server system and a server inter-
operability protocol can be useful extensions worth to be considered. 

3) Object-oriented operations 
The definition of a well-defined set of operations is not yet available. Many useful hints 
can be taken from the area of database research, but as the problem domain and the 
targeted functionality are different, a deeper analysis of the information processes for the 
identification of a comprehensive set of elementary operations needs to be performed. 

4) Transactions and model states 
In the developed approach, problems related to incremental updates are not considered. 
However, it would be desirable to define formalised methods not only to store 
incremental updates, but to define and exchange update information on the basis of 
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model-level operations. Such a feature can be very useful, as many design processes only 
change a portion of the checked out data. Fig. 4.11 below presents the basic idea, but 
there are many detail problems that have to be solved in order to provide the suggested 
functionality. 
Second, while model states and compatibility of operations have been basically identified 
(see section 4.6), additional efforts are needed w.r.t. data recovery and data coordination. 
Finally, much further research is needed w.r.t. the features of long transactions. Here 
there is little work done even in the area of basic database research. For example, con-
cepts like semantic and application-specific synchronisation methods can be imagined, 
and better support for version control needs yet to be provided. 
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Fig. 4.11: Principal schema of incremental model data updates by long transactions 
The numbers in the figure indicate the sequence of operations, as follows: 
(1) request to check out a model view by the client  
(2) caching the model for further processing by the server  
(3) performing of the actual check out  
(4) local changes to the model by the client application (shown by black dots)  
(5) check in only of the changed data (deltas)  
(6) updating of the server repository on the basis of the received change data. 
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Chapter 5: Semantic Interoperability 

What is in a name? That which we call a rose  
By any other name would smell as sweet. 

– William Shakespeare,  Romeo and Julia 

Semantic interoperability presents the second, and most challenging, category of 
interoperability problems that have to be tackled in a CEE system. It is insufficiently 
investigated, and its theoretical foundations are not clearly identified. Because of the 
lack of high-level generic solutions, in most existing integration environments the 
problems of semantic interoperability are only weakly supported by dedicated software 
tools, leaving most of the work to ad hoc coded interfaces. This reduces considerably 
the flexibility, the extensibility and the maintainability of the overall environment. 
In this and the next two chapters a novel approach to the solution of the basic semantic 
interoperability problems relevant to CEE will be presented. The focus of this chapter is 
on the overall conceptual issues and the state of research and development w.r.t. 
semantic interoperability, whereas the next two chapters cover specific technical aspects 
of the proposed new approach. 
As a starting point, the problem domain and three alternative solution strategies are 
outlined. It is shown that model harmonisation à la STEP and IFC can considerably 
reduce the complexity of the task, but is not likely to be a universal solution for all kinds 
of problems that have to be dealt with. Model integration, known from database 
research, provides useful background knowledge, but is also insufficient for the targeted 
problem domain. Therefore, the different types of mappings needed to describe the 
correspondences between non harmonised or only partially harmonised conceptual 
models are analysed in detail, and a set of mapping patterns conceived as basic building 
blocks for the solution of most practical mapping problems is proposed. Existing map-
ping approaches are also examined, and yet missing features are identified. At the end, 
a new model mapping approach is suggested, and the aspects that distinguish it from 
other known approaches are briefly discussed. 

5.1 Basic Concepts 

From the standpoint of application developers and end-users of a CEE system semantic 
interoperability is a problem of understanding. 
However, from the standpoint of the system developer it is, again, a problem of appropriate 
conceptualisation. In short it can be defined as the ability of conceptual model schemas to 
share common concepts which can then be used for the actual exchange and sharing of 
information stored in respective repositories according to these conceptual schemas. 
Ideally, in a fully interoperable environment all these schemas could be viewed as a single 
logical system, as if they were parts of one single global schema. 
In practice, as illustrated on fig. 5.1, it does not yet work like that. 
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Mental Models and Cognition 

 

    ⇒  Data Models and Communication 

 

� � 
Fig. 5.1: The general semantic interoperability problem on the example of the object 

“Column”  / adapted from (Junge et al. 1995b) / 

First, in the heterogeneous, fragmented world of CAE/CIC it is unrealistic to assume that all 
component models (architectural, structural, HVAC etc.) can a priori be tightly harmonised 
and integrated. It is not easy, if at all possible, to derive a common model for all applications 
needed in a construction project, and even on a higher level of abstraction (e.g. for project 
management) there do not yet exist such unified models. The major problem in that respect is 
that the scopes of sending and receiving applications are not likely to be known in advance, 
and – due to the fuzzy boundaries of AEC and the wide range of technologies involved – the 
information needs in general are unpredictable (Hannus et al. 1995b). 

Second, even if the specification of a common (super)model was realised in some way, it 
would still be necessary to derive discipline-specific views that correspond to the real-world 
abstractions used by the different players in a construction project (architects, structural 
engineers, cost estimators … ). In order to achieve a wide cooperation in CEE it should be 
possible to work on such discipline-specific models individually and in parallel, but at the 
same time the information contained in each individual model should be available “when 
needed and as needed” (Scherer 1998a; Turk et al. 2000). 

With some imagination, it is not difficult to recognise these aspects of semantic interopera-
bility even on the simple example given in fig. 5.1 above. More elaborate scenarios, as the 
one presented later on in chapter 8, only emphasise the fact that semantic interoperability  is 
in fact a model transformation problem for a distributed non homogeneous model world. 

In a concurrent engineering environment such model transformations may be needed e.g. for: 
– data exchange between major CAD applications; 
– generation of views for presentation, documentation, pre- and post-processing purposes; 
– detection of conflicts between different design solutions; 
– coordinated change management including propagation of the changes made in one 

domain to all other affected domain-specific representations of the same design objects; 
– extracting of management information for overall control and monitoring etc. 
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In order to support such tasks, the design of an interoperable concurrent engineering 
environment must incorporate: 
1) an appropriate strategy to “assemble the pieces of the puzzle”, that fits into the overall 

architecture of the environment; 
2) description methods to represent the inter-model correspondences that should ensure 

consistent data transformations across model views and application platforms; 
3) implementation methods to enable the realisation of the developed formal concepts in a 

running software system. 

An approach that combines all these design aspects in a coherent way will be presented at 
the end of this chapter. However, before that the separate components of the problem have 
to be investigated. It is necessary to outline the problem domain, to examine possible 
solution strategies and related approaches, and to analyse all those issues that may 
influence a model transformation task. 

5.2 The Problem Domain 
On the one hand, the subject of semantic interoperability in each specific environment are, 
obviously, the different representations of the project data in the models within the scope 
of that environment. Thus, it seems that the domain of the problem would differ from case 
to case, but will be well outlined by the set of data definitions in the conceptual models 
under consideration. 

Unfortunately, this “revelation” does not bring much. Indeed, any two models can 
easily be connected through a more or less sophisticated interface derived from the 
examination of the relevant data structures, but for N models nearly N2/2 interfaces will 
have to be written, and even with a shared central model at least N interfaces will still 
be needed. Though practiced with success in many integrated environments of limited 
scope and pre-defined architectures (see e.g. Pohl et al. 1992; Augenbroe 1995a; Watson 
& Crowley 1995), this approach is not satisfactory for any more complex real-world 
environments. Thus, a more general characterisation of the problem has to be found. 

On the other hand, taking in consideration that any model has certain generic features, 
independent of the particular data definitions and content, it should be possible to outline 
the problem domain not in terms of the concrete modelling objects, but through the 
principal relationships within and between the models. 

By looking at the problem from that perspective a similarity to the research in the area 
of database integration can be recognised. In fact, the problems related to model 
transformations between conceptual schemas, commonly known as mapping problems, 
have been intensively studied in the last years, as part of the pre-integration phase in 
several proposed multidatabase integration approaches (Sheth & Larson 1990; 
Spaccapietra et al. 1992; Reddy et al. 1994; Kim 1995). Though carried out in a 
different area, these research efforts help to identify the “real” domain of the semantic 
interoperability problem in CAE/CIC, i.e. the types of conflicts that may appear 
between conceptual model schemas. 

A widely acknowledged classification, drawn from (Spaccapietra et al. 1992), divides the 
types of conflicts between model schemas into four categories: semantic conflicts, 
descriptive conflicts,  structural conflicts  and  heterogeneity / paradigm conflicts. 
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5.2.1 Semantic conflicts 

Semantic conflicts appear between independently developed, or only partially harmonised 
schemas which represent the same or overlapping abstractions of certain real-world concepts. 
In such schemas it is common to find analogous classes which are, however, not absolutely 
identical, or whose sets of instances are not identical. For example, it is possible that a class 
in one schema represents a subset of the real-world objects covered by a respective class in 
another schema, or that there is a semantic overlapping of the instances of two classes where 
none of the instance sets is a subset of the other, but their intersection is not empty. 
Semantic conflicts are quite common for the strongly fragmented world of CAE/CIC. 
Numerous examples of modelling concepts that fall in this category can be given, starting 
with a simple point (which can be defined with 2 or 3 attributes for the individual 
coordinates, with polar coordinates etc.) and proceeding with a long list including almost 
every more elaborate concept, such as building, site, frame, and so on. Practical examples 
of many such conflicts can be found by comparing the IFC Project Model (IAI 1999c) and 
the CIMsteel integration model (Watson & Crowley 1995), both based on the same model-
ling paradigm (EXPRESS) and covering overlapping design domains. 

5.2.2 Descriptive conflicts 

Even when the concepts defined in two model schemas do represent identical sets of real-
world objects, it is possible that these objects are described by different properties 
(attributes). This type of conflicts can be further subdivided into naming conflicts 
(homonymous and synonymous attribute names), value range conflicts, default value 
conflicts, unit and scalability conflicts, and conflicts related to non identical integrity 
constraints for one and the same attribute in the two model schemas. 
Descriptive conflicts are very close in meaning and importance to the semantic conflicts 
described above. In fact, many researchers do not consider them a separate conflict 
category. When two practical models are compared, as e.g. the CIMsteel model and the 
IFC Project Model, both categories appear mostly side by side due to the fact that different 
descriptions of analogous concepts are almost always associated with non identical 
instance sets as well. 

5.2.3 Structural conflicts 

Structural conflicts arise when the same real-world concept is modelled by using different 
modelling concepts in two different schemas, even when these schemas are developed on 
the basis of the same representation paradigm. 
Especially in object-oriented models and in EXPRESS-based conceptual models, there are 
always several alternative ways to define one and the same property of a given class. It is 
possible to define a complex entity property by a single value attribute of set or list data 
type, by a fixed number of individual single valued attributes, or even by one or more 
references to other entities containing these attributes. For example, the developer of a 
structural design model may choose separate classes for building elements and loads 
whereas the developer of a foundation design model may define the loads on the foun-
dation elements directly as value attributes. Another example is the presence or lack of 
"node" entities in these models, in the latter case replaced by simple references to the 
location points of the nodes - see (Katranuschkov & Scherer 1996), as well as the study 
presented in section 7.2. Even in a typical structural domain model, it is possible to 
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suppress the specification of a node concept for the purpose of better alignment with an 
IFC-based architectural model, as shown in (Weise 1999) *). 
Due to the complexity of the involved schemas, structural conflicts appear in practically 
every model transformation task from the AEC domain. Because of this, they have been 
analysed in greatest detail in all known integration and mapping approaches, and are also a 
prime issue in the model mapping approach developed in this thesis. 

5.2.4 Heterogeneity / paradigm conflicts 

Lots of problems arise also when the models to be integrated or mapped are represented by 
using different representation paradigms, e.g. an object-oriented model developed accor-
ding to the UML modelling formalism, a STEP/EXPRESS model, a relational model etc. 
For this kind of conflicts there is no common recipe known, and solutions are sought 
individually for any pair of paradigms. 
The most typical, and at the same time most challenging task here is the transformation of 
an object-oriented model (quite common for many of today’s applications) to/from a 
relational data model (quite common for the database systems used in today’s practice). 
The great difficulty is that the relational modelling paradigm offers by far less modelling 
concepts than the object-oriented paradigm. In (Schneider 1992) it has been shown that in 
the general case an EXPRESS-based data model cannot be mapped completely to a relatio-
nal database because no equivalent constructs can be found for some of the EXPRESS 
modelling concepts**). Beside this, such kinds of model transformations imply, almost 
inevitably, structural conflicts as well, due to the fact that the different paradigms enforce 
the modelling of the same real-world concepts by different modelling concepts on the 
detail level. 

5.3 Solution Strategies 
In principle, there exist three distinct strategies that can be applied to the outlined problem 
domain. These are: (1) model harmonisation, (2) model (or schema) integration, and  
(3)  the proposed in this thesis strategy of model mapping. 

Model harmonisation aims at providing a general methodology which should enable the 
design of a priori consistent data models, i.e. before their use in any practical environment. 
It is a strategy of “integration by intention”, related to the process of model development 
itself. Typical efforts in this direction are being undertaken in ISO STEP (in general) and 
in IAI (specifically for the building construction sector). 

In contrast, model integration aims at establishing a posteriori, i.e. by already existing 
data models, a semantically conflict-free environment with guaranteed overall consistency. 
It is a strategy of “integration by definition”. An outstanding area of such efforts is the 
                                                 
*) Although the mapping to the architectural domain model will in that case be easier to achieve, 

this will be at the expense of the mappings eventually needed to transform the structural domain 
model to the data models of structural analysis applications where the separate definition of nodes 
is almost always explicitly required. The problem is thus only shifted, but not solved. 

**) According to the quoted study, such “non translatable” EXPRESS constructs include local and 
global rules, derived attributes, functions and procedures; a complete translation is stamped as 
“not possible” also for complex ANDOR inheritance cases and for UNIQUE constraints. 
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development of federated systems for existing enterprise databases, especially where the 
high reliability of already existing data is of primary concern. 
The essence of model mapping, as proposed in this study, is also in the development of 
methods that can be used to bring together non harmonised model data. However, instead of 
attempting to integrate the involved conceptual models when the environment is designed, 
the model mapping methods aim at enabling the semantically correct transfer of the data 
contained in one model into the representation required for another model only when needed, 
at run-time. Thus, by separating the integration and consistency requirements for the overall 
system, an “integration by demand” is hoped to be achieved. 
Depending on the circumstances, these three basic strategies can be inter-mixed in some 
appropriate combination. However, in my opinion, due to the specific situation in the 
building industry and the specific requirements of concurrent engineering, the use of model 
mapping methods will always be needed to fill in the gaps and to glue things together. 

5.4 Model Harmonisation 

The harmonisation of the data models for a given technical domain already at the stage of 
their conceptual development, without having in mind any concrete realisation, is a primary 
concern in the area of standardisation. To support this strategy, a comprehensive metho-
dology has been developed in the frames of the ISO STEP standard (Burkett & Yang 1995; 
Owen 1997), and a number of practical rules w.r.t. the procedures and stages of model 
development have been set up by the IAI as well (Liebich & Wix 1998; IAI 1999a, b)*). 

Although there are some differences in the approaches, model harmonisation can generally 
be characterised by the following process: 
1) Specification of fundamental “low-level” concepts, such as geometry, materials, units 

of measure etc., in “resource” schemas intended for use in any application domain  
(this step is supposed to ensure that commonly needed objects like points, lines, date, time will be 
represented always in the same way). 

2) Identification of requirements and conceptual design of each application/domain model 
without much attention paid to integration issues  
(this step is supposed to give domain experts the freedom to define the specific information 
requirements of the domain without having to bother about more technical aspects). 

3) Structural harmonisation of the developed preliminary version of a domain model with 
the resource schemas. 

4) Merging of domain models into a consolidated schema  
(though this is admitted to be a difficult task by most advocates of model harmonisation, the 
measures undertaken in steps 1-3 are anticipated to ensure the success of the effort). 

                                                 
*) Whilst both STEP and IAI name the process “model integration”, the term “harmonisation” 

seems more appropriate here for the following reasons: (1) An integration of this kind is quite 
different from “model integration” as understood in computer science because it does not deal 
with the concrete realisation of a consistent software system, but intends to provide the 
prerequisites for the interoperability of any such (later developed) system; (2) The integration 
efforts occur at the level and with the instruments of conceptual modelling; their goal is the 
definition of conflict-free schemas, and not the development of methods that would enable the 
tackling of such conflicts when they arise. 
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5.4.1 Model harmonisation in ISO STEP 

The STEP standard holds strictly to the development process outlined above. However, as 
STEP is conceived to cover the information requirements of any industry sector, and not 
just AEC, its methodology is respectively more complicated and requires considerable 
resource investments. 
In general, STEP-based model harmonisation foresees the following conceptual integration 
stages (Burkett & Yang 1995): 
1) Intra-resource integration:  This type of integration can actually be considered finalised 

within STEP. Its result is a consistent set of resource schemas, the so called “Integrated 
Resources” (ISO 10303, parts 41 to 49). Along with a set of informal rules stating what 
constitutes a “good” model (generic, consistent, structurally compatible), the Integrated 
Resources (IR) provide the baseline of the whole harmonisation approach. 

2) Structural integration of application protocols through the integrated resources:  This 
type of integration is related to the prescribed procedure for the development of appli-
cation protocols (APs). In order to be prepared for later integration with other APs, an 
application protocol is designed first as an “Application Reference Model” (ARM) which 
need not necessarily be aligned with any other implementable parts of the standard, but is 
subsequently re-designed so that the integrated resources are used at all places where 
respective real-world concepts have been referenced. This process is called 
“interpretation” to reflect the fact that the IRs, incorporated into the AP from structural 
standpoint, are “interpreted” by the AP which provides the specific context for their use. 
The resulting “Application Interpreted Model” (AIM) is supposed to be fully prepared for 
later harmonisation with other STEP APs. The whole procedure is strictly formalised, 
requires meticulous documentation, and is in general very time-consuming. 

3) Semantic integration of APs through application interpreted constructs:  This final 
stage of the integration process has been introduced after it was realised that the inte-
gration of the resource schemas into application protocols is not sufficient to provide 
the desired interoperability. The application interpreted constructs (AICs) are dedicated 
collections of IRs intended to serve multiple applications that would “interpret” these 
resources in a similar fashion (ISO/TC184/SC4/N534 1997). In this way AICs are 
supposed to tackle the semantic overlaps in the context of two or more APs. 

Thus, if a system needs to use two or more AIM schemas, the suggested methodology is to 
create a new schema which includes the AIM schemas in the same way an AIM schema 
includes AIC schemas. This should enable the combination of multiple APs for a single 
implementation that will then contain sufficient information for an expanded application 
context while maintaining the specific constraints and identity of each individual AP to 
accommodate conforming data (Yang 1995). 
Ideally, this strategy could lead to fully consistent models where the main model trans-
formation problems are solved already at the outset. However, it has also some significant 
practical drawbacks: 
− The process of model interpretation, i.e. converting an ARM to an AIM, is very elabo-

rate; nonetheless, it does not bring the full desired effect, leaving a lot of work to the last 
harmonisation stage. Work of that magnitude cannot be organised easily in a fragmented 
industry sector like building construction. Thus, it is not surprising that at present only 
one “construction” AP with limited goals has been successfully finalised (AP 225 
“Building Elements Using Explicit Shape Representation” – ISO 10303-225 1999). 
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− Discipline-specific APs for the same domain may often have different context, but many 
overlapping concepts (such APs are for example the drafts of AP 230 “Building 
Structural Frame Steelworks” and AP 228 “Building Services: Heating, Ventilation and 
Air Conditioning”, though both have been recently cancelled). According to the current 
methodology, if such APs are to be harmonised, there would be a substantial number of 
AICs needed which would make the whole process quite convoluted. 

− At last, IRs and AICs provide actually only low-level integration support. There is no 
requirement for any common construction on the level of ARM, even though in some of 
the APs developed in STEP a high-level of harmonisation has been implicitly foreseen, 
as e.g. in the AP 214 “Core Data for Automotive Mechanical Design Processes”  
(ISO 10303-214 1997). However, such APs tend to become very large by themselves 
(e.g. AP 214 is documented on over 2600 pages) and it is not clear how a harmonisation 
with other STEP parts can ever be achieved in practice. 

The above problems do not mean that the harmonisation efforts undertaken by ISO STEP 
have no benefits. Especially with the design of the integrated resources a clear conceptual 
basis for any more sophisticated models is achieved. Even though this does not bring full 
integration (which has actually never been more than a future vision), it nevertheless 
facilitates greatly the solution of many practical semantic interoperability tasks. 

5.4.2 Model harmonisation in the IFC framework 

The IAI adopts a more pragmatic harmonisation strategy, better suited to the available 
resources in the AEC sector*). Whilst the procedure is principally the same, many of the 
rules of the ISO STEP methodology are revised and simplified. Thus, the IFCs also make 
use of the STEP IRs, but their content is significantly pruned; ARM development 
undergoes the same design stages, but the tedious process of interpretation is completely 
cut off which leads to what is (unofficially) known as "implementable ARMs" (the IAI 
uses another terminology here, but the idea is basically the same). 
However, in spite of many similarities with the STEP approach, the IFC harmonisation 
strategy is different in one substantial point. Taking in consideration the (positive and 
negative) experience from STEP and projects like ATLAS and COMBI, it introduces the 
concept of a core model as a baseline for all conceptual modelling and integration efforts. 
The ideas of the core model encompass the interpretation of common requirements, the 
specification of common data and the development of a common framework (Wix 1996). 
The purpose of such a framework is to provide a consistent basis for the development of 
more specific domain data models (West & Fowler 1996). 
The IAI assumes that in this way the independently developed domain models 
(architectural, structural, HVAC etc.) will tend to be consistent. Thus, it follows in effect a 
top-down pre-harmonisation policy whereas in ISO STEP a substantial part of the 
integration process is predestined to bottom-up post-harmonisation.**) 

                                                 
*) A short overview of the IFC methodology is presented in appendix VII, section VII.2;  

an overview of STEP is presented also in appendix VII, section VII.1. 
**) In fact, such efforts w.r.t. the structural domain are already in progress in the Japanese Chapter 

of the IAI (IAI ST-2 1998), as well as in the German Chapter (not yet published). 
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Fig. 5.2 below shows the modular approach of the IFC architecture and provides many 
hints to the envisioned process of model harmonisation. However, it also gives a notion for 
the limits of the harmonisation approach. Thus, while the three lower layers of the 
architecture are fully integrated (in the sense of STEP), subtyping or using constructs 
deeper in the model hierarchy in a strictly pre-defined way, the domain/application layer is 
not. In order to achieve its integration into the overall framework, an intermediate 
“interoperability adapter” is introduced, along with the concept of mapping. 

How this is going to work in practice is currently only vaguely covered in the available 
IFC documentation. 

independent, 
only partially 
harmonised 

bridge 

 

fully harmonised 

Fig. 5.2: The IFC layered model architecture / adapted from (IAI 1999b) / 

As a whole, the IFC framework provides many useful concepts that can facilitate the 
semantic interoperability in an integrated concurrent engineering environment. It does not 
guarantee automatically that the domain data models will be fully harmonised, but it 
contributes to reduce as much as possible the occurrence of conflicts. However, even with 
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IFC as basis, many “technical” semantic interoperability problems remain open at the 
domain model level. These are: 
− the very development of domain models*); 
− the “horizontal” exchange of information between different discipline models which 

may contain non harmonised overlapping concepts; 
− the possibly different semantic richness and the different definition of conceptually 

similar objects (“wall” is not like “wall” in architectural, structural, HVAC models). 

5.5 Model Integration 
The model integration strategy comes from the area of database research. In the last years, 
with the growing use of multiple databases, a number of different approaches for the 
definition of an integrated database schema for a set of partially harmonised (overlapping) 
schemas have been suggested. Though strongly varying in representational power and 
implementation details, all these approaches follow principally the same integration 
process (Conrad 1997): 
1) Pre-integration phase (mainly manual) 

detection of all schema overlaps 
2) Comparison of the overlapping data structures (mainly manual) 

detection of the inter-schema conflicts 
3) Mapping (semi-automatic) 

definition and implementation of the inter-schema correspondences 
4) Restructuring and merging (highly automated) 

rearranging, if necessary, of the information in the existing schemas  
and generation of the integrated model. 

The emphasis of all model integration approaches is on the final (and partially the pre-
final) of the above phases. The main objectives are to ensure high reliability and 
continuous consistency of the environment, understandability of the global model (which is 
supposed to be used directly by some applications) and minimal redundancy of the data. 
These heavy requirements have strongly influenced the capacity of all proposed methods 
with the following consequences: 
− most of the efforts have been directed towards a methodology for the design phase of 

the environment involving many manual operations, whereas in the run-time system 
data access, distribution and consistency are supposed to be managed automatically; 

− the targeted application domains include mainly the integration of existing business or 
banking databases with relatively simple relational structures; 

− some complex representational issues are intentionally sacrificed for the sake of better 
reliability and performance. 

The selected approaches outlined below give an impression of the wide variety of proposed 
methods, but show also their common features as well as their drawbacks w.r.t. the overall 
solution strategy sought for CEE. 
                                                 
*) There is not much experience in the development of domain models at this time, but efforts like 

ST-2 (IAI ST-2 1998) show that even the harmonisation of models intended as “internal” to the 
IFC framework is not easy to achieve. 
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5.5.1 Superviews 

Superviews (Motro 1987) is one of the earliest approaches for the virtual integration of 
multiple databases. The proposed method is based on a set of ten operations defining the 
transformations between the given source schemas and the “to be” superview schema.  
The goal is to generate and populate the “superview” model enabling bi-directional 
information transfer with the source models. The ten suggested operations are: 
− Meet, producing a sub/superclass taxonomy from two overlapping entities having a 

common key; 
− Fold, allowing to combine sub/super classes into a single generalised entity; 
− Aggregate, creating a 1:N aggregation for an existing base entity and one or more of its 

complex (aggregate) attributes; 
− Telescope, reducing the target structure by assigning the attributes of a referenced 

entity directly to the entity that references it; 
− Join, producing a union of overlapping entities; 
− Combine, allowing to merge two entities that have identical types into a new entity with 

a different name; 
− Connect – as combine, but adopts the name of one of the original entities; 
− Add, allowing the addition of new attributes to an entity, using a pre-defined function to 

assert their values; 
− Delete, allowing to remove entities that are not relevant to the superview,  and 
− Rename, allowing to rename an entity without changing its content in any other way. 

Superviews tackles all problems that can be described by these operations with guaranteed 
consistency, but offers no help for problems that fall outside their capacity. There are some 
provisions for handling sub/super relationships, but they require the availability of explicit 
common keys which are typical only for relational DBMS. Attributes derived by functional 
transformations, extracted from aggregate values or requiring 1:N or M:N correspondence 
between the source models and the superview are not supported at all. As such cases are 
typical for the complex modelling domain of CAE/CIC, Superviews cannot be used to 
solve the semantic interoperability problems in the targeted CEE, but it provides a struc-
tured method for handling certain mapping patterns which is worth considering as part of a 
more general model mapping approach. 

5.5.2 Assertion based integration 

Different variations of assertion based integration have been suggested in several research 
studies. The core of the original method, as described in (Spaccapietra et al. 1992) and 
(Spaccapietra & Parent 1994), is in the definition of correspondence assertions expressing 
the relationships between the data objects of the “to be” integrated model and the existing 
source models. Its main objective is to ensure the overall consistency in a heterogeneous 
multidatabase system containing data defined according to different representation 
paradigms. However, similar to Superviews, the assertion based integration approach can 
tackle mainly different variations of the relational paradigm; object-oriented models are 
more or less out of scope. 

The method involves the following steps: 
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1) Converting each schema into a canonical form enabling the unified representation of 
three kinds of concepts: objects, value attributes and reference attributes; 

2) Definition of the correspondence assertions for the elements of the base schemas, 
thereby distinguishing between object assertions, simple attribute assertions, complex 
attribute assertions and path correspondence assertions with the respective subtypes 
equivalence, inclusion, intersection and disjunction; 

3) Identification and execution of integration rules that accept as input entities of two 
source schemas to produce an entity in the integrated schema; e.g. for the case  
E1 ≡ E2 the rule  
 E = integrate-join(E1,E2,attcor2(a11,a22),

 … ,attcorj(a1j,a2j),
 … ))  

creates a new object type E in the integrated schema using the bijective transformations 
defined by attcorj(a1j,a2j) which guarantee the consistency of all instances of E, 
E1 and E2. 

Best formalised and automated is the last of the above steps, whereas the greatest part of 
the first two steps has to be performed manually by the developer of the integrated model. 
The assertion based integration approach is applicable to relational and Entity-Relationship 
models that do not contain M:N relations on attribute level. With some modifications it can 
be applied also to object-oriented representations that do not require the use of inheritance 
and bi-directional relationships as these are not supported. It is also not sufficient for the 
solution of the semantic interoperability problems in CEE, but provides several useful hints 
about certain types of mappings that need to be considered. 

5.5.3 Formalised object-oriented integration 
The object-oriented integration approach proposed in (Reddy et al. 1994) comprises a set 
of sophisticated formal procedures enabling the derivation of an integrated schema with 
guaranteed consistency and non redundancy of the data. Its primary objective is to provide 
a lean global model supporting queries for all “globally relevant” data, but hiding the 
details of the local models from the “global users” of the system. For that purpose,  
a 4-layer architecture is suggested as follows: 
− local schema layer, containing the original source schemas intended for use by local 

applications; 
− local object schema layer, containing model schemas that are semantically equivalent 

to the source schemas, but are represented according to the proposed object paradigm 
for the global model; 

− global object schema layer, containing the integrated schema,  and 
− global view layer, containing external view schemas derived from the global model and 

intended for use by global applications. 
The integration method consists of the following two principal steps: 
1) Formal representation of all source schemas in a unified format defined by  

 Si = { Oi, Φi, SKi, MKi }  
where Si is the respective source schema, Oi is the set of all its object types together with 
their attributes, Φi is a relationship matrix comprised of tupples φi

 = <σ,δ> specifying 
four different kinds of relationships between the objects in Si (subclass=1 and non 
subclass=0 for σ, and disjoint=1, overlapping=0 for δ), SKi is the semantic knowledge 
about the schema describing, through meta attributes, the integrity conditions for all 
actual attributes, and MKi is the mapping knowledge comprising the rules needed to 
convert each object  oi ∈ Oi  to the respective object  oG ∈ OG  in the global schema. 
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2) Generation of the global schema SG = U Si by using the above formalised represen-
tations of Si, along with a set of formal algebraic rules for the construction of the global 
relationship matrix ΦG = Σ Φi, and interactive user input for those elements of ΦG which 
represent structural conflicts that cannot be tackled automatically by the method. 

As a whole, the approach is well suited for a subclass of object-oriented models that can be 
described by the developed formalism. It is also one of the few approaches that can provide 
almost complete non redundancy of the data in the integrated system. However, it cannot 
process several modelling concepts that are typical for the sophisticated product model 
world of CAE/CIC, including such important issues as multiple object references and 
object aggregations. As a consequence, this approach is also not suitable as an enabling 
method for CEE. Unfortunately, it is also of limited use for the development of formalised 
model mapping methods because the mapping knowledge component (MK) is not yet 
sufficiently developed. 

In summary, all model integration approaches show that schema conflicts can be 
adequately tackled only by relatively simple data models. The biggest problems provide 
object/attribute aggregations which are more or less outside the scope of practically any of 
the known methods, but are quite important in the modelling of engineering products. On the 
other hand, the available features of today’s databases enable the construction of large 
integrated systems, even if application interfaces have to be hand-coded. There are several 
known approaches utilising a sophisticated engineering database as the glue of a 
comprehensive design environment comprised of several heterogeneous applications 
(Encarnação & Lockemann 1990; Assal & Eastman 1995). In (Sauter & Käfer 1995) an 
interesting methodology for the use of EXPRESS models as the basis for such federated 
systems is suggested. In many situations this may well be the most adequate solution. 
However, in a concurrent engineering design environment it enforces an overall consistency 
which may be counterproductive as it can lead to unnecessarily sequentialised processes only 
because in a long transaction, e.g. when the structural system of a whole building is 
designed, a whole lot of data will need to be locked for hours, or even for days. 

5.6 Model Mapping 
In this section, the model mapping approach proposed as basis for the solution of the 
semantic interoperability problems addressed in this study will be analysed in detail. With 
this approach many of the difficulties experienced by the other presented approaches can be 
overcome, and a broader coverage of inter-schema conflicts can be achieved. This is due to 
the fact that by applying a model mapping strategy neither continuous consistency, nor non 
redundancy of the data need to be enforced to the overall system, which leads to “softer” 
integration requirements and clearly separated procedures for mapping, matching, consis-
tency and integrity management. Thus, by model mapping, schema development must not be 
closely tied to prescribed harmonisation rules, and an integrated global model is not a 
necessary requisite of the environment, even though it would surely facilitate most of the 
mapping tasks. 
As a whole, the overall procedure is very similar to the model integration process: 
1) Detection of the schema overlaps (mainly manual) 
2) Detection of inter-schema conflicts (mainly manual) 
3) Definition of the inter-schema correspondences (highly formalised) 

with the help of a formal mapping language 
4) Use of appropriate mapping methods to perform the actual (highly automated) 

transformations on entity instance level when needed at run-time. 
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By comparing the two procedures it can easily be recognised that there is a principal diffe-
rence only in the 4th step. However, exactly this difference allows to develop new, more 
comprehensive description methods for the most essential part of the process, i.e. step 3. 
At first, it must be noticed that the types of conflicts outlined in section 5.2 do not appear 
separate from each other. Rather, the mapping of a conceptual model, or even of one class 
in a model, is often related to several different conflict types which have to be solved 
coherently. Therefore, for the development of a mapping formalism it is necessary to 
analyse all components involved in a model transformation in their inter-relationship, i.e.: 
− the representation paradigms used to describe the data models, 
− the basic set relational operations, 
− the principal inter-schema mapping types, 
− mapping patterns, deduced from theoretical background knowledge  

and from the examination of typical practical cases,  and 
− basic mapping language requirements. 
Here we shall assume that we have to deal primarily with EXPRESS-based data models. 
Thus, we shall not consider problems related to heterogeneity conflicts. Further, we shall 
assume that the fundamental relational algebra operations known from RDBMS have to be 
supported in the mapping of conceptual data models as well, because in many cases, 
especially when a model pre-harmonisation policy is pursued, the local models can be 
roughly seen as views of a more broader “integrated” data model*). 

5.6.1 Formal representation of the basic EXPRESS data structures 

A formal representation of the relevant data structures in an EXPRESS data model con-
forming to (ISO 10303-11 1994) is both a prerequisite for the development, and a key for 
the understanding of the basic mapping types and patterns discussed further in this section. 
EXPRESS data models can be represented formally as follows: 
Let N be the domain of all natural numbers, N be the set of all names in an EXPRESS 
schema (S), A be the set of all correct attribute specifications, E be the set of all correct 
entity specifications, and  T(S) be the set of all data types in a model. Then: 
1. Each attribute specification in an entity class can be represented by the 4-tupple: 

attr = < aname, atype, opt, d_expr > 

where: aname ∈ N is the attribute name  
 atype ∈ T(S) is the attribute type  
 opt is a predicate which is true when the attribute is optional,   
   and false otherwise  
 d_expr is an expression for the evaluation of derived attributes, with  
   d_expr = ∅  when the attribute is not derived,  and  
   d_expr = exp, with type(exp) = atype ∈ Tbase  when attr is derived. 
In addition,  ∀ attr ∈ A holds:  d_expr ≠ ∅ ⇒ ¬opt ∧ atype ∈ Tbase . 

                                                 
*) This approach is well known from many research and development projects whose main objective 

has been the integration of design tools on the basis of a common integrated data model (IDM). 
Work in this direction has been conducted e.g. in the COMBINE project (Augenbroe 1995a), in the 
ATLAS project (Böhms & Storer 1994), by (Amor & Hosking 1995) etc. Although not explicitly 
stated, and not necessarily limited to that, the current IFC architecture assumes a similar approach. 
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2. An EXPRESS entity class can be defined formally by the 5-tupple: 

ent = < ename, e_sup, e_attr, e_unique, e_lc > 

where: ename ∈ N is the name of the entity class  
 e_sup is the set of all direct superclasses, such that  
     e_sup = {e_sup1,...,e_supn },  e_sup ⊂  E,  ent ∉ superclass(ent) 
 e_attr is the set of all attributes of ent, such that 
     e_attr = {attr1,...,attrp },  and 
     ∀ i  attri ∈ A ,  i ∈ [1..p], 
     ∀ attri, attrj ∈ attributes(ent),  i ≠ j, i,j ∈ [1..p] ⇒ 
   aname(attri)  ≠  aname(attrj) 
 e_unique is the set of all unique (non ambiguous) entity attributes, such that 
     e_unique = {e_unique1,..., e_uniqueq },  and 
     ∀ i ∈ [1..q] e_uniquei ∈ e_attr,  q ≤ p 
 e_lc is the set of all local constraints on the values of the entity attributes, with 
     e_lc = {e_lc1,...,e_lcr }  and  ∀ i ∈ [1..r] type(e_lci) = LOGICAL . 

3. An EXPRESS schema S can be defined by the tupple: 

S = < ent, R > 

where: ent is the set of all entity specifications in S, such that: 
     ent = { ent1,...,entn },  and 
     ∀ i ∈ [1..n] enti ∈ E 
     ∀ enti,entj ∈ entity(S), i≠j, i,j ∈ [1..n] ⇒ ename(enti) ≠ ename(entj) 
     and R is the set of all global rules in the schema*). 

4. The set of all data types T(S) in an EXPRESS schema S can be defined by: 

T(S) = { Tbase U Taggr(S) U Tconstr(S) U Tnamed(S) } 

with: 
Tbase = { BOOLEAN, LOGICAL, INTEGER, REAL, STRING } 
Taggr(S) = { Tarray(S) U Tset(S) U Tbag(S) U Tlist(S) } 
Tarray(S) = {ta | ta = < low,high,t >, low, high ∈ N, low ≤  high, t ∈ T(S)\ta }, 
   where: 'low' and 'high' are the lower and upper boundaries 
     of the array, and 't' is the type of the array elements 
Tset(S) = {ts | ts = < min,max,t >, min, max ∈ N, 0 ≤  min ≤  max, t ∈ T(S)\ts } 
Tbag(S) = {tb | tb = <

 min,max,t >, min, max ∈ N, 0 ≤  min ≤  max, t ∈ T(S)\tb } 
Tlist(S) = {tl | tl = < min,max,t >, min, max ∈ N, 0 ≤  min ≤  max, t ∈ T(S)\tl } 
   where: 'min' and 'max' are the minimum and maximum number 
       of elements in the set, bag or list respectively, 
       and 't' is the type of each element 
Tconstr(S) = { Tenum(S) U Tselect(S) } 
Tenum(S) =  < enum_name,enum > 
   where: enum_name ∈ N is the name of the enumeration, 
     enum = { ten | ten = < e1,...,en > }, ei ∈ N, i ∈ N, 
     and ei is  the  name  of  the  ith  enumeration  type 

                                                 
*) Rules are not related to the data representation itself, but to the consistency of the data model. 

Therefore, they are not relevant to the mapping problems and are not considered further here. 
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Tselect(S) = < sel_name,sel > 
   where: sel_name ∈ N is the name of the select type, 
     sel = { tsel | tsel = < s1,...,sn > }, 
     si ∈ Tnamed(S), i ∈ N 
Tnamed(S) = { Tdef(S) U Tent(S) } 
Tdef(S) = < def_name,td > 
   where: def_name ∈ N is the name of the defined type,  and 
     td ∈ T(S), td ∉ Tent(S) 
Tent(S) = {te | te = ename(ent), 
     ent = <ename, e_sup, e_attr, e_unique, e_lc> ∈ S }. 

5. The domain Ddt of a data type dt ∈ T(S) depends on that type as follows: 
 if type(dt)  = BOOLEAN  ⇒   Ddt = { FALSE, TRUE } 
 if type(dt)  = LOGICAL  ⇒   Ddt = { FALSE, TRUE, UNKNOWN } 
 if type(dt)  = INTEGER  ⇒   Ddt is the domain of all integer numbers 
 if type(dt)  = REAL   ⇒   Ddt is the domain of all floating point numbers 
 if type(dt)  = STRING  ⇒   Ddt is the domain of all valid strings 
 if type(dt) ∈ Tarray(S) ⇒   Ddt =  d1(t) × ... × dn(t) 
           with di(t) = Dt,  i = 1 .. n,  n = high – low + 1 *) 
 if type(dt) ∈ Tset(S)  ⇒  Ddt = { s | s = {t1 ... tn} } 
           with ti ∈ Dt,  i = 1 .. n,  min ≤  n ≤  max *) 
 if type(dt) ∈ Tbag(S)  ⇒   Ddt = { b | b = {b1 ... bn} } 
           with bi = < ηi,ti >, ηi ∈ N,  ti ∈ Dt,  i = 1 .. n, 
              min ≤  η1 +...+ ηn ≤  max *) 
 if type(dt) ∈ Tlist(S)  ⇒   Ddt = { lst | lst = {e1 ... en} } 
           with ei ∈ Dt,  i = 1 .. n,  min ≤  n ≤  max *) 
 if type(dt) ∈ Tenum(S)  ⇒   Ddt = enum 
 if type(dt) ∈ Tselect(S) ⇒   Ddt = sel 
 if type(dt) ∈ Tdef(S)  ⇒   Ddt is the domain of the underlying type td 
 if type(dt) ∈ Tent(S)  ⇒   Ddt = { e | e ∈ Dent }, ent ∈ E . 

6. The domain Dent of an entity class ent ∈ E , specified by 
  ent = <ename, e_sup, e_attr, e_unique, e_lc> and 
  attributes(ent) = { attr1 ,..., attrn } ,  
 can be defined as: 

Dent = D ( type(attr1) × ... × type(attrn) ) 

7. Finally,  an  instance ei of  an  entity  class ent can  be  defined  as: 
 ei = [ a1, ... , an ], 
 where: ∀ i ∈ [1 .. n ]   ai ∈ Dtype(attri). 

                                                 
*) see definition 4 above for low, high, min, max and t respectively. 
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5.6.2 Set relational operations 

Pure relational data models have more limited representational power compared to object-
oriented models. However, different variations of relational algebra operations can be 
encountered in many model transformation problems as well, especially when the target 
model has the typical characteristics of a database view w.r.t. the source model. Therefore, 
the representation of such operations must also be considered in the development of a 
model mapping formalism. 

The basic set relational operations used in RDBMS are projection, selection, cartesian 
product, union and set difference. With their help a number of commonly used higher order 
operations, such as intersection, join, natural join etc. can be derived. All these operations 
are covered in detail in the database literature (Ullman 1988; Codd 1990) and will not be 
discussed further here. Later on, in chapter 6, it will be shown how these operations are 
supported by the mapping formalism developed in this thesis. 

5.6.3 Principal mapping types 

Although mapping problems have been intensively examined over the last ten years, there 
does not yet exist a solid understanding, neither a common formalism to define the basic 
mapping types involved in model transformation and model integration tasks. 

Bijnen (1995) draws eight basic mapping types that might occur in a typical model trans-
formation problem, all of which fall in the category “structural conflicts” (see fig. 5.3). 

∅

Attribute

Entity
Entity Æ Entity
Attribute Æ Attribute
Entity Æ Attribute (entity destructuring)
Attribute Æ Entity (entity construction)
Entity Æ ∅    (entity deletion)
Attribute Æ ∅ (attribute removal)
∅   Æ Entity     (entity creation)
∅   Æ Attribute  (attribute addition)

x

 

Fig. 5.3: Basic mapping types  / after (Bijnen 1995) / 

The above figure provides a good overview of the types of structural conflicts that have to be 
dealt with in principle, but it does not give many hints as to what language formalisms and 
mapping techniques are needed to handle each of the presented cases. More detailed analyses 
of structural mapping types, taking in consideration the involved data types and the 
cardinalities of the inter-schema relationships have been made in (van Horssen et al. 1994; 
Katranuschkov 1995; Amor 1997). On the basis of these analyses, table 5.1 showing the full 
set of structural mapping types has been derived. In this table all meaningful combinations 
for entity classes, entity instances and entity attributes with cardinalities of zero (0), one (1), 
constant greater than 1 (C) and variable numbers (N) have been taken into account. To show 
that many-to-many mappings can involve different cardinalities for the source and the target, 
the letters B and M are used instead of  C and N in two cases. 
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Table 5.1: Full set of structural mapping types 

Cardi-
nality 

Class Æ Class Entity Æ Entity
Inst.  Inst. 

Attr. Æ Attr. Entity Æ Attr. 
 Inst.    

Attr. Æ Entity
  Inst. 

0 : 1 + + +   

1 : 0 + + +   

1 : 1 + + + + + 

1 : C + + + + + 

1 : N  +   + 

C : 1 + + + + + 

C : B (+) (+) + + + 

C : N  (+)   + 

N : 1  +  +  

N : C  (+)  +  

N : M  (+)    

The main differences between this table and the analysis presented in (Amor 1997) are in 
the added column representing the mapping types on class level, as well as in the mapping 
types given in parenthesis (+). 

The mappings on class level are actually a subcategory of the mappings on instance level, 
but they are also the starting point for the definition of a mapping formalism and should 
therefore be considered separately. Besides, in pre-harmonised models it would not be 
unusual to specify many of the needed model transformations entirely on that level, 
without additional filtering or selection conditions for entity instances, and thus it is 
desirable to have a short and expressive format for such cases. 
The parenthesized mapping types in the table can be avoided if both the source and the 
target model are constructed so that each N:M relationship is broken down to N:1 and 
1:M relationships with the help of relationship objects. This approach is in fact 
consistently supported in the IFC Project Model by a subtree of entity classes with the 
abstract superclass IfcRelationship as their root. Probably because of a similar pre-
sumption, these mapping types have not been considered necessary in the ATLAS project 
(van Horssen et al. 1994), and were not realised in practice in the COMBI project as well, 
even though a small example of a N:M mapping has been successfully tested 
(Katranuschkov & Scherer 1995). 

A comprehensive checklist of inter-schema conflict types applicable to relational schemas 
has been given by (Kim & Seo 1991). This checklist, shown in table 5.2 below, has been 
used often as basis for the consideration of multidatabase integration issues in relational 
DBMS. However, even if the presented conflict types in this table appear quite detailed, 
there are almost no new mapping types to be found in it. For example, it is easy to see that 
the conflict types I.A.1.a and I.B.1.a are only more detailed descriptions of certain 
commonly met descriptive conflicts, the conflict types I.A.1.b, I.B.1.b and I.B.1.c are in 
fact specific structural conflicts etc. The conflict type II.A (“wrong data”) is a new 
category, quite important for the integration of existing database systems, but with little 
relevance to model transformation problems because (1) many such incorrect data cannot 
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be detected anyway as they do not necessarily lead to formal inconsistencies in the models, 
and (2) the consideration of such kinds of conflicts is not really in the scope of a mapping 
task, but should eventually be tackled by a consistency checking module, prior to a 
mapping. Thus, the only interesting new conflict types to be considered are the ones  
listed in II.B. Item II.B.1 addresses the problems associated with type/value conversions, 
such as integer → real, 0 → "insufficient", 1 → "sufficient" etc. Item II.B.2 
covers the problems associated with unit conversions, such as kN/m3 → kg/cm3, and item 
II.B.3 covers problems associated with different numeric precisions, which is more an 
implementational, than a conceptual issue. 
As a whole, table 5.2 can be quite helpful for estimating the difficulty of a particular 
mapping problem, but it is also not sufficiently detailed to provide the necessary hints for 
the development of a mapping formalism. For that purpose, a more detailed micro-level 
analysis of common mapping patterns which can be used as “building blocks” in the 
development of a mapping specification needs to be performed. 

Table 5.2: Conflict types between relational model schemas  /after (Kim & Seo 1991) / 

I. Schema conflicts 
 A. Table vs. table conflicts 
  1. One-to-one table conflicts 
   a. Table name conflicts 

  different names for equivalent tables 
  same name for different tables 

   b. Table structure conflicts 
  missing attributes 
  missing but implicit attributes 

   c. Integrity constraint conflicts 
  2. Many-to-many table conflicts (as in one-to-one) 
 B. Attribute vs. attribute conflicts 
  1. One-to-one attribute conflicts 
   a. Attribute name conflicts 

  different names for equivalent attributes 
  same name for different attributes 

   b. Default value conflicts 
   c. Attribute constraint conflicts 

  data type conflicts 
  attribute integrity constraint conflicts 

  2. Many-to-many attribute conflicts (as in one-to-one) 
 C. Table vs. attribute conflicts 
II. Data conflicts 
 A. Wrong data 
  1. Incorrect entries 
  2. Obsolete data 
 B. Different representations 
  1. Different expressions 
  2. Different units 
  3. Different precision 
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n 

o 

p 

5.6.4 Novel mapping patterns 

The identification of mapping patterns has not been addressed in any known analyses of 
mapping problems. However, typical mapping patterns can provide a lot of clues for the 
development of a mapping formalism because they allow for better understanding of what 
and how has to be mapped in each particular case. 
The patterns presented on the next pages (table 5.3 to table 5.7) have been developed by 
the author by taking into account the theoretical considerations from the preceding 
sections, as well as several examined practical examples. The first two tables, depicting in 
some more detail the mapping types “Class → Class” and “Entity instance → Entity instance”, 
are shown mainly for completeness. The other three tables are dedicated to the examination 
of different attribute level mapping patterns. They are related to the modelling concepts of 
EXPRESS data models, but can be used with most of the concepts of other object-oriented 
modelling paradigms as well. They reveal a new perspective to the development of 
attribute mappings which are at the heart of each practical mapping task. 
For better readability, all patterns are shown schematically, with the help of the following, 
newly introduced graphical symbols (MAPPING-G): 

S TS T

 

S TS T

 

S T

D aS D aT

aS = [ v1..vN ] aT = [ v1..vN ]

S T

D aS D aT

aS = [ v1..vN ] aT = [ v1..vN ]

S T

R1,..,RN U

aT = ↑Ui

D aS D aT

aS = [↑Ri1...↑RiN ]
S T

R1,..,RN U

aT = ↑Ui

D aS D aT

aS = [↑Ri1...↑RiN ]

 

n  Class level mappings  
S and T (eventually with a subscript) are used to 
denote the source and the target class respectively. 
The ovals show the domains of the classes, the 
grey arrow shows the direction of the mapping.
The given example depicts a 1:1 mapping S → T. 
o  Conditional entity instance level mappings 
In addition to the above symbols, here the black 
dots represent the instances being mapped, and the 
white dots represent the instances that are 
discarded from the mapping as a result of an 
applied condition. The particular mapping equi-
valences are shown with black arrows. 
p  Attribute level mapping patterns  
For these patterns, a few more graphical symbols 
are introduced. To save space, the class mapping 
(S → T) is indicated in most cases merely with a 
grey arrow. The domains of the attributes (Da) are 
shown as free-form areas, and the attribute values 
are shown either with dots (for single values), or 
with a darker area contained in the domain (for lists 
or sets). As above, the addressed mapping equiva-
lences are indicated with black arrows. The thick 
white arrows denote the attribute’s designation to a 
given class (S, T); pointer references to other ob-
jects within a model are shown with dotted arrows.
The first given example depicts a simple 1:1 
attribute mapping, where both attributes are of 
aggregate data type. The second example shows a 
complex equivalence, involving two pairs of map-
pings due to the references from aS and aT to the 
object instances [R1,..,RN] and U respectively. 

Fig. 5.4: Graphical symbols used for the presentation of mapping patterns 
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Table 5.3: Unconditional class level mapping patterns 
Note:  The patterns in this table depict the most general high-level mappings that affect all instances 
of the involved source and target classes. 

Class 
mapping 
pattern 

Schematic presentation 
of the mapping transformations Description 

1 : ∅ 

S T

∅
 

Class deletion, i.e. no transformation of any 
instances from the source to the target model. 
As an example for the use of this pattern in IFC con-
sider an "architectural" subclass of IfcRelationship 
that might not be needed in HVAC or structural 
models and is therefore excluded from the mapping. 

1 : 1 

S T

 

Deep copy of a class. All instances of the 
source class are copied to the target “as is”, 
including all references to other objects. 
Example for IFC: Since the components of the IFC 
model architecture are strongly pre-harmonised, this 
mapping will in fact be applicable for many of the 
IFC classes. “Simple” resource objects like IfcPoint 
would probably always be mapped in this way. 

1 : C 

S
T1

TC

...
S

T1

TC

S
T1

TC

...

 

Splitting of one source class into two or more 
different classes in the target. 
This pattern may be needed often when a mapping 
from an application-specific model to an IFC domain 
model is required. For example, the properties of a 
building material are often represented in applica-
tions as a single object structure, whereas in IFC this 
involves two or more entities. 

C : 1 

S1
T

SC

...

S1
T

SC

S1
T

SC

...

 

Combining of two or more source classes into 
a single class in the target. 
This pattern presents the inverse case to “splitting”. 
As an example, consider the combining of “beam” 
and “column” entities into a “frame” entity for the 
purposes of a structural domain model. 

C : B 

S1 T1

SC TB

... ...

S1 T1

SC TB

... ...

 

A multiple C:B mapping involving both split-
ting and combining of the source classes. The 
number of source model classes must not 
necessarily be the same as the number of the 
target model classes participating in the 
mapping. 
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Table 5.4: Conditional instance level mapping patterns 
Note:  In contrast to the general definition of mappings on class level, instance level mappings may 
include certain conditions to select the set of instances to be mapped from the full set of available 
instances in the source model, or – in the case of multiple cardinality – from the cross product of all 
affected sets of instances. 

Instance 
mapping 
pattern 

Schematic presentation 
of the mapping transformations Description 

1 : ∅ 

S T

 

Entity deletion. Depending on one or more  
conditions, one or more source entity instances 
are not mapped to the target model. 
A typical example for the use of this pattern in IFC 
is the discarding of all walls that do not have the 
property 'bearing' in the mapping of an architectural 
to a structural domain model. 

1 : 1 

S T

 

Deep copy of an entity. Depending on zero or 
more conditions, the affected entity instances 
are copied to the target model, including all 
value and reference attributes. If the dependent 
attribute mappings involve complex relations 
in the source and/or target model, the attribute 
level mapping patterns detailed in tables 5.5 to 
5.7 have to be considered in addition. 

1 : C 
1 : N 

S T

 

Splitting of one source entity instance into two 
or more entity instances in the target. Unlike 
the similar in structure class mapping pattern 
from table 5.3, here the target instances may 
belong to the same or to different classes. The 
iteration process creating multiple instances in 
the target model will as a rule be governed by 
one or more of the involved attribute level 
mappings. 

C : 1 
N : 1 

S T

 

Grouping of two or more source entity ins-
tances into one target instance. This is in effect 
the inverse operation to the above; hence, the 
same remark w.r.t. table 5.3 applies. 

C : B 
C : N 
N : C 
N : M 

S T

 

Splitting and grouping. This operation com-
bines the effect of the above two patterns. 
It can involve constant or varying number of 
instances, depending on the selection criteria 
and/or the involved detailed attribute mapping 
patterns. 
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Table 5.5: Basic attribute level mapping patterns 
Note:  Attribute level mapping patterns depict how an attribute with a given data type should be 
mapped. As shown in the given formal representation of EXPRESS, the data type of an attribute can be 
quite complex. Thus, there are many different patterns that have to be considered. In several cases they 
can also govern the actual resulting cardinality of the mapping on entity level. In this table, only the 
basic attribute patterns are shown; more sophisticated cases are treated in table 5.6 and in table 5.7. 

Attribute 
mapping 
pattern 

Schematic presentation 
of the mapping transformations Description 

Identity 
(simple 
equivalence) 

S T

D aS D aT

aS = val aT = val

S T

D aS D aT

aS = val aT = val

 

The simplest attribute mapping 
pattern is the 1:1 copying of a 
value attribute from the source to 
the target. In the strongly pre-
harmonised IFC models, as well 
as in the case of deriving a view 
model from a more sophisticated 
source model, this simple map-
ping will be quite common to use.

Aggregate 
identity 
(simple set 
equivalence) 

S T

                        

D aS D aT

aS = [ v1..vN  ] aT = [ v1..vN  ]

This is a similar case to the above, 
but for value attributes having an 
aggregate data type. Although the 
involved attributes may contain 
multiple values, this does not 
influence the cardinality of the 
entity mapping. 

Functional 
equivalence 

                        

S T

F
D aS D aT

aS = val aT = F(val)

 

Here, the mapping of a source 
attribute to the target is not done 
by copying, but is the result of a 
mapping function. In principle, 
this function can be of arbitrary 
complexity, but quite often it will 
be just a simple expression, such 
as the computation of cross se-
ction properties (A, Ix, Iy etc.) 
from given dimensions and shape.

Functional 
set equiva-
lence 

S T

D aS D aT

aS = [ v1..vN ] aT = [ u1..uP ] =
= F ( [ v1..vN ] )

F

S T

D aS D aT

aS = [ v1..vN ] aT = [ u1..uP ] =
= F ( [ v1..vN ] )

F

 
     a)   N = P 
     b)   N ≠ P 

This pattern depicts the functional 
mapping of aggregate data types. 
Similar to the other basic patterns, 
it also does not affect the cardina-
lity of the overall entity mapping. 
However, because aS and aT can 
be lists or sets, the function F may 
change the number of elements in 
the target. This is indicated by the 
two sub-cases a) and b). 
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Table 5.6: Complex attribute level mapping patterns 

Attribute 
mapping 
pattern 

Schematic presentation 
of the mapping transformations Description 

Grouping 
            

S1 ... Sn
            

aS,1 = v1
aS,N = vN

D aS

T

            

D aT

aT = [ v1..vN  ]

This pattern depicts the mapping 
of a source attribute from several 
source instances to one target ins-
tance. It defines implicitly a N:1 
entity mapping. The involved 
source instances can be a subset 
of all available instances as a 
result of one or more applied 
conditions. The target attribute 
must be of an aggregate data type. 
As an example, consider the grouping 
of the materials of building elements 
to create a "bill of materials" object. 

Ungrouping 
(iteration) 

            

S T1 ... Tn
            

aT,1 = v1
            

D aS

aS = [ v1..vN  ] aT,N = vN

D aT

This is the inverse case to the 
above: the mapping is of cardi-
nality 1:N, the source attribute 
must be of an aggregate data type. 
A typical example of this pattern can 
be seen in the case study described in 
section 7.1. 

Homo-
morphic 
(1:1 assoc.) 

S T

R U

aT = ↑Ui

D aS D aT

                        aS = ↑Ri

 

This and the next three patterns 
represent “paired” homomorphic 
mappings. The involved attributes 
aS and aT are both reference attri-
butes. Therefore, the mapping is 
dependent on the mapping of the 
referenced instances R and U res-
pectively. The cardinality of the 
mapping S → T is not affected, 
the given case (1:1) refers to the 
cardinality of the mapping R → U. 

Homo-
morphic 
(1:N assoc.) 

S T

R U1,..,UN

aT = [ ↑Ui1...
          ↑UiN ]

D aS D aT

                        
aS = ↑Ri

 

In this case, because of the 1:N 
mapping R → U, a single valued 
source attribute is transformed to 
an attribute of aggregate data type 
in the target. 
As an example, consider the already 
described situation of single object 
"material" description in an applica-
tion model vs. multiple objects used 
in IFC for that purpose. The map-
ping of any entity references to 
materials will be in this category. 



 Semantic Interoperability 137 

Table 5.6 (cont.):  Complex attribute level mapping patterns 

Attribute 
mapping 
pattern 

Schematic presentation 
of the mapping transformations Description 

Homo-
morphic 
(N:1 assoc.) 

S T

R1,..,RN U

aT = ↑Ui

D aS D aT

                        
aS =
   [ ↑Ri1...↑RiN ]

 

The third homomorphic pattern is 
the inverse to the second: an 
aggregate source attribute is 
“collapsed” to a single pointer 
value in the target. 
As an example, consider a situation 
where a composite beam is represen-
ted with the help of several “section” 
entities in the source, which are 
transformed to a single “property” 
object in the target. 

Homo-
morphic 
selective 

S T

R U

aT = [ ↑Uj1...
          ↑UjN ]

D aS D aT

                   
     

aS = [ ↑Qi1...↑QiM
           ↑Rj1...↑RjN ]

Q ...

 

The last considered homomorphic 
pattern is typical for situations 
where a SELECT type referencing 
different classes is involved.  
There can be several variations of 
this pattern. In the given schema-
tic presentation on the left, the 
source attribute aS contains poin-
ters to instances of two different 
classes (Q and R) of which only R 
must be considered in the map-
ping of aS to aT. 
Because in IFC such SELECT types 
are numerous, in the mapping to an 
application model this pattern may be 
needed quite often. As an example, 
consider a mapping of IfcActorSelect, 
which can include both persons and 
organizations, to a model where only 
persons are of interest. 

Transitive 
(telescope) 

                        

S T

R

aS = ↑Ri

    
    

    

D aS
D aT

aR = val

aT = val

 

This pattern is well-known from 
the field of database integration. 
It represents a situation where the 
value of a source attribute aR 
referenced through a pointer in aS 
is stored directly into the target 
attribute aT. The schema on the 
left presents the most common 
case of a single reference used to 
access aR , but in general such 
references can also be chained. 
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Table 5.6 (cont.):  Complex attribute level mapping patterns 

Attribute 
Mapping 
Pattern 

Schematic presentation 
of the mapping transformations Description 

Inverse 
transitive 

                        

S T

U

aT = ↑Uj

            

D aS

D aT

aUj = val

aS = val

 

This pattern is the inverse of the 
previous one.  
For conciseness, inverse patterns 
are not shown for all meaningful 
cases, but the inverse transitive 
pattern deserves more attention. 
Its realisation is much more dif-
ficult than by the forward map-
ping because, in order to create 
the value aT = ↑Uj, all referenced 
instances have to be constructed 
in the target before the value of aT 
can be properly set. 

Transitive 
and 
associative 

D aS

            

S T1 ... TN

R

            

D aR

D aT

aTN = aRN
aT1 = aR1

aS =[↑R1... ↑RN]

aR1

aRN

As prompted by its name, this 
rather complex pattern is in fact a 
combination of two other patterns 
that have already been presented. 
It is included because of its rela-
tively frequent occurrence in the 
author’s experience gathered from 
examined practical mapping tasks.

Inverse 
associative 

            

S1 ... SN T
            

            

R U

D aR

aT = [ ↑U1...↑UN ]

aR,N = ↑RN

aR,1 = ↑R1

D aT

 

The last identified complex pat-
tern is also derived by experience.  
It depicts a complex situation in 
which the reference pointers in the 
source are in opposite direction 
w.r.t. the target. This is the case 
when a part-of relation is repre-
sented as has-parts in the target 
and no inverse relationships can 
be taken into account. 

A specific example of this pattern is 
shown in section 7.2, by the mapping 
of the pair of source entity classes:  
  building–foundation_element  
in a foundation design model, 
to the respective pair of target classes
  structural_system–structural_element
in a structural domain model. 
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Table 5.7: Generative attribute level mapping patterns 
Note:  All generative patterns are related to the mapping type "∅ → Attribute", i.e. they 
describe different alternatives for the assignment of values to attributes of instances in the target 
model that do not have corresponding counterparts in the source model. All such attributes have to 
be defined in advance in the target model schema. The addition of new attributes changing the class 
definitions and the creation of new classes are not considered in the scope of the mapping approach 
as this can lead to run-time consistency problems that are hardly possible to solve. Such tasks are 
part of the model development process, but not of the practical data management in a project. 

Attribute 
mapping 
pattern 

Schematic presentation 
of the mapping transformations Description 

Simple 
generative 

S T

∅

            
aT = new-val

D aT  

Assignment of predefined cons-
tant value(s). 
This pattern is rather rare. An 
example could be the specification of 
normative modules of elasticity for 
predefined building materials. 

Functional 
generative 

S T

∅
F

            
aT = F(v1..vN )

D aT  

Assignment of value(s) to the tar-
get attribute aT by a function. The 
function may use as arguments 
user input and/or data from the 
source model. 

User-
dependant 
generative 

S T

∅

User

            
aT = user-input

D aT
 

Assignment of a value to the tar-
get attribute aT by the user. 
This pattern can be useful when only 
a few data provided by the user 
would complete a model transforma-
tion. E.g., consider the definition of 
an overall foundation depth by the 
mapping of structural results to pro-
vide input data for foundation design.

User-
dependent 
selective 

S T

User

            aS = [ v1..vN ]            

D aTD aS

aT =  vi

        ∈ [ v1 ..vN ]

Assignment of a single value to 
the target attribute aT which is 
selected by the user from a list  
of possible values, typically con-
tained in an enumeration defined 
in the target model, or specified 
in the mapping model itself. 

User-
dependent 
multiple 
selective  

User

S T
                        

D aTD aS

aS = [ v1..vN ]
aT = [ vi , vj ...]
      ⊆ [ v1 ..vN ]

This pattern is a common varia-
tion of the above. It depicts the 
assignment of multiple values to 
the target attribute aT selected by 
the user from a list of possible 
values. 
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5.6.5 Mapping language requirements 

As shown in the previous section, most of the model transformation problems are 
associated with the various patterns of attribute relationships within and between the 
involved schemas. In principle, these transformations can be represented graphically, but 
their details, such as the specification of conditions, value conversions, various corres-
pondence assertions etc., have to be expressed in textual form. Unfortunately, there exists 
no formal method enabling the strict definition of requirements for a specification language 
of that kind. Therefore, an informal set of requirements is derived from the presented 
analysis of the different relevant aspects of the problem, the study of previous work, and 
the examination of existing actual conceptual model schemas, as follows: 

1) High-level notation  
The definition of a mapping is likely to involve a large amount of work, demanding 
considerable efforts of experts both in conceptual modelling and in one or more 
technical domains. Usually, these experts are not qualified programmers and should not 
be bothered about the technicalities of the mappings in terms of program code.  
The design of high-level notational constructs, reflecting closely the representation 
paradigm of the involved models, is therefore of primary importance. 

2) Declarative style  
The rationale for specifying the requirement for declarative language style is based on 
the following considerations: 
− to provide domain experts with an instrument enabling them to declare the needed 

mapping transformations, without forcing them to devise outlines or flow charts for 
implementation, for which they might not possess the necessary expertise (this is 
similar to the rationale for rule-based vs. procedural design by expert systems); 

− to separate the specification of a mapping task from its realisation in order to enable 
the use of different programming languages and implementation styles for the 
mapping engine responsible for the actual execution of the mappings in the running 
system; 

− to isolate the use of functional transformations requiring procedural code from the 
more general and more frequently needed pure set relational operations; 

− to use as little as possible procedural code (such code tends to be “less generic” and 
would bind the language tighter to a particular programming paradigm). 

3) Completeness  
The mapping language should be capable to reference all data types in a conceptual 
model and to support all mapping types and patterns within the scope identified on the 
previous pages of this section.  
However, as there exists no formal methodology to define and describe all possible 
relationships within and between object-oriented model schemas, a mapping language 
can be “complete” only in a relative sense. Hence, a more practical interpretation of 
this requirement would be to focus on providing comprehensive support to existing and 
emerging EXPRESS-based data models in the AEC domain, with emphasis on  
IFC-related modelling efforts. 
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4) Modularity  
Mappings may be needed both for full (all data) or partial (selected entities) model 
transformations, in different execution modes (batch, interactive), and using different 
communication mechanisms (remote procedure calls, file transfer, CGI-scripts etc.). 
The mapping language should support a modular implementation approach enabling 
the realisation of any of these alternatives. 

5) Understandability  
The syntax of the language has to be understandable to model and system designers as 
well as to end-users not only for development, but also for reviewing and maintenance 
purposes. Therefore, it must use a terminology which is amenable to conceptual 
modelling specialists and engineers. Conciseness of expression, as in Java, C or C++, is 
a secondary issue because mapping specifications would never be as long as actual 
executable programs. In this respect, a similarity to EXPRESS and high-level symbolic 
languages like LISP can be envisaged. 

6) Temporary structures  
In many cases, mappings are inter-related (see e.g. the homomorphic patterns given in 
table 5.6), or may require intermediate computations, depend on certain globally 
assigned values etc. To tackle such issues, provisions for the definition of temporary 
data structures have to be foreseen. Such data structures should be capable to 
accommodate any of the basic data types needed by the language, value assignment 
should be as flexible as possible, and the use of variables should be aligned with the 
overall declarative style of the language. 

7) Initialisers  
It may happen that the source model in a mapping contains less information than 
required by the target. Whilst the creation of completely new entity classes is not of 
primary importance for the assumed implementation strategy, the generation of 
attribute values and/or references not contained in the source structures has to be 
supported to allow a modeller, or an end-user, to fill in the gaps. It should be possible 
to make such specifications both with the help of functional code and interactively, 
during the execution of a particular mapping task. 

8) Entity selection  
Quite often the mapping of classes can and must be done in more than one way, 
depending on some specific conditions. Therefore, it should be possible to specify 
alternative mappings for a given class, along with detailed conditions determining 
when to apply them. A useful feature, though probably not in the scope of the language 
itself, would be the ability to specify such conditions interactively, for example by 
selecting the source object instances from an appropriately presented visualisation 
(CAD or VRML views, hypertext etc.). 

9) Unit and type handling  
Engineering data models contain a lot of physical quantities expressed in terms of 
measure values. Since different models may use different units of measure or even 
different data types for the same physical quantity, it is necessary to support unit and type 
conversions as well as different numeric precisions as indicated in table 5.2, item II.B. 
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5.7 Related Model Mapping Approaches 

In the last decade several model mapping approaches have been suggested for different 
purposes, ranging from the tackling of model development issues, such as schema migration 
or schema evolution, up to incremental updates in interactive integrated environments. All 
these approaches tackle to some extent the model transformation problems addressed in the 
previous section, but none of them provides the full range of features that were identified. 
However, in spite of their notably different goals, they have at least two things in common: 
1) Providing a method to specify the mapping between two (sets of) models by means of a 

formal language specification, and 
2) Enabling the practical realisation of a mapping task within the covered scope of 

problems with the help of stand-alone tools or by modules that are part of a more 
sophisticated environment. 

In the context of this study, especially the underlying languages of the developed mapping 
approaches are of interest. 

5.7.1 Transformr 

Historically, Transformr (Clark 1992) is the first mapping formalism developed in the 
product modelling arena. It has been designed for use in ISO STEP with the primary goal to 
enable the propagation of changes between different versions of a model. Such model 
transformations are achieved with the help of a relatively simple mapping language, coupled 
with a tool that performs the given mapping specifications. 

The Transformr language is elegant and compact, designed in a procedural style. Its main 
constructs are COPY (responsible for the replication of source entities) and BUILD (providing 
the instructions for creating new entities in the target model from a set of entities in the 
source). Separate BUILD statements are used for each entity level mapping specification.  
The possibility to define conditions for the mapping of entity instances is given through a 
WHERE subclause. 

Whilst it appears to be well suited for the purposes for which it has been designed, 
Transformr has several drawbacks w.r.t. the requirements of a concurrent engineering 
environment. It has a very limited functionality which does not allow clustering of entities, 
post-conditions, or associations of instances in the target. It is also quite limited in the types 
of equivalences that can be specified between attributes and does not support partial 
mappings. 

5.7.2 EXPRESS-M 

EXPRESS-M (Bailey 1995) has also been developed exclusively for the ISO STEP standard. 
Its main purpose is to facilitate application protocol interoperability. 
Because of the explicit intention to be used in ISO STEP, the EXPRESS-M language is 
designed to have the same look and feel as EXPRESS. Its scope includes the tackling of 
unidirectional mappings between whole models and between model versions. Partial model 
updates and mapping/matching to existing models are not supported. Instances of the target 
model can be created explicitly, with the help of the basic language construct MAP, or 
implicitly, by reference from other entities. Duplicate instances that may occur by a 
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combination of an explicit MAP definition and one or more implicit mappings can be 
eliminated by means of explicit PRUNE statements. An interesting feature of the language is 
the possibility to specify, by means of a TYPE_MAP construct, how a value of a defined type 
should be mapped to a value of another type. This feature can be useful for unit handling. 

An EXPRESS-M mapping specification is built of both declarative and procedural 
components. The actual mapping is executed like program code, in the order of the mapping 
specification. This requires from the developer certain programming skills, makes the coding 
less obvious and does not allow to concentrate on the model transformation task as such. 

As a whole, EXPRESS-M is focused mainly on schema integration with objectives similar to 
the database integration approaches described in section 5.5. It is well suited for use in the 
development process of large environments based on consolidated product data schemas 
such as the STEP APs 203 “Configuration controlled design” (ISO 10303-203 1994)  
and 214 “Core data for automotive design” (ISO 10303-214 1997) used in the automotive 
industry. Because of the lack of such stable specifications in the AEC domain, EXPRESS-M 
is not very appropriate for a concurrent engineering environment for building construction. 
Other drawbacks are the lack of an interactive regime, the complicated conditional mappings 
in cases where more than one transformation for a given class is needed, and the missing 
support for some attribute mapping patterns, such as the associative mappings requiring new 
object references to be generated in the target model. 

5.7.3 EXPRESS-V 

EXPRESS-V (Hardwick 1994) is another mapping approach closely related to ISO STEP.  
It has been developed as an extension to EXPRESS with the main goal to support database 
views in a STEP-based environment, assuming the existence of a comprehensive integrated 
model, such as the STEP AP 214 mentioned above. Probably for this reason, EXPRESS-V 
provides only language constructs that are intended for inclusion in the schema of that 
common integrated model, from which all other models are supposed to be derived. 

The mapping specifications in EXPRESS-V are mostly procedural. Its main construct, VIEW, 
closely resembling similar relational database definitions, provides subclauses for attribute 
level mapping specifications (VIEW_ASSIGN) and for the definition of mapping conditions 
(WHEN). A VIEW statement can contain also certain bi-directional definitions intended to 
ensure the consistency between the integrated model and the derived (subordinate) view 
models. In particular, it is possible to specify what should happen to a source model entity 
instance if a respective view model instance is created, deleted or modified and vice versa. 
However, this feature also inter-mixes semantic and behavioural interoperability issues 
which decreases the modularity of the approach. 

EXPRESS-V is also not quite suited for the purposes of a concurrent engineering 
environment for building construction. It does not support partial mappings and assumes that 
the source schema is always semantically richer than the target schemas to be mapped to.  
As a result, all mapping specifications are associated with one particular schema, many 
mapping patterns are neglected, and a strictly standardised naming policy for a huge  
name space is required. All this does not match the strongly fragmented model world  
of  AEC. 
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5.7.4 EXPRESS-X 

EXPRESS-X (ISO/TC184/SC4/WG11/N088 1999) is an evolving language being developed 
with the joined efforts of the authors of EXPRESS-M and EXPRESS-V. It aims at a more 
comprehensive model mapping support for STEP-based environments, combining the MAP 
and VIEW features of EXPRESS-M and EXPRESS-V, but retaining also some of their 
drawbacks, such as the basically procedural style of the mappings, the absence of provisions 
to describe partial mappings, and the limited support for multiple source/target associations 
of the entity classes in a model schema. 
During the last four years there have been efforts to make EXPRESS-X part of the STEP 
standard. Because of this normative orientation, the main emphasis of the work has been on 
the language specification and not on implementation issues, although the documentation 
contains some useful hints for the realisation of a mapping engine. In fact, the language has 
been implemented successfully in a few commercial product data management environments 
used in the automotive and the process plant industries (EPM 1996; STEP Tools 1999), but it 
is also criticised in the STEP community for being complicated for broader usage, and also 
for not being able to handle certain practical requirements. Its acceptance, in spite of several 
useful revisions, is still moderate. The known examples of EXPRESS-X implementation are 
focused on its use in large-scale environments centred around a large standardised integrated 
data model. 

5.7.5 XP-Rule 

XP-Rule is part of the XPDI toolset. The development of this toolset has been initiated at 
CSTB, France (Poyet 1993) for the specification and the rapid prototyping of STEP-based 
product models. Besides XP-Rule, currently XPDI offers a graphical and textual user 
interface for the development of EXPRESS schemas, a LISP-based late binding implemen-
tation of SDAI (ISO 10303-22 1998) and possibilities for extending a model with knowledge 
and reasoning components. 
The XP-Rule mapping language (Zarli 1995) allows the definition of bi-directional views 
and provides a high level of adaptability due to its declarative nature. As its name suggests, 
an XP-Rule mapping specification is mainly rule-based. Each set of classes to be mapped is 
defined with the help of a compound RULE statement with sub-clauses for attribute level 
equivalences (AFFECT), temporary variable definition (LET), creation of new data structures 
(CREATE), IF-THEN mapping conditions etc. In addition, the integration of LISP and C 
function code is also possible. 

Though XPDI is basically a rapid prototyping platform which does not have the objectives to 
provide full support for product data management in complex integrated environments,  
XP-Rule is capable of solving many of the outlined mapping problems for such environ-
ments. It has been used successfully in the COMBI project for the partial transformation of 
an application-specific model to the STEP AP 201 (cf. Scherer & Sparacello 1996), as well 
as in the ATLAS project (Poyet et al. 1994a). However, these exercises have exposed also 
some deficiencies of XP-Rule, such as the inability to create complex entities and to generate 
attributes from entity names. The run-time performance of the mapping engine is also not 
very satisfactory, probably because of the adopted almost pure rule-based approach. 
Therefore, to the knowledge of the author, XPDI is not being further developed at CSTB. 
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5.7.6 Operation Mapping (OM) 

OM is a commercial tool developed at Metaform Software, Amsterdam (Bijnen 1995). It 
includes a very powerful and efficient mapping engine and a convenient graphical user 
interface for specifying mappings interactively. 
The underlying mapping formalism is based on relational theory. Both the source and the 
target data models are converted to relational database schemas on which the mapping is 
applied. The language used by OM is descriptive and is closely related to the data definition 
languages of modern RDBMS. It is capable of dealing with almost all kinds of constraints, 
conditions, entity and attribute equivalences that can be expressed by relational algebra 
constructs. Entity and attribute mappings are supported for all cardinality cases. 
OM has been applied successfully for several practical tasks. In the COMBINE 2 project 
(Augenbroe 1995b) it has been used to derive automatically a visualisation model from the 
sophisticated central IDM. In another case it has been applied for automatic restructuring of 
the layers in a set of architectural drawings. However, since OM requires that the source and 
target models are translated to relational representations, it is limited to mapping tasks where 
such translation is possible. Another limitation of OM is the lack of interactive, partial 
mapping support. 

5.7.7 EDM-2 

EDM-2 (Eastman et al. 1995a, b) is an innovative engineering database environment deve-
loped at UCLA. It incorporates three important features not found in traditional database 
systems: (1) dynamic schema specification and schema evolution, (2) built-in consistency 
management, and (3) explicit translation definitions for mapping to/from design applications. 
Mapping is not the main feature of EDM-2. It has been introduced in a later development 
phase, after noticing that mapping constructs are required for the integration of external 
applications (Assal & Eastman 1995). 
All mappings in EDM-2 are specified in a descriptive manner, with the help of two high-
level constructs – MAP and MAPCALL. MAP provides the definition of the process through 
which entities are translated from the source to the target model. MAPCALL describes the use 
of a MAP definition for particular instances in the source model. Detailed attribute 
equivalences are not supported by the EDM-2 language, and are implemented directly as 
C++ methods and functions. 
EDM-2 aims to provide comprehensive support for distributed multi-discipline design 
environments. Although there are still some open questions, many of the addressed issues are 
important contributions in the area of engineering database research. However, with respect 
to mapping problems EDM-2 is not yet sufficiently developed. A great portion of the 
mapping is language dependent, there is almost no code re-use, and all attribute level 
mappings are invisible to the user which makes them difficult to understand and maintain. 

5.7.8 ACL/KIF 

ACL (Agent Communication Language) supplemented by KIF (Knowledge Interchange 
Format) has been proposed in the DARPA knowledge sharing initiative as a method for 
exchanging information between intelligent interactive agents with the main objective to 
enable the co-operation of knowledge-based design tools (Genesereth & Fikes 1992). 



146 A Mapping Language for Concurrent Engineering Processes 

ACL/KIF presents a principally different approach for tackling the semantic interoperability 
problems in a distributed modelling environment. It follows a messaging paradigm based on 
a blackboard system architecture, and is able to handle the following two types of problems 
(Khedro et al. 1994): vocabulary translation (mapping) and logical translation (conversion 
of messages from the native format of the sender to the local format of the receiver). 
Mappings with ACL/KIF can be bi-directional or unidirectional, partial or complete. Along 
with mapping, the propagation of changes and the continuous consistency of the data in all 
distributed agents are considered as well. All these features are wrapped in the same 
messaging format which makes it somewhat convoluted and difficult to implement. 
In principle, ACL/KIF provides a very high-level of support for co-operative design work. 
However, it demands sophisticated agent functionality by obliging each agent to be aware of 
all shared modelling concepts, and to take on the responsibility to perform the necessary 
transformations by itself. Such requirements are not practical when existing “conventional” 
applications need to be considered. Some other drawbacks are the relatively low modularity 
of the approach, the missing consideration of STEP/EXPRESS, and the strong coupling with 
a specific system architecture. 

5.7.9 VML 

The View Mapping Language (VML) has been developed as part of a Ph.D. thesis with 
objectives that are closely related to the needs of a concurrent engineering environment 
(Amor & Hosking 1995; Amor 1997). 
VML provides detailed constructs for most of the mapping problems raised in the previous 
section. It is principally designed to support bi-directional mappings and, consequently, 
makes no clear distinction between source and target objects. Although not uncomplicated, 
the language syntax is well structured, following a strictly declarative style. Each mapping 
specification begins with an INTER_SCHEMA declaration in which the regime of the mapping 
is fixed. In particular, details are given if the mapping will be partial or complete and what 
should be the type of access to the involved models (READ_ONLY, READ_WRITE, 
INTERACTIVE). Each class level mapping is described by an INTER_CLASS declaration 
providing constructs for detailed attribute mapping definitions (through the subclause 
EQUIVALENCES), conditions for determining the set of instances to be mapped (through the 
subclause INVARIANTS), and pre-setting of initial and/or default values (through the subclause 
INITIALISERS). 
VML has been conceived in first place for the solution of the mapping problems in 
integrated design environments. In the prototyped software implementation, the language 
is supplemented with a graphical interface for visual development, and a mapping engine 
which performs not only mapping, but also change management and version control tasks. 
However, all these features are centred around a prescribed integration approach (assuming 
a database-like environment with a common shared integrated model) which has 
influenced to some extent the design of the language itself. Some minor drawbacks of 
VML include the limited built-in features for user interaction and the lack of micro-level 
control on attribute mappings which can make some of the attribute mapping patterns 
difficult to represent. More concerns provides the VML-based engine with the intermixing 
of mapping and matching methods, as well as some automated decisions which are 
difficult to accept. The whole process is not sufficiently transparent and relies too much on 
the representational power of the language, leaving little room for corrective actions. 
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5.8 Proposed Approach for Tackling the Semantic Interoperability in CEE 

In summary, an appropriate approach for tackling the semantic interoperability in CEE 
should: 
1) enable the solution of the problems identified previously in this chapter,  and 
2) fit seamlessly into the suggested overall environment. 

Though not evident at first glance, these two issues are of almost equal importance.  
A solution that is not aligned with the other components of the environment would be yet 
another “island of automation” and thus fail to achieve the envisioned high-level goals. 
From the analysis of all presented aspects, coupled with the concurrent engineering 
requirements to product data management and the general concepts of the modelling 
environment outlined in chapter 3, a modular model mapping approach, broken down into 
the following development steps, has been synthesised: 
1) Design of a mapping language in accordance with the requirements from section 5.6.5; 
2) Development of appropriate implementation methods for the realisation of a mapping 

engine which should act as a server-side agent program performing all model transfor-
mation tasks requested by client applications; 

3) Specification and implementation of public high-level operations enabling the use of 
the mapping services when and as necessary, and aligned with all other services offered 
by the environment; 

4) Providing the necessary links to the components of the server platform responsible for 
tackling the integrity problems that have been intentionally left out of scope to isolate 
and reduce the requirements to the mapping task. Such components include: model 
matching, consistency checking, model merging, conflict management etc. 

In this approach, a major role is assigned to the mapping language. It must enable generic, 
platform-independent definition of all necessary mapping models, in the same way as 
EXPRESS provides for the platform-independent representation of the project data models 
in the concurrent engineering environment. 
The implementation methods are made responsible for: (1) parsing a mapping specifi-
cation, (2) creating the mapping domains and extents of all affected entities*), and (3) 
performing the actual transformations of the data, including the generation of all inter-object 
relationships in the target model(s) and the removal of redundant data after the mapping. 
The mapping engine should encompass all implementation methods and interact with the 
project data server, using the available server operations to access the needed mapping 
specifications, as well as the respective model schemas and model data.**) 

                                                 
*) Mapping domains and extents are discussed in chapters 6 and 8, along with the other 

components of the developed mapping system. 
**) The mapping engine provided in the prototype realisation of the project data server outlined in 

chapter 8 has been written in Common LISP, as part of the server environment built on top of 
KEE (Intellicorp 1994). However, a detailed description of the developed algorithms goes beyond 
the scope of the thesis. Besides that, these algorithms need considerable improvements w.r.t. their 
computational efficiency which has not been the goal of the work, and is not the primary 
competence of the author. Therefore, in chapter 8 only the basic principles of the mapping engine 
are presented; more detailed coverage of the related problems is a subject for future work. 
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The public high-level operations should correspond to the general Information Container 
based format of all services of the environment. They are responsible to package the client 
requests, schedule and trigger the mapping processes, format appropriately the results and 
return them to the application or user that has issued the respective request. 
In addition, in order to maintain a consistent link to the other relevant interoperability 
components, the model/object version status has to be appropriately updated after each 
model transformation operation, so that a later service, e.g. matching, can reason properly 
about the requested actions. This issue is of great importance because of the suggested 
bipartite treatment of the semantic interoperability and semantic integrity problems. 
For a specific CEE, the proposed mapping system can be used as follows: 
1) Represent all potentially needed model transformations as mapping models specified in 

terms of the developed mapping language; 
2) Embed as appropriate remote procedure calls in the client applications to invoke the 

respective server operations initiating a mapping; alternatively, provide a client adapter 
to access the project data server, along with a respective local interface to transfer the 
data from/to that adapter and the application program; 

3) Use whenever necessary the supported operations to coordinate and synchronise the 
domain models processed locally by the individual professionals involved in a project. 

The first two of the above steps have to be accomplished before the environment is used in 
a specific project. However, this must not be done at the initial design phase of the CEE 
system, because a gradual enhancement, including the definition of new models and new 
mappings, does not affect the generic methods of the project data server, and requires only 
minimal adaptation of specific methods and existing client applications. 
Fig. 5.5 below illustrates the principal interaction of the mapping module with the other 
components of the suggested environment. 

Project Data Server EnvironmentClient 
Applications

External Application 
with embedded 

Internet capability

Thin Internet-enabled Client

WWW Browser 
with associated 

thin clients
e.g using Java Applets

Stand-alone
Application

Client
Adapter

Object
Request
Broker

Application model schemas Model schemasMapping schemas

map( ) request

map response:
target model data

Server
interface
module

Project
Data

Server

Mapping
Agent

Project data

Common Modelling Framework

Creates new
target model
version

Project data
repository

Project Data Server EnvironmentClient 
Applications

External Application 
with embedded 

Internet capability

Thin Internet-enabled Client

WWW Browser 
with associated 

thin clients
e.g using Java Applets

Stand-alone
Application

Client
Adapter

Object
Request
Broker

Application model schemas Model schemasMapping schemas

map( ) request

map response:
target model data

Server
interface
module

Project
Data

Server

Mapping
Agent

Project data

Common Modelling Framework

Creates new
target model
version

Project data
repository

 
Fig. 5.5: Principal schema of the use of the mapping system in the proposed CEE 
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Fig. 5.6 schematically shows the suggested interplay of model mapping, matching and 
merging in a running project. In this figure, representing one design interaction cycle, at 
the starting point T0 the domain-specific models used by the architect and the structural 
engineer are assumed to be consistent, where the latter is derived through a mapping 
operation from the architectural model, i.e. A 0 → S 0 map

 (A 0). Later on, in the process of 
concurrent work, these models inevitably diverge. However, by mapping the modified 
architectural model A 1 to obtain a structural model S 1 map

 (A 1), and afterwards matching 
that model with the local structural model S 1local, the two domain models can again be 
brought in a consistent state at point T1 within a cooperative coordination session*). 
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Fig. 5.6: Schematic presentation of the interaction between the mapping, matching and 
merging services in the project coordination process 

In the next chapter 6 the developed mapping language (CSML) supporting the outlined 
approach is described, and in chapter 7 selected examples of model transformations are 
given. The prototype realisation of a project data server providing the interaction of all 
developed components is shown in chapter 8. 

5.9 Discussion 

The problems of semantic interoperability are well recognised in database research to date. 
There exists a lot of literature on the topic, where a number of different approaches for the 
integration of mulitdatabase and federated database systems can be found. However, the 
developed methods in this domain are suitable mostly for business databases with relatively 
simple structure, whereas object-oriented models, typical for the engineering domain, are yet 
poorly supported. This is only partly due to the relatively weak interest in engineering 
database solutions on the side of computer scientists in general. The deeper reasons for the 

                                                 
*) In the given example, it is assumed that the structural engineer is required to accept the changes 

of the architect and modify his/her data accordingly. 
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lack of adequate methods for tackling the semantic interoperability problems in engineering 
environments are that: 
1) object-oriented models are more complex than relational models, with more sophisticated 

structure, deep specialisation hierarchies and different kinds of associations, including a 
lot of has-part aggregations, which are more difficult to deal with,  and 

2) the set up requirements w.r.t. data consistency and data integrity are very hard, due to the 
specific implementation objectives associated with the target domain of business-oriented 
DBMS. 

Therefore, more pragmatic efforts have been undertaken in the last years in the specific area 
of product data management. Whilst lacking to some extent a strong theoretical basis, the 
various proposed model mapping approaches have been developed in view of certain 
practical requirements and application cases, and are well suited for the range of tasks for 
which they were conceived.  However, with the exception of ACL/KIF and VML, all known 
mapping approaches do not address sufficiently the problems of cooperative and concurrent 
work, and ACL/KIF and VML are strongly tied to a particular environment architecture and 
component behaviour. In each case, a global integrated model is assumed as a prerequisite of 
the environment, and for that model similar requirements as in the more general database 
integration approaches are raised. All this has influenced the scope of the examined issues, 
and has led to several limitations in the developed solutions. 

In contrast, the model mapping approach proposed in this thesis aims at supporting a project 
environment, where the data are processed autonomously and simultaneously by the separate 
project players. Data consistency is not guaranteed at all times, but can be provided through 
user-driven actions at selected points of the project progress, assisted by appropriate mapping 
models and tools. Thus, in terms of database technology, the proposed approach enables 
design, communication and execution autonomy at the expense of soft integrity requirements 
and renounced use of global applications, with simultaneous access to more than one 
domain-specific models. However, such applications are seldom needed in AEC. Global 
applications for project management and monitoring would normally use a higher level of 
data abstraction which can be defined in an appropriate domain model for “project 
management” *) or even at the system ontology level. As the needed data is expected to be of 
relatively limited scope, on-line mapping to/from other domain models does not seem 
difficult to achieve. 

The differences in the objectives compared to other known approaches allow to address a 
broader range of mapping problems associated with object-oriented data models. Greatest 
attention can be paid to EXPRESS-based models in accordance with the overall goal of the 
work. The identified mapping types and the developed mapping patterns enable a more 
comprehensive treatment of the model transformation tasks that may occur in an integrated 
environment for concurrent engineering. 

These capabilities of the proposed approach are underpinned by the qualitative comparison 
with the examined database integration methods given in table 5.8 below. The estimated 
characteristics of the different methods, except for the model mapping approach proposed 
herein, are compiled from a similar investigation conducted in (Conrad 1997). The features 
characterising the different approaches are divided in three categories: the ability to support 
                                                 
*) In fact, such domain model already exists in the current IFC specification. 
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different modelling concepts, the level of consideration of the identified inter-model 
conflicts, and general considerations w.r.t. the implementation environment, as proposed in 
(Batini et al. 1986). 

Table 5.8: Comparison of different approaches for tackling the semantic interoperability 
problems in non homogeneous modelling environments 

Integration approaches 

Features 
Superviews Assertion based 

integration 

Formalised 
object-oriented 

integration 

Proposed 
model 

mapping 
approach 

I. Support of different modelling concepts 

Entity classes High High High High 
Value attributes High High High High 
Reference attributes Medium High Low High 
Inheritance Low – High High 
Object aggregations Low – – Medium 

II. Consideration of different modelling conflicts 

Semantic conflicts Medium – Medium Medium 
Descriptive conflicts – – Medium Medium 
Structural conflicts Medium Medium Low High 
Heterogeneity conflicts Low High High – 

III. Consideration of basic requirements to the implementation environment 
Completeness not proven not proven not proven not proven 
Correctness Yes Yes Yes Yes 
Non redundancy No No Yes No 
Understandability of the 
integrated model Good Good Good not an issue 

Guaranteed continuous 
consistency Yes Yes Yes No 

By examining this table, the different goals of the separate methods become more evident. 
The support of a larger number of modelling concepts and the consideration of structural 
conflicts are better provided by the model mapping approach, whereas such issues as the 
consideration of heterogeneity conflicts, the understandability of the overall model, and the 
requirements for non redundancy and continuous consistency of the data are not in its 
scope. 

Here it should also be noted that the completeness of all methods is marked as “non proven”. 
This is due to the fact that the mathematical foundation of object-oriented modelling lies in 
higher-order logic. As proven by Kurt Gödel, whilst first-order predicate logic is complete 
and consistent, but not definite, higher-order logic is neither complete, nor definite 
(Gödel 1931). Thus, an attempt to identify all possible inter-relationships between the 
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entities of two object-oriented models on the basic of the generic mapping types specified 
in section 5.6.3 can lead to a combinatorial explosion when the full set of relations for 
objects with arbitrary number of attributes is tried to be determined. However, the iden-
tified mapping patterns, drawn from the study of existing and envisaged practical cases, 
broaden the scope of supported issues and give greater conceptual clarity both for the 
design of a mapping language and for the realisation of many real-world tasks. 
A final point to discuss is the capability for bi-directional mappings. Whilst this can be of 
great benefit for the design and maintenance of an integrated environment, unlike some 
other researchers, I disbelieve its practical value. The main reason for that is, again, the 
complexity and diversity of the problems associated with the possible inter-relationships 
between the entities of sophisticated models based on a higher-order logic paradigm. 
Nevertheless, in practical cases where the data transformations between highly harmonised 
models are the primary goal, as e.g. in the IFC framework, a limited capability for bi-
directional mapping is worth considering. 
Further work looking at requirements for such cases can provide an improvement to the 
overall treatment of the addressed semantic interoperability problems. 
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Chapter 6: The CSML Mapping Language 

We must either institute conventional forms of expression or else 
pretend that we have nothing to express. 

– George Santayana, Soliloquies in England 

With the Context-Independent Schema Mapping Language (CSML), developed as main 
component of this thesis, many of the problems identified in the previous chapter can be 
overcome. This chapter presents the basic concepts that have governed the design of 
CSML, outlines its overall structure and its principal components and details its formal 
syntax. To prove the functionality and the implementation potential of the language, the 
formalisation of the developed mapping patterns, the representation of basic relational 
algebra operations and the solution of typical mapping exercises drawn from selected 
literature sources are examined. The presentation concludes with an appraisal of CSML 
with respect to the specified objectives. 

6.1 Basic Concepts 

Unlike most other examined approaches that focus mainly on schema evolution and 
schema migration, or on the generation of database views, implicitly presuming the 
existence of one shared global model in the environment, CSML has been conceived for 
run-time interoperability support in a distributed, non harmonised modelling environment, 
rather than as a model developing aid or SQL-like view generation utility. The emphasis in 
CSML is on the data-level transformations between (any) populated project models. It can 
be applied to a variety of model transformation problems, no matter if the involved models 
are globally used, shared by many project actors, locally owned by one actor or dedicated 
to serve specific applications. 
The role of CSML in the proposed approach for the solution of the interoperability problems 
in CEE through a series of autonomous operations (mapping, matching, consistency 
checking, merging, conflict resolution) is to enable the transformation of the data contained 
in one data model (source) to their appropriate representation according to the conceptual 
schema of another model (target), without being aware of the context, i.e. the locally stored 
data in that target model. This context-independent approach to the mapping problem 
considerably simplifies both the design of the language and the implementation of an 
appropriate mapping engine, and at the same time increases its representational capacity. 
In accordance with the requirements suggested in chapter 5, CSML has been designed in 
pronouncedly structured, declarative style. All language constructs are logically inter-
connected, but the sequence in which the individual mappings should be performed is 
neither prescribed, nor enforced in any other way. Thus, in effect, a mapping specification 
in CSML declares, but does not prescribe a model transformation. The sequence of 
execution of the entity/attribute mappings is governed only by the context of the specific 
problem and is determined at run-time by the mapping engine. 
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To get a first impression of CSML, let us consider a small example problem which should be 
intuitively clear. It presents a small, adapted portion of the second demonstration example 
outlined in chapter 1. The task is to map the data from a populated IFC project model (heavily 
simplified here) to a dedicated (also simplified) model for structural design applications. 

Source schema: Target schema: 
SCHEMA SimplifiedIfcProjectModel; 
ENTITY IfcRoot; 
  label : STRING; 
END_ENTITY; 
ENTITY IfcElement 
  SUBTYPE OF (IfcRoot); 
  ElementType : STRING; 
END_ENTITY; 
ENTITY IfcBuildingElement 
  SUBTYPE OF (IfcElement); 
  HasMaterial : OPTIONAL STRING; 
END_ENTITY; 
ENTITY IfcRelAssemblesElements 
  SUBTYPE OF (IfcRoot); 
  RelatedElements : 
      LIST [1:?] OF IfcElement; 
  RelatingElement : IfcElement; 
END_ENTITY; 
... 
END_SCHEMA; 

SCHEMA SimplifiedStructuralModel; 
ENTITY StrComponent 
  ABSTRACT SUPERTYPE OF 
    ONEOF(StrAssembly,StrElement); 
  name : STRING; 
END_ENTITY; 
ENTITY StrAssembly 
  SUBTYPE OF (StrComponent); 
  has_elements :  
      LIST [1:?] OF StrElement; 
END_ENTITY; 
ENTITY StrElement 
  SUBTYPE OF (StrComponent); 
  material_name : STRING; 
  material_properties : 
      LIST [1:?] OF NUMBER; 
END_ENTITY; 
... 
END_SCHEMA; 

Mapping specification in CSML: 
(MAP SimplifiedStructuralModel FROM SimplifiedIfcProjectModel 
 COMMENTS "Mapping of shared project data as input to structural design" 
 PRESETS (LOAD "utility-fns.lisp" FOR MaterialLookUp) 
 CLASSES 
  (MAP CLASS StrComponent FROM IfcRoot 
    ATTRIBUTES (SAME name AS label)) 
  (MAP CLASS StrElement FROM IfcBuildingElement 
    CONDITIONS (ElementType = "structural") 
    ATTRIBUTES 
      (SAME material_name AS HasMaterial) 
      (MAKE material_properties 
            CONSTRUCTOR MaterialLookUp ARGS HasMaterial)) 
  (MAP CLASS StrAssembly FROM IfcRelAssemblesElements 
    VAR (MAKE ?RelVar FROM RelatingElement) 
    CONDITIONS (?RelVar -> ElementType = "structural") 
    ATTRIBUTES 
      (MAKE has_elements FROM RelatedElements) 
      (MAKE name FROM ?RelVar -> label)) 
 ) 

Fig. 6.1: Example mapping with CSML 

For this, somewhat artificial example, if the source model data (in STEP file format) are: 
#10=IfcBuildingElement('Frame_1','structural',$); 
#11=IfcBuildingElement('Beam_1','structural','C25'); 
#12=IfcBuildingElement('Column_1','structural','C35'); 
#13=IfcBuildingElement('Column_2','structural','C35'); 
#14=IfcBuildingElement('Wall_13','architectural','Masonry'); 
#20=IfcRelAssemblesElements('Assembly_1',(#11,#12,#13),#10); 
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the target model data, after mapping and exporting them as a STEP physical file, could for 
example be: 

#1=StrElement('Beam_1','C25’,(29000.,20.,2.2,-3.4,-3.5)); 
#2=StrElement('Column_1','C35',(32000.,30.,2.9,-3.2,-3.5)); 
#3=StrElement('Column_2','C35',(32000.,30.,2.9,-3.2,-3.5)); 
#4=StrAssembly('Frame_1',(#1,#2,#3)); 

where the material properties for C25 and C35 (Ecm, fck, fctm, εcu, εcu,s etc.) are created by 
the external function MaterialLookUp , which is assumed to find a material by name in a 
table of pre-defined materials and return a list of its properties in a preset order. 
Each model mapping specification in CSML consists of a set of nested mapping declarations. 
Each such declaration starts with a left parenthesis, may include several detailed 
specification clauses, as well as other enclosed mapping declarations, and ends with a  
right parenthesis. The example in  193 above consists of one single schema mapping 
declaration (MAP SimplifiedStructuralModel … ) which encloses 3 class mapping 
declarations (MAP CLASS) with several subclauses, containing more specific lower level 
declarations. This setup strongly resembles the structure of a typical LISP routine. 
In order to access the elements of the involved schemas, the following named data objects 
are used: 

schema_name  =  symbol . 
class        =  [ schema_name ':' ] symbol | variable . 
attr         =  [ class '->' ] symbol | variable . 
variable     =  '?' symbol . 
keyword      =  [ '_' ] symbol . 
symbol       =  letter { letter | digit | '-' | '_' }* . 

Schema, class and attribute names must correspond to the respective source/target schema 
definitions. Variables can be defined globally (for the whole mapping) as well as locally 
(for the scope of one declaration). They do not have fixed data types, but are bound to 
particular types (real, integer, string, object etc.) at their initialisation. 
Keywords, such as the words MAP, FROM, COMMENTS, PRESETS, CLASSES in  193, are 
basic language tokens that must be written exactly as indicated. Whilst CSML is actually 
not case-sensitive, in  193 and in all further examples and syntax definitions keywords 
are given always in capital letters for emphasis*). 
To be able to work with the data, it is also necessary to have a set of operators. Unlike 
most other languages, CSML concentrates exclusively on operations directly related to the 
mapping equivalences and therefore defines – intentionally – a very small set of only three 
types of operators: 5 prefix term operators (ONEOF, LISTOF, SETOF, MAX, MIN) enabling 
the construction of complex terms, 7 relational operators ( = < > <= >= <> :=: ) 
enabling the comparison of different data objects, and 1 addressing operator (->) used to 
access embedded elements in complex structures. For arithmetic operations (if at all 
needed) pure Common LISP code is adopted (see Steele 1990). 
These, in short, are all the basic elements of CSML. In the next section the different types 
of mapping declarations and their component clauses are discussed in more detail. 
                                                 
*) The keywords used in the syntax boxes in section 6.2 are not enclosed in apostrophes for brevity. 

The formal definition of all 58 keywords of CSML is presented in section 6.3 (rules 9 to 66). 
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6.2 Structure and Components 

In CSML each mapping specification is arranged in a strictly hierarchical manner as 
outlined in fig. 6.2 below. This structuring is applied consistently to all mapping problems, 
regardless of the specific data models being dealt with. 

 

Fig. 6.2: Overview of the high-level constructs of CSML in EXPRESS-G 
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6.2.1 Top-level constructs 

A full model mapping specification is comprised effectively of just one single statement, 
schema_mapping_decl, which encompasses all detailed mapping declarations on class 
and attribute level. Its syntax is as follows: 

schema_mapping_decl    = '(' MAP [ PARTIALLY ] { schema }+ 
                             FROM { schema }+  
                             mapping_spec_set ')' . 
schema                 = [ SHARED ] schema_name . 

For example: 
(MAP vrml_view_model FROM SHARED IfcProjectModel 
 <more detailed mapping declarations> ... 
 ) 

Normally, each data model supported in the modelling environment will be described by 
one conceptual schema. CSML accepts also the specification of multiple schemas for 
consistence with the short form schema specification defined in ISO STEP which allows 
references to external schemas, such as the STEP resources (ISO 10303, parts 41 to 49). 
A schema can be mapped fully, meaning that the mapping operation should create a 
complete, consistent target model, or partially, meaning that only some instances of the 
target model will be created, and not all values and reference attributes corresponding to the 
class declarations will necessarily be populated. CSML assumes full mapping by default; 
partial mappings are specified through the keyword PARTIALLY. In fact, this information is 
not needed by the mapping engine itself, but to mark the status of the created target model 
which can be important for subsequent operations on that model. For similar reasons, the 
keyword SHARED is included, to denote if the model to be mapped from/to is shared or used 
locally, i.e. in a private workspace. It has only informative meaning to the mapping itself. 
The detailed mapping declarations, encompassed in a  mapping_spec_set  are organised 
in four sections: 

mapping_spec_set       = { { class_mapping_spec }+ |  
                             dependent_classes_spec | 
                             presets_spec | comments_spec }+ . 
where: 
class_mapping_spec     = CLASSES { class_mapping_decl }+ . 
dependent_classes_spec = DEPENDENTS { class_mapping_decl }+ . 
presets_spec           = PRESETS { presets_decl }+ . 
comments_spec          = COMMENTS { string }+ . 

Each of these sections can be repeated 0 or more times in arbitrary order. However, at least 
one  class_mapping_spec  must exist in order that the mapping makes sense. 
The class_mapping_spec sections contain the primary inter-class mapping declarations, 
instructing the mapping engine how the object instances of the source model are to be 
transformed into object instances of the target model. These instructions are defined 
generically on class level, but are executed on instance level, depending on the specified 
conditions and the given source model context. 
The dependent_classes_spec is a feature not found in other mapping languages. 
Structurally it is almost identical to class_mapping_spec, but its purpose is different. 
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Whilst the mappings declared in a class_mapping_spec section are mandatory and are 
therefore performed for all instances of the source model classes (constrained only by the 
eventual specification of additional selection conditions), the instances addressed in a 
dependent_classes_spec section are mapped to the target model if and only if they are 
referenced by “primary” object instances in such mandatory declarations. This avoids the 
mapping of typical resource instances, such as IfcPoint, IfcMaterial, IfcCost or 
IfcDateAndTime in the IFC Project Model, if they are not needed by a “primary” object 
instance in the target model. For example, there may exist many IfcMaterial entities in 
an architectural domain model, defining the material properties of building objects like 
IfcWindow, IfcDoor etc. which need not be mapped to a structural domain model. 
However, IfcMaterial must be mapped on class level because it is used in “structural” 
objects like IfcColumn or IfcWall as well. Instead of specifying a complicated exclu-
sion condition examining the types of objects referencing IfcMaterial, in CSML it is 
sufficient to include the mapping for IfcMaterial in the dependent_classes_spec 
section, instructing the mapping engine to perform the mapping only for IfcMaterial 
instances associated with the relevant “primary” objects, such as IfcColumn and 
IfcWall,  but  not  IfcWindow and IfcDoor. 
The remaining two sections of class_mapping_spec have supporting functions. The 
comments_spec section includes merely a list of strings serving as a simple documen-
tation aid. The presets_spec section enables the declaration of global variables and 
external functions that can be used at any other place in the mapping specification. 

 

presets_decl  = ext_fn_load_op | ext_fn_run_op | variable_decl . 
 

Global variables are used to store intermediate results that would allow to simplify certain 
mapping definitions, or to reuse data from one mapping definition in one or more other 
definitions. They are described in more detail in section 6.2.4 below. 
External functions are useful in cases where the declarative style of CSML is not sufficient 
to cover functional transformations with pronounced algorithmic character. How such 
functions can be imported and used in a mapping specification is outlined in section 6.2.6. 

6.2.2 Class mapping constructs 

A mapping between classes can be specified in two possible ways: by a copy_class_decl 
or by a  map_class_decl. 

class_mapping_decl  = copy_class_decl | map_class_decl . 
copy_class_decl     = '(' COPY [ CLASS ] class [ FROM class ] 
                          { cond_spec | exclusion_spec }* ')' . 
map_class_decl      = '(' MAP [ CLASS ] class FROM { class }+ 
                          { { attr_map_spec }+ | 
                            group_spec | 
                            var_spec | 
                            cond_spec | 
                            exclusion_spec }+ ')' . 

These two declarations have many things in common. Both define the classes participating 
in the mapping, an optional set of conditions allowing to reduce the number of instances 
selected for the mapping, and an optional set of exclusion specifications that can be used to 
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override the default inheritance of the mappings provided for superclasses of the source 
classes. In addition, a map_class_decl may include also the initialisation of local 
variables (var_spec) as well as instructions to group the source entities in a list before the 
mapping (group_spec), and must include at least one attribute mapping specification. 
In principle, both class mapping constructs have the same goal. However, for simple 
equivalences where all attributes of a source entity must be copied “as is” to the target, 
COPY CLASS provides a much simpler and easier to use syntax. It has been introduced to 
take into account the potential existence of many such mappings when pre-harmonised 
models are involved, as foreseen e.g. in the IFC architecture. For such models, the 
prevailing part of a mapping specification will contain simple declarations like: 
 (COPY CLASS IfcBuildingElement) 
eliminating the necessity to specify all class attributes (which can be quite a long list). 
The MAP CLASS declaration is more complex. It contains several subclauses, introduced 
through the keywords CONDITIONS, EXCLUSIONS, GROUPS, ATTRIBUTES and VAR, which 
allow greater level of control over each particular mapping. The first three of these clauses 
are detailed below, the other two are discussed in sections 6.2.3 and 6.2.4. 
The CONDITIONS specification has the following syntax: 

cond_spec       = CONDITIONS [ ALL | ONEOF ] { cond_decl }+ . 
cond_decl       = '(' term rel_op term ')' | 
                  '(' PRED { fn_ref | KB_Template } ')' . 

As mentioned, it serves the purpose to reduce the set of entity instances which are 
candidates for the mapping. The keywords ALL (the default) and ONEOF enable an overall 
level of control by specifying if all or just one of the conditions has to be fulfilled in order 
to include a specific instance in the set of instances to be mapped. 
A CONDITIONS specification may itself contain one or more condition declarations. Each 
such declaration defines a predicate that has to be fulfilled for the examined entity instance 
to pass the test. There are three possibilities to specify such predicates: a direct comparison 
of two terms by means of a relational operator, an external or in-line Common LISP 
function, and an embedded knowledge-based template as defined in section 4.7. 
As a complementary example to  193, assume that only the mapping of columns with 
height h > 25 cm is needed. The condition for this case would then be given as: 
 CONDITIONS (h > 30) 
If, in addition, a constraint on the area of the cross section of rectangular columns is 
required, e.g. A > 400 cm2, involving a combination of more than one attribute of the 
"column" entity, the following conditions can be specified: 
 CONDITIONS (SectionType = "rectangular") 
            (h > 30) 
            (PRED (LAMBDA (X Y) (> (* X Y) 400.0)) ARGS b h) 
In this example, it is assumed that the “column” class defines the attributes SectionType,  
b and h, but not A. 
The EXCLUSIONS specification allows to shadow the inheritance of mappings from super-
classes of a given source class. 

exclusion_spec  = EXCLUSIONS { exclusion_decl }+ . 
exclusion_decl  = '(' class [ FOR { attr }+ ] ')' . 
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Normally, inheritance is turned on which means that each source class in a particular 
mapping declaration absorbs also the mappings defined for its superclasses, paralleling the 
structure of the object-oriented model. CSML expects this to be the desired default behaviour 
because in most practical cases the structure of the target model is supposed to have consi-
derable similarity with the source. The EXCLUSIONS specification provides the means to 
specify exceptions to that general rule. Another possible use of the EXCLUSIONS specifi-
cation is as simplifier, allowing to reduce the complexity of a mapping when more than one 
mapping declarations for a superclass exist, with respectively different applied conditions*). 
Finally, the GROUPS clause provides means to collect the instances of a class in a list and 
assign this to a variable. 

group_spec       = GROUPS { group_decl }+ . 
group_decl       = '(' { class }+ FOR variable  
                       [ local_cond_spec ] ')' . 
local_cond_spec  = WHEN [ ALL | ONEOF ] { cond_decl }+ . 

If no conditions are defined, all instances of the specified class will be grouped. The 
local_cond_spec clause, used also in several other constructs, enables the grouping 
only of selected instances. Its syntax and meaning is very similar to the class-level 
cond_spec  shown  above. 

6.2.3 Attribute mapping constructs 

Attribute mappings present the bulk of definitions in a mapping specification. They contain 
the details covering the different mapping patterns that may occur in a model transformation. 
Similar to the class mapping declarations, CSML provides two forms for the declaration of 
attribute mappings: one for simple cases (identity_decl), and one for the more sophi-
sticated equivalence types that need to be defined (equivalence_decl). 

attr_map_spec    = ATTRIBUTES { attr_map_decl }+ . 
attr_map_decl    = identity_decl | equivalence_decl . 

Fig. 6.3 below presents schematically the general structure of an identity_decl. 

 

Fig. 6.3: Structure of the attribute identity declaration in EXPRESS-G 
                                                 
*) Without the use of EXCLUSIONS, it may be extremely difficult (and time consuming) to 

determine the set of instances to be mapped in such cases, as this would require to examine all 
possible combinations of candidate mappings from all relevant (super)class declarations. 
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Its syntax is as follows: 

identity_decl    = '(' SAME { { attr }+ [ AS { attr }+ ] | 
                              ALL | ALLBUT { attr }+ } ')' . 

Identity_decl allows to specify in concise form attributes that need to be copied from 
the source to the target, including the possibility of renaming. For example, the declaration 
 (SAME name AS label) 

from  193 instructs the mapping engine to copy the value of label from each relevant 
source instance to the attribute name in the respective target instance. The data type of the 
attribute is thereby irrelevant – it can be an integer, real, list or set of strings and so on. 
For even shorter notation, it is possible to specify several such attributes in a single 
declaration, as well as to declare only the attributes that should not be copied from the 
source to the target, implying an identity transformation for all the rest. The rationale for 
introducing such short-form attribute declarations is the same as for COPY CLASS. 
The general structure of an equivalence_decl is given schematically in fig. 6.4 below. 

 
Fig. 6.4: Structure of the attribute equivalence declaration in EXPRESS-G 

Expectedly, it has a more complicated syntax as follows: 

equivalence_decl = '(' MAKE { attr }+  
                       { FROM { term }+ [ suffix_op ] | 
                         CONSTRUCTOR fn_ref }  
                       [ DEFAULT { term }+ ] ')' . 

Each equivalence_decl starts with the keyword MAKE followed either by a FROM clause, 
identifying the source of the mapping, or by a CONSTRUCTOR clause, defining a function to 
perform the mapping which may contain arguments referencing one or more source data. In 
addition, a DEFAULT clause allows to assign a value to the referenced target attribute(s) for 
the case when no value would have been determined by the mapping engine. 
Whilst the target of an equivalence_decl must always be an attribute (referenced by 
name), the source data can be described in several different ways with the help of terms. 
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6.2.4 Terms and variables 

Terms provide a generalised form of referencing the data in a model. They are defined in 
CSML as follows: 

term            = valueTemplate | variable | 
                  '(' term_op { term }+ ')' | NUL . 

In this definition, the concept of templates is introduced for the first time. 
In principle, value templates represent data from the source model which are referenced 
directly or as a result of template operators, lisp expressions or knowledge-based search 
expressions. They are discussed in more detail in section 6.2.5 below. 
Variables (recognised by a starting '?' character) provide another method of referencing. 
When used as a term, the value of a variable is returned at the place where it is referenced. 
Of course, this requires that the variable is initialised in a respective declaration – either 
globally, in the PRESETS section of the schema mapping declaration, or locally, in the VAR 
section of the current class mapping declaration defining its scope. 

var_spec        = VAR { variable_decl }+ . 
variable_decl   = '(' MAKE { variable }+ 
                      { FROM { term }+ [ suffix_op ] | 
                        CONSTRUCTOR fn_ref } ')' . 
variable        = '?' symbol . 

It can easily be seen that the declaration of variables is almost identical in form to the 
declaration of attribute equivalences. The only differences are that after MAKE the name of 
a variable, and not the name of an attribute has to be specified, and that there is no 
DEFAULT value assignment as it would not be meaningful here. Variables are not declared 
with fixed data types and therefore can “absorb” any data returned by the term(s) in the 
FROM clause or by the CONSTRUCTOR function. Thus, if a variable is assigned a complex 
data structure, it can later be used in the same way as that data structure. In particular, if a 
variable is bound to an entity, it is possible to reference that entity’s attributes by using the 
addressing operator '->'. An example of such usage is given in  193 for the variable 
?RelVar,  i.e.:  (?RelVar -> ElementType = "structural"). 
In addition to value templates and variables, terms can also be defined recursively, by 
using a term operator (ONEOF, LISTOF, SETOF, MAX, MIN), or for some special cases can 
even be assigned a null value (with the help of the keyword NUL). 

6.2.5 Templates 
Templates represent the most essential part of a mapping. A template provides the data 
source from which the value of a target attribute will be constructed. This can be as simple 
as an ordinary source attribute referenced by name, and as complex as a series of nested 
template operators. 
The general syntax for templates is as follows: 

valueTemplate   = simpleTemplate | literal | 

                  template_op | 
                  lisp_expr | searchExpression . 
simpleTemplate  = attr | CLASSNAME | OBJECTNAME | 
                  [ class addr_op ] THIS . 
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According to this definition, a value template can be a simple template, a literal constant  
of type LOGICAL, INTEGER, REAL or STRING, a self-contained common LISP expression 
identified by the reserved word LISP, i.e. (LISP lisp-form), a knowledge-based search 
expression as described in section 4.7, or a template operator. 
The common case of use of simple templates is the direct referencing of attributes by 
name. Besides that, a simple template may contain also a reference to the currently pro-
cessed item (given by the keyword THIS), the name of the current class (specified by the 
reserved word CLASSNAME) or the name of the current object instance (OBJECTNAME) 
represented as strings. The last two cases are needed when the name of an object has to be 
stored in the attribute of another object. This can be observed in many simpler data models 
where such “string referencing” is implemented. 
The most interesting part of the template specification are the template operators. 
In general, a template operator always represents some kind of a mapping pattern. When 
applied, it not only returns the value(s) specific for that pattern, but may also play a role in 
determining the instance mapping set for a whole class, as well as the cardinality of the 
class mapping. This is so, because in most cases the cardinality of a mapping cannot be 
defined explicitly on class level but results, implicitly, from the specific types of the 
attribute equivalences. With the help of template operators, such “side effects” are made 
more transparent both to the end-user and to the mapping engine. 
The available template operators in CSML have been developed in the course of several 
iterations on the basis of the analysed mapping patterns and experience. Currently, the 
following nine operators are defined: 

template_op    = apply_op | mapcar_op | 
                 user_input_op | user_choice_op | 
                 descendants_op | ref_op | 

                 assoc_op | new_op | iter_op . 

The apply_op and the mapcar_op support the category of functional mapping patterns, 
whereas user_input_op and user_choice_op support the generative user-dependent 
mapping patterns. The remaining five template operators are designed especially for the 
complex patterns defined in table 5.6. 
In the following, each of these operators will be discussed briefly, and as simple as 
possible examples will be given to demonstrate its intended use. To keep the description 
concise, the referenced attributes in these examples are assumed to be intuitively clear 
from the context. More detailed examples are given later in this chapter, and detailed case 
studies involving all of the listed operators are presented in the next chapter 7. 
The apply_op simply enables the use of a function where a term is expected. Its syntax is: 

apply_op       = '(' APPLY fn_ref ')' . 

For example, given that a point has to be transformed from cartesian to polar co-
ordinates, the following construction can be used to obtain the value of the radius: 
(MAP CLASS PolarPoint FROM CartesianPoint 
 ATTRIBUTES 
   (MAKE radius FROM (APPLY (LAMBDA (x y)  
                              (SQRT (+ (* x x) (* y y)))) 
                            ARGS X_coord Y_coord)) … ) 
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The mapcar_op resembles the MAPCAR function of Common LISP. It provides a type of 
iteration in which the function given by fn_ref is successively applied to one or more 
aggregations (lists or sets). The result of that iteration is a list containing the respective 
results of the function application on the elements of the aggregations supplied as argu-
ments to MAPCAR. The function must take the same number of arguments as the arguments 
of MAPCAR, which must be lists or sets of the same length; if not, the iteration terminates 
when the shortest list or set runs out, and the excessive elements are simply ignored. 

mapcar_op       = '(' MAPCAR fn_ref ')' . 

For example, if the reactions of columns are specified as lists of reals (in pounds) in 
one model and have to be applied to foundation elements as actions (specified in kN) 
in another model, the following construction can be used: 
(MAP CLASS FoundationElement FROM Column 
 ATTRIBUTES 
  (MAKE load_actions FROM (MAPCAR (LAMBDA (x) 
                                    (* 0.00454 (- x))) 
                                   ARGS reactions_list)) … ) 

The user_input_op provides a possibility to supply values interactively during a 
mapping. In this way, it is possible to fulfil a mapping with the help of the end-user that 
cannot otherwise be defined completely because of only a few missing data in the source 
model. It is on the responsibility of the application which issues the mapping request to 
construct the respective user dialog. The default implementation in the mapping engine 
assumes only a simple generic function that can be used in LISP-based applications. 
The syntax of user_input_op is quite simple. It provides the minimum of data that 
would allow a simple realisation of the template. These are: the data type of the expected 
input value(s), an optional prompt message, a term which will be assigned the provided 
value and an optional default value for the case that the user does not provide any input. 
The possibility to use a more advanced dialog feature is given by the RUN clause which 
enables to call an appropriate application-specific function. 

user_input_op   = '(' USER-INPUT input_type  
                      { prompt_string | RUN fn_file_name } 
                      { term }* 
                      [ DEFAULT { term }+ ] ')' . 

For example, to specify an overall foundation depth for a foundation design model 
when such data are missing in the source model, the following can be written: 
(MAP CLASS BuildingFoundation FROM Building 
 ATTRIBUTES 
  (MAKE foundation_depth FROM 
    (USER-INPUT REAL "Found. depth <0.0>:" DEFAULT 0.0)) … ) 

The user_choice_op is very similar to the user_input_op. It provides the possibility 
to select an input value from a list of possible values. This can be a list of constants, but 
also any possible list of values contained in the source model. Another typical case is to 
use as a “select list” an enumeration type specified in the target model. 
user_choice_op returns either one value (when the keyword ONEOF is specified), or 
multiple values collected in a list (when the keyword LISTOF is given). 
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user_choice_op  = '(' USER-CHOICE { ONEOF | LISTOF } { term }+ 
                      { prompt_string | RUN fn_file_name } 
                      { term }* 
                      [ DEFAULT { term }+ ] ')' . 

Continuing the example from above, in order to specify a preferred type for the 
foundation system the following can be written*): 
(MAP CLASS BuildingFoundation FROM Building 
 ATTRIBUTES 
  (MAKE foundation_type FROM 
    (USER-CHOICE ONEOF (LISTOF SPREAD_FOOTINGS 
                               STRIP_FOOTINGS 
                               PILES MAT UNDEFINED))) … ) 
If in the target model the list of permitted foundation types is defined as an enume-
ration with the name foundation_types 
    (USER-CHOICE ONEOF foundation_types) 
could be used instead. 

The descendants_op is now the first (and most simple) of the template operators 
supporting the complex mapping patterns given in table 5.6. It provides a local form of 
grouping, similar to the GROUPS clause of a class mapping declaration, but does not require 
the use of an additional variable. 

descendants_op  = '(' DESCENDANTS class  
                        [ FOR { simpleTemplate }+ ] 
                        [ local_cond_spec ] ')' . 

For example, to group all continuous beams in a building structure and use them as a 
selection list in a user_choice_op the following can be written: 
… 
(USER-CHOICE ONEOF (DESCENDANTS beam  
                      WHEN (beam_type = "continuous beam"))) … 

The application of the ref_op is also fairly obvious. It allows to use attributes of an object 
which is referenced through a pointer contained in an attribute of the current object. By 
embedding REF templates in one another, any level of referencing can be specified. 

ref_op          = '(' REF attr FOR { term }+ ')' . 

For example, to store directly the name of a building material in the attribute 
material_name of a BuildingElement instance in the target model when 
similar instances in the source model are linked to respective “material” objects with 
more detailed properties, the following construction can be applied: 
(MAP CLASS BuildingElement FROM BuildingElement 
 ATTRIBUTES 
  (MAKE material_name FROM (REF material FOR name)) … ) 

The rationale of the assoc_op is more complicated. Its goal is to enable the specification 
of a whole range of patterns where inter-related mappings are involved. Such situations 
                                                 
*) In these examples for USER-CHOICE the required prompt string is omitted for brevity. 
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occur when an attribute of the current object references an instance of another object, and 
the reference structure has to be reflected in the target model as well. 
In the simplest case of 1:1 correspondence, i.e. when both the source and the target objects 
reference (through their respective attributes) single other objects, the assoc_op is not 
needed as this mapping can be accomplished simply by an identity_decl, i.e.  
(SAME aT AS aS), which works also on pointer types. However, when one or both of the 
considered attributes are lists, the situation can be much more complicated, with a lot of 
different variations involved. In such cases, an assoc_op must be applied. 
In general, ASSOC requires first the class that is being referenced and then the name of the 
attribute by which this reference is done (REF clause). In addition, it allows to define also 
local conditions to constrain the association between the entities, as well as to use the 
reference attribute itself as a reference to another attribute (FOR clause). The latter is 
actually a rarely needed construct which is provided only for convenience, as a shortcut to 
an embedded REF template that would otherwise be needed. 

assoc_op = '(' ASSOC { class }+ [ REF attr ]  
               [ FOR { simpleTemplate }+ ] [ local_cond_spec ] ')'. 

As an example, consider a situation where for a composite building element, e.g. a 
wall, a number of building materials are defined, and the pointers to the respective 
“material” instances are stored as a list in the attribute ConsistsOf. In the target 
model, the same structure has to be reflected in the attribute StructMaterials, but 
only for component materials that are instances of the classes CONCRETE or STEEL. 
Obviously, this will lead to a M:N correspondence of the “material” objects with 
respect to the attributes ConsistsOf and StructMaterials. To achieve this, the 
following construction can be applied: 
(COPY CLASS Material) 
 … 
(MAP CLASS StructuralElement FROM BuildingElement 
 ATTRIBUTES 
  (MAKE StructMaterials FROM  
    (ASSOC Material REF ConsistsOf 
                    WHEN ONEOF (CLASSNAME = "CONCRETE") 
                               (CLASSNAME = "STEEL"))) … ) 

The new_op is complementary to ASSOC. It has a similar syntax, but is used in cases where 
a reference has to be established in the target model which does not exist in the source 
model. In order to construct such references, the addressed target objects must first be 
created and both the source and the target instance sets must then be analysed. Therefore, 
unlike ASSOC, the evaluation of a NEW template must always be deferred until all “directly 
resolvable” mappings are performed. The referencing of such “new” target objects may 
often be accompanied by one or more fairly complex local conditions. 

new_op   = '(' NEW class [ REF attr ] 
               [ FOR { simpleTemplate }+ ] [ local_cond_spec ] ')'. 

A simple example from IFC is to populate the attribute RelatedBuildings of the 
entity IfcRelServicesBuildings in the case when a functional system, e.g. an  
HVAC piping system, “services” all buildings in a model. This can be expressed as: 
 … 
(MAKE RelatedBuildings FROM (NEW IfcBuilding)) … 
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At last, the iter_op enables the specification of an iterator which scans the values stored 
in an attribute of list or set type in a source instance and populates with the individual 
values found distinct simple type attributes in respectively created distinct target instances. 
Thus, unlike the mapcar_op which also iterates over lists and sets, the iter_op esta-
blishes a 1:N correspondence between the source and the target instances in the given 
mapping, whereas MAPCAR merely creates one corresponding list (or set) in the respective 
attribute of the target. 
If more than one iter_op is used in one mapping declaration, the result will be a cross 
product of the separate 1:N mappings. In such case, the pruning of identical instances must 
be performed by the mapping engine as a last step in the mapping task. CSML does not 
provide an explicit construct to specify when and how the result set should be pruned. 

iter_op           = '(' ITERATE-ON { term }+  
                        [ local_cond_spec ]')' . 

For example, if in a source model all used materials are collected in one composite 
object, ProductMaterials, which contains a list of their standard designated 
names in the attribute MaterialNames, but in the target model each such material 
should be stored in a separate instance Material with its name stored in an attribute 
called Name, the following construction can be used to achieve the needed 
transformation: 
(MAP CLASS Material FROM ProductMaterials 
 ATTRIBUTES 
  (MAKE Name FROM (ITERATE-ON MaterialNames)) … ) 

6.2.6 Functions 

The use of in-line LAMBDA functions has already been addressed at several places in this 
section. It remains to show how other types of functions loaded from external source or 
executable files can be used. 
The general syntax of a function reference is as follows: 

fn_ref            = fn_descr [ ARGS { term }+ ] . 
fn_descr          = fn_name | lisp_lambda_fn . 
fn_name           = symbol . 

As shown, a LISP LAMBDA function is just one of the possibilities to use procedural code in 
CSML. The more general way is to pre-load all needed functions using the PRESETS section 
of a schema mapping declaration and then merely reference them by name. For example: 
 (MAKE line_length CONSTRUCTOR vector_length ARGS x y z) 

The syntax for loading such external functions is: 

ext_fn_load_op    = '(' LOAD fn_file_name 
                        [ FOR { fn_name }+ ] ')' . 

The arguments consumed by a function must be supplied in the ARGS clause of fn_ref. 
Such arguments can be any allowable data objects. The responsibility that they correspond 
to the formal parameters of the function is on the developer of the mapping specification. 
In the current version of CSML, external functions can be defined only in LISP and, with 
some restrictions, in C. The use of other programming languages (an implementational, 
and not a principal issue) has not been in the scope of this research. 
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6.2.7 Expressions 

Except for a few directly defined relations between terms, CSML does not support 
expressions in the sense of a normal programming language. There are two reasons for 
that. The first, more pragmatic reason is that the definition of expressions would over-
burden the syntax and make the mapping parser work slower. The second, more important 
reason is that CSML is intentionally designed with focus on the principal relationships 
between conceptual models, and not on eventual procedural operations that might be 
needed in certain attribute transformations. In my opinion, a mapping specification ruffled 
up with arithmetic expressions can only impair the overall readability and blur the 
objectives of the mapping task. The use of external functions for all algorithmic compu-
tations corresponds better to the purposes of a mapping language. 

6.2.8 Mapping domains and mapping extents 

Whilst all described mapping constructs are defined generically, on schema level, the 
actual mapping transformations are not performed on classes and their attributes, but on 
entity instances and the data they contain. Each such mapping transformation is associated 
with a mapping domain and a mapping extent. 
A mapping domain contains all source instances to which the given mapping equivalences 
can be applied, i.e. if S is a source class and T is the respective target class, such that  
S → T,  then  Dmap = { si } ⊆ S ⇔ ∀ si ∈ S ∃ tj ∈ T : si → tj. 

A mapping extent is comprised of all possible combinations of source-target instances 
fulfilling the given mapping equivalences, i.e.: 

The size of the mapping domain is affected by the number of source classes participating in 
the mapping, by the given conditions and by the specified groupings. If there are no con-
ditions and groupings in a class mapping declaration, the mapping domain will have a size 
equal to the number of instances of the source class (when only one source class is involved), 
or to the cartesian product of the instances of all source classes (when multiple source classes 
are specified in the FROM clause of the declaration). Conditions and groupings suppress the 
creation of a full cartesian product and consequently reduce the size of the mapping domain. 
The size of the mapping extent depends on the mapping domain and on the multiplicity of 
the specified attribute mappings. However, different from the relationships between entity 
domains in relational databases, in a mapping initially only the instances of the source 
classes exist, whereas the instances of the target class T have to be deduced from the 
applied mapping equivalences. 
In particular, the size of the mapping extent can be influenced by the template operators 
ASSOC (depending on the multiplicity of the specific associations), NEW (depending on 
other class mappings involving the referenced “new” target instances) and ITERATE-ON 
(which results always in a 1:N correspondence). In each of these cases, the size of the 
extent will be a multiple of the combined effect of such operations. As the target instances 
do not exist at the beginning and can thus be determined only on the basis of the mapping 
declarations, it is possible that after the mapping the extent contains duplicate instances of 
the target class. Therefore, in a last step, the resulting extent has to be analysed and all 
duplicates have to be removed. This task is on the responsibility of the implemented 
mapping engine. 

Emap = U si → tj (i×j). 
               

i,j 
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6.3 Formal Syntax Specification 

After the given outline of the structure and the basic components of CSML, in this section 
the full technical specification of its syntax is presented in three parts: (1) tokens, providing 
low-level definitions for all allowed lexical elements, (2) grammar rules providing all high-
level structures, and (3) informal propositions, including additional information not covered 
in the formal specifications for conciseness, or because it represents imported constructs 
described in other sections of this thesis or in other literature sources. 
The primary rule of the CSML syntax is rule (80). 

Tokens 

The following productions define the tokens of the language used in all subsequent 
grammar rules. Unless explicitly stated, no whitespace characters are allowed within the 
text matched by a single syntax rule for a token. 

Character classes: 

The specification of character classes is the same as for the Information Container 
externalisation and the knowledge-based expressions given in sections 4.2 and 4.7 respec-
tively. It is repeated here for convenience. 

(1) whitespace   = ASCII-SP | ASCII-HT | ASCII-CR | ASCII-LF | 
               ASCII-FF . 

(2) letter       = 'a' | 'b' | 'c' | 'd' | 'e' | 'f' | 'g' | 
               'h'.| 'i' | 'j' | 'k' | 'l' | 'm' | 'n' | 
               'o' | 'p' | 'q' | 'r' | 's' | 't' | 'u' | 
               'v' | 'w' | 'x' | 'y' | 'z' | 
               'A' | 'B' | 'C' | 'D' | 'E' | 'F' | 'G' | 
               'H'.| 'I' | 'J' | 'K' | 'L' | 'M' | 'N' | 
               'O' | 'P' | 'Q' | 'R' | 'S' | 'T' | 'U' | 
               'V' | 'W' | 'X' | 'Y' | 'Z' . 

(3) digit        = '0' | '1' | '2' | '3' | '4' | '5' | '6' | 
               '7' | '8' | '9' . 

(4) special_char = '!' | '”' | '$' | '%' | '&' | '.' | ',' | 
               '*' | '+' | '-' | '(' | ')' | '[' | ']' | 
               '{' | '}' | '<' | '>' | '=' | '@' | '?' | 
               '#' | '^' | ':' | ';' | '’' | '`' | '~' | 
               '|' | '/' | '_' . 

(5) escape_char  = '\' . 
(6) escape_seq   = '\n' | '\r' | '\t' | '\\' . 
(7) quote_char   = '\”' . 
(8) non_q_char   = letter | digit | special_char | escape_seq . 

Keywords: 

The below list presents all keywords of CSML. Although, technically speaking, several of 
these keywords may appear only in a specific context and may thus be 're-used' e.g. as 
class, instance or attribute names at other places, it is safer and simpler to consider all 
defined keywords as reserved words in CSML. Rule (74) provides an alternative syntax 
for the cases where a symbol defined in a model schema is identical with a keyword. 
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(9) AFTER       = 'AFTER'. 
(10) ALL         = 'ALL'. 
(11) ALLBUT      = 'ALLBUT'. 
(12) APPLY       = 'APPLY'. 
(13) ARGS        = 'ARGS'. 
(14) AS          = 'AS'. 
(15) ASSOC       = 'ASSOC'. 
(16) ATTRIBUTES  = 'ATTRIBUTES'. 
(17) BEFORE      = 'BEFORE'. 
(18) BOOLEAN     = 'BOOLEAN'. 
(19) CLASS       = 'CLASS'. 
(20) CLASSES     = 'CLASSES'. 
(21) CLASSNAME   = 'CLASSNAME'. 
(22) COMMENTS    = 'COMMENTS'. 
(23) CONDITIONS  = 'CONDITIONS'. 
(24) CONSTRUCTOR = 'CONSTRUCTOR'. 
(25) COPY        = 'COPY'. 
(26) DEFAULT     = 'DEFAULT'. 
(27) DEPENDENTS  = 'DEPENDENTS' | 
            'DEPENDENT-CLASSES'. 
(28) DESCENDANTS = 'DESCENDANTS'. 
(29) EXCLUSIONS  = 'EXCLUSIONS'. 
(30) FALSE       = 'false' | 
                   'FALSE'. 
(31) FOR         = 'FOR'. 
(32) FROM        = 'FROM'. 
(33) GROUPS      = 'GROUPS'. 
(34) INTEGER     = 'INTEGER'. 
(35) ITERATE-ON  = 'ITERATE-ON'. 
(36) LISP        = 'LISP'. 
(37) LISTOF      = 'LISTOF'. 

(38) LOAD         = 'LOAD'. 
(39) LOGICAL     = 'LOGICAL'. 
(40) MAKE        = 'MAKE'. 
(41) MAP         = 'MAP'. 
(42) MAPCAR      = 'MAPCAR'. 
(43) MAX         = 'MAX'. 
(44) MIN         = 'MIN'. 
(45) NEW         = 'NEW'. 
(46) NUL         = 'NUL'. 
(47) NUMBER      = 'NUMBER'. 
(48) OBJECTNAME  = 'OBJECTNAME'. 
(49) ONEOF       = 'ONEOF'. 
(50) PARTIALLY   = 'PARTIALLY'. 
(51) PRED        = 'PRED'. 
(52) PRESETS     = 'PRESETS'. 
(53) REAL        = 'REAL'. 
(54) REF         = 'REF'. 
(55) RUN         = 'RUN'. 
(56) SAME        = 'SAME'. 
(57) SETOF       = 'SETOF'. 
(58) SHARED      = 'SHARED'. 
(59) STRING      = 'STRING'. 
(60) THIS        = 'THIS'. 
(61) TRUE        = 'true' | 
                   'TRUE'. 
(62) UNKNOWN     = 'unknown' | 
                   'UNKNOWN'. 
(63) USER-CHOICE = 'USER-CHOICE'. 
(64) USER-INPUT  = 'USER-INPUT'. 
(65) VAR         = 'VAR'. 
(66) WHEN        = 'WHEN'. 

Lexical elements: 

Most of the lexical elements in CSML are also very similar or even the same as in the 
Information Container specification presented in section 4.2. However, analogous to the 
specification of knowledge-based expressions, CSML provides also the possibility to use 
free variables (rule 75) and operators (rules 76-78). Free variables are bound at execution 
time to respectively computed values in a similar way as in knowledge-based expressions. 
Together with operators and functions they allow to express complex correspondences 
between the elements of the source and target schemas, as well as to take in consideration 
certain context-dependent data transformations. 
(67) boolean    = TRUE | FALSE . 
(68) logical    = TRUE | FALSE | UNKNOWN . 
(69) longint    = [ sign ] { digit }+ . 
(70) real       = [ sign ] { digit }+ '.' { digit }*  

             [ { 'E' | 'e' } [ sign ] { digit }+ ] . 
(71) string     = '"' { non_q_char | quote_char | ' ' }* '"' . 
(72) simpleType = BOOLEAN | INTEGER | LOGICAL | NUMBER | REAL | STRING . 
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(73) symbol    = letter { letter | digit | '-' | '_' }* . 
(74) keyword   = [ '_' ] symbol . 
(75) variable  = '?' symbol . 
(76) term_op   = ONEOF | LISTOF | SETOF | MAX | MIN . 
(77) rel_op    = '=' | '<' | '>' | '<=' | '>=' | '<>' | ':=:' . 
(78) addr_op   = '->' . 
(79) sign      = '+' | '-' . 

Grammar rules 

The high-level production rules given below specify how the tokens of CSML can be 
combined into valid statements in a mapping specification. In order to avoid ambiguity, 
whitespace characters should be used as separators between the individual tokens. 

(80) schema_mapping_decl    = '(' MAP [ PARTIALLY ] { schema }+ 
                             FROM { schema }+  
                             mapping_spec_set ')' . 

(81) mapping_spec_set       = { { class_mapping_spec }+ | 
                           dependent_classes_spec | 
                           presets_spec | comments_spec }+ . 

(82) class_mapping_spec     = CLASSES { class_mapping_decl }+ . 

(83) dependent_classes_spec = DEPENDENTS { class_mapping_decl }+ . 

(84) presets_spec           = PRESETS { presets_decl }+ . 

(85) comments_spec          = COMMENTS { string }+ . 

(86) class_mapping_decl     = copy_class_decl | map_class_decl . 

(87) copy_class_decl = '(' COPY [ CLASS ] class [ FROM class ] 
                      { cond_spec | exclusion_spec }* ')' . 

(88) map_class_decl  = '(' MAP [ CLASS ] class FROM { class }+ 
                      { { attr_map_spec }+ | 
                        group_spec | 
                        var_spec | 
                        cond_spec | 
                        exclusion_spec }+ ')' . 

(89) presets_decl    = ext_fn_load_op | ext_fn_run_op | 
                  variable_decl . 

(90) ext_fn_load_op  = '(' LOAD fn_file_name  
                      [ FOR { fn_name }+ ] ')' . 

(91) ext_fn_run_op   = '(' RUN [ BEFORE | AFTER ] fn_file_name 
                      [ FOR { fn_name }+ ] ')' . 

(92) group_spec      = GROUPS { group_decl }+ . 

(93) group_decl      = '(' { class }+ FOR variable  
                      [ local_cond_spec ] ')' . 

(94) var_spec        = VAR { variable_decl }+ . 
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(95) variable_decl   = '(' MAKE { variable }+ 
                      { FROM { term }+ [ suffix_op ] | 
                        CONSTRUCTOR fn_ref } ')' . 

(96) cond_spec       = CONDITIONS [ ALL | ONEOF ] { cond_decl }+ . 
(97) local_cond_spec = WHEN [ ALL | ONEOF ] { cond_decl }+ . 
(98) cond_decl       = '(' term rel_op term ')' | 

                  '(' PRED { fn_ref | KB_Template } ')' . 

(99) exclusion_spec  = EXCLUSIONS { exclusion_decl }+ . 
(100) exclusion_decl  = '(' class [ FOR { attr }+ ] ')' . 
(101) attr_map_spec   = ATTRIBUTES { attr_map_decl }+ . 
(102) attr_map_decl   = identity_decl | equivalence_decl . 
(103) identity_decl   = '(' SAME { { attr }+ [ AS { attr }+ ] | 

                             ALL | ALLBUT { attr }+ } ')' . 
(104) equivalence_decl = '(' MAKE { attr }+  

                      { FROM { term }+ [ suffix_op ] | 
                        CONSTRUCTOR fn_ref }  
                      [ DEFAULT { term }+ ] ')' . 

(105) term            = valueTemplate | variable | 
                 '(' term_op { term }+ ')' | NUL . 

(106) valueTemplate   = simpleTemplate | literal | template_op | 
                  lisp_expr | searchExpression . 

(107) simpleTemplate  = attr | CLASSNAME | OBJECTNAME | 
                  [ class addr_op ] THIS . 

(108) literal         = boolean | logical | longint | real | string | 
                  symbol . 

(109) template_op     = apply_op | assoc_op | descendants_op | 
                  iter_op | mapcar_op | new_op | ref_op | 
                  user_choice_op | user_input_op . 

(110) apply_op        = '(' APPLY fn_ref ')' . 
(111) assoc_op        = '(' ASSOC { class }+ [ REF attr ]  

                      [ FOR { simpleTemplate }+ ] 

                      [ local_cond_spec ] ')' . 
(112) descendants_op  = '(' DESCENDANTS class  

                      [ FOR { simpleTemplate }+ ] 
                      [ local_cond_spec ] ')' . 

(113) iter_op         = '(' ITERATE-ON { term }+  
                      [ local_cond_spec ] ')' . 

(114) mapcar_op       = '(' MAPCAR fn_ref ')' . 
(115) new_op          = '(' NEW class [ REF attr ] 

                      [ FOR { simpleTemplate }+ ] 
                      [ local_cond_spec ] ')' . 

(116) ref_op          = '(' REF attr FOR { term }+ ')' . 
(117) user_choice_op  = '(' USER-CHOICE { ONEOF | LISTOF } { term }+ 

                      { prompt_string | RUN fn_file_name }  
                      { term }* 
                      [ DEFAULT { term }+ ] ')' . 
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(118) user_input_op  = '(' USER-INPUT input_type  
                     { prompt_string | RUN fn_file_name } 
                     { term }*  
                     [ DEFAULT { term }+ ] ')' . 

(119) suffix_op      = APPLY fn_descr | MAPCAR fn_descr |  
                 MAP result_type fn_descr . 

(120) lisp_expr      = '(' LISP lisp_form ')' . 
(121) schema         = [ SHARED ] schema_name . 
(122) class          = [ schema_name ':' ] symbol | variable . 
(123) attr           = [ class addr_op ] symbol | variable . 
(124) fn_ref         = fn_descr [ ARGS { term }+ ] . 
(125) fn_descr       = fn_name | lisp_lambda_fn . 
(126) schema_name    = symbol . 
(127) fn_name        = symbol . 
(128) fn_file_name   = string . 
(129) result_type    = symbol | simpleType . 
(130) input_type     = simpleType . 
(131) prompt_string  = string . 

Informal propositions 
The propositions listed below define additional rules for the proper use of CSML that 
cannot be readily expressed in EBNF. 
1) Entities defined in EXPRESS data models subject to an inter-model mapping 

specification are referenced in CSML as follows: 
− Entity classes are represented as symbols, eventually prefixed with the res-

pective schema name to avoid possible ambiguity when the same class name is 
found both in a source and a target model (see rule 122); 

− Attribute names are also represented as symbols and may be prefixed with the 
class and schema name for similar reasons (see rule 123); 

− References (pointers) to specific entity instances and/or attribute values need not 
be represented in CSML because all mapping specifications are provided on 
class level; if necessary, free variables can be used for intermediate storage of 
such values at execution time. 

2) longint values may contain as many digits as permitted in the internal repre-
sentation of long integer numbers, normally in the range  [ -264 ; 264 –1 ]. 

3) real values are interpreted internally as double precision floating point numbers. 
4) The keyword THIS represents a pointer to the currently processed object in the 

context in which it appears, and the keywords OBJECTNAME and CLASSNAME 
represent respectively the symbolic name of this object or of its class as strings. 

5) Although CSML does not enforce any requirement w.r.t. the internal format of an 
object name, in the context of the proposed environment an object name will be 
represented always by the object’s refID as defined in the Information Container 
specification, i.e.  
 refID   = modelID | objID .  
 modelID = ID .  
 objID   = [ modelID ':' ] ID .  
 ID      = symbol [ '.' { symbol | longint } [ version ] ] . 



174 A Mapping Language for Concurrent Engineering Processes 

 

6) fn_ref  and  fn_descr  defined in rules (124-125) provide the possibility to 
include 'foreign' code in a mapping specification as a substitution for any more 
sophisticated rules that might be needed for the definition of arithmetic or relational 
expressions. Such foreign code may be specified in an external function file or, in 
more simple cases, as an inline LISP lambda function*). The use of fn_ref (in rules 
95, 98, 104, 110, 114) is different from the use of fn_descr (in rule 119) w.r.t. the 
treatment of the function arguments. fn_ref  assumes that an explicit argument list 
is provided, whereas the arguments of a call to a function given by its function 
descriptor (fn_descr) are constructed automatically from the associated list of 
terms. In both cases, there are two “automatic arguments” that are always passed to 
the function: these are the source and the target object classes given in the class 
mapping declaration**).   
Each foreign function referenced in such way should always return a value of the 
appropriate data type required at the place where it is used. In particular, when a 
function is used as a predicate in a condition declaration (rule 98), it is expected to 
return only one single boolean value. 

7) lisp_form  and  lisp_lambda_fn, referenced in rules (120) and (125) respectively, 
provide a second alternative for the use of external constructs in CSML.  
A lisp_form can be any valid Common LISP top-level form as defined in  
(Steele 1990), but it should always return value(s) of the appropriate data type 
required at the place where it is used. It may include: 
− local variable bindings introduced by the Common LISP let construct; 
− free variables as defined in rule (75) above; 
− any standard Common LISP function, not referencing a user-defined routine; 
− object/attribute accessor functions as implemented in the mapping engine. 
A lisp_lambda_fn can be used at all places where a fn_descr is expected. 
However, different from a foreign function defined in an external function file, a 
lisp_lambda_fn is passed only the arguments that are explicitly given in its 
definition, i.e. it does not consume the automatic arguments provided for the 
source/target classes in an inter-class mapping declaration. 

8) KB_Template and searchExpression, referenced in rules (98) and (106) respec-
tively, offer yet another possibility for specifying more sophisticated expressions in 
CSML. They provide the necessary link allowing to use the knowledge-based 
extensions of the project data server within a mapping, following the syntax given 
in section 4.7.  
A searchExpression may be specified at any place where a valueTemplate is 
expected, its use in a mapping declaration is similar to that of a LISP expression.  
In contrast, a KB_Template may be used only as a predicate function in a condition 
statement and should always return one boolean value, i.e. it must express a fact to 
be checked against the actual state of the project data. No free variables are allowed 
in this specific use of a KB_Template. 

                                                 
*) In the currently prototyped Mapping Engine based on CSML only Common LISP and C 

functions may be defined as foreign functions in a mapping. The use of another programming 
language, though principally possible, requires a lot more implementation efforts. 

**) When there are more than one source classes involved, they are first packed as a list and then 
passed to the function as one single argument. 
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9) Certain grammar rules of CSML imply the use of lists. Whilst the syntax of such 
rules does not impose any limitations on the allowable length of such lists by itself, 
there are several dependencies that have to be observed in the actual use of lists in a 
mapping definition: 
− The list of terms in the FROM clause of variable_decl (rule 95) should match 

the list of variables specified in its MAKE clause; 
− The list of attributes in the AS clause of an identity_decl (rule 103) should 

correspond to the list of attributes to be mapped; the same applies also to  
the lists of terms given in the FROM clause and the DEFAULT clause of an 
equivalence_decl (rule 104); 

− The list of attributes in the FOR clause of an assoc_op (rule 111) should 
correspond to the specified list of classes, and each referenced attribute must be 
an existing attribute of the respective class in the class list; 

− Each term specified in the optional DEFAULT clause of a user_choice_op  
(rule 117) should be identical with one of the terms in the 'choice' list, and all 
terms in the 'choice' list must be different from each other; 

− The list of arguments in the ARGS clause of a fn_ref (rule 124) should 
correspond in number and type to the actually defined arguments of the 
function, with an offset of two for the automatically supplied arguments for the 
source and target classes. 

10) Finally, although not required by CSML, upper and lower case in all names 
defined in EXPRESS schemas should be observed for compatibility with appli-
cations relying on case-sensitive names, such as C++ or Java-based programs. 

The above set of informal propositions, complementing the formal grammar rules from the 
preceding section, complete the specification of CSML. With the help of the developed 
formalism (and with the help of a Mapping Parser implemented as part of the prototyped 
environment) each mapping model specified in CSML can be readily analysed, converted 
to an appropriate computer-interpretable format and supplied as input to the mapping 
engine. 

It remains to be proven that the developed formalism is sufficient to cover the mapping 
problems addressed in chapter 5. 

In particular, it is necessary to show that with the help of CSML it is possible: 

– to describe correctly all mapping patterns identified in section 5.6, 

– to express properly all relevant relational algebra operations known from database 
research, 

– to solve adequately typical mapping problems detailed in other research studies 
conducted on the mapping arena,  and 

– to provide appropriate coverage of practical tasks from the AEC domain. 

The first three of the above issues are addressed in the following three sections of  
this chapter. The last issue is discussed in the next chapter, on the basis of selected case 
studies. 
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6.4 Representation of Basic Mapping Patterns 

In order to prove that CSML is capable to represent the mapping patterns introduced in 
chapter 5, tables 5.3 to 5.7 are re-used here in a slightly different form. The last column in 
the original tables, describing the meaning of each of the discussed patterns, is substituted 
with the CSML specification which can be used to express the same mapping patterns 
formally. To focus the attention, the qualifying constructs are underlined. The first two 
columns are reproduced from chapter 5 to avoid cross-referencing. 

Table 6.1: Representation of the unconditional class level mapping patterns in CSML 

Class 
mapping 
pattern 

Schematic presentation 
of the mapping transformations CSML specification 

1 : ∅ 

S T

∅
 

  No operation needed 

1 : 1 

S T

 

(COPY CLASS T FROM S) 

1 : C 

S
T1

TC

...
S

T1

TC

S
T1

TC

...

 

(MAP CLASS T1 FROM S ... ) 
 ... 
(MAP CLASS TC FROM S ... ) 

with concrete attribute mappings detailed in 
the ATTRIBUTES sections 

C : 1 

S1
T

SC

...

S1
T

SC

S1
T

SC

...

 

(MAP CLASS T FROM S1 ... SC ... ) 

with concrete attribute mappings detailed in 
the ATTRIBUTES sections 

C : B 

S1 T1

SC TB

... ...

S1 T1

SC TB

... ...

 

(MAP CLASS T1 FROM S1 ... SC ... ) 
 ... 

(MAP CLASS TB FROM S1 ... SC ... ) 

with concrete attribute mappings detailed in 
the ATTRIBUTES sections 
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Table 6.2: Representation of the conditional instance level mapping patterns in CSML 

Instance 
mapping 
pattern 

Schematic presentation 
of the mapping transformations CSML specification 

1 : ∅ 

S T

 

  No operation needed 

1 : 1 

S T

 

(COPY CLASS T FROM S  
  CONDITIONS cond1 ... condN 
  ... 
 ) 

1 : C 
1 : N 

S T

 

(MAP CLASS T FROM S 
  CONDITIONS cond1 ... condN 
  ATTRIBUTES 
    (MAKE at FROM (ITERATE-ON as)) 
     ... 
 ) 

C : 1 
N : 1 

S T

 

(MAP CLASS T FROM S 
  GROUPS (S FOR ?S  
            WHEN  
            ONEOF cond1 ... condN )
  ATTRIBUTES 
  ... 
 ) 

Note:  The variable ?S must be used at least 
once in the ATTRIBUTES section to achieve 
the needed effect (see e.g. table 6.4, first pattern)

C : B 
C : N 
N : C 
N : M 

S T

 

(MAP CLASS T FROM S 
  GROUPS (S FOR ?S  
            WHEN  
            ONEOF cond1 ... condN )
  ATTRIBUTES 
    (MAKE aT FROM 
            (ITERATE-ON ?S -> as)) 
    ... 
 ) 

Note:  In this case, which is effectively a com-
bination of the previous two, ?S defines on the 
one hand side the grouping of the instances of S, 
and on the other hand side provides an iterator  
creating several instances of T depending on the 
value of as. It is not possible to use more than 
one grouping in such way because the result may 
be an undefinable set of instances to map. 
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The next three tables depict how the various attribute mapping patterns can be 
represented with the help of CSML.  For conciseness, only the attribute mappings aS → aT  
included in the ATTRIBUTES section of a class mapping declaration are shown in the 
column presenting the CSML specification. DaS and DaT represent the definitional 
domains for aS and aT respectively. 

Table 6.3: Representation of the basic attribute level mapping patterns in CSML 

Attribute 
mapping 
pattern 

Schematic presentation 
of the mapping transformations CSML specification 

Identity 
(simple 
equivalence) 

S T

D aS D aT

aS = val aT = val

S T

D aS D aT

aS = val aT = val

 

(SAME aT AS aS) 

Aggregate 
identity 
(simple set 
equivalence) 

S T

                        

D aS D aT

aS = [ v1..vN  ] aT = [ v1..vN  ]

(SAME aT AS aS) 

Functional 
equivalence 

                        

S T

F
D aS D aT

aS = val aT = F(val)

 

(MAKE aT FROM  
   (APPLY F ARGS aS) ) 

or, as a defered suffix operation: 
(MAKE aT FROM aS APPLY F) 

Functional 
set equiva-
lence 

S T

D aS D aT

aS = [ v1..vN ] aT = [ u1..uP ] =
= F ( [ v1..vN ] )

F

S T

D aS D aT

aS = [ v1..vN ] aT = [ u1..uP ] =
= F ( [ v1..vN ] )

F

 
     a)   N = P 
     b)   N ≠ P 

a) when N = P: 
(MAKE aT FROM  
   (MAPCAR F ARGS aS) ) 

or, as a defered suffix operation: 
(MAKE aT FROM aS MAPCAR F)

b) when N ≠ P: 
(MAKE aT FROM aS 
   MAP type(aS) F) 

where the structure of the result set 
is modified by F w.r.t the original 
set (see e.g. the Common LISP 
function reduce  --  Steele 1990). 
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Table 6.4: Representation of the complex attribute level mapping patterns in CSML 

Attribute 
mapping 
pattern 

Schematic presentation 
of the mapping transformations CSML specification 

Grouping 
 

            

S1 ... Sn
            

aS,1 = v1
aS,N = vN

D aS

T

            

D aT

aT = [ v1..vN  ]

a) unconditional, for all S , T: 
GROUPS (S FOR ?S) 
... 
(MAKE aT FROM ?S -> as) 

b) conditional, only for some S 
 w.r.t. aS: 
(MAKE aT FROM 
  (DESCENDANTS S FOR aS 
     WHEN cond(S) ) ) 

Ungrouping 
(iteration) 

            

S T1 ... Tn
            

aT,1 = v1
            

D aS

aS = [ v1..vN  ] aT,N = vN

D aT

a) unconditional: 

(MAKE aT FROM 
   (ITERATE-ON aS) ) 

b) conditional: 
(MAKE aT FROM 
   (ITERATE-ON aS 
      WHEN cond(S) ) ) 

Homo-
morphic 
(1:1 assoc.) 

S T

R U

aT = ↑Ui

D aS D aT

                        aS = ↑Ri

 

(MAKE aT FROM 
  (ASSOC R REF aS) ) 

where U is obtained from  
the mapping  R  U. 

Because of the one to one 
correspondence of R and U,  
here it is also valid to write: 
(SAME aT AS aS) 

Homo-
morphic 
(1:N assoc.) 

S T

R U1,..,UN

aT = [ ↑Ui1...
          ↑UiN ]

D aS D aT

            
            

aS = ↑Ri

 

(MAKE aT FROM 
  (ASSOC R REF aS) ) 

where U is obtained from the 
mapping  R  U1...UN. 

There is no need to express 
homomorphic 1:N associations  
in a different way than the 1:1 
homomorphic association from 
above. 
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Table 6.4 (cont.): Representation of the complex attribute level mapping patterns in CSML 

Attribute 
mapping 
pattern 

Schematic presentation 
of the mapping transformations CSML specification 

Homo-
morphic 
(N:1 assoc.) 

S T

R1,..,RN U

aT = ↑Ui

D aS D aT

                        
aS =
   [ ↑Ri1...↑RiN ]

 

a) unconditional: 
(MAKE aT FROM 
  (ASSOC R REF aS) ) 

b) conditional, only for some R: 
(MAKE aT FROM 
  (ASSOC R REF aS 
     WHEN cond(R) ) ) 
where U is obtained from the 
mapping  R1...RN  U. 

Homo-
morphic 
selective 

S T

R U

aT = [ ↑Uj1...
          ↑UjN ]

D aS D aT

                   
     

aS = [ ↑Qi1...↑QiM
           ↑Rj1...↑RjN ]

Q ...

 

(MAKE aT FROM 
  (ASSOC R REF aS) ) 

Note: In order to accomplish such 
selective mappings, it is sufficient 
that no reference to the source 
class  Q is given. 

As it can be seen, all homomor-
phic associations are achieved by 
using the same construct (ASSOC). 
The particular effect depends on 
the type of the involved data. 

Transitive 
(telescope) 

                        

S T

R

aS = ↑Ri

    
    

    

D aS
D aT

aR = val

aT = val

 

(MAKE aT FROM 
  ( REF aS FOR aR ) ) 

Such references may also be 
chained: 
(MAKE aT FROM 
  ( REF aS FOR 
     (REF ...  
        (REF ... ) ... 
 ) 

Note:  The number of nested REF 
constructs is theoretically not res-
tricted. However, it is not possible 
to specify recursively chained 
pointers with CSML. In such 
cases, an appropriate functional 
transformation has to be used. 
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Table 6.4 (cont.): Representation of the complex attribute level mapping patterns in CSML 

Attribute 
Mapping 
Pattern 

Schematic presentation 
of the mapping transformations CSML specification 

Inverse 
transitive 

                        

S T

U

aT = ↑Uj

            

D aS

D aT

aUj = val

aS = val

 

(MAKE aT FROM (NEW U) ) 

where aU is obtained from the 
additional mapping  S  U, 
e.g. by: (SAME aU AS aS) 

Transitive 
and 
associative 

D aS

            

S T1 ... TN

R

            

D aR

D aT

aTN = aRN
aT1 = aR1

aS =[↑R1... ↑RN]

aR1

aRN

(MAKE aT FROM 
  (ASSOC R REF aS 
           FOR aR ) ) 

Note:  In this case the ASSOC 
template is used in a very similar 
way as in the set of homomorphic 
mapping patterns shown above. 
The only difference is that here 
it is necessary to use also a FOR 
clause to point to the required 
attributes ( aR1 … aRN ). 

Inverse 
associative 

            

S1 ... SN T
            

            

R U

D aR

aT = [ ↑U1...↑UN ]

aR,N = ↑RN

aR,1 = ↑R1

D aT

 

(MAKE aT FROM 
  (ASSOC U  
     WHEN  
     (U :=: R) 
     (R -> aR

 = S -> THIS) )
 ) 

Note:  The specification for this 
mapping pattern is more intricate, 
partially because it was recognised 
relatively late, when the syntax of 
CSML had already been fixed. 
However, because the target struc-
ture is much more comlex than the 
source, it is by itself a complicated 
equivalence, requiring to specify 
explicitly, by means of the idiom 
(U :=: R), the correspondence of 
the instances of U and R given in 
another class mapping declaration. 
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Table 6.5: Representation of the generative attribute level mapping patterns in CSML 

Attribute 
mapping 
pattern 

Schematic presentation 
of the mapping transformations CSML specification 

Simple 
generative 

S T

∅

            
aT = new-val

D aT  

(MAKE aT FROM new-val ) 

for example: 
(MAKE aT FROM 3.60) 

Functional 
generative 

S T

∅
F

            
aT = F(v1..vN )

D aT  

(MAKE aT 
  CONSTRUCTOR F 
  ARGS v1 ... vN  ) 

for example: 
(MAKE absolute_height  
  CONSTRUCTOR z_max_fn 
  ARGS 
   (DESCENDANTS point) 
   ?offset) 

User-
dependant 
generative 

S T

∅

User

            
aT = user-input

D aT
 

(MAKE aT FROM 
  (USER-INPUT type(aT ) 
   prompt ) ) 

for example: 
(MAKE t_slab FROM 
  (USER-INPUT real 
    "Slab thickness: " )) 

User-
dependent 
selective 

S T

User

            aS = [ v1..vN ]            

D aTD aS

aT =  vi

        ∈ [ v1 ..vN ]

(MAKE aT FROM 
  (USER-CHOICE ONEOF aS 
   prompt ) ) 

for example: 
(MAKE ft FROM 
  (USER-CHOICE 
    ONEOF ft_list 
    "Choose found.type" ))

User-
dependent 
multiple 
selective  

User

S T
                        

D aTD aS

aS = [ v1..vN ]
aT = [ vi , vj ...]
      ⊆ [ v1 ..vN ]

(MAKE aT FROM 
  (USER-CHOICE LISTOF aS 
   prompt ) ) 

for example: 
(MAKE role FROM 
  (USER-CHOICE 

    LISTOF actor_roles 
    "Choose role(s)" )) 
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6.5 Representation of Set Relational Operations 

Relational database systems are widely used in today’s practice and have a solid logical 
foundation. Since the main goal of a mapping specification is to represent the relationships 
between a source and a target model which are in a broad sense a superset of the relation-
ships that can exist between relational database tables, it is important to show that all 
relevant operations defined in relational algebra can be adequately supported. 

6.5.1 Basic relational algebra operations 

Projection 

Let S be a source entity class with attributes { si }i=1..n , and let T be a target entity  
class with attributes { tj }j=1..m ⊂ { si }, m < n, so that ∀ j ∃ stj ∈ { si }: stj  tj, 
i.e.  T = π1..m(S),  where  π1..m  is the projection operator. 
Then  T = Projection(S,π) can be achieved in CSML simply by: 
 (MAP CLASS T FROM S  
    ATTRIBUTES (SAME t1 ... tm AS st1 ... stm) 
  ) 

which reduces { si }  to  { tj }  in the target model. 

Selection 

Let S and T be a source entity class with attributes { si }i=1..n , and a target entity  
class with attributes { ti }i=1..n respectively, so that ∀ i ∃ si,ti : si  ti ; let also 
{ P1(s1 ... sm) ... Pq(s1 ... sm) }, m < n  be a set of boolean predicates, such 
that  Si  Ti ⇔ P1 ∧ ... ∧ Pq (Si), which is often written as T = σ1..q(S), where 
σ1..q  is the selection operator. 
Then  T = Selection(S,σ) can be accomplished by: 
 (MAP CLASS T FROM S 
    CONDITIONS (PRED P1 ARGS s1 ... sm) ... 
               (PRED Pq ARGS s1 ... sm) 
    ATTRIBUTES (SAME ALL) 
  ) 

Cartesian product 

Let R and S be two source entity classes with attributes { ri }i=1..n  and { sj }j=1..p  res-
pectively, and let T be a target entity class with attributes { tk }k=1..n+p , so that T = R × S. 
Then  T = CartesianProduct(R,S) can be accomplished by: 
 (MAP CLASS T FROM R S 
    ATTRIBUTES (SAME t1 ... tn AS r1 ... rn) 
               (SAME tn+1 ... tn+p AS s1 ... sp) 
  ) 
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Union 

Let R and S be two source entity classes with the same arity and attributes { ri }i=1..n and 
{ si }i=1..n respectively, and let T be a target entity class with attributes { ti }i=1..n so 
that T = R U S. 
Then T = Union(R,S) can be accomplished by the two mapping declarations: 
 (MAP CLASS T FROM R 
    ATTRIBUTES (SAME t1 ... tn AS r1 ... rn) 
  ) 

and 
 (MAP CLASS T FROM S 
    ATTRIBUTES (SAME t1 ... tn AS s1 ... sn) 
  ) 

Set difference 

Let R and S be two source entity classes with key attributes [ r1 ... rk ] and [ s1 ... sk ] 
respectively, and attributes { ri }i=1..n of R, n > k , and let T be a target entity class so 
that T = R – S. 
Then T = SetDifference(R,S,[ r1 ... rk ],[ s1 ... sk ]) can be accomplished by a 
mapping declaration with a precondition as follows: 
 (MAP CLASS T FROM R S 
    GROUPS (S FOR ?S) 
    CONDITIONS 
      (PRED (LAMBDA (RX SY) 
              (NOT (LOOP FOR X IN RX 
                         FOR Y IN SY 
                         ALWAYS (MEMBER X Y)))) 
            ARGS (LISTOF r1 ... rk) 
                 (LISTOF ?S -> s1 ... ?S -> sk)) 
    ATTRIBUTES 
      (SAME t1 ... tn AS r1 ... rn) 
  ) 

Obviously, this operation is specified (and performed) by far more difficult than any of the 
other basic relational operations given above. This is so because, in order to determine the 
instances of R which do not belong to the set of instances of S, a condition must be 
provided to check for each key rk of each instance Ri ∈ R whether it is not a key of an 
instance Sj ∈ { S } 

j=1..s. To achieve that, an in-line Common LISP function is defined, 
i.e. (LAMBDA (RX SY) ... ). This function works on two arguments: the list of keys 
[ r1 ... rk ] of the instance of R to be checked, and a list of lists of the keys 
[ s1 ... sk ] of all instances of S. The function returns true if ri is not found in S, and 
false otherwise. The second argument to the function is provided by grouping all instances 
of S in a variable ?S, and then using this variable together with the term operator LISTOF, 
to produce the required list [[s11 ... sk1] ... [s1s ... sks]]. By a non LISP imple-
mentation of CSML this function would need to be replaced by an external function. 
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6.5.2 Higher order relational algebra operations 

All higher order relational algebra operations can be derived easily from the five basic 
relational operations given in the previous section (cf. Ullman, 1988). This is valid also for 
the respective mapping specifications. However, as in RDBMS, a “direct” specification 
taking into account the specific character of the respective higher order relational operation 
is more efficient in each particular case. 

Intersection 

An intersection is equivalent to two consecutive SetDifference operations. 
Let R and S be two source entity classes with key attributes [ r1 ... rk ] and [ s1 ... sk ] 
respectively, and attributes { ri }i=1..n of R, n > k , and let T be a target entity class so 
that  T = R I S. 
Then T = Intersection(R,S,[ r1 ... rk ],[ s1 ... sk ]) can be accomplished by: 
 (MAP CLASS T FROM R S 
    CONDITIONS 
      (r1 = s1) ... (rk = sk) 
    ATTRIBUTES 
      (SAME t1 ... tn AS r1 ... rn) 
  ) 

Having in mind that T = R I S = R – (R – S), Intersection(...) can also be achieved by 
declaring an additional variable ?S, so that ?S = SetDifference(...), and then applying this 
variable in the mapping R  T, where ?S plays exactly the role of the grouped instances 
given by  GROUPS (S FOR ?S)  in the definition of the SetDifference operation. However, 
it is obvious that this would be by far less efficient than the direct transformation  R,S  T 
shown above. 

Join 

A join is equivalent to a cartesian product combined with a condition. 
Thus, given that R and S are two source entity classes with attributes { ri }i=1..n and 
{ sj }j=1..p respectively,  and P0 (ρ,σ) is a predicate on  ρ ∈ { ri }, σ ∈ { sj } so that 

< 
P 0 

R   ×   S      T  , which is usually written as  T  = R  S,  > 
ρ P σ  

T = Join(R,S,P0(ρ,σ)) can be accomplished by: 

 (MAP CLASS T FROM R S 
    CONDITIONS 
      (PRED P0  ARGS  R -> ρ  S -> σ) 
    ATTRIBUTES 
      (SAME t1 ... tn AS r1 ... rn) 
      (SAME tn+1 ... tn+p AS s1 ... sp) 
  ) 
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Equijoin 

An equijoin is a join with a condition  Pe : (ρ = σ). 
T = EquiJoin(R,S,Pe) can be specified simpler than a join as follows: 
 (MAP CLASS T FROM R S 
    CONDITIONS (ρ = σ) 
    ATTRIBUTES 
      (SAME t1 ... tn AS r1 ... rn) 
      (SAME tn+1 ... tn+p AS s1 ... sp) 
  ) 

Natural join 

A natural join is effectively a join with a condition specified as equality over a set of key 
attributes in two source entities. 
Thus, given the source entity classes R and S with key attributes [ r1 ... rk ] and 
[ s1 ... sk ]  respectively,  and the condition Pk : r1 = s1 ∧ ... ∧ rk = sk (R×S), 
and given a target entity class T, so that  T = R  S,  T = NaturalJoin(R,S,Pk) can be 
accomplished by: 
 (MAP CLASS T FROM R S 
    CONDITIONS (r1 = s1) ... (rk = sk) 
    ATTRIBUTES 
      (SAME t1 ... tn AS r1 ... rn) 
      (SAME tn+1 ... tn+p AS s1 ... sp) 
  ) 

Semijoin 

A semijoin is a projection onto the attributes of R of the natural join of two source entities 
R and S, i.e.  T = R  S = πR(R  S). 
T = SemiJoin(R,S,Pk,πR) can be achieved with the same specification as for natural 
join, leaving out the last attribute mapping, i.e. (SAME tn+1 ... tn+p AS s1 ... sp). 

6.5.3 Nested operations 

Unlike SQL, CSML does not support nested class mapping declarations and consequently 
cannot combine relational operations explicitly. However, noticing that free variables may 
be used not only as a source, but also as the target of a mapping, it is possible to link 
relational operations implicitly. To achieve this, temporary variables should be used for 
any nested operations; it is only necessary that all intermediate structures are defined in the 
target model, but this is not a serious restriction for the envisaged use of CSML in an IFC-
based CEE system. 
For example, assume that T = Projection(S,π). Then U = Selection ( Projection(S,π),σ ) 
can be accomplished by: 
 (MAKE VAR ?X FROM T -> THIS)   -- initialisation of an empty global variable 
 ...             of type T 
 (MAP CLASS ?X FROM S ... )    -- projection (as on page 183) 
 ... 
 (MAP CLASS U FROM ?X ... )    -- selection (as on page 183). 
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6.5.4 View Integration Operations 

As already mentioned in chapter 5, an important issue in the conceptual design of federated 
databases is the derivation of an integrating database schema for a set of partially harmo-
nised, overlapping databases. The efforts in this area have helped to identify a number of 
high-level operations that are interesting also for the model transformation problems in CEE. 
Therefore, to complete the proof for sufficiency of CSML, a subset of the view integration 
operations proposed initially in (Motro 1987) and anticipated as relevant to different 
mapping tasks is analysed below. 

Meet 

A meet expresses the mapping of two overlapping source model classes with a common key 
but no common superclass to three target model classes, a superclass and two non over-
lapping subclasses, as illustrated on fig. 6.5. 

ENTITY R; 
  A : NUMBER; 
  B : STRING; 
END_ENTITY; 
ENTITY S; 
  A : NUMBER; 
  C : REAL; 
END_ENTITY;  

ENTITY TRS; 
  A : NUMBER; 
END_ENTITY; 
ENTITY TR 
  SUBTYPE OF (TRS); 
  B : STRING; 
END_ENTITY; 
ENTITY TS 
  SUBTYPE OF (TRS); 
  C : REAL; 
END_ENTITY; 

Fig. 6.5: Schematic representation of a “Meet” 

Thus, if R and S are two source entity classes with respective attributes { ri }i=1..n and 
{ sj }j=1..p , a common key [ r1 ... rk ] = [ s1 ... sk ], and shared attributes 
[ r1 ... rm ] and [ s1 ... sm ], where p > n > m > k; and TR, TS and TRS are three 
target entities, so that  R  TR , S  TS and TRS is a generalisation of TR and TS, 
then { TR, TS, TRS } = Meet(R,S) can be accomplished by: 
 (MAP CLASS TR FROM R 
    ATTRIBUTES (SAME tR1 ... tRn AS r1 ... rn)) 
 (MAP CLASS TS FROM S 
    ATTRIBUTES (SAME tS1 ... tSp AS s1 ... sp)) 

TRS must not be mapped because both TR and TS inherit from it, but there is no equivalent 
superclass in the source model. 

Fold 

A fold combines two source classes standing in sub/super class relationship to each other to 
a single target class encompassing both. 
Let R and S be two source entity classes with attributes { ri }i=1..n and { sj }j=1..p 
respectively, where R is a generalisation of S, and let T be a target entity class, such that  
{ R } ⊂ { T } ∧ { S } ⊆ { T }. 
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T = Fold(R,S) can be accomplished as follows: 
 (MAP CLASS T FROM R 
    ATTRIBUTES (SAME t1 ... tn AS r1 ... rn)) 
 (MAP CLASS T FROM S 
    ATTRIBUTES (SAME t1 ... tp AS s1 ... sp)) 

The inverse case T  R,S is more difficult. It needs the introduction of 2 additional 
temporary variables (?T), along with the use of knowledge-based templates: 

 (MAP CLASS S FROM T 
    VAR (MAKE ?T FROM T -> THIS) 
    CONDITIONS (PRED (AND (?T HAS tn+1) ... (?T HAS tp))) 
    ATTRIBUTES (SAME s1 ... sp AS t1 ... tp)) 
 (MAP CLASS R FROM T 
    VAR (MAKE ?T FROM T -> THIS) 
    CONDITIONS (PRED (NONE (?T HAS tn+1) ... (?T HAS tp))) 
    ATTRIBUTES (SAME r1 ... rn AS t1 ... tn)) 

Aggregation 

An aggregation transforms a source entity having an attribute with a complex data type 
(set, list) into a target entity linked to a set of entities each having an attribute equivalent to 
the respective element in the set or list of values of the complex attribute of the source 
entity. Thus, an aggregation is in effect the “entity level” version of the iterative 
(ungrouping) mapping pattern given in table 6.4. 
Let S be a source class with attributes { s1 ... st ... sn } where st = [ t1 ... tp ], 

and t1 ... tp are all of type θ. Further, let T be a target class with one attribute t of  
type θ, and Ta be a target class with attributes { ta1 ... tat ... tan } such that 
∀ i ∃ Si,Tai : Si  Tai ∧ [ t1 ... tp ]  [ T1 ... Tp ]. 

Then  { T, Ta } = Aggregation(S,st) can be achieved as follows: 
 (MAP CLASS T FROM S 
    ATTRIBUTES 
      (MAKE t FROM (ITERATE-ON st))) 
 (MAP CLASS Ta FROM S 
    ATTRIBUTES 
      (SAME ta1 ... tat-1 tat+1 ... tan AS s1 ... st-1 st+1 ... sn) 
      (MAKE tat FROM (NEW T))) 

Here, the first class mapping applies an iterator over the list st creating a separate entity 
for each ti in st, and the second class mapping uses the new entity instances of T, 
associating them with Ta. 
Inversely, for Ta,T  S, the attribute st is created by constructing the list of all 
attributes t of the instances of T referenced by Ta. This is much simpler (and faster): 

 (MAP CLASS S FROM Ta T 
    ATTRIBUTES 
      (SAME s1 ... st-1 st+1 ... sn AS ta1 ... tat-1 tat+1 ... tan) 
      (MAKE st FROM (REF tat FOR t))) 
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Telescoping 

Telescoping involves a set of transitive mappings (see table 6.4). 
Let R and S be two source entity classes with attributes { ri ... rn

 rS } and { si }i=1..p 
respectively, where rS = ↑Si | Si ∈ { S }. 
Then  T = Telescope(R,S,rS) is achieved simply by: 
 (MAP CLASS T FROM R 
    ATTRIBUTES 
      (SAME t1 ... tn AS r1 ... rn) 
      (MAKE tn+1 FROM (REF rS FOR s1)) 
      ... 
      (MAKE tn+p FROM (REF rS FOR sp))) 
The inverse case, T  R,S,rs would involve several NEW operators and may not always 
be possible to achieve. 

Is-a Join 

An Is-a Join transforms two overlapping source classes into a single class in the target 
model representing their joined properties, i.e. their generalisation. 
Let R and S be two source entity classes with attributes { ri }i=1..n and { sj }j=1..p 
respectively, which share a common key [ r1 ... rk ] = [ s1 ... sk ], n > k, p > k; 
and let T be a target entity class which is defined as a generalisation of R and S. 
Then  T = Is_a_Join(R,S,[ r1 ... rk ],[ s1 ... sk ]) can be achieved by: 
 (MAP CLASS T FROM R S 
    CONDITIONS (r1 = s1) ... (rk = sk) 
    ATTRIBUTES 
      (SAME t1 ... tn AS r1 ... rn) 
      (SAME tn+1 ... tn+p-k AS sk+1 ... sp)) 

In (Motro 1987) this operation is called simply a “join”. I prefer the name “Is-a Join” to 
distinguish it from the standard relational operation with the same name,  and also because 
I find “Is-a Join” a more suitable name for the addressed issue. 

Addition, Deletion and Renaming 

These last three trivial operations complete the set of integration operations relevant to 
mapping problems. They can be realised as follows. 
The addition of one attribute ta to the target entity class T which is otherwise identical to 
the source class S can be accomplished e.g. by: 
 (MAP CLASS T FROM S 
    VAR (MAKE ?A CONSTRUCTOR F ARGS X Y ... ) 
    ATTRIBUTES 
      (SAME ALL) 
      (MAKE ta FROM ?A)) 
where the constructor function F performs the necessary initialisation for ta. 
The deletion of one attribute sa of S in T is done by copying all attributes of S except for sa: 
 (MAP CLASS T FROM S 
    ATTRIBUTES (SAME ALLBUT sa )) 
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At last, renaming of S to T in the target model without changing any attribute values can 
be done simply by: 
 (COPY CLASS T FROM S) 

Table 6.6 below summarises the anticipated use, the specification efforts and the run-time 
performance of the discussed relational operations based on the modest experience and 
judgement of the author gathered from performed test studies. 

Table 6.6: Summary of relational operations usage in mapping problems 

Operation Anticipated use 
in model mapping

Representation 
with CSML 

Run-time performance  
in prototype environment 

using CSML 
Projection common easy fast 
Selection common easy depends on the conditions,  

mostly moderate 
performance 

Cartesian 
product 

moderate easy slow  (depends heavily on  
the number of instances) 

Union rare easy fast 
Set difference rare complicated moderate / slow 
Intersection rare easy moderate / slow 
Join common easy moderate to slow, depending 

on the conditions 
Equijoin common easy moderate 
Natural join common easy moderate / slow 
Semijoin moderate easy moderate / slow 
Meet common easy moderate 
Fold common easy,  but compli-

cated inverse case 
moderate 

Aggregation common medium difficulty moderate / slow 
Telescoping common easy; inverse case 

not always possible 
fast 

Is-a join moderate easy moderate / slow 
Addition common medium difficulty depends on the constructor 

function 
Deletion common easy fast 
Renaming common easy fast 

Knowing these qualitative measures and the respective mapping patterns, it should not be 
difficult to estimate the development efforts and the expected performance of a specific 
mapping task before undertaking the effort of its detailed realisation. 
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6.6 Typical Mapping Examples 

The following illustrative examples are adapted from publications describing other known 
mapping approaches (Clark 1992; Hardwick 1994; Bailey 1995; Amor 1997). As the main 
goal of CSML is to facilitate run-time mappings between shared model repositories and 
local domain or application-specific models, the examples are selected so that the represen-
tational power of CSML in such kinds of problems is demonstrated. For conciseness, 
basically only the mapping from an assumed shared source model to a local target model is 
given, although in some selected cases the inverse mapping is shown as well. The keyword 
SHARED designating integrated, shared models in the system is omitted in all examples 
except for example 1, as it does not contribute much to the illustration of the separate 
mapping concepts. The existence of a shared model is not mandatory for CSML anyway. 

Example  1: adapted from (Clark 1992) 

This example shows the mapping between two conceptually different representations of a 
2-dimensional point. The same procedure can be readily extended for other typical 
resource entities used in building product data models. 

Source schema     Target schema 
SCHEMA core_model; 
ENTITY point; 
  r, theta : REAL; 
END_ENTITY; 
END_SCHEMA; 

SCHEMA local_model; 
ENTITY point; 
  x, y : REAL; 
END_ENTITY; 
END_SCHEMA; 

Mapping specification: 
(MAP local_model FROM SHARED core_model 
 CLASSES 
  (MAP CLASS local_model:point FROM core_model:point 
    ATTRIBUTES 
      (MAKE x FROM (APPLY (LAMBDA (RS TS) (* RS (COS TS))) 
                           ARGS r theta)) 
      (MAKE y FROM (APPLY (LAMBDA (RS TS) (* RS (SIN TS))) 
                           ARGS r theta)) 
    ) 
 ) 

Inverse mapping: 

(MAP SHARED core_model FROM local_model 
 CLASSES 
  (MAP CLASS core_model:point FROM local_model:point 
    ATTRIBUTES 
      (MAKE r FROM (APPLY (LAMBDA (X Y) (SQRT (+ (* X X) (* Y Y)))) 
                           ARGS x y)) 
      (MAKE theta FROM (APPLY (LAMBDA (X Y) (TAN (/ Y X))) 
                               ARGS x y)) 
    ) 
 ) 
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Comment: 
In this simple example both forward and inverse mapping from/to a shared model to/from a 
view (or application-specific) model are demonstrated. Although the mapping contains 
only trivial transformation formulae, I nevertheless prefer the given separate mapping 
definitions for the two mapping directions compared to the bi-directional mapping, 
advocated e.g. in (Amor 1997). Separate mapping definitions provide better conceptual 
clarity and, in general, can be easier implemented. Besides this, I doubt that in larger 
models it would always be possible to provide symmetric equivalence specifications. 
Most interesting in the given example is the use of LISP forms for the geometric transfor-
mations: 
 x = f(r,θ) = r * cosθ; 
 y = f(r,θ) = r * sinθ. 
The local scope of the variables in each LISP form can be clearly recognised in the last 
two attribute mappings (the parameters X and Y in the given LAMBDA functions are not the 
same as the attributes x and y in the attribute mapping specification, but are substituted for 
the actual values of these attributes upon execution). 
The schema names in the class mapping declarations are used purely to emphasise the 
direction of the mapping. They are not needed to distinguish the source and target entities 
here (both with name point), as they are identifiable by position. 

Example  2: adapted from (Bailey 1995) 

This example shows a simple mapping between two structurally similar representations of 
a circle. It is included mainly to emphasise the difference to example 3. 

Source schema     Target schema 
SCHEMA shared_model; 
ENTITY circle; 
  centre : point; 
  radius : REAL; 
END_ENTITY; 
ENTITY point; 
  x, y, z : REAL; 
END_ENTITY; 
END_SCHEMA; 

SCHEMA local_model; 
ENTITY circ; 
  centre   : point; 
  diameter : REAL; 
END_ENTITY; 
ENTITY point; 
  x_coord  : REAL; 
  y_coord  : REAL; 
  z_coord  : REAL; 
END_ENTITY; 
END_SCHEMA; 

Mapping specification: 
(MAP local_model FROM shared_model 
 CLASSES 
  (MAP CLASS circ FROM circle 
    ATTRIBUTES 
      (SAME centre) 
      (MAKE diameter FROM radius APPLY (LAMBDA (X) (* X 2.0))) ) 
 DEPENDENT-CLASSES 
  (MAP CLASS point FROM point 
    ATTRIBUTES (SAME x_coord y_coord z_coord AS x y z) ) 
 ) 
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Comment: 

Most interesting here is the use of the DEPENDENT-CLASSES specification section. 
According to the given definitions, instances of point will be included in the target model 
if and only if they are referenced by at least one other entity instance (in this case 
circle). In contrast, if the mapping specification for point had been included in the 
CLASSES section, all points contained in the source model would have been mapped to the 
target, regardless of whether they are associated to circle entities or not. 
The example shows also the easy treatment of synonyms with the help of the SAME 
construct. 

Example  3: adapted from (Bailey 1995) 

This example shows the mapping for structurally dissimilar representations of a circle. 

Source schema     Target schema 
SCHEMA shared_model; 
ENTITY circle; 
  radius     : REAL; 
  cx, cy, cz : REAL; 
END_ENTITY; 
END_SCHEMA; 

SCHEMA local_model; 
ENTITY circ; 
  centre   : point; 
  diameter : REAL; 
END_ENTITY; 
ENTITY point; 
  x, y, z  : REAL; 
END_ENTITY; 
END_SCHEMA; 

Mapping specification: 

(MAP local_model FROM shared_model 
 CLASSES 
  (MAP CLASS point FROM circle 
    ATTRIBUTES (SAME x y z AS cx cy cz) ) 
  (MAP CLASS circ FROM circle 
    ATTRIBUTES 
      (MAKE diameter FROM radius  
                     APPLY (LAMBDA (X) (* X 2.0))) 
      (MAKE centre FROM (NEW point)) 
    ) 
 ) 

Inverse mapping: 
(MAP shared_model FROM local_model 
 CLASSES 
  (MAP CLASS circle FROM point circ 
    ATTRIBUTES 
      (MAKE radius FROM diameter APPLY (LAMBDA (X) (/ X 2.0))) 
      (MAKE cx cy cz FROM (REF centre FOR x y z))  

    ) 
 ) 
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Comment: 
Here a typical case of 1:C mapping is shown. In the forward mapping, which presents the 
more difficult case, the attribute centre of circ is assigned a pointer to the newly created 
point instances according to the first  MAP CLASS  declaration. Bailey and Amor, who 
uses the same example for VML (Amor 1997), claim that invariants have to be specified 
here to provide the requisite information needed to create a point for each circle when 
mapping from shared_model to local_model. In CSML this is not necessary. The 
circle entity is supposed to maintain a link to all entities created by its mapping, which 
allows to associate circ and point entities unambiguously during the mapping process. 
In order to express such links, the NEW operator has been introduced. 
The inverse mapping demonstrates how references between entities can be traversed to 
obtain the needed data. 

Example  4: adapted from (Bailey 1995) 

This example shows the tackling of a typical classification problem. 

Source schema     Target schema 
SCHEMA shared_model; 
ENTITY circle; 
  centre   : cartesian_point; 
  radius   : OPTIONAL REAL; 
  p1 : OPTIONAL cartesian_point; 
  p2 : OPTIONAL cartesian_point; 
  p3 : OPTIONAL cartesian_point; 
END_ENTITY; 
ENTITY cartesian_point; 
  x, y, z  : REAL; 
END_ENTITY; 
END_SCHEMA; 

SCHEMA local_model; 
ENTITY point; 
  x, y, z : REAL; 
END_ENTITY; 
ENTITY radius_circle; 
  centre  : point; 
  radius  : REAL; 
END_ENTITY; 
ENTITY three_p_circle; 
  p_1, p_2, p_3 : point; 
END_ENTITY; 
END_SCHEMA; 

   EXPRESS-G: 

 

  Source schema              Target schema 
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Mapping specification: 
(MAP local_model FROM shared_model 
 CLASSES 
  (COPY CLASS point FROM cartesian_point) 
  (MAP CLASS radius_circle FROM circle 
    CONDITIONS (PRED (radius OF circle)) 
    ATTRIBUTES (SAME centre radius) 
    ) 
  (MAP CLASS three_p_circle FROM circle 
    CONDITIONS (PRED (AND (p1 OF circle) (p2 OF circle) (p3 OF circle))) 
    ATTRIBUTES (SAME p_1 p_2 p_3 AS p1 p2 p3) 
    ) 
 ) 

Comment: 

The single representation of circle in the source schema allows for different represen-
tation options that have to be mapped to different entities in the target: radius_circle 
and three_p_circle. Both mapping declarations include a condition using as predicate 
the knowledge-based attribute existence template (attr OF instance) to discriminate 
between circles defined by three points and circles defined by centre point and radius. The 
attribute mappings themselves are quite trivial, and are easily achieved with the help of the 
SAME construct. The last line shows also one typical case for the use of parallel lists. 

Example  5: adapted from (Hardwick 1994) 

This example shows a mapping that reduces the representation of a 'block' entity as 
defined in the STEP AP 203 (ISO 10303-203 1994) to a much simpler structure in the 
target model. Such mappings are typical for the derivation of application-specific views 
from a common shared model. 

Source schema     Target schema 
SCHEMA AP_203; 
ENTITY block; 
  position : axis2_placement; 
  x, y, z  : REAL; 
END_ENTITY 
ENTITY axis2_placement; 
  axis : direction; 
  ref_direction : direction; 
  location : cartesian_point; 
END_ENTITY; 
ENTITY direction; 
  vector : LIST [3:3] OF REAL; 
END_ENTITY; 
ENTITY cartesian_point; 
  coordinates : LIST [3:3] OF REAL;
END_ENTITY; 
END_SCHEMA; 

SCHEMA view_model; 
ENTITY cube; 
  x, y, z : REAL; 
  size    : REAL; 
END_ENTITY; 
END_SCHEMA; 
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   EXPRESS-G: 

 

  Source schema               Target schema 

Mapping specification: 

(MAP view_model FROM AP_203 
 CLASSES 
  (MAP cube FROM block 
    CONDITIONS 
      (block -> x = block -> y) 
      (block -> x = block -> z) 
    ATTRIBUTES 
      (SAME size AS x) 
      (MAKE x y z  
            FROM (REF position 
                      FOR (REF location  
                               FOR coordinates)) ) 
    ) 
 ) 

Comment: 

In the source model x, y and z represent the dimensions of a block, whereas in the target 
model the same attributes stand for the coordinates of a cube’s origin w.r.t. the global 
coordinate system. 
The mapping is performed only for block instances with equal dimensions. The “filtering” 
conditions  x = y  and  x = z require full specification of the attributes x, y, z in the 
form class -> attribute because the same names exist in both schemas and would not 
otherwise be properly distinguished. 
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The REF clause in the last attribute mapping statement shows a typical telescope case 
together with list destructuring*),  i.e.  ∀ b ∈ { block } ( b.x = b.y = b.z ) :  
 b.position = ↑a ∧ a.location = ↑p ∧ p.coordinates  [ c.x c.y c.z ] 
 where: a ∈ { axis2_placement }, p ∈ { cartesian_point }, c ∈ { cube }. 

Example  6: adapted from (Amor 1997) 

This last example presents a case of a model transformation which cannot be tackled auto-
matically in both directions (in the inverse mapping, height and width cannot be calculated 
from the existing data in the local model). 

Source schema     Target schema 
SCHEMA shared_model; 
ENTITY wall; 
  height, width : REAL; 
END_ENTITY; 
END_SCHEMA; 

SCHEMA local_model; 
ENTITY wall; 
  area : REAL; 
END_ENTITY; 
END_SCHEMA; 

Mapping specification: 

(MAP local_model FROM shared_model 
 CLASSES 
  (MAP wall FROM wall 
    ATTRIBUTES 
      (MAKE area FROM 
                 (APPLY (LAMBDA (X Y) (* X Y)) 
                        ARGS height width)) 
    ) 
 ) 

Inverse mapping: 

(MAP shared_model FROM local_model 
 CLASSES 
  (MAP wall FROM wall 
    ATTRIBUTES 
      (MAKE height FROM (USER-INPUT 
                           REAL "Height of wall ~: " OBJECTNAME)) 
      (MAKE width FROM (APPLY (LAMBDA (A H) (/ A H)) 
                               ARGS area (NEW wall FOR height))) 
    ) 
 ) 
 

                                                 
*) List destructuring is a powerful feature of CSML, but it must be applied with care as it is at the 

sole responsibility of the developer of the mapping specification to ensure that a list mapped to 
individual items will contain correct elements w.r.t. their number and data types. It is not requi-
red that all elements in such lists are of the same type, important is the type correspondence. 
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Comment: 

The forward mapping is fairly simple here; it is in principle very similar to the mapping 
shown in example 1. The values for the attribute area are obtained by using the APPLY 
operator with a LAMBDA function which defines the required functional relationship, i.e. 
area = height * width. 
The inverse mapping is less obvious. As already mentioned, local_model does not 
contain all necessary data for a transformation back to shared_model. This means that 
the mapping from local_model to shared_model cannot be performed automatically, 
but it should not mean that it cannot be performed at all. In many such cases the complete 
data set needed for the model transformations can in fact be obtained with only a few 
additional, ad hoc provided data. Such data can be specified with the help of the constructs 
USER-INPUT and USER-CHOICE. In the above example, USER-INPUT will give a value to the 
height attribute of the target entity wall, after which its width can be easily deduced. 
Amor does not explain how such situations are treated in VML, and in other known 
mapping approaches there does not seem to be paid enough attention to this issue either. 
However, whilst it is certainly correct to conclude that a mapping with insufficient source 
model data is in general not possible, it is not satisfactory to give up the whole procedure 
only because of a few missing data, especially when it is not very difficult for the user to 
fill in the gaps. The pragmatic approach taken in CSML helps solving such problems. Of 
course, the use of interactive mapping constructs like USER-INPUT and USER-CHOICE would 
require an appropriate application-side implementation, but this is not very difficult to 
achieve. For example, a simple dialog box can be implemented for USER-INPUT, as shown 
on the sample screenshot below, and a list selection can be implemented for USER-CHOICE 
(in both cases accompanied by an appropriate graphical presentation for user convenience). 
The expected data should be requested by the mapping engine after parsing the mapping 
specifications, but before the actual mapping procedure starts. The mapping is given up 
only if the user does not provide all requested data, there are no default values specified, 
and the mode of the mapping operation is set to “complete”. 

 

Fig. 6.6: Sample client implementation for the USER-INPUT mapping construct 

6.7 Discussion 

The formal specification of mappings is an essential step in the design of an interoperable 
system for concurrent engineering. With CSML the features needed to enable successful 
application of the model mapping approach are provided in the following manner: 
1) Semantic and descriptive conflicts are resolved with the help of a rich set of mapping 

constructs on entity and attribute level, including the treatment of synonyms and 
homonyms, value type and value range conflicts etc. Of course, as in all other 
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approaches, these constructs provide only recipes how to resolve such conflicts; their 
recognition must be done manually by the developer of the mapping specification. 
Unit and scalability conflicts are not supported explicitly in CSML. However, 
scalability should not be a problem if the implemented mapping engine works with 
sufficient internal precision. Unit handling can be achieved easily with the available 
language constructs for all models that utilise the integrated resources of STEP 
providing formal specifications for “measure values” and “units of measure” (see  
ISO 10303-41 1994). This is granted by default by all STEP-based models as well as 
by the IFC framework. On the other hand, if a specific application model does not 
define explicit measures for physical quantities, there will be no way to define unit 
conversion except by external functions; and if both involved models do not support 
conceptually unit definitions, there will be no way to do this at all. In such cases, 
implicit assumptions have to be agreed*). 

2) Structural conflicts are supported for all identified mapping patterns, as well as for all 
known operations from RDBMS. Table 6.7, re-drawn from the principal presentation 
of structural mapping types given in table 5.1, provides a summary of the capabilities 
of CSML in that respect. 

Table 6.7: Supported mapping types in CSML 

Cardi-
nality 

Class  Class Entity  Entity
Inst.  Inst.

Attr.  Attr. Entity  Attr. 
 Inst.    

Attr.  Entity
        Inst. 

0 : 1 N/A implicit +   

1 : 0 implicit implicit implicit   

1 : 1 + + + + + 
1 : C + + + + + 
C : 1 + + + + + 
1 : N  +   + 
N : 1  +  +  

C : B + + + supported by 
ext. functions 

supported by 
ext. functions 

C : N  +   supported by 
ext. functions 

N : C  +  supported by 
ext. functions  

N : M  (+)    

(Note:  hatched boxes = mapping types relevant to the IFC modelling framework) 

                                                 
*) The problem of unit handling for physical quantities in engineering data models has been 

analysed in detail in (Gruber 1993) who shows an example ontology addressing measure-
related issues. The only language that can deal with such ontological specifications provided in 
the body of a mapping specification is ACL/KIF (Genesereth & Fikes 1992). 
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In the above table, M:N mappings are given in parenthesis because currently they are 
still not sufficiently tested. However, for the modelling framework of IAI/IFC, which 
constrains the EXPRESS paradigm with additional restrictive rules, this mapping type is 
actually not needed. More difficult to implement are only the multiple cardinality 
constructs “entity instance to attribute” and vice versa requiring in many of the 
examined cases the use of external functions. 

3) Heterogeneity conflicts, i.e. the use of different representation paradigms, have not been 
explicitly considered in the scope of CSML. However, CSML is not specifically bound 
to EXPRESS and can be readily adapted for other object-oriented models. As demon-
strated in section 6.5, the mapping of relational models is covered as well. 

4) The design of the language itself follows the requirements identified in section 5.6.5. 
Great attention has been paid to the requirements for modularity and the use of a 
declarative style for the mapping specifications so that an adaptation to different 
implementation environments should not be difficult to achieve. 
The use of templates, which is a novel feature of CSML, gives greater transparency 
and allows for more accurate estimation of the complexity of each particular mapping 
task. Besides, as self-contained constructs, templates provide an easy way to extend 
the scope of CSML in case that further mapping patterns are going to be needed. 
The language syntax is intentionally not aligned with EXPRESS, even though at several 
places certain similarities can be observed. Whilst EXPRESS data models have been 
analysed in greatest detail, due to the force majore coming from the IFC advancements 
and the practical studies performed on available EXPRESS-based schemas, a primary 
objective has been to develop a general specification encompassing a broader spectrum 
of object-oriented models. Thus, the style of CSML is actually more similar to SQL 
than to EXPRESS, because the goals of SQL are also more close to the goals of CSML 
than to EXPRESS. 

5) Support for the mapping development process has not been a primary objective of the 
work. This is an issue related to the construction of a specifically implemented model-
ling framework for CEE*), and not to the representational capabilities of the mapping 
language, neither to the run-time functionality of the CEE system. However, to enable 
the data transformations between different, only partially harmonised model schemas, 
which is of great importance for the overall interoperability approach proposed in this 
thesis, the development of support utilities for the creation, documentation and main-
tenance of valid mappings with CSML had to be considered as well. For this purpose, 
two light-weight tools have been prototyped: 
– Mapping Browser#), which enables the graphical visualisation and inspection of a 

mapping specification by means of a graph structure of the inter-related classes of 
the source and target model schemas, with connecting “mapping nodes” corres-
ponding to the MAP CLASS and COPY CLASS constructs of CSML; 

– XML Converter##), which enables the automated generation of hypertext documen-
tation of mappings defined with CSML. 

                                                 
*) Such a framework should include all needed inter-model mapping specifications, along with 

the data model schemas themselves. 
#) Developed as part of the KEE/LISP prototype environment. 
##) Developed as a stand-alone tool in Java. 
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The Mapping Browser can be used to provide a quick overview of the principal inter-
relationships of the classes involved in a mapping; it allows also to examine inter-
actively each “mapping node” w.r.t. the details of the encompassed attribute mapping 
patterns. The XML Converter can be used to provide a text-oriented presentation of a 
mapping which can then be viewed with a WWW-Browser; due to the included hyper-
text features, it can be especially helpful when specific constructs need to be traced 
down to the EXPRESS definitions of the respective source/target entity classes.    
An impression of the Mapping Browser is provided on fig. 8.9 in chapter 8. The 
developed XML DTD for CSML externalisation is presented in appendix IV at the  
end of the thesis. 

Aspects that need further work include: 

1) Consolidation of syntax 
When submitted to practical tests, CSML showed some typical teething troubles –  
a few constructs were not convenient in all cases, the use of NEW was not always 
obvious, often there were several different ways to express the same logical 
relationship, and the use of suffix operators did not justify itself. However, as all these 
are not serious defects, it should not be difficult to develop an improved version of the 
language. 

2) Enhancement of mapping templates 
Currently, some of the analysed mapping patterns require the use of complicated 
constructions. It would be desirable to have a more explicit presentation for all basic 
mapping cases. 

3) Generic function definition  
CSML itself provides a platform-independent notation but external functions can be 
specified only in LISP and, with some restrictions, in C. Although there is no known 
notation that provides for fully generic function definitions, it is worth considering to 
enhance the syntax and the respective mapping engine implementation so that stan-
dardised function interfaces, such as CORBA IDL (cf. OMG 1998), can also be applied. 

4) Method invocation 
Whilst currently not in the scope of CSML, in many cases the use of object methods 
would facilitate the definition of mapping conditions, such as instance selection, the 
access to complex data structures etc. An adaptation of the syntax in that respect should 
not be difficult to achieve, e.g. by extending the use of the addressing operator '->'. 
However, this must also be coupled with appropriate handling of arguments and return 
values, as well as with the use of the latter in a similar way as other CSML variables. 

5) Unit conversion 
Though unit conversion itself is a difficult problem when units are not explicitly 
supported in the involved models, it should be possible to provide an additional 
UNITS section in the class/attribute declarations to enable at least static and/or 
interactive specification of the necessary data. As simple as it seems, such feature is in 
fact of utmost importance in engineering environments. 
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6) Pure object-oriented implementation 
In a few cases the use of knowledge-based expressions was difficult to avoid because 
a replacement would have led to very complicated functions – see e.g. pp. 187, 194. 
However, as a pure object-oriented environment for CSML might also be required, it 
would be desirable to have more straight-forward alternative definitions for such 
cases. It is worth considering to introduce a small set of built-in functions for the 
tackling of typical condition specifications, as well as functional operators that could 
be used with or instead of the APPLY construct. 

7) Interactive mapping specifications 
Mappings only of selected objects can be quite useful in interactive environments. 
Whilst in a map(…) operation a specific subset of entity classes that only need to be 
mapped may be provided, the mapping declarations themselves cannot be changed. It 
would be useful to be able to specify such mappings “on the fly”, and include them 
directly in a mapping request, for example for modifying certain mapping conditions. 
This would lead to a feature, similar to embedded SQL with respect to CSML,  
which is worth considering for future extensions of the mapping system. 

8) User Interface 
A graphical user interface cannot replace the hours of work needed to identify all 
needed equivalences between two schemas, but it can considerably facilitate the 
mapping development process and can help eliminate technical errors. However, the 
prototyped environment currently provides only limited browsing facilities to examine 
a mapping specification. A full software solution should include appropriate visual 
development aids which should allow not only the definition of mapping equivalences 
in graph-oriented object diagrams (like the ones provided for OM and VML), but 
could also include visualisation and navigation through the real-world building objects 
in a project model. The latter can be done with the integration of a geometry 
presentation tool, e.g. a VR-Browser, into the mapping system.  
An extension of the XML-based externalisation of CSML to provide better support  
for the data types involved in a mapping, e.g. by using the XML Schema specification 
proposed recently by the W3C (cf. Fallside et al. 2000), is also worth considering.  
In that respect, coordination with similar activities within the IAI and in STEP  
(cf. ISO 10303-28 1999) can be very fruitful. 
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Chapter 7: Mapping Case Studies 

By three methods we may learn wisdom: First, by reflection, which 
is noblest; second, by imitation, which is easiest; and third by 
experience, which is the bitterest. 

– Confucius 

To gather evidence of the actual applicability of CSML, several practical tasks have 
been examined. This chapter, completing the presentation of the language, discusses 
three case studies of more comprehensive mapping problems performed in the course 
of the work. Compared to the illustrative examples given in the previous chapter, the 
scope of these studies is broader, and the involved schemas are more complex, closer 
to real practical cases. For better overall view, the source and the target schemas for 
each of the discussed test cases are presented in EXPRESS-G. All lines in the mapping 
specifications are numbered to help referencing them in the accompanying comments. 

7.1 Test Bed Model Transformation Example 
This test example presents a slightly modified version of a study which has been conducted 
by Liebich et al. (1995) to survey different mapping methods available on the product 
modelling arena. The original problem comprises several mapping exercises between two 
pairs of EXPRESS schemas, a building system structural component schema (bssc) and a 
simple geometry schema (sg) as source schemas, along with a preliminary structural system 
schema (pss) and a structural system geometry schema (ssg) as target schemas. Here the 
two complementary geometry schemas (sg and sgg) are omitted for brevity. The bssc and 
the pss schemas shown below are respectively severed from all references to sg and sgg. 
Source schema  ( bssc ): 
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Target schema  ( pss ): 

 

Liebich et al. consider the following five mapping problems most essential in their study: 
[1] bssc:material  pss:material.  

“Attribute to entity” mapping with 1:N cardinality, depending on the actual cardinality 
of the attribute bssc:material.classified_by. 

[2] bssc:column  pss:column  and in analogy  bssc:beam  pss:beam. 
Mainly 1:1 “attribute to attribute” conditional mapping, depending on the entity  
name, and involving type conversion for the mapping id  identified_by. 

[3] bssc:component_relationship  pss:support_connector  and 
bssc:component_relationship  pss:element_connector. 
Conditional mappings depending on the value of the quality attribute of 
bssc:component_relationship  and  reusing  the  results  of  [2]. 

[4] bssc:structural_component  pss:simplified_frame. 
Conditional creation of new pss:simplified_frame  instances depending on  
the relationships  between  the  instances of  bssc:component_relationship, 
bssc:column and bssc:beam  (this is not considered a typical type of a mapping 
problem, but a complex precondition for a mapping). 

[5] sg:simplified_block  ssg:linear_geometry. 

The fifth of these problems is not shown here for brevity. It requires complex geometric 
transformations that would have made the detailed mapping specification considerably 
longer, adding only little value to the presentation. Such geometric transformations are 
discussed in detail in the case study presented in section 7.3. All other formulated tasks are 
covered below. 
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Mapping specification: 

(MAP pss FROM bssc (1)
 CLASSES (2)
  (MAP CLASS structural_component FROM building_component (3)
    ATTRIBUTES (4)
      (MAKE identified_by FROM id MAP INTEGER (LAMBDA (X) X) ) (5)
    ) (6)
  (MAP CLASS structural_element FROM structural_component (7)
    ATTRIBUTES (8)
      (MAKE consists_of FROM (ASSOC material REF specified_by)) (9)
    ) (10)
  (COPY CLASS column FROM column) (11)
  (COPY CLASS beam FROM beam) (12)
  (MAP CLASS structural_connector FROM component_relationship (13)
    ATTRIBUTES (SAME related relating) (14)
    ) (15)
  (MAP CLASS support_connector FROM component_relationship (16)
    CONDITIONS (quality = support_connection) (17)
    ATTRIBUTES (18)
      (MAKE type_of FROM (19)
        (USER-CHOICE ONEOF (20)
           (LISTOF FREE_SUPPORT RESTRAINED_SUPPORT UN_KNOWN) (21)
           "Choose support type")) (22)
    ) (23)
  (MAP CLASS element_connector FROM component_relationship (24)
    CONDITIONS (quality = element_connection) (25)
    ATTRIBUTES (26)
      (MAKE type_of FROM (27)
         (USER-CHOICE ONEOF (28)
            (LISTOF JOINT_CONNECTION RIGID_CONNECTION UN_KNOWN) (29)
            "Choose support type")) (30)
    ) (31)
  (MAP CLASS simplified_frame FROM structural_component (32)
    VAR (MAKE ?ELEMENT_LIST FROM (33)
          (USER-CHOICE LISTOF (34)
             (DESCENDANTS structural_element) (35)
             "Choose frame elements")) (36)
    CONDITIONS (?ELEMENT_LIST <> NUL) (37)
    EXCLUSIONS (structural_component FOR identified_by) (38)
    ATTRIBUTES (39)
      (MAKE has FROM ?ELEMENT_LIST) (40)
      (MAKE identified_by (41)
         CONSTRUCTOR make_assembly_identifier (42)
                     ARGS ?ELEMENT_LIST -> identified_by ) (43)
    ) (44)
 DEPENDENT-CLASSES (45)
  (MAP CLASS material FROM material (46)
    ATTRIBUTES (MAKE name FROM (ITERATE-ON classified_by)) (47)
    ) (48)
 PRESETS (LOAD "fn-file.lisp" FOR make_assembly_identifier) (49)
) (50)

 [1] 

[4] 

[3] 

[2] 
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Comments: 

The addressed mapping problems are tackled with CSML as follows*): 

[1] The mapping  bssc:material  pss:material  is defined in lines 45 to 48.   
This is a typical "dependent-class" in the terminology of CSML as it is not meaningful 
to create instances of pss:material that are not referenced by any structural 
component in the pss model.  
From the EXPRESS-G diagrams and the explanation given in (Liebich et al. 1995)  
it is not absolutely clear what mapping type exactly is needed here (by the way, a 
common problem in the development of mapping specifications). However, after 
examining the full EXPRESS listing of the models, it appears that an instance of 
bssc:structural_component may contain 0 or 1 references to an instance of 
bssc:material which, in turn, may contain a list of several materials identified 
merely by their names given in the attribute classified_by. In the pss model a 
separate material instance must be created for each of these names. These instances 
are then associated with the corresponding instance of pss:structural_element 
as illustrated in the sample instance-level mapping graphed below. 

column S column T

"m 1" "m 2" "m 3"

material T,1 material T,2 material T,3

"m 1" "m 2"

specified_by consists_of

classified_by name name name

"m 3"

material S,1

bssc pss

 

Fig. 7.1: Instance level mapping of entity ‘column’ and the associated entity ‘material’ 
(three attributes in bssc:materialS,1 lead to the generation of three entities pss:material, with 
'name' attribute corresponding to the respective element in the list 'classified_by') 

This 1:N mapping problem is tackled in line 47 of the mapping specification with the 
help of the template operator ITERATE-ON which initiates an iteration over all elements 
contained in the attribute classified_by, creating one instance of pss:material 
for each element, and then assigning the value of this element to the attribute name of 
the created new instance of pss:material. Without ITERATE-ON there would be  
a 1:1 correspondence between bssc:material and pss:material which would 
not be correct. 

                                                 
*) The numbers in brackets correspond to the respectively labelled blocks in the mapping 

specification code. 
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[2] The mappings for pss:column and pss:beam are covered in lines 3 to 12.  
First, the mapping of the top-level abstract superclass  bssc:building_component 
is defined. It involves only the 1:1 mapping id  identified_by with an associ-
ated, somewhat artificial type conversion. This attribute mapping is specified on line 5 
with a common, somewhat cumbersome idiom provided in CSML for such purposes. 
The applied LAMBDA function merely returns its argument, converting it to the 
required INTEGER data type.*)  
The mapping of the abstract entity bssc:structural_component reuses auto-
matically the mapping for bssc:building_component by inheritance, and defines 
in addition the transformation specified_by  consists_of with the help of the 
ASSOC operator (line 9). This allows to associate all new instances of pss:material, 
created by the mapping  bssc:material  pss:material and referenced in the 
attribute  specified_by  of  bssc:structural_component, with the attribute 
pss:structural_element.consists_of.  
The mapping declarations for bssc:column and bssc:beam are themselves quite 
trivial as they can be reduced merely to reusing the mapping declarations for their 
superclasses by inheritance (lines 11, 12) **). 

[3] Lines 13-31 detail the mappings needed for pss:structural_connector, 
pss:support_connector  and  pss:element_connector.  
Here again, a mapping for the superclass (bssc:component_relationship  
pss:structural_connector) is defined first, so that it can be reused in the 
subclasses (lines 13-15).  
The mappings for pss:support_connector and pss:element_connector are 
identical in structure. Both use the interactive template operator USER-CHOICE enabling 
run-time assignment of values for the attribute type_of (lines 19-22 and 27-30 
respectively), along with the implicit inheritance of the mapping declaration for 
pss:structural_element. 

[4] At last, lines 32-44 present the mapping for  pss:simplified_frame.   
The intent of the original study here has been to explore the existing associations in 
the source model, i.e. to find for each instance  c ∈ { component_relationship } 
 c.relating = ↑si ∧ c.related = ↑sj  
 where si, sj ∈ { structural_component }  
and use these as a complex precondition to form subsets of structural_component 
for the aggregation relationship defined by pss:simplified_frame.has, tracking 
the topology of the components as appropriate.  
There is no convenient way to express such complex preconditions in CSML, other 
than by an external function. On the other hand, I don’t believe it to be the correct 
approach in this particular case anyway, because the decision about the definition of 

                                                 
*) Strictly speaking, this LAMBDA function is actually superfluous here because simple type 

conversions can be tackled automatically by the prototyped mapping engine on the basis of the 
available entity definitions in the model schemas. However, in general such conversions have 
to be specified explicitly. Line 5 demonstrates the principal procedure. 

**) Of course, in a real-life situation beam and column may contain several other attributes that 
are not provided in this case study. 
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frames in a structural system – an essential part of a structural engineer’s work in 
preliminary design – requires deeper knowledge than the simple element connectivity 
expressed by the attributes relating/related can represent.  
Therefore, for this mapping a completely different approach is taken. At first, the user 
is given the opportunity to interactively select the elements of a frame out of all 
generated structural_element entities in the pss model according to his own 
knowledge and judgement (lines 33-36). Admittedly, this is also not very likely to be 
of much practical use because the information provided to the user by the mapping 
alone would be minimal and in an inconvenient presentation format. However, it can 
be enhanced by a dedicated client function e.g. by combining it with a geometric view 
of the structure, highlighting the questioned structural elements and allowing to select 
them visually. Alternatively, the user may simply choose to ignore the request which 
will leave the variable ?ELEMENT_LIST unset and, because of the condition on line 37, 
no simplified_frame entities will be generated, but there will be also no wrong 
assumptions made automatically. In this case the mapping will remain incomplete, but 
it can be complemented by an intelligent structural design assistant, taking on the task 
of a mapper as proposed in (Hauser et al. 1996).  
The EXCLUSIONS condition given on line 38 prevents from performing the mapping for 
simplified_frame.identified_by  twice – by inheritance, from the mapping for 
structural_component (line 5), and according to the specification given on lines 
41 to 43, overriding the former result.   
Since there is no equivalent ID that can be adopted from the bssc model for a 
simplified_frame instance in pss, an external function, not further detailed here, 
is used to create the values for the attribute simplified_frame.identified_by.  
Finally, using the list of structural elements stored in ?ELEMENT_LIST, the values for 
simplified_frame.has  can be obtained by simple 1:1 equivalence (line 40). 

As a whole, because of the interdependencies of the mapping declarations, the pss model 
will be populated according to the following iteration sequence (not taking into account 
intermediate iteration steps generating incomplete, “skeleton” instances): 

1) Generating the instances of  material; 
2) Generating the instances of  beam  and  column  –  depending on material; 
3) Generating the instances of simplified_frame  –  depending on beam and column. 
4) Generating the instances of  support_connector  and  element_connector  –  

depending on beam and column. 
5) Pruning the instances of material that are not associated to any instances of the sub-

classes of structural_element in pss. 

Considering only the pure interdependencies between the source and target instances 
involved in the mapping, support_connector and element_connector could be 
generated actually in the same step as simplified_frame. However, in the implemen-
tation of the prototyped mapping engine all mappings requiring user input are processed 
before the mappings that can be resolved automatically. Since a mapping operation can 
take a long time in practical cases (several minutes or even hours), this policy gives the 
user the opportunity to react as early as possible to all associated requests. 
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7.2 Design Interaction Example 

This case study presents a moderately sized practical example drawn from an early rapid-
prototype implementation of CSML in the COMBI project (Katranuschkov & Scherer 
1995). It depicts the forward and inverse mapping specifications needed to transform 
typical structural objects defined in a structural domain model, such as nodes and  
nodal results, into objects typical for a foundation design application, and vice versa.  
Such transformations are necessary to enable the collaborative design interaction cycle  
preliminary structural design ↔ foundation design to be performed properly and with as 
little as possible information and time loss. The presented mapping task involves basically 
the transformation of reactions into loads and, inversely, computed foundation stiffness 
into restraints for the elastic supports of columns, frames and shear walls as shown 
schematically on fig. 7.2 below. It is a typical example for the often very different 
representations of building objects a mapping system has to deal with. 

structural model foundation design model

forward mapping
( nodes and node reaction 
  to loads )

inverse mapping

( foundation elements 
  and computed spring
  coefficients
  to structural elements,
  nodes and support restraints )

node object
representing
an elastic support

nodal_results

load object

spread_footing object

 

Fig. 7.2: Schematic view of the mapping transformations needed for the design cycle 
preliminary structural design – foundation design 

For compactness, both the source and the target schemas are considerably reduced here 
compared to the original problem. 

In the structural domain model (struct_domain_model) only entities directly involved 
in the mapping are shown; all subclasses of structural_element are severed as they do 
not contain data of specific interest for the mapping, and geometric characteristics are 
reduced to the simple link  node.location = ↑p | p ∈ { point }.  

In the application-specific foundation design model (fd_appl_model) all properties of 
subclasses of foundation_element are left out, and so are all entities representing the 
geotechnical characteristics of the site; the remaining part of the model is reproduced from 
the COMBI project without further modifications. 
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In both schemas measure units are substituted with real values, assuming that the same 
units are used in both model representations.*) 

As the main focus of this test case has been to show how design interaction can be 
enhanced by enabling simultaneous work on different aspects of a gradually filled evolving 
structural model to achieve a better thought out common solution, both the forward and the 
inverse mapping will be demonstrated. 

These two mapping specifications are both partial, as it is not meaningful to populate 
completely a fd_appl_model from the data contained in a struct_domain_model – 
a task dedicated to the foundation design application itself, neither possible to fully recon-
struct a struct_domain_model only by the results of a foundation design application. 

Source schema  (part of "struct_domain_model") : 

 
 

                                                 
*) In the original structural domain model of the COMBI project the reference geometry of the 

structural elements is more complicated, with great similarity to the IFC approach. The full 
model contains a total of 67 entity classes, with additional 45 resource entities for the 
geometry, and 17 entities for the material characteristics of the primary structural objects. The 
full foundation design application model contains a total of 14 entity classes with a few 
additional resource entities representing geometric, material and soil properties (Ammermann 
et al. 1994). 
The design tools used in the original COMBI example have been developed at the Dresden 
University of Technology (Knowledge-based Assistant for Preliminary Structural Design, 
PRED), and at D’Appolonia, Genoa (Foundation Design Expert System, PAULA). An over-
view of these tools is provided in (Scherer & Sparacello 1996). 
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Target schema  (part of "fd_appl_model") : 

 

The forward mapping specification detailed on the next page encompasses the following 
mapping exercises: 

[1] Declaration of global variables to be used in more than one inter-class mapping 
specification; 

[2] struct_domain_model:structural_system  fd_appl_model:building. 
Creation of two attributes not contained in the source model along with a functional 
transformation for the attributes  xmax, xmin, ymax, ymin  of  building. 

[3] struct_domain_model:load_case  fd_appl_model:loadcase   and  
struct_domain_model:nodal_results  fd_appl_model:load.  
Central issue of the mapping specification including a simple synonym problem for 
loadcase, and a sophisticated transformation for load with two filtering conditions, 
several 1:1 mappings of different complexity, and a mapping with a post-condition for 
building_ref, creating new links in the target model. 

[4] Implementation of two external functions needed for the involved functional 
mapping patterns. 
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Forward mapping: 

(MAP PARTIALLY fd_appl_model FROM SHARED struct_domain_model (1)
 PRESETS (2)
  (MAKE ?eps FROM 1.0E-6) (3)
  (MAKE ?elevation FROM (4)
     (USER-INPUT REAL "Found. elevation [m] <0.0>:" (5)
        DEFAULT 0.0) ) (6)
 CLASSES (7)
  (MAP CLASS building FROM structural_system (8)
    ATTRIBUTES (9)
      (SAME name AS id) (10)
      (MAKE fdepth FROM (11)
         (USER-INPUT REAL "Found. depth <0.0>:" DEFAULT 0.0) (12)
         ?elevation (13)
         APPLY (LAMBDA (X Y) (- Y X)) ) (14)
      (MAKE foundation_type FROM (15)
         (USER-CHOICE ONEOF (LISTOF SPREAD_FOOTINGS (16)
                                    STRIP_FOOTINGS (17)
                                    PILES MAT UNDEFINED) (18)
            "Choose found.type" DEFAULT UNDEFINED) ) (19)
      (MAKE Xmin Xmax Ymin Ymax (20)
         CONSTRUCTOR safd-get-foundation-coord (21)
                     ARGS (DESCENDANTS node) ?elevation ?eps) (22)
    ) (23)
  (COPY CLASS loadcase FROM load_case) (24)
  (MAP CLASS load FROM nodal_results (25)
    CONDITIONS (26)
      (PRED (THIS HAS AT LEAST 1 reaction)) (27)
      (PRED safd-check-foundation-point (28)
            ARGS (REF node_id FOR location) ?elevation ?eps) (29)
    ATTRIBUTES (30)
      (MAKE id FROM (REF node_id FOR id) ) (31)
      (MAKE building_ref FROM (32)
         (NEW building (33)
            WHEN (load_id = (34)
                  (ONEOF structural_system -> loadings)))) (35)
      (MAKE loadcase_ref FROM load_id) (36)
      (MAKE load_magnitude FROM reaction (37)
                           MAPCAR (LAMBDA (X) (- X)) ) (38)
      (MAKE appl_point FROM (REF node_id FOR location) ) (39)
      (MAKE spring_coeffs FROM (40)
         (REF node_id FOR restraint_vector)) (41)
    ) (42)
 DEPENDENT-CLASSES (43)
  (COPY CLASS point) (44)
 PRESETS (45)
  (LOAD "sa-fd-map.lisp" (46)
        FOR safd-get-foundation-coord (47)
            safd-check-foundation-point (48)
    ) (49)
 ) (50)

[1] 

[2] 

[3] 

[4] 
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The function file sa-fd-map.lisp, in which the external Common LISP functions are 
defined, has the following content: 

;;; -*- Syntax: Common-Lisp; Base: 10; Mode:LISP; Package: KEE -*- 
;;; 
;;; Author:   P. Katranuschkov 
;;; Synopsis: Defines the external functions that are needed for 
;;;           mapping struct_domain_model to fd_appl_model. 
;;;           In each function the arguments FromClass & NewClass 
;;;           are provided automatically by the Mapping Engine. 
;;; Uses:     get.value(Unit Slot) – the generic KEE function for 
;;;                                  accessing object attributes 
 
(DEFUN safd-check-foundation-point (FromClass NewClass Pt elev eps) 
  (declare (ignore FromClass NewClass)) 
  (< (abs (- (third (get.value Pt 'COORDINATES)) elev)) eps) 
) 
 
(DEFUN safd-get-foundation-coord (FromClass NewClass 
                                  NodeList elev eps) 
  ;; initialisation of X/Y max/min 
  (let ((Xmax -1.0E99) (Ymax -1.0E99) 
        (Xmin  1.0E99) (Ymin  1.0E99)) 
    ;; the following expression selects only nodes that lie on 
    ;; the foundation and stores them in 'NodeList' modifying 
    ;; its initial content. 
    (setf NodeList 
       (remove-if-not 
          #'(lambda (u) 
              (safd-check-foundation-point FromClass NewClass 
                                           (get.value u 'LOCATION) 
                                           elev eps)) 
          NodeList)) 
    ;; loop through the list of all found elements 
    ;; to check their coordinates and determine 
    ;; the dimensions of the building foundation 
    (loop for Obj in NodeList 
          for Pt = (get.value Obj 'LOCATION) 
          do 
          (when (get.value Obj 'SUPPORT) 
            (let ((xt (first  (get.value Pt 'COORDINATES))) 
                  (yt (second (get.value Pt 'COORDINATES)))) 
              (when (< xt Xmin) (setf Xmin xt)) 
              (when (< yt Ymin) (setf Ymin yt)) 
              (when (> xt Xmax) (setf Xmax xt)) 
              (when (> yt Ymax) (setf Ymax yt))))) 
    ;; return a list of the coordinates of the found. boundary 
    (values Xmin Xmax Ymin Ymax) 
  ) 
) 
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Comments: 

In the above mapping specification the identified problems are tackled in the following 
way: 

[1] Lines 3-6 show the value assignments for the global variables ?eps and ?elevation, 
the first being a simple base type constant assignment (line 3), and the second 
requiring user response, along with a foreseen default value (lines 4-6).  
The foundation elevation (?elevation), not available in the source model, is needed 
for checking which nodes do actually lie on the foundation plane and must therefore 
be provided interactively for the whole mapping to succeed; the default value of 0.0 is 
included in the prompt string as a hint to the user that a value for ?elevation will be 
assumed in any case.  
The variable ?eps defines explicitly the numeric precision for floating point com-
putations.  
Both variables are defined globally as they are needed in more than one class mapping 
declarations (see lines 13, 22, 29). 

[2] Lines 8-23 cover the mapping for fd_appl_model:building.   
It involves a simple 1:1 equivalence for the attribute name (line 10), the generation of 
two new attributes, fdepth and foundation_type, with the help of the interactive 
templates USER-INPUT and USER-CHOICE (lines 11-14 and 15-19 respectively), and a 
complex value assignment for the attributes xmin, xmax, ymin and ymax, depending 
on the result returned by an applied external function  (lines 20-22).  
The attributes fdepth and foundation_type are missing in the source model and 
must be provided interactively; otherwise the mapping cannot be performed without 
error. The USER-INPUT template applied for fdepth expects a real value as response, 
assuming a default value of 0.0 when no response is given. The USER-CHOICE template 
applied for foundation_type contains as selection list the full set of enumeration 
items defined for foundation_type_enum in schema fd_appl_model; it allows 
only one of these items to be chosen in response, due to the parameter ONEOF on line 
15 (assuming the default value UNDEFINED when no response is provided).  
xmin, xmax, ymin and ymax represent the enclosing rectangle of the building’s 
contour at ground level. Their values cannot be deduced directly from the information 
contained in a structural_system instance, but they can be determined 
procedurally, by scanning the coordinates of all nodes defined in the source model, 
filtering out the nodes that do not lie on the foundation plane, and then calculating the 
corner points of the enclosing rectangle. For this purpose, the external function  
safd-get-foundation-coord is used. This function returns four values as a list, 
which is then destructured to obtain the values of the four attributes xmin, xmax, ymin 
and ymax respectively. 

[3] The mappings for fd_appl_model:loadcase and fd_appl_model:load are 
detailed on lines 24 to 42.  
The instances of loadcase in the target model are obtained simply by copying the data 
representing the instances of load_case in the source model. This is possible  
because the only difference between struct_domain_model:load_case and 
fd_appl_model:loadcase  is in the class names  (line 24).  



 Mapping Case Studies 215 

The instances of load in the target model are obtained from a subset of the instances of 
nodal_results in the source model. This subset is determined by applying two pre-
conditions to the mapping: a knowledge-based template selecting only those instances 
that contain node reactions (line 27), and an external predicate function checking if the 
corresponding node instance referenced through nodal_results.node_id lies on 
the foundation plane (lines 28-29).   
The attribute values of the instances of load are then generated with the help of 1:1 
attribute mappings as follows: 
− load.id (line 31) is determined by using the REF operator to obtain the “tele-

scoped” value of  node.id  referenced  through  nodal_result.node_id, i.e.  
   ∀ x ∈ { nodal_results } ( x.node_id = ↑n | n ∈ { node } ) ⇒  
     n.id  l.id | l ∈ { load } ; 

− building_ref (lines 32-35) is determined by using the NEW operator with a post-
condition (WHEN) to select from any new instances of building the one for which 
the load case referenced by the current instance, x, of nodal_results is also 
referenced by the instance s of structural_system mapped to that particular 
building instance – a typical case of a conditional “inverse transitive” pattern, i.e.: 
   ∀ x ∈ { nodal_results } ( x  ld ) ⇔  
   ∃! b : structural_system(s)  building(b) ∧  
     ( x.load_id = ↑lc | lc ∈ { s.loadings } )  
   where ld ∈ { load }, lc ∈ { load_case } ; 

− loadcase_ref is obtained by a simple equivalence specification with respect to 
nodal_results.load_id  (line 36); 

− load_magnitude, which should contain a list of 6 values, is obtained through a 
functional set equivalence w.r.t. the attribute nodal_results.reaction  which 
is defined as a list of the same length; the directions of the node reactions are 
inverted by multiplying them by –1.0 with the help of the suffix operator MAPCAR 
(lines 37-38); 

− appl_point and spring_coeffs are obtained in a similar way as id, using the 
REF operator to retrieve the pointer to a point instance (line 39), and the values of 
n.restraint_vector | n ∈ { node } for  nodal_results.node_id = ↑n 
respectively (lines 40-41). 

[4] The Common LISP functions used in the more complicated functional transformations 
requiring procedural processing (lines 21, 28) are specified in an external file,  
sa-fd-map.lisp, and are loaded prior to the execution of the mapping with the help of 
the LOAD construct (lines 46-49).   
Such functions, complementing the declarative style of CSML, are generally not diffi-
cult to write because they have to solve only partial, dedicated mapping subtasks with 
pronounced algorithmic character. However, they are inevitably more tightly linked to 
the representation paradigm and the implementation platform of the mapping engine 
and are therefore, unlike other constructs of CSML, not completely platform-
independent.   
To give an impression, the full content of the file sa-fd-map.lisp was listed on page 213. 

As a whole, the interdependencies of the declarations in the forward mapping lead to the 
following iteration sequence of populating the target fd_appl_model: 



216 A Mapping Language for Concurrent Engineering Processes 

1) Assigning the values of all global variables; 
2) Generating the instances of building, depending on the values of ?elevation and 

?eps, and the instances of loadcase; 
3) Generating the instances of load, depending on building and loadcase, and the 

associated instances of point. 

The required inverse mapping is shorter. It comprises the following mapping tasks: 
[5] fd_appl_model:building  struct_domain_model:structural_system. 

Incomplete mapping including an “inverse association” (N:1  1:N) for the attribute 
components of structural_system, related to the extent of another mapping, [7], 
reduced by a filtering condition. 

[6] fd_appl_model:load  struct_domain_model:node.  
Re-creation of node entities with different types of 1:1 mappings (the data contained in 
load instances are actually not expected to be changed by the foundation design 
application, but they are needed in the new structural domain model for the proper re-
construction of the relationships between other entity instances). 

[7] fd_appl_model:foundation_element   
struct_domain_model:structural_element.  
A 1:1 mapping using an external function for the attribute id, along with a complex 
1:N mapping for node_def_list, depending on the mapping for node. 

Inverse mapping: 

(MAP PARTIALLY SHARED struct_domain_model FROM fd_appl_model (1)
 CLASSES (2)
  (MAP CLASS structural_system FROM building (3)
    ATTRIBUTES (4)
      (MAKE id CONSTRUCTOR make-unique-id ARGS name) (5)
      (MAKE components FROM (6)
         (ASSOC structural_element (7)
            WHEN (structural_element :=: foundation_element) (8)
                 (foundation_element -> building_ref =  (9)
                  building -> THIS))) (10)
    ) (11)
  (MAP CLASS node FROM load (12)
    ATTRIBUTES (13)
      (MAKE id CONSTRUCTOR make-unique-id ARGS load -> id) (14)
      (SAME location AS appl_point) (15)
      (SAME restraint_vector AS spring_coeffs) (16)
    ) (17)
  (MAP CLASS structural_element FROM foundation_element (18)
    ATTRIBUTES (19)
      (MAKE id CONSTRUCTOR make-unique-id (20)
                 ARGS foundation_element -> id) (21)
      (MAKE type FROM CLASSNAME) (22)
      (MAKE node_def_list FROM (ASSOC node REF loaded_by)) (23)
    ) (24)
 DEPENDENT-CLASSES (COPY CLASS point) (25)
 PRESETS (LOAD "make-unique-id.lisp" FOR make-unique-id) (26)
) (27)

[6] 

[7] 

[5] 
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Comment: 

The separate subtasks associated with this mapping are tackled as follows: 
[5] Lines 3 to 11 detail the transformations that are necessary for structural_system. 

The 1:1 mapping for the attribute id (line 5) is performed with the help of an external 
function, make-unique-id, which computes its return value in accordance with the 
assumed convention for object identification in a shared repository, at the same time 
guaranteeing that the generated id is unique. If the target model had not been shared, 
this attribute mapping could have been replaced simply by (SAME id AS name).  
The mapping needed for the attribute components is more complicated. It depicts a 
typical situation where a N:1 relationship in the source model has to be "inverted" to a 
1:N association in the target. In this particular case, the task is:  
 ∀ b,s ( building(b)  structural_system(s) )  
 derive:  s.components = [ ↑e1 ... ↑en ]  

 where:  ∀ ↑ei ∈ [ ↑e1 ... ↑en ]  
    ∃! f : foundation_element(f)  structural_element(ei) ∧  
           f.building_ref = ↑b .  
For this task the ASSOC operator is applied to the instances of structural_element, 
with a post-condition enabling to select the subset corresponding to the instances of 
foundation_element for which the given predicate is satisfied (lines 6-10). The 
keyword THIS on line 10 instructs the mapping engine to use the pointers to the 
instances of building in the relational operator comprising the body of the predicate. 

[6] The mapping transformations for struct_domain_model:node are easier to write. 
They involve two simple 1:1 correspondences specified in similar way (a list of  
entity references for node.location on line 15, and a list of real values for 
node.restraint_vector on line 16), along with a 1:1 mapping for node.id using 
the same functional transformation as for structural_system.id (line 14). 

[7] The mapping for struct_domain_model:structural_element detailed on lines 
18 to 24 comprises three different types of attribute declarations. The values for id are 
obtained in the same way as for structural_system and node (lines 20-21). The 
string values for type are taken from the class name of the source entity, i.e. 
"spread_footing", "strip_footing", "pile_group" or "mat_foundation" (line 22). At last, 
the values for node_def_list, which should be lists of references to node, are deter-
mined by the correspondence of the new instances of node to the instances of load 
referenced through foundation_element.loaded_by in the source model (line 23). 

Here, the iteration sequence of populating the target model is: 
1) Generating the instances of  node  and the associated instances of  point; 
2) Generating the instances of  structural_element  –  depending on node; 
3) Generating the instances of structural_system  –  depending on  node and 

structural_element; 
4) At last, if necessary, pruning of points not associated to nodes. 
As it can be seen, the sequence of operations undertaken by the mapping engine does not 
necessarily follow the order of the mapping declarations in a CSML specification. This 
underpins the declarative character of the language. 
Fig. 7.3 on the next page demonstrates graphically the described interaction procedure. 
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Fig. 7.3: Graphical presentation of the interaction “structural design – foundation design” 
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7.3 VR View Generation for IFC-Based Product Data 

In many situations a model transformation might be needed for some presentation purpose, 
e.g. to derive a VRML or a DXF view of the geometry of a building product model, to 
create bills of materials in spreadsheet format, to generate batch input for an analysis 
program etc. The resulting view models can be further processed by specialised 
applications to produce final construction documents, or they can be used as additional 
information sources in a dedicated CAD environment. 
Whilst their goals may be quite different, such tasks have certain common aspects w.r.t. 
product modelling and mapping: 
1) For easy processing, the resulting data structures must correspond closely to the input 

expected by the targeted application(s); 
2) The source data are as a rule heavily pruned, reducing the structure to a much simpler 

representation; 
3) The process is not intended to be reversible. 
This case study, adapted from the ToCEE project, illustrates such typical one-way mapping 
using as source model the fairly complex IFC Project Model to create a sample virtual reality 
presentation based on a very simple information structure. The examined problem addresses 
the geometric presentation of any tangible building objects defined in the IFC model through 
their bounding boxes by means of the cube construct of VRML (cf. Ames et al. 1996).*) 
For conciseness, the IFC Project Model has been slightly modified here: the SELECT 
construct allowing both 2-dimensional and 3-dimensional reference coordinates is replaced 
with a direct link to IfcAxis2Placement3D, and all available representation options for 
building objects are reduced to IfcBoundingBox. The reference path from IfcProduct to 
IfcBoundingBox is left unchanged to preserve the modelling style as far as possible. 
The sample target model contains only one entity, defining just a portion of the data that 
would be needed for a full virtual reality presentation of IFC-based product data according 
to the VRML specification. However, as simple as it is, this model is sufficient for a rough 
presentation of the geometry of all physical building objects defined in an IFC Project 
Model through their bounding boxes; since such representations are obligatory in IFC,  
it is in fact the fastest way to obtain a view of the geometry of a building. This can be quite 
useful for example in the early design phases. 
The mapping exercise itself includes: 
− a pre-condition to select the relevant entities for the mapping in the source model, 
− the definition of a complex geometric transformation,  and 
− a 1:1 indirect mapping of the attributes of IfcBoundingBox to a VRML cube. 

                                                 
*) Here it might be argued that because the required output format conforms to a known standard, 

and the source model is a standardised data model, it would be simpler and more efficient to 
use a straight-forward interface program, instead of a mapping specification processed by a 
generic mapping engine. However, even such standards – currently VRML 2.0 and IFC 2x -  
do not remain frozen, but continue to be developed, with little concern of each other.  
A mapping specification concentrating on the set relational description of the problem, and 
hiding any specific implementation details, should be easier to maintain, and after all the 
preferable approach. 
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Source schema  (part of  "IfcProjectModel") : 
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Target schema  (part of  "vrml_view_model") : 

 

Mapping specification: 

(MAP vrml_view_model FROM SHARED IfcProjectModel (1) 
 CLASSES (2) 
  (MAP cube FROM IfcProduct (3) 
    CONDITIONS (4) 
      (PRED (IfcProduct HAS AT LEAST 1 Representations) ) (5) 
    VAR (6) 
      (MAKE ?BBOX FROM (7) 
        (FOR ?S DO (8) 
          (AND (Items OF (Representations OF THIS) HAS VALUE ?S) (9) 
               (?S IS INSTANCE OF IfcBoundingBox) ) ) (10) 
        ) (11) 
      (MAKE ?TRANS (12) 
            CONSTRUCTOR coord-trans ARGS LocalPlacement) (13) 
      (MAKE ?P FROM (REF ?BBOX -> Corner FOR Coords) ) (14) 
      (MAKE ?R FROM (MAPCAR (LAMBDA (X Y) (+ X Y)) (15) 
                             ARGS ?P (16) 
                                  (LISTOF ?BBOX -> Xdim (17) 
                                          ?BBOX -> Ydim (18) 
                                          ?BBOX -> Zdim)) ) (19) 
      (MAKE ?PG CONSTRUCTOR pt-trans ARGS ?P ?TRANS) (20) 
      (MAKE ?RG CONSTRUCTOR pt-trans ARGS ?R ?TRANS) (21) 
    ATTRIBUTES (22) 
      (MAKE x y z FROM ?PG) (23) 
      (MAKE width depth height (24) 
            FROM (MAPCAR (LAMBDA (U V) (- V U)) ARGS ?PG ?RG) ) (25) 
    ) (26) 
 PRESETS (27) 
  (LOAD "ifc-trans.lisp" FOR coord-trans pt-trans) (28) 
) (29) 

Comments: 

The main part of this mapping task is the functional transformation needed to convert the 
points defining a bounding box in its local coordinate system within the IFC model to a 
reference point and three side lengths of a VRML cube in the global coordinate system of a 
VR world (see fig. 7.4). 
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Fig. 7.4: Schematic presentation of coordinate definitions in the IfcProjectModel  

and in the sample target vrml_view_model 

This transformation is quite complex, with pronounced algorithmic character. Its logic is to 
track first the link IfcProduct.LocalPlacement = ↑L | L ∈ { IfcLocalPlacement } 
in order to get the local coordinate system in which the geometry of an IfcProduct instance 
is described, and after that follow the relationship L.PlacementRelTo = ( ↑M ∨ ↑P ∨ ↑T ) 
where M ∈ { IfcModellingAid } , P ∈ { IfcProduct } , T ∈ { IfcProject } , to deter-
mine the object whose coordinate system is used as reference. The second step is repeated 
until L.PlacementRelTo = ↑T  is found, which is always defined in the global coordinate 
system. Fig. 7.5 shows schematically the necessary iteration procedure. 

Fig. 7.5: Schematic presentation of the sequence of operations needed for the coordinate 
transformations from the IfcProjectModel to the sample target vrml_view_model 
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At each iteration step, the transformation matrix R4, representing translation and rotation 
in homogeneous coordinates, must be computed. This is done on the basis of the schema 
shown on fig. 7.6. 
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Fig. 7.6: Geometry schema used to determine the transformation matrix R4  

for  L  L’  according to IFC 2.0 and ISO 10303-42 

From the formulae given in this figure, substituting 
A = cos2ϕ1,       B = cos2ϕ2,     C = cos2ϕ3, 
D = cosϕ1.cosϕ2,    E = cosϕ2.cosϕ3,   F = cosϕ3.cosϕ1, 
P = cosϕ1.sinθ,      Q = cosϕ2.sinθ,   R = cosϕ3.sinθ   and   S = cosθ, 

and performing the necessary geometric transformations, R4 can be written as: 
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Now the coordinates of each point kkk
L
k zyxP =  in the new reference coordinate 

system L’ can be obtained from: 
R4⋅= L

k
'L

k PP  (2) 
By applying (2) consecutively on each iteration step, the coordinates in the global co-
ordinate system (G) of each L

kP  ∈ { PL }  can be derived as follows: 

∏
=

=
n

1i
iR4R4  (3) 

R4⋅= L
k

G
k PP  (4) 

where R4i describes the transformation  Li-1  Li,  with L0 = L  and  Ln = G. 
In the required mapping, the above transformations are defined with the help of two 
external functions: coord-trans, performing the whole iteration process and computing 



224 A Mapping Language for Concurrent Engineering Processes 

R4  according to (3), and pt-trans, determining the points { PG } according to (4).  
The source code for the first of these functions is not trivial, extending on more than 120 
lines, whereas the second is less than 15 lines long and performs only a straight-forward  
vector x matrix multiplication to return a list of three reals [ x y z ] representing the 
coordinates of each point  G

kP ∈  { PG } . 
The mapping specification itself involves only one inter-class mapping declaration, 
IfcProduct  cube which can be re-used by inheritance in all the subclasses of 
IfcProduct, i.e. IfcWall, IfcColumn, IfcBeam, IfcDoor etc. This declaration con-
sists of three parts: 
− a pre-condition (lines 4-5), 
− several variable initialisations, accomplished by using the described transformation 

functions  (lines 6-22),  and 
− the actual attribute mappings (line 23-26). 
The pre-condition utilises a knowledge-based template as predicate allowing to select only 
those instances in IfcProjectModel which contain at least one representation. 
A knowledge-based function in the form of a search expression is used also as initialiser 
for the variable ?BBOX, selecting from all possible representation items characterising an 
instance of a subclass of IfcProduct  the one which is a bounding box (lines 7-11). 
The other variables defined in the VAR section of the class mapping declaration are used to 
store intermediate results which are then applied to the attribute mapping transformations. 
?TRANS stores the transformation matrix computed with the help of the function  
coord-trans, which is passed one argument, LocalPlacement, needed for the first 
iteration step (lines 12-13). ?P stores the Corner point of the bounding box (line 14), and 
?R stores the opposite point on its space diagonal (lines 15-19). Here the LISTOF term 
operator is used to collect in a list the attributes Xdim, Ydim and Zdim of the bounding box 
instance referenced through ?BBOX. At last, ?PG and ?RG, computed with the help of the 
function pt-trans, are used to store the corresponding coordinates to ?P and ?R in the 
global coordinate system of the VR-model, (lines 20, 21). 
After this long preparatory work, the actual arguments of cube can easily be obtained: x, y 
and z are copied from ?PG using list destructuring (line 23), and width, depth and 
height are computed from the values of ?PG and ?RG using MAPCAR to subtract the 
individual coordinate values one by one (lines 24-25). 
The whole process of populating the target model comprises 6 steps: 
1) Reducing the set of source instances to the effect of the CONDITIONS statement; 
2) Generating ?BBOX and ?TRANS for the remaining mapping domain; 
3) Generating ?P – depending on ?BBOX; 
4) Generating ?R – depending on ?P; 
5) Generating ?PG and ?RG – depending on ?P, ?R and ?TRANS; 
6) Generating cube – depending on ?PG and ?RG. 

In a more refined implementation, some of these steps can probably be combined to reduce 
the number of scans of the mapping domain. Due to the relatively short implementation 
time and the academic character of the development effort, this has not been done in the 
prototyped version of the mapping engine by the author. 
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Fig. 7.7: Presentation of IFC-based model data taken from the demonstration 
example of the ToCEE project on the GUI desktop of the project data 
server (left) and after mapping to VRML (right) 

7.4 Discussion 

The three case studies examined in this chapter complete the presentation of the concepts 
for tackling the semantic interoperability problems in the proposed concurrent engineering 
environment. Along with being to some extent of practical value to the mentioned projects 
COMBI and ToCEE, the performed studies have served the following objectives: 

1) to examine the representational potential of CSML for typical engineering tasks within 
the scope of the proposed environment; 

2) to gather experience of the process of mapping modelling itself; 
3) to measure the performance of the mapping process with respect to the separate 

constructs of CSML, and finally, 
4) to compare CSML with other developed mapping approaches on a more practical basis. 

The presented studies cover only a part of the practical testing of CSML performed in the 
course of work. For example, cooperative design tasks have been examined also for the 
design interaction chains “detailed structural analysis – foundation analysis”, “preliminary 
architectural design – preliminary structural design – preliminary HVAC design”; views of 
the COMBI building model and of IFC-based product data have been generated also on 
DXF basis as wire-frame and boundary representation models etc. 

There were no problems in any of the performed tasks that CSML could not deal with. 
However, in the course of work some of the test cases evoked modifications and 
improvements to certain CSML constructs, especially when some sophisticated mapping 
patterns became more clear. For example, there have been a few changes to the syntax and 
semantics of terms and term operators to make the constructs in which they are used  
more consistent, and some of the template operators, most notably the assoc_op, have 
repeatedly been subject to changes in the course of the verification process. 
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In its current form, used in the examples of this and the preceding chapters, CSML covers 
well the mapping problems identified in chapter 5. Some constructs can be improved in 
future w.r.t. their readability as it was not always readily clear what the respective actions 
of the mapping engine will be. Also, in all examined cases additional hand-coded external 
functions were needed to tackle some of the required transformations. Whilst the use of 
such external functions for the algorithmic part of a mapping is an intentional feature of 
CSML, it would nevertheless be worth considering to enhance the scope of the CSML 
operators, so that some more standard arithmetic computations can be covered. 

The technical part of the modelling and specification process itself proved to be less 
difficult than expected. For each of the presented case studies, it took only a few hours to 
develop the necessary specifications. Of course, this does not include the coding and tes-
ting of the involved external functions, neither the process of understanding the semantics 
of the source and target schemas, as they were in each case already familiar to the author. 
However, exactly this preliminary work should not be underestimated because in real-
world cases it is expected to take a large amount of time and involve considerable efforts 
of experts from different domains. It is actually the best justification of the need for a high-
level mapping language, allowing to use semantic constructs that are close to the problem 
domain and are at the same time well separated from the details of the implementation. 

The run-time performance of a mapping was found to depend significantly on the quality 
of the mapping specifications. Experiments with alternative ways of expressing some of 
the required mapping transformations showed that there can be considerable divergence in 
the performance (up to 50%), especially when set relational operations are involved.  
Most careful consideration were found to require the complex template operators, such as 
ASSOC and NEW, as well as the used knowledge-based templates. Appropriately designed 
external functions did, on the other hand, always speed up the mapping process. However, 
the usage of such functions must be weighed against the inevitably degraded readability 
and maintainability of the mapping model. 

As a whole, the run-time characteristics of the mapping process showed the expected 
analogy on technical level to the generation of database views in multidatabase systems. 
Therefore, a closer study of advanced implementation methods from database research can 
be of great benefit for future improvements of the overall mapping process. 

Finally, along with a review on more theoretical basis, the conducted studies helped to 
make a qualitative assessment of CSML w.r.t. other developed mapping approaches.  
For this purpose, the practical solution of the case study presented in section 7.1 was 
analysed, along with a task from the COMBI project performed with the help of XP-RULE 
(mapping of the COMBI Neutral Building Model to the STEP AP 201”Explicit Draughting” 
-- ISO 10303-201 1994) and examples from (EPM 1996) for EXPRESS-X *). A valuable 
source for the undertaken comparison was found also in (Amor 1997). 

The characteristic features of the examined approaches are summarised in table 7.1 
below. 

                                                 
*) The case study given in section 7.1 has been used as test bed for most of the examined 

approaches; the results of their survey are discussed in detail in (Liebich et al. 1995) and 
(Verhoef et al. 1995). 
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Table 7.1 Qualitative estimation of examined mapping approaches 
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General characteristics 
Level of support of specific 
mapping problems for CEE L L L M M M M/H H M H 

Modularity of the approach L L L L M M M L M H 

Plug-in support – – – – L – L – – M 

Interactive mapping support – – – – – – M M/H M/H M 

Language characteristics 

Language level M M M M M/H M M M M/H M/H

Declarative/Procedural style: D/P P D/P P D/P D D D D D D 

Object-oriented language support – L L L L L M M H H 

Object-oriented method support – – – – – – – L L – 

Representational characteristics 

Conditional mapping support L M M M/H H M/H H M H H 

Handling of  
aggregations/associations L M M M/H M/H M/H X M M/H H 

Handling of  
object/attribute relationships M M M M/H M/H M/H X M H H 

Explicit/Implicit type handling: E/I E E E E E E E I E/I E/I 

Unit handling – L – L – – X M – X 

Object creation L M M M M M M L M n/a 

Attribute initialisation L M M M M M/H M L M/H H 

Temporary structures (Yes/No) No No No No Yes Yes Yes Yes Yes Yes

Bi-directional mapping support – – L L L L L L M n/a 

Development environment 

Development tools – – – – M M M – M L 

Graphical modelling support – – – – – M L – M L 

Graphical browser (Yes/No) No No No No No Yes Yes No Yes Yes

(Key:  L = Low, M = Medium, M/H = Medium to high, H = High, X = only with external functions) 
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As shown in this table, none of the surveyed approaches (including CSML) provides the full 
range of requirements suggested in chapter 5. For example, all EXPRESS-based languages 
appear to be tightly glued with the EXPRESS modelling paradigm, and some are even 
conceived as extensions to EXPRESS which can lower considerably the required modularity 
in a distributed environment. EDM-2 and VML also seem to be quite closely linked to the 
specific environment architectures in which they are used, and ACL/KIF relies on highly 
intelligent agents which makes it suitable mainly in pure knowledge-based environments. 

In summary, it can be said that there does not yet exist an ultimate solution to all the 
semantic interoperability problems that can appear in distributed PDT-based environments. 
However, in spite of their limitations, any of the examined approaches can be useful in 
certain situations, depending on the specific needs. For example, as pointed out in (Verhoef 
et al. 1995), if the goal is the interoperability in a highly interactive, tightly integrated 
environment, VML, ACL/KIF, EXPRESS-V, EXPRESS-X and XP-RULE may be suitable 
choices. If compatibility with STEP/EXPRESS is of primary importance, the languages 
developed as part of STEP (EXPRESS-M, EXPRESS-C, EXPRESS-X) would be 
preferable. If the development process of product data models, including schema evolution 
and schema migration, is the main focus of work, languages like EXPRESS-M and 
EXPRESS-X would be best suited. If a knowledge intensive design environment with 
sophisticated application tools is being envisioned, EDM-2, VML or XP-RULE should be 
given preference, and platforms that do not support mappings explicitly, but provide 
flexible dynamic object evolution features (Hakim 1993; Cleetus 1995; Kowalczyk 1997) 
would be worth considering. 

However, all examined approaches, except for CSML, assume that an integrated shared 
model must be maintained by the IT system. Most efforts address mappings to/from that 
assumed model, trying to keep it in a continuously consistent state. Whilst CSML can also 
support such approach, it has been shown that it is not necessarily the desired architecture 
for an enabling environment for concurrent engineering. Therefore, the efforts in the 
development of CSML have been directed especially towards supporting the modularity of 
the proposed overall approach, allowing clear separation of the suggested services, and 
platform-independent implementation of the individual components. At the same time,  
a CSML specification can (but need not) incorporate other advanced features, like 
knowledge-based expressions and foreign function code, and can itself be seamlessly 
integrated in client-server communication to support the solution of run-time inter-
operability issues, such as consistency checking, code checking, conflict management etc. 

In this way, CSML fulfils the major requirements for a mapping language in CEE. 
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Chapter 8: Prototype Project Data Server for 
Concurrent Engineering 

. . . and an act hath three branches; 
  it is, to act, to do and to perform. 

– William Shakespeare, Hamlet 

To validate the developed concepts presented in chapters 3 to 7, a prototype project 
data management server (PROMISE) and selected small example clients have been 
implemented as part of this thesis. A modified version of the server, with slightly 
simplified functionality, but extended with some practical features, has been successfully 
tested within the frames of the ToCEE project. Core features of the server have been 
utilised also in the COMBI project, although in COMBI only file-based data exchange 
and passive WWW communication have been addressed. Details of the ToCEE server 
implementation from an end-user point of view are given in (Katranuschkov & Hyvä-
rinen 1998) and (Hyvärinen et al. 1999). The overall architecture and the prototyped 
knowledge-based features are discussed in (Scherer & Katranuschkov 1999). 
This chapter presents an overview of the design principles that have governed the reali-
sation of the server, the rationale for the chosen frame-based representation paradigm 
for the implementation platform and the main features of the developed application and 
user interfaces. 
At the end, practical issues related to building design are discussed on the basis of a 
larger case study adapted from the ToCEE project. 

8.1 Basic Concepts 

In chapter 3 the basic requirements to the CEE system were identified, and a principal 
client/server environment architecture was outlined. 
In chapter 4 the basic client/server software model and the major systemic interoperability 
problems to be tackled by the project data server of the CEE system were discussed, and in 
chapter 5 an approach for the management of semantic interoperability problems related to 
the non harmonised model world of AEC was proposed. 
By looking at these problems from the viewpoint of software development, the following 
design considerations w.r.t. the implementation of the project data server can be identified: 
1) The server should not be limited to pure data management tasks, but should be capable 

to support advanced functionality, taking over various coordination and cooperation 
activities. 

2) The components of the server architecture (Request Broker, Data Management Server, 
stored procedures and agents) have distinctly different goals and scope, operate on 
different levels of the modelling framework, and “percept” different portions of the 
objective reality of the IT system. 
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3) The support of the system ontology requires explicit representation not only of 
modelling object instances, but also of modelling object classes and meta model 
concepts. 

4) The support of advanced functionality involves symbolic and rule-based processing 
features that go beyond the capabilities of typical object systems. 

In accordance with these considerations, the following major design decisions have been 
taken: 
Modular approach  
The components of the server architecture are separately implemented, and are linked by 
means of a generalised communication protocol, presenting a light-weight version of the 
communication model discussed in chapter 4, stripped off access control and some other 
meta information not needed in the static component model of the server. In this way, a 
possibility for a distributed implementation on the basis of different programming 
paradigms has been provided. 
Hybrid representation 
The Object Request Broker operates on the level of the system ontology and the 
communication model of the framework. Its basic functionality is related to the management 
of concurrent requests, the identification of access rights etc. This functionality does not 
require knowledge-based processing capabilities, but has its focus on concurrency. 
Therefore, an implementation on the basis of Java has been selected (Harold 1997). 
In contrast, the data management server and the related server agents operate on the level 
of detailed project data models and have to support both basic data access functionality and 
more advanced interoperability methods. Therefore, an implementation on the basis of the 
frame-based paradigm (Minsky 1975) on top of the Knowledge Engineering Environment 
KEE (Intellicorp 1994) has been selected. A comprehensive description of the frame-based 
paradigm is provided e.g. in (Fikes & Kehler 1985) and (Cunis 1992). 
Whilst the implementation of the Request Broker does not involve any specific software 
features of  greater interest, the architecture of the actual project data server PROMISE 
(Project Model Based Information Server) deserves some more attention. The specific 
aspects of its realisation are outlined in the following section. 

8.2 Server Architecture 
The chosen representation paradigm enables the realisation of a server architecture that 
resembles closely the architecture of typical expert systems (see fig. 8.1). However, in 
contrast to expert systems, designed to assist engineers in the solution of specific problem 
solving tasks, the purpose of the knowledge-based methods of the project data server are to 
react to general-purpose, yet complex queries and assertions, and to adapt dynamically to a 
variety of changes in the project models resulting from the concurrent, simultaneous work 
of the separate professionals in a design team. 
The main component of the proposed server architecture is its knowledge base containing a 
set of defined data model schemas and the respective instantiated models. Each data model 
schema in the knowledge base is organised in a frame structure, and contains exclusively 
class frames, roughly corresponding to the entity structuring given in the EXPRESS-C 
schema of the model. In contrast, the instantiated models contain only instance frames with 
inherited attributes and behaviour from the respective underlying data model schema.  
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All frames can act both as “normal” objects, responding to messages from the outside and/or 
from other objects, as well as to participate in rule-based queries and assertions. 
The interface module has the task to resolve properly the requested operations by remote 
clients, and to activate the appropriate server object methods responsible for the execution of 
the client requests. All incoming requests and the respective responses are aligned with the 
formal EXPRESS-C specifications in the data models, and are represented in accordance with 
the adopted Information Container formalism. In this way, the interface module hides from 
the clients the implementation details of the server, which simplifies client implementation. 

Server
Interface Module

OO-oper. / EXPRESS-C

Working
Memory

Reasoning
Agents

(AI Methods)

Server Knowledge Base:
Frame-based representation (state and behaviour) of the product model schemata

    and a set of instntiated product models, containing the modelling object instances

uses

invokes

uses

Input: operation parameters with
embedded query/assert expressions

Explanation
Component (N/A)

Knowledge
Acquisition
Component

create/modify objects
(through SPF, SDAI-oper.)

sends msg

sends msg invokes

 

Fig. 8.1: Principal architecture of the project data server 

The reasoning agents perceive changes in the environment and react to such changes with 
appropriate actions. Within the server architecture each reasoning agent is invoked by an 
object-oriented method whenever a knowledge-based function is addressed. This can be done 
explicitly, by executing a respective operation, such as*): 
 IfcRelUsesProducts.execMeth  
   ("find"  
     searchExpr:"(FOR ?X DO (?X HAS AT LEAST 2 RelatedObjects))") 

or happens automatically, when the state of an attribute monitored by a demon method is 
changed. 
Typically a reasoning agent will retrieve the required data from the knowledge-base together 
with the appropriate reasoning rules and will place them in the working memory of the server. 
After that the inference process on the retrieved data and rules is started, and, on its 
completion, the result is returned to the calling method. Currently, the server implementation 
applies the inference engine of the KEE system including forward and backward chaining as 
well as different search algorithms. These methods can be further enhanced using the same 
component architecture. 
                                                 
*) The exact syntax of the function is slightly adapted for readability. 
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The remaining (dashed-box) components shown in fig. 8.1 are given only for comparison 
with typical expert system architectures. An explanation component is difficult to realise for 
a server software, and a comprehensive knowledge acquisition component has been beyond 
the scope of the server implementation, although new knowledge can (and is) continuously 
introduced in the knowledge base through respective object-oriented “assertions”. 

8.3 Application Interfaces 
The methodology to define and execute operations was discussed in chapter 4. Concise 
definitions of all prototyped operations are provided in appendix V. The implemented 
prototype environment and the principal schema of the remote execution of operations are 
illustrated on fig. 8.2. 
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Fig. 8.2: Overview of the implemented client/server CEE system 

On the basis of the prototyped operations, sample client adapters have been implemented 
for a structural analysis program (fig. 8.3) and for a foundation design system (fig. 8.4). 
With the provided formalism to define operations, the development of these two adapters 
has been a matter of days. 
Currently, the API of the prototype implementation of PROMISE encompasses more than 
50 operations that can be used by remote client applications (see appendix V). Most of 
them are adapted from the SDAI specification (ISO 10303-22 1998) or support data 
exchange functionality on the basis of STEP physical files (ISO 10303-21 1994). More 
interesting are some of the interoperability model-level operations. 
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Fig. 8.3: Sample client adapter for structural analysis 

 

Fig. 8.4: Sample client adapter for foundation design 
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8.4 Interoperability Services 

The basic interoperability services in the current prototype implementation of the project 
data server include check in, check out, map, match and merge. 
Check in / check out  are the principal operators that introduce the concept of long trans-
actions. Otherwise, their implementation is trivial. The actual data transfer is performed on 
the basis of STEP physical files. 
“Check in” enforces a CheckIn state, and “check out” enforces a LongWrite. 
Mapping is a complex process involving two data models, a mapping schema and a source 
model as input to produce a new target model as output. It is comprised of the following 
principal steps: 
1) Parsing of the specifications; 
2) Creating the mapping domain on the basis of the class level specifications and 

conditions imposed on the source objects; 
3) Creating the mapping extent on the basis of the mapping domain, the cardinalities of 

the involved mapping templates and conditions imposed on the target, or involving at 
least one entity from the target; 

4) Solving of direct equivalences, for which the result set has been unambiguously 
determined; 

5) Reassessment of unsolved equivalences because of deferred operations, such as NEW; 
6) Pruning of duplicate instances from the target model. 
A mapping always creates a new model version and enforces a CheckIn state. 
Matching involves two models based on the same schema. Principally, it is a simple pro-
cedure, but it strongly depends on the method by which object identification is maintained. 
Thus, if unique object IDs are maintained by the server on model level, it is easy to find all 
corresponding objects and compare the attributes. 
In contrast, if globally unique IDs are maintained, the objects in two model versions will 
formally not be the same (different IDs). In this case a full scan of the data is necessary, 
making the process convoluted and slow. 
The output of a matching operation are the changed objects found. New model versions are 
not created and the model states are not changed. The matching process itself requires 
exclusive data access and is therefore performed in a temporary workspace to which the 
models are first copied. 
Merging is a process which is in principle very similar to a join operation in a RDBMS. 
However, even if all types of joins are considered, it is unlikely that an automatic solution 
can be obtained. Therefore an interactive version is suggested, by which all possible 
conflicts are reconciled by the end-users as shown on table 8.1*). 

                                                 
*) Currently there is no convenient implementation of such interactive operations with PROMISE.  

The procedure is not aligned with the general Information Container and communication model 
specifications, but is realised with dedicated code at the client side. Also, although the merging 
process may involve more than two models, it is performed pair-wise. This is due to the fact 
that the simultaneous coordination of any combination of multiple models in an interactive 
procedure is a very difficult implementation issue. 
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Table 8.1:  Merging policies and respective actions in interactive merging mode 

Action 
Merging 
Policy 

Same object in 
both models 

Modified object,
no conflicts 

Modified object,
conflicting data 

Object only in 
base model 

New object 
in ref. model 

Interactive 
restrictive Yes Yes Notify & 

Negotiate 
Notify & 
Negotiate 

Notify & 
Negotiate 

Interactive 
left join Yes Yes Notify & 

Negotiate Yes Notify & 
Negotiate 

Interactive 
right join Yes Yes Notify & 

Negotiate 
Notify & 
Negotiate Yes 

Interactive 
union Yes Yes Notify & 

Negotiate Yes Yes 

Fig. 8.5, redrawn from fig. 3.7, provides an idea of the inter-relationships of the inter-
operability operators in the suggested project coordination process. However, the involved 
combinations can be quite complicated and require much further research. 
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Fig. 8.5: Principal schema of the use of interoperability services for project coordination 
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8.5 User Interface 

Normally, local server operations are limited to simple configuration and maintenance 
tasks which do not require a specific graphical user interface. Typical examples for such 
cases include the Java RMI registry (Harold 1997) and some http-servers. However, 
complex server programs, such as database servers, require more advanced administration 
which is often supported by a GUI. For similar purposes, PROMISE enables password 
protected local use for privileged project data management or system administration. 
The “local” mode differs from the normal “server” mode of operation in the following 
way: (1) the access rights are set to “superuser” giving full permission to use all available 
system functions as well as full read/write access to all models, (2) maintenance operations 
are enabled which allows to start/stop the server, stop running processes, load/unload 
model schemas and model data, lock models for remote use, modify access rights etc., and 
(3) the model data can be manipulated both with the help of the public server operations 
(as in “server” mode) and interactively, with the help of a GUI as shown on fig. 8.6 below. 

 

Fig. 8.6: Screenshot of the server desktop 
(1) main menu bar; (2) output window showing the browsing of an object 
instance in text format; (3) output window showing the browsing of the 
model data in table format; (4) output window showing the browsing of the 
inheritance structure of a model; (5) log window for server activities;  
(6) prompt window. 
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The main menu of the GUI contains options to start/stop the server, to examine and to stop 
running processes, as well as to use the functions of the server API. Fig. 8.7 shows a 
screenshot of the pull-down menu enabling the selection of a server operation from the 
GUI. The menu is created dynamically, depending on the referenced data model. 

 

Fig. 8.7: Screenshot of the main menu showing the dynamically  
   assigned data management operations imported from 

  the environment ontology (adapted from ToCEE) 

The main menu itself is adaptable as shown on fig. 8.8 below. 

Fig. 8.8: Alternative versions of the main menu of the GUI of PROMISE 
     /left: adapted for the COMBI system, right: basic (default) version / 

The GUI provides also some additional features accessible through the other submenus of 
the main menu. 

 The “Step” submenu allows to import/export EXPRESS schemas and local STEP 
physical files. 

 The “Tools” submenu provides facilities for examining a model mapping (fig. 8.9),  
for executing a mapping, for creating/editing/deleting objects etc. 

 The “View” submenu enables browsing of the data in different ways, e.g. by dyna-
mically navigating down the object hierarchy (fig. 8.10), as a full inheritance graph,  
in tabular form etc. 

In addition to these basic functions, each model, class, instance or attribute has an 
associated context menu which is accessible through the mouse. 
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Fig. 8.9: Graphical examination of a mapping schema 

 

Fig. 8.10: Cascading navigation through a project model with the GUI of PROMISE 

8.6 Implementation Example 

This section demonstrates in a larger case study the features of the prototyped project data 
server (PROMISE) in its interplay with other software tools developed in the ToCEE 
project. 
Unlike the previous sections, in which many screenshots of the server platform and the 
developed sample clients were presented, in this section the server behaves as a typical 
“server” i.e. in the background. The provided example, adapted from the final ToCEE 
workshop, depicts the solution of a typical cooperative design task. The case building 
presents a simplified version of Hall 21 of the New Munich Fair facility. The focus of the 
design activities is on the solution of a conflicting situation, due to an (unexpected) late 
design change. 
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As a starting point, it is assumed that the building owner requests a change at a certain 
stage in the design of the building. The specific task is to provide light crane equipment 
with working area of the crane extending over the whole length of the hall (see fig. 8.11). 

 

Fig. 8.11: Initial design change for the example demonstration scenario 

Although the order of the owner goes to the architect, this task cannot be fulfilled by the 
architect alone. Specialist knowledge of the whole design team (HVAC, electrical, 
structural, foundation engineer etc.) is needed in order to consider properly the possible 
consequences of the design change. Therefore, in parallel to determining the crane type 
and location, the architect sets up new concurrent work tasks as shown schematically  
on fig. 8.12. 
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Fig. 8.12: Initial workflow of the example demonstration scenario 

To focus the discussion let us now concentrate on a specific conflict between the 
architectural and the HVAC design which arises in the course of the parallel project work. 
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According to the set up workflow, the task of the HVAC designer is to re-design the duct 
system for ventilation and air conditioning so that it fits to the proposed change by the 
architect. However, this single work task (from the point of view of the architect) involves 
a complex sequence of actions (from the point of view of the HVAC designer) requiring 
the use of a variety of tools, system services and types of data. 

This expanded view of the work task of the HVAC designer is shown on fig. 8.13 
below. 
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Fig. 8.13: Sequence of actions in the example work task “Re-design ducts” of the HVAC 

designer 

At first the HVAC designer gets informed of the new task through a workflow client  
(step H1). 

After that he checks out the current, up-to-date project data from the architectural domain 
(or aspect) model, and then uses e.g. a virtual reality tool for fast inspection of the changes 
made by the architect (step H2). This can be done locally, or by using the server “view” 
operation. 

From this inspection it becomes obvious that the crane presents a potential problem, 
because, when moving, it may collide against the ventilation ducts in the hall. A detailed 
analysis with ToCEE’s specialised conflict detection tool confirms the suspected problem 
(step H3). 

The conflict detection tool has been designed to detect geometric conflicts for objects 
moving along pre-defined working paths, and is implemented on top of Autodesk’s 
Architectural Desktop. Fig. 8.14 gives an example of its use, showing selected frames from 
the animation produced after the analysis of the crane path. 
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Fig. 8.14: Detection of geometric conflicts with moving objects 

Due to this, now obvious conflict, the HVAC designer is not able to fulfil the requirements 
of the architect as suggested. Instead, he proposes an alternative solution, modifying 
respectively the project data with the help of his CAD system (step H4). 

Design  
change 

 

Fig. 8.15: Change of the design data due to the geometric conflict between crane and 
ventilation ducts 

In a conventional approach this would now complete the task of the HVAC designer. He 
would then notify the architect about the conflict with an informative message and will 
either attach his alternative proposal as a drawing file to his e-mail message or, by more 
advanced organisational and IT infrastructure, he will store this file on the document 
management system used in the project. It might also be possible to exchange the product 
data with the architect, but the co-ordination of the process of conflict resolution will still 
happen only in the heads of the designers, without notable IT support. 

However, with the help of the prototyped services, a more rigorous approach to change 
and conflict management is possible. 

After the project data is modified to represent the proposed new design alternative, the 
HVAC designer uploads the new version of the HVAC aspect model to PROMISE. 

This can be done either by a specialised client tool, similar to the client adapter shown on 
fig. 8.3, or with the generic light-weight project data management client PROMISE / Susi  
as shown on fig. 8.16. 
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Fig. 8.16: Uploading the HVAC aspect model data to the project data server with the 
help of the generic project data client PROMISE / Susi 

Then the HVAC designer registers the conflict on the Conflict Management Server with 
the help of a dedicated Conflict Management Client (see fig. 8.17), or, optionally, with a 
Conflict Applet, invoked from his WWW-Browser (step H5). 

 

Fig. 8.17: Use of a conflict management client to report a conflict 

The Conflict Management Server stores the conflict data including all related references 
to processes and project data objects in a central conflict database which enables the 
monitoring of the conflict status, the maintenance of the data consistency and integrity and 
the notification of all actors involved in the conflict solution. Along with that, the process 
management system automatically creates a new work task for the architect to negotiate 
the conflict. 
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The architect has now the responsibility to react to the raised conflict. The actual 
activities comprising this, initially not planned work are depicted on the expanded view of 
the work task given on fig. 8.18 below. 
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Fig. 8.18: Sequence of actions in the new work task of the architect, due to the detected 

conflict 

The next action is to examine the proposed changes of the HVAC designer (step A2). 

This can be done in a similar way as already described. Alternatively, the architect can use 
directly with his CAD system the ToCEE change management tool developed on top of 
Autodesk’s Architectural Desktop which enables to view and compare the data of two 
model versions (fig. 8.19). 

The analysis of the differences between the two models relies on the centrally maintained 
by the project data server object identifications for all project objects in all domain models. 
The tool supports direct queries to the project data server through the InfoContainer API 
described in this thesis. In order to visualise the changes, only the architectural model has 
to be loaded completely, whereas the new and changed objects in the HVAC model are 
obtained  directly  through  a   match  operation. 

After examining the proposed changes the architect has to coordinate the solution of the 
conflict. Assuming that he himself can agree with the modifications proposed by the 
HVAC designer, he must nevertheless take care that all other designers also agree with the 
modifications and re-work their design solutions accordingly. For this purpose he stops the 
running workflow with the Process Wizard and consequently sets up the workflow for the 
needed re-design work. 
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Fig. 8.19: The ToCEE change management tool embedded in Autodesk’s  
Architectural Desktop 

At this point the workflow has the form presented on fig. 8.20 below. 
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Fig. 8.20: Revised workflow including activities for conflict resolution 
(black boxes show aborted tasks, light grey boxes show tasks which are not aborted, 

as they are already finished) 
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After this coordination work the architect can adjust his own solution with the help of his 
CAD system (step A3) and then upload the changed model back to the project data server 
(step A4) in a similar way as already described for the HVAC designer. Finally, he 
approves the changes proposed by the HVAC designer as shown on fig. 8.21 (step A5). 

 
Fig. 8.21: Conflict approval 

The updated architectural model can now be used as basis for modifying all other 
discipline-specific models by the other designers. Their work will typically follow a 
similar to the presented procedure, using the appropriate services of the environment. 

A unique feature supported by the prototyped project data server is that it does not inhibit 
the existence of temporarily inconsistent data in order to restrict as little as possible 
individual and simultaneous work. Many of the developed services and tools contribute to 
the solution of such conflicting situations. Their usage, briefly outlined in the presented 
scenario, is summarised in the following table. 

Table 8.2: Software tools used in the implementation example 
Conflict management issues Tools Developed by 
• Parallel work (time) conflicts, 

process coordination 
• Process Management Server 
• Process Wizard 
• Workflow clients 

external 
external 
external 

• Distributed data consistency 
 

• Distributed data access 
 

• Change visualisation 

• Project Data Server (PROMISE) 
 

• Generic project data client 
 

• PROMISE + CAD-Client 

the author 
 

the author 
 

the author + 
external 

• Conflict management,  
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approval 
 

• Conflict Management Server + 
PROMISE 
 

• WWW-enabled conflict management 
clients 

external 
with 
participation  
of the author 

• Conflict detection • Conflict detection tool 
• Change management tool embedded in 

Autodesk’s Arch. Desktop 

external 
external 
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However, whilst the abovementioned tools provide a functional user interface and many 
useful stand-alone features, their full power is manifested only through their coherent use in 
the CEE system. For example, in order to enable the functionality of the conflict clients and 
the individual work on the separate domain/aspect models, a sophisticated coordination of 
the individual project model versions must be maintained by the project data server at each 
stage of the design process.  Fig. 8.22 gives an impression of the problem. 

A similar problem exists at every design step. 
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Fig. 8.22: Model data states and data conflicts before and after the work task of the architect 
(1) Model data shown in light grey exist on the server, but are not used during this 
work task; (2) Aspect model HVAC_1 is only retrieved for comparison of changes 
w.r.t. the arch. model (LONG READ) (3) Aspect model ARCH_1 is checked out 
(LONG WRITE), compared with HVAC_1, modified and then checked in again as 
new model version at the end of the work task (4) conflicts shown in black are 
relevant to this work task, other conflicts that might exist but are not handled here 
are shown in light grey. 
(Abbreviations: A = Architect, H = HVAC, S = Structural, F = Foundation designer) 

With this final example, the integration of the developed project data and interoperability 
services in an extended environment for concurrent engineering, supporting not only data, 
but also process (workflow) management was demonstrated. 
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Chapter 9: Conclusions 

I should say, for those who might think these things unusual, that 
they aren’t and that they weren’t difficult to find. 

– Richard Mitchell, Less Than Words Can Say 

In the preceding chapters, the individual components of the proposed model mapping 
approach for an interoperable concurrent engineering environment were separately 
discussed and appraised. This chapter provides a summarising evaluation of the 
developed concepts and the prototyped client/server implementation, and outlines open 
problems for future research. 

9.1 Evaluation of Results 

At the beginning of the thesis I suggested that a comprehensive concurrent engineering 
environment can only be achieved by using PDT as baseline, but extended by models, 
specifications and methods to support all information management aspects of the 
environment, and not only the product and process data related to the designed facilities. 
On the basis of this hypothesis, the main objectives of the research were formulated  
in section 1.2. They are fulfilled in the following way: 

1. The first objective was to provide principal concepts for a distributed client/server 
system for concurrent engineering in building design, with emphasis on the architecture 
and the formal specification of interoperability models, components and services. 
 Research in the area of computer integrated construction has been looking for a long 

time for a top-down solution that would connect the “islands of automation”, and it is 
now largely anticipated that PDT is the most suitable technology that can glue 
together a CEE system comprised of a large number of different components  
(see e.g. Anderl 1995; Stumpf et al. 1996). However, as pointed out recently, e.g. in 
(Turk 1998a, b) and (Wittenoom 1998), conceptual modelling exercised without 
adequate concern for the actual components of a software environment, such as 
human activities, software applications, and related object functionality, is difficult to 
achieve. There are at least two problems with such “general-purpose” modelling 
efforts: (1) the difficulties by which the conceptual models are being formalised and 
agreed upon by the experts in the domain, and (2) the incompleteness of the models, 
particularly in the areas of unconventional and creative design (Turk 1998b). 
With the approach developed in this thesis such difficulties can be greatly overcome. 
Instead of looking at the problems that are directly related to the development and 
specification of comprehensive product and process data models, a methodology was 
suggested which allows to “connect” all components of a CEE system with the help 
of a unified modelling framework built upon already recognised model structures, 
such as the IFC Project Model. 
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This framework need not be fully harmonised as assumed by STEP. The key idea of 
the approach is the use of an environment-wide ontology as a specification language 
providing a higher level of abstraction than any specific product and process data 
models. Through the ontological commitment of all components of the environment, 
the necessary logical consistency of the framework can be guaranteed, even if 
individual applications have a different “understanding” of high-level concepts at 
their specific level of detail. 
To achieve such interoperability, high-level object classes, like the abstract class 
IfcRoot, have been enhanced with behavioural features, focusing on the communi-
cation and coordination of information, and not on the engineering functionality 
provided in their subclasses, when treated as “normal” product data objects within the 
scope of a particular application. Thus, whilst there are no globally defined operations 
allowing e.g. to move a “wall” object, to insert a “window”, and to calculate its 
thermal resistance or stress distribution, a set of operations is provided to check if the 
properties of that “wall” object have been changed by another designer, to map its 
representation in one domain model to another etc. 
The implementation of these operations across different platforms, and by using 
different programming languages, is enabled by the generic representation of all 
information items by means of information containers, and a generic client/server 
communication model providing the use of different communication techniques, such 
as Java RMI, CORBA, CGI scripts, pure TCP/IP sockets etc. In this way, not only 
integration and information sharing, but also adequate consideration of many 
important interoperability aspects, such as data consistency and change management, 
can be achieved in much the same way as the simple retrieval of the attributes of 
some object from a database. 
The developed architecture and systemic interoperability components provide an easy 
mechanism for the realisation of plug-ins by which applications can be integrated into 
the environment, the functionality of the project data server can be extended by 
knowledge-intensive software agents for specific fully automated tasks, and addi-
tional servers can be easily added to tackle aspects like document and workflow 
management, legal issues etc. 
Thus, whilst there is a large number of components that can further enhance the 
operability of the environment, the proposed conceptual framework and software 
architecture can contribute to the construction of real-world CEE systems even with 
today’s “incomplete” data models. 

2. The second objective was to use PDT as baseline by aligning the developed concepts  
as far as possible with STEP methodology. 

 All information structures supporting the underlying conceptual models of the 
environment (information container, communication model, mapping language, 
object-oriented project data operations, knowledge-based extensions to the object-
oriented operations, interoperability services) are uniformly designed using as much 
as possible the EXPRESS modelling paradigm. Whilst not all specifications could be 
developed directly in EXPRESS, due to the limitations of the language, care has been 
taken to provide adequate links between the proposed new representations and “pure” 
EXPRESS data models. In this way, an environment enabling the use of STEP and/or 
IFC data models, along with other information sources is achieved. 
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In fact, some problems in the realisation of the environment can be specifically 
allocated to the requirement of a STEP-conformant approach. For example, the use of 
STEP exchange files according to (ISO 10303-21 1994), along with object-oriented 
requests and more advanced knowledge-based queries and assertions, provided not 
only implementation difficulties, but conceptual problems as well, including the 
unique identification of objects (impossible to represent in a STEP file if the data 
model does not contain the respective provisions), the needs for dual storage of the 
data, different treatment of conversion and filtering operations etc. Nevertheless, the 
undertaken study about the current state of building IT provided evidence that this is 
the correct approach to accomplish a real model-based environment in the medium 
term, as it allows to introduce advanced information processing methods without 
neglecting current, widely used practices. 

3. The third objective was to use the IFC models as general reference models of the 
proposed approach by coordinating all specific components for concurrent engineering 
support with the IFC modelling architecture. 

 The developed approach does not depend on, and is not fully aligned with the IFC 
Project Model. During the work on the thesis it became clear that this was not 
necessary for the development of most of the identified interoperability models and 
methods, as it was possible to define them on the level of a formal information 
modelling language and generic concepts common to all object-oriented models. 
However, some operations, although defined generically, had to be implemented with 
consideration of the specific structure of a particular data model*). It was also found, 
as expected, that the scope of the project data services can be considerably enhanced, 
if the particular high-level structures of the adopted kernel model are utilised. In such 
cases, the IFC Project Model has been used as reference model of the envisaged 
environment. 
The performed examination of the IFCs showed that certain elements can be 
enhanced from the point of view of an IT environment for concurrent engineering. 
The developed approach depends on such “enhancements” as little as possible, but it 
also showed that by re-specifying high-level IFC constructs on the level of a system-
wide shared ontology, with only a few added operational features (in this study:  
4 object classes enhanced with a total of 8 operations – see appendix V) a totally new 
interpretation of the functionality of the IFC models can be achieved. 
This proved that the IFCs have greater potential than currently utilised, and with 
justifyable software adaptations it is definitely possible to envisage an IFC-based 
CEE system. Thus, given that IAI currently appears to be best positioned to involve 
the major stakeholder groups in the building industry, I see the main result of the 
study w.r.t. IFC in the derived optimistic conclusion about the possible usage of the 
IFC Project Model as a primary reference model for CEE, along with the suggested 
enhancements, and the proposed “interpretation” of the model in a run-time system. 
On that basis, the move from paper-based to model-based on-line product 
development is most likely to succeed. 

                                                 
*) A typical example is the generation of a drawing file from a product model. 
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4. The forth objective was to study and propose possibilities to incorporate advanced 
knowledge-based features into the concurrent engineering environment. 

 As a whole, the approach suggested in this thesis is not knowledge-based. Instead, it 
“holds” as much as possible to the object-oriented paradigm. Even though many 
aspects of object-oriented modelling and programming have been criticised recently, 
and several insufficiencies with respect to design product modelling (cf. Garrett & 
Hakim 1994; Killicote et al. 1994; Sieberer & Keber 1997) and conceptual modelling 
in general (Borgida 1995; Russel & Norvig 1995) have been identified, the object-
oriented paradigm is intentionally chosen as the underlying paradigm of the proposed 
CEE framework. There are two basic reasons for that: (1) its wide acceptance in the 
research and development community, and (2) its proven scalability for large 
information systems. More advanced approaches, such as description logic, can 
provide many benefits to the overall functionality of a CEE system, but they are not 
widely accepted and are insufficiently tested in real-world implementations. Hence, 
their broad applicability and their scalability could not be presumed. 

This specific design requirement put significant constraints on the use of advanced 
knowledge-based methods*). Nevertheless, with the proposed formalisms for 
communication and information exchange, it was possible to implement different 
components of CEE by using, internally, different representation paradigms, whereas, 
externally, i.e. on system level, the same object-oriented interfaces based on a shared 
ontology could be uniformly applied. This is demonstrated by the implemented 
prototype environment: the project data management server was developed by using a 
frame-based paradigm combining object-oriented and rule-based processing, the 
mapping and matching methods make extensive use of symbolic programming, the 
front-end request broker and the example system clients are in “pure” Java, and 
additional components, such as a general-purpose CAD system, a structural analysis 
application, and a Virtual Reality Browser, are integrated on the basis of externalised, 
Information-Container-based requests/responses and simple object-oriented pre-
processors. 

I see in this pragmatic treatment of the Knowledge-Level perspective (cf. Newell 1982) 
another major contribution of the proposed approach. 

In addition, a possibility to use advanced IT features on the project data server was 
found, by developing a formalism enabling the encapsulation of knowledge-based 
queries in “normal” object-oriented remote method calls. The specifications 
presented in sections 4.5 and 4.7 provide a simple mechanism to extend the 
capabilities of an inherently object-oriented environment. Future work can show 
how much more functionality can be achieved in the same generalised way. 

                                                 
*) For example, unlike KIF (Khedro et al. 1994), client applications are not assumed to possess 

intelligent features beyond the capabilities provided by an object-oriented representation which 
limits the expressiveness of client/server requests and responses. 
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5. The fifth objective was to develop an interoperability approach enabling the solution of 
problems related to the concurrent, multidiscipline work on multiple, non harmonised 
domain models. This objective was identified as the primary focus of the research. 

 The undertaken studies showed that a common ontology can warrant high-level 
operability and consistency of the environment, but it is not likely to guarantee its 
completeness by using only the vocabulary defined in the ontology. Thus, whilst the 
actions of all components of a CEE system, including knowledge base servers and 
knowledge-based applications, can be coherently treated by means of their onto-
logical commitment to high-level concepts and operations, their specific reactions 
depend on the specific interpretation of domain/application data. This data may be 
shared, and it may have different meaning in the context of different applications. 
Besides, due to the presumed organisation of project work including concurrent, 
autonomous, non coordinated activities, diverging model states, data conflicts and 
data redundancy had to be taken into account. 
In fact, the applicability of the whole approach strongly depends on how well such 
problems can be tackled. Input and output to/from one design domain from/to other 
domains raises specific model transformation problems, and parallel, autonomous 
processing of shared data gives rise to consistency problems which cannot be solved 
only by applying basic database and conceptual modelling techniques. 
In database research, due to the main interest in business DBMS, characterised by 
numerous, concurrent, yet short transactions, a continuous consistency of the data is 
always presumed, which equates semantic interoperability to schema integration. 
However, in chapter 5 it was shown that this is a very strong requirement w.r.t. 
object-oriented project models, significantly limiting the capacity of all proposed 
model integration methods. 
In the domain of conceptual modelling, along with the efforts for model harmoni-
sation and the development of large consistent modelling frameworks, the need for 
more flexible model transformation mechanisms (model mapping) have been better 
recognised. However, in this domain, too, the presumption that a shared, continuously 
consistent data repository must be maintained has restricted most undertaken efforts 
to the examination of mapping/consistency problems related to the information 
exchange between applications and that presumed consistent repository. This strategy 
has been successfully proven in the limited scope of prototype environments  
(cf. Augenbroe 1994; Beucke 1995; Wittenoom 1998), but there are no known 
implementations that have succeeded in extending it to real-world systems. 
The approach developed in this thesis takes a different view on the problem domain. 
First, interoperability aspects are distinctly categorised and independently treated. 
This enabled the achievement of greater representational capacities of the developed 
specifications, as well as the coverage of a wider range of problems. The latter can be 
especially interesting when large applications, or separately developed large models, 
e.g. IFC and CIS (Crowley & Watson 2000), need to be brought together. 
Second, continuous consistency and non redundancy of the data are not imposed as 
leading design principles which mitigates many data conflicts, and thus enabled the 
tackling of complex object transformations that have not been considered before. 
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Third, mapping, matching, merging and reconciliation of the model data are not 
treated as parts of a non separable process. Instead, mapping tasks are executed 
without consideration of any particular already existing data context, whereas 
matching and merging of the data can be deferred, at the responsibility of the users of 
the CEE system. 
The baseline of the approach is that, instead of attempting to fully automate a 
sophisticated information flow with a doubtful probability of success, the designers 
are assisted by IT tools enabling them to decide, actively, when and how the project 
data need to be coordinated. In this way greater modularity and flexibility can be 
achieved, and, what is more important, there are no strong restrictions imposed by the 
system w.r.t. the overall organisation of the design work. The drawback is that data 
integrity and data consistency cannot be guaranteed by the system alone, but require 
the “reasonable” behaviour of the system users. In that respect, a broad analogy to the 
treatment of many sophisticated CAD problems can be recognised. 
In my opinion, this approach is more natural to human work, and it has greater 
prospects of success compared to pure model harmonisation and model integration 
efforts. However, as it is difficult to assess all possible consequences in situations 
where data conflicts cannot be fully recovered, further investigations and analyses of 
a large number of case studies are needed to achieve greater clarity. 

6. The final specified objective was to implement a prototype software system as proof  
of the developed concepts. 

 In chapter 8, the major components of the prototyped environment were outlined, 
along with a large example adapted from the final workshop of the ToCEE project. 
Details of the Information Container API and the prototyped project data operations 
were presented in appendices II and V respectively. 
The developed project data server (PROMISE) was partially used in the ToCEE 
project where it ran smoothly and with reasonable performance by all major tests, as 
well as at the final workshop demonstration. However, as only some of its features 
were needed in ToCEE*), additional debugging, testing and case studies were 
conducted with data of the COMBI models**), IFC 2.0 data, and data of the sample 
structure applied for the verification of the structural domain extension model 
developed in the diploma work (Weise 1999) mentioned in the preceding chapters. 
Thus, even though some functional and performance features can definitely be 
improved, the prototyped environment provided sufficient evidence for the overall 
validity and applicability of the proposed approach. 

                                                 
*) For example, there was only one “very light-weight” mapping task included in the demon-

stration scenarios of ToCEE, and all tasks related to the resolution of global names and actor 
roles were allocated to the Information Logistics System developed in the frames of the ToCEE 
project (Wasserfuhr & Scherer 1999). 

**) These tests were needed at least for the re-construction of the COMBI examples referenced in 
the thesis. 
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9.2 Fulfilment of Basic Requirements to Design Product Models 

At several places in the thesis I emphasised that the target of the developed approach and the 
proposed environment architecture is the design phase of building construction projects. 
Along with all known differences to other phases, this involves a pure IT perspective to be 
considered. Indeed, the information requirements of design are quite different from the 
information requirements of later life cycle phases, and even if the same model schemas are 
used, they have to be interpreted in a different way by design/construction/FM IT systems. 
For example, I argued before that the requirement for autonomous (private) workspaces is of 
leading importance, taking precedence over consistency and integration issues, and influ-
encing the overall concept of the CEE system. However, whilst I believe that this is true for a 
design environment, it does not necessarily apply to later phases where the information 
content is greater but less “vulnerable”, as there are much less changes and alternatives that 
need to be tackled. In such cases, the use of a shared project database is more justified and 
easier to implement than in design. Furthermore, in contrast to construction and facilities 
management, where an (almost) fully instantiated building model exists on input, in design 
the input is comprised mostly of requirements which, at best, only sparsely “fill” the model 
schemas, whereas the instantiated building model is in fact the result of the design activities. 
Because of these, and other related aspects, design product models are subject to more 
complex requirements w.r.t. IT compared to the models of later life cycle phases. However, 
intensive examinations of such specific design requirements performed by many researchers 
in the last years (cf. Sriram 1991; Eastman 1993; Hakim 1993; Björk 1995; Kowalczyk 1997) 
have shown that most of them are not related to the model structure and content but to the 
representation and manipulation of the data in a running system. Some of these requirements, 
i.e. data integrity, data redundancy, flexibility and extensibility of the models, uniformity of 
the representation, were already addressed in the previous section. Other major requirements 
that are often mentioned include schema and object evolution, representation and tackling of 
complex entities, derived data, user-defined semantics, generation of views, versioning, 
independence of the data storage from applications, persistence. An assessment of how well 
these requirements are fulfilled by the developed prototype project data server (PROMISE) 
is provided below. 

Schema evolution 
PROMISE can accommodate several models at a time, and all generic server modules,  
i.e. more than 80% of the program code, can be used with different EXPRESS-based model-
ling frameworks. This capability was manifested through the performed studies with models 
from COMBI, ToCEE, and IFC 2.0 + modifications (see chapters 7, 8 and appendix VII). 
Therefore, in principle, the representation of evolving model schemas provides no problems. 
Locally, this can be done at any level and includes creation/deletion/modification of object 
classes, class relationships, value types, cardinalities, even inheritance types*). However, at 
the level of client/server communication, schema evolution is intentionally limited because 
of several integrity and consistency concerns. PROMISE was not conceived for model 
development, but for run-time support of multidiscipline design teams where such excessive 
flexibility of the representation may be a dangerous feature. 

                                                 
*) In fact, most of these features are provided by the basic capabilities of the KEE system itself  

(see Intellicorp 1994). 
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Object evolution 

Object evolution can be interpreted in two ways: 
(1) as a subtopic of schema evolution, and  
(2) as the ability to support partial instantiation, by enabling the assignment of features 

defined in the object classes not only when respective object instances are first 
constructed, but also dynamically, according to the specific output of design activities. 

Whilst the first of these aspects is quite arguable for a run-time CEE system, the second is 
an inherent feature of design that must be supported without ifs and buts. 
In PROMISE this second aspect of object evolution is provided in the following way  
(see chapter 8 and appendix V): 
Object instantiation is supported by a “create” operation which automatically constructs a 
new unique object instance in the referenced model, and fills only those attributes that are 
provided as parameters in the respective request. Locally, all object instances can be 
modified at any time as long as they comply with the model schema known to the server. 
Such modifications become globally visible once the checked out data are checked in 
again. It is also possible to redefine operations as long as their signatures remain 
unchanged. In addition, capabilities for object re-classification are provided, but these are 
less developed than e.g. in description logic, and require additional rules to be stored with 
the model schemas. Objects can also be instantiated partially or fully due to mapping 
operations. In that case, the content of each target model instance depends on the content 
of the respective source instance(s). Subsequent matching and merging operations may be 
used to complete the properties of such objects. 

Complex entities 

If complex entities are represented as aggregations in the underlying data models, they can 
be queried and retrieved both as a whole and as individual "part-of" components. This can be 
done for all parts, or by using a filtering predicate, such as "all elements with h > 0.3 m". 
If aggregations are missing, ad hoc groups can be created and retrieved by means of the 
proposed knowledge-based expressions and templates (see section 4.7) 

Derived data 

In EXPRESS data models, derived data appear only in the form of derived attributes. Such 
attributes can be populated easily by internal demon methods. This is done automatically, 
after the values of the independent attributes are known to the system. 

User-defined semantics 

User-defined semantics can be accommodated in each domain model. Because of the relative 
independence of domain models from each other, extended semantic relationships and/or 
operations need only be known to the users and applications “using” a particular domain 
model, and are “shadowed” w.r.t. all other system components (see chapter 4). 
However, there are certainly some “limits of flexibility” w.r.t. the overall consistency and 
integrity of the data. The precise specification of such limits is a difficult problem and has 
not been attempted in this study. 



 Conclusions 255 

Views 

In addition to domain/application models different views can easily be obtained by built-in 
operations or ad hoc constructed knowledge-based queries (see chapter 4 and appendix V). 
However, some of the built-in operations for views, e.g. geometry view types, are strongly 
dependent on the internal model structures and might require changes if the underlying 
model is modified (see section 9.1, item 3). 

Versioning 

Currently, PROMISE supports only model-level versions, and an “undo” feature enabling to 
rollback the latest transaction (see chapter 4 and appendix V). More advanced version 
support methods have been developed in other research projects, e.g. REMAP. However, 
according to the findings of REMAP (cf. Sieberer & Keber 1997), in order to provide com-
prehensive version support additional representational features have to be incorporated in the 
model schemas. The combination of such features with the data structures used in PROMISE 
is an interesting topic for future research. 

Independence of the data storage from the use of the data by applications 

This aspect of design product models is an inherent feature of the proposed framework. 
Operations applied to design entities by applications are always performed in the context of 
their discipline-specific view of the project data, whereas storage, shared access and 
coordination of the data are controlled by overarching interoperability methods executed on 
the project data server. In addition, the invocation of each remote operation is always 
checked against the assigned access rights in accordance with the roles of the users of the 
CEE system (see chapter 4 and appendix V). 

Persistence 

All models maintained by the system are persistently stored, including not only the current, 
but also previous and/or temporary versions, resulting e.g. from mapping, matching or 
merging operations. 
Model and mapping schemas are stored together with the specific operations defined for and 
in these schemas. This feature allows to separate model-dependent operations from the 
globally valid generic operations defined at the system ontology level. 
However, knowledge-based queries are only possible when the whole referenced model is 
loaded into working memory, which restricts the scalability of the approach. Therefore, in 
order to provide such advanced server features in real-world CEE implementations, further 
research work aiming at combining knowledge-base and database technologies is needed,  
as suggested in contemporary database research (cf. Ullman 1988; Eastman et al. 1995a;  
Kim 1995; Schönhoff et al. 1997). 
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9.3 Directions for Future Research 

Information technology subjects related to concurrent engineering provide a vast area for 
research. Almost any aspect of the proposed framework for CEE can be further developed, 
and a variety of sophisticated data management tools that would improve project co-
ordination, monitoring and control can be envisaged. Even when only the personal 
workplace of a single designer is considered, a number of tasks that are not efficiently 
supported by today’s building IT can easily be identified, e.g. simulation of the behaviour 
of the building due to different environmental influences (design for operability), 
simulation of construction problems (design for assemblability), forecasting and pre-
emptive measures for probable life cycle situations (design for serviceability), activity 
planning and coordination of the designer’s work across several projects (design as 
information flow) etc. This list can be readily extended to fill chapters of a book. 
The aim of this final section is more modest. It focuses on ideas for future research that are 
closely related to the proposed approach for a model-based interoperable concurrent 
engineering environment described in this thesis. These ideas can be broadly divided into 
five categories: (1) investigation of advanced interoperability issues, (2) extensions of the 
modelling framework, (3) extensions of the principal functionality of the CEE system,  
(4) extensions of PROMISE, and (5) extensions related to the user interfaces. 

Investigation of advanced interoperability issues 

In the discussions provided in chapters 4-7 several interoperability aspects that need further 
examination were already mentioned, and in section 9.2 the need for a more formal 
identification of the limits of model modifications was addressed. 
A basic research topic related to semantic interoperability is the completeness of the map-
ping and integration approaches. It is probably not possible to develop methods providing 
complete coverage of all inter-schema problems associated with object-oriented model 
schemas due to the incompleteness of the underlying logic model of the object-oriented 
paradigm, but it is certainly interesting to investigate possibilities for predicting if a mapping 
transformation can be applied successfully. Formal methods, allowing to estimate in advance 
if the changes made in one domain model will be adequately propagated to other domain 
models, can be very useful for the proper coordination of design decisions and can help in 
optimising information flows. More pragmatic, short-term efforts may address flexible visua-
lisations of changes, identification of critical sections of the model data with great overlaps 
of discipline specific information, more comprehensive examination of relationship paths, 
i.e. the influence of the changes in one modelling object to other objects in the model etc. 
Another area that requires attention is the development of appropriate modelling tools to 
support the development and analysis of mapping specifications. While a large number of 
tools for creating, browsing and analysing of object-oriented models are currently available, 
similar tools for the development of mapping specifications are practically missing. 
However, when large conceptual models are involved, such tools can be of tremendous 
importance to the developers of a CEE system. In that respect, the mapping patterns 
presented in chapters 5 and 6 may provide some initial hints. Additional work on the 
extension of these patterns can be combined with graphical user interfaces allowing to define 
visually inter-schema correspondences on selected appropriate levels of detail. More precise 



 Conclusions 257 

investigations of mapping patterns can also be useful for early estimations of the difficulties 
and the expected run-time performance of mapping tasks. 
Further ideas w.r.t. interoperability include: 
– development of computationally more efficient algorithms; 
– better interactive control of the mapping, matching and merging processes; 
– negotiation methods related to data conflicts; 
– incorporation of more advanced knowledge-based features and more intelligent commu-

nication mechanisms; 
– better alignment with standards supported on the Internet, such as XML, etc. 

Extensions of the modelling framework 

In the approach developed in this thesis, the problems related to the requirements, the 
specification and the quality of conceptual project models were not directly addressed. 
However, a CEE system is certainly strongly dependent not only on the structuring of the 
data and the realisation of the interoperability aspects of the underlying modelling 
framework, but also on its content. There are numerous technical issues in the domain of 
conceptual modelling for which adequate solutions are still needed, including e.g. design 
rationale, integrity control on well-defined data levels, flexible extensions to the model 
schemas provided by the users at the time of the creation of instances, better user and 
application interfaces etc. 
Five years ago Björk (1995) predicted that when product model based applications start to 
be used in real construction projects, a number of interesting research topics will emerge, 
such as: 
– further studies of information use and information flows; 
– the influence of the use of product and process models on the design process; 
– integration of product model research with design theory. 
With the appearance of IFC-based applications these issues gain even more importance in 
the present day. 
Another topic for further research related to the modelling framework of CEE is the 
ontological level. In the scope of this work, only some initial specifications w.r.t. the 
system-wide ontological commitment to a kernel project model were developed. The 
defined operations, comprising a mixture of primitive SDAI-like data access functions and 
higher-order functions for interoperability support, are intended as building blocks for 
more comprehensive project data services that could be used not only implicitly, through 
appropriate IT tools, but also explicitly, for direct user/server communication via the 
Internet. This feature needs further investigations to prove its validity for real-world design 
environments involving a variety of legacy applications. Further work is needed also for 
more exact specifications of such project data services. 
An interesting subject for research can be also the definition of an “engineering language” 
that would enable not only the programmatic implementation of the ontology specifications 
but their direct use with WWW-Browsers and PDM-Browsers. It should be possible to find  
a formalism by which end-users would be able to “speak” with the CEE system using  
words like “column” and beam”, and not “IfcBuildingElement”, “IfcColumn”, “IfcBeam”, 
“IfcRelAssignsTypedProperties” and so on. Obvious but insufficient solutions include the 
construction of dedicated viewers and the creation of synonym tables. I suppose that AI 
methods related to natural language analysis need to be examined here as well. 



258 A Mapping Language for Concurrent Engineering Processes 

Extensions of the principal functionality of the CEE system 

Whilst I argued that model-based project realisation is imperative for efficient practising of 
concurrent engineering in building design, there are also many other forms of information 
related to the design process that have to be taken into account. This includes the 
representation and management of design documentation, design processes, legal issues, 
such as contracts, access rights and responsibilities, etc. Of course, these types of data are 
also based on conceptual model schemas, and it is principally possible, and necessary, to 
integrate them in the overall modelling framework of CEE. However, the information 
content of these schemas and the required services are very different from the data types 
examined in object-oriented project models such as IFC. Therefore, it is probably not 
sufficient to define appropriate "plug-in" elements in each model and hope that this will do 
the job. More detailed investigations are needed to address not only the data aspects and 
the functionality of the related systems (PDM, EDM, WfM … ), which is currently as far 
as research efforts have gone (see e.g. Fisher & Froese 1996; Scherer 2000), but also the 
interoperability services and the inter-dependencies between these different model worlds. 
With respect to workflow management it is interesting to examine e.g. the use of project 
model data as input, output and execution conditions for worktasks, in place of the 
traditionally practised association of documents to activities. Some work in this area 
already exists (cf. Wasserfuhr & Scherer 1997, 1999), but there is still much research 
needed to achieve practical applicability of such large-scale approaches. 
Other aspects that can extend the functionality of a CEE system include the integration of a 
legal framework for the virtual enterprise, as suggested e.g. in (Scherer 1997b), standards 
and regulation processing (cf. Killicote et al. 1995; Turk 1996)  etc. 

Extensions of PROMISE 

Although the focus of this work has not been on implementation issues, the developed 
prototype project data server could be used successfully in various contexts. This allowed 
to identify several possible extensions for future work: 
1) Implementation of agent technology to extend the basic services of PROMISE by 

supporting client applications in the solution of tasks beyond their specific domains 
(e.g. a knowledge-based structural design system could “use” a server agent to prove if 
the provisions of some design standard are fulfilled w.r.t. certain modelling objects). 

2) Implementation of distributed database technology to allow decentralised storage of the 
project data. 

3) Linking to external product information systems to enable flexible selection and 
integration of supplier products in the design. 

4) Incorporation of comprehensive conflict management functionality. 
5) Realisation of comprehensive version control on finer level. 
6) Improvement of the interoperability methods, along with future investigations of 

mapping patterns and consistency issues, etc. 
Another possible direction of work is the examination of other representation paradigms 
and the associated re-engineering of the system. Here there are two contrasting possibilities 
to explore: (1) advanced representation paradigms, such as description logic, which can 
lead to extended functionality but are uncertain w.r.t. scalability, and (2) pure object-
oriented representations based on a widely accepted programming language with 
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comprehensive Internet capacities, such as C++ or Java. However, especially in the second 
case, several principles of the software design might need to be reconsidered. 

Extensions related to the user workplace 

The personal workplace of the designer has not been a prime issue of interest in this thesis. 
Work in this direction was limited to the implementation of example clients and the 
demonstration of a few design applications. However, for the success of a CEE system, the 
workplace and the tools of the individual designers are of no less importance than the 
framework and the operability of the overall system. Some hints in that respect were given 
in the preceding paragraphs, e.g. the use of WWW-Browsers for model access, more 
sophisticated interfaces enabling end-users to recognise better (and faster) the changes 
made to the design data etc. 
A specific issue closely related to conceptual modelling is the development of user-friendly 
project data browsers. Currently, the capabilities of academic and commercially developed 
browsers are strongly aligned with the structures of the represented models. This is good 
for model developers but inconvenient for end-users. A designer will not be interested in 
tracing long chains of objects, as for example “IfcWall – IfcMaterialLayerSetUsage – 
IfcMaterialLayer – IfcMaterial – IfcSimpleProperty – IfcMeasureValue – …”,  in order to 
gather, piece by piece, the chunks of information he needs. He would rather like to select 
the “wall” object visually, and leave the system to collect and show the necessary data 
according to the criteria he has specified. However, this requires a “knowledge overlay” to 
the conceptual model schemas, which is not contained in current project data models.  
In that respect, too, there is much work yet to be done. 

 

Alles Wissen und alle Vermehrung unseres Wissens endet nicht mit einem 
Schlusspunkt, sondern mit einem Fragezeichen. 

– Hermann Hesse, Lektüre für Minuten
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Appendices 

This part includes seven appendices intended to facilitate the reader in understanding better 
the given examples and referenced external sources at different places in the preceding 
body of text. Each of these appendices presents supplementary technical details to the 
discussed topics in chapters 1-9. More comprehensive descriptions can be found in the 
cited literature sources. 

Appendix I provides a brief overview of EXPRESS and EXPRESS-G. 

Appendix II details the prototyped Java API for the Information Container specification 
introduced in section 4.2. 

Appendix III presents the XML DTD suggested in section 4.8 as an alternative syntax for 
the externalisation of the Information Container data structures and the client/server 
communication based upon that. 

Appendix IV presents the developed XML DTD for CSML externalisation mentioned in 
the discussion at the end of section 6.7. 

Appendix V presents the prototyped project data management operations used in the vali-
dation of the developed concepts. 

Appendix VI contains a brief description of the prototyped parsers and converters for the 
various proposed representation formats. 

Finally, Appendix VII provides an overview of the data models referenced at several 
places throughout this study. It includes five subsections, covering, respectively: 
1) the STEP modelling framework; 
2) the IFC modelling framework; 
3) the COMBI modelling framework; 
4) the ToCEE modelling framework,  and 
5) EXPRESS-G diagrams of selected data model schemas used in the prototyped project 

data server for CEE (the IFC Kernel Model, the proposed structural domain model 
extension to IFC 2.0 and a small application-specific model used for testing purposes 
with the latter). 
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Appendix I Overview of EXPRESS/EXPRESS-G 

This appendix presents a brief overview of the EXPRESS modelling language and its 
graphical subset, EXPRESS-G, compiled from different literature sources (Fowler 1995; 
Owen 1997; IAI 1999c). It is provided for information and to assist readers in the 
interpretation of various modelling concepts and examples illustrated with the help of 
EXPRESS and EXPRESS-G in this thesis. A complete reference of the capabilities of the 
language is provided in (ISO 10303-11 1994). 

I.1 EXPRESS constructs 

EXPRESS is a textual data definition language. It is based on an extended Entity-
Relationship modelling paradigm, includes generalisation and constraint specifications, 
and embodies many characteristics of object-oriented modelling. 
One of the key aspects of EXPRESS is that it is both “computer-interpretable” and “human-
readable”. It conforms to a formal syntax, so that models can be validated and processed 
by software, but can also be presented to a human reader in a form that allows a data 
specification to be readily understood. This latter aspect of EXPRESS is supported by its 
graphical subset, EXPRESS-G. 
In the context of STEP, EXPRESS is designed for implementation independent conceptual 
product modelling. However, its use is not limited to product data models and to STEP.  
In fact, EXPRESS has been widely used in other standardisation work, e.g. EDIFACT, and 
in many industrial, research and academic projects. Together with UML, it is the favourite 
presentation format for reported work in the conceptual modelling domain today. 

The basic constructs and modelling capabilities of EXPRESS are as follows: 

Schema 

A schema represents the highest specification level in EXPRESS. Every conceptual model 
consists of one or more schemas, each defining a common scope for a collection of data 
definitions. Inter-schema interfacing allows different components of large models to be 
developed separately. However, there is no provision for public and private specifications 
as in object-oriented programming and other data definition languages, i.e. all defined 
concepts in a model are visible globally, in all its schemas. 

Data types 

EXPRESS supports the use of the following data types in a schema specification: 
– base data types, 
– declared data types,  and 
– entities. 
The base types are BINARY, NUMBER, INTEGER, REAL, BOOLEAN, LOGICAL and STRING. 
They correspond more or less to the usual data types in programming languages.  
A NUMBER is a generalisation of INTEGER and REAL, and LOGICAL is a specialisation of 
BOOLEAN (extending the available Boolean values TRUE and FALSE with the additional 
value UNKNOWN). There are no specific INTEGER and REAL types for different scopes and 
precision, such as short, long, double, float, found in other languages. 
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Declared data types are used to create additional data types with their own unique 
identifiers. There exist two kinds of declared data types in EXPRESS: constructed data 
types (ENUMERATION and SELECT), and defined data types. 
An ENUMERATION data type provides for a range of possible values specified in an 
enumeration list. An item of that type may only take one value from the given range of 
values. For example, a 'space' type that may be selected from an enumerated list of 
'occupied', 'technical' or 'circulation' can be specified as a data type as follows*): 

TYPE IfcSpaceTypeEnum = ENUMERATION OF 
                            (Occupied, Technical, Circulation); 

END_TYPE; 

A SELECT data type defines a named collection of other data types that can play the same 
role in a model. There need not be anything in common between the types declared in a 
select list. As with enumerations, only one item of a select list can be used as a value of the 
SELECT. For example: 

TYPE IfcBuildingSelect = SELECT 
                            (IfcBuilding, IfcBuildingStorey); 

END_TYPE; 

declares a data type that can be used to reference both 'building' and 'building storey' 
objects, but only one at a time. 
A defined data type is used to take the place of another, underlying data type that is already 
known in the schema. Typically, this is a base type that is given a more appropriate name 
in this way. For example, an 'organisation' may have a short description which could take 
the form of a simple STRING, but it would be more expressive to refer to that description 
as 'label'; this is achieved by the definition: 

TYPE label = STRING; 
END_TYPE; 

Entities 

Entities are the basic conceptual modelling units within EXPRESS. In many aspects they 
resemble classes in object-oriented programming languages. Concepts like generalisation 
and specialisation with multiple inheritance, as well as value and reference attributes and 
behaviour are supported. Thus, each entity declaration creates a class and gives it a name. 
For example: 

ENTITY IfcOwnerID; 
  Identifier : IfcString; 
  OwningApp  : IfcString; 
  OwningUser : IfcActor; 
END_ENTITY; 

Here, Identifier, OwningApp and OwningUser are all attributes of the entity 
IfcOwnerID, the first two being of a defined data type with underlying base type 
(STRING), and the last being a reference attribute pointing to another entity (IfcActor). 

EXPRESS is unusual by comparison to many other data modelling languages in that it does 
not make a distinction between attributes and relationships. In EXPRESS, an attribute is 

                                                 
*) All EXPRESS examples in this appendix are adapted from the IFC 2.0 documentation (IAI 1999c). 
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regarded as defining the role played by a base type or a defined type in the definition of an 
entity; a relationship is similarly regarded as the role played by one entity type in the 
definition of another. 

Subtypes and supertypes 

Generalisation/specialisation relationships between the entity types in a data model are 
provided in the following way. 
If one entity type is defined to be a subtype of another, then it inherits all its properties, i.e. 
its definition, attributes and constraints. Multiple inheritance is supported, where one entity 
type is defined as a subtype of two or more other entity types. The resulting classification 
lattice enables the definition of complex entity instances, combining the characteristics of 
several “parent” types. When an entity type has more than one defined subtype, the default 
(somewhat unusual) relationship, denoted as ANDOR, is that the subtypes may be instan-
tiated independently or together. This may be constrained using a SUPERTYPE clause in the 
definition of the parent entities. In fact, constraining inheritance relationships to single 
inheritance only is one of several additional modelling rules imposed on the IFC modelling 
framework. For example, consider the following definitions: 

ENTITY IfcLayeredElement 
  ABSTRACT SUPERTYPE OF 
    (ONEOF (IfcFloor, IfcRoofSlab, IfcWall)); 
  ••• 
END_ENTITY; 

ENTITY IfcWall 
  SUBTYPE OF (IfcLayeredElement); 
  ••• 
END_ENTITY; 

Here, by using the keyword ONEOF, the supertype declares that a 'layered element' is 
exclusively either a 'wall', or a 'floor', or a 'roof slab'; it cannot be two or more at the same 
time. The 'layered element' itself cannot be instantiated as it is declared ABSTRACT. 

Attributes 

As mentioned, EXPRESS does not make distinction between value and reference attributes, 
but it does recognise different possible cardinalities and constraints. Thus, an attribute may 
be mandatory or optional, it may have a unique or a derived value, and it may stand in one 
to one, or one to many relationship with the defining entity class. 
A mandatory attribute is specified simply through a reference to the attribute’s type, and 
for optional attributes the keyword OPTIONAL is provided to denote that the presence or 
absence of the respective attribute does not affect the basic meaning of an entity instance. 
EXPRESS provides UNIQUE and DERIVE rules for cases, where the specific values of one 
attribute, or a combination of attributes, are required to be unique across the full set of their 
values in a given model, and for cases, where the value of an attribute can be calculated 
from the value of other attributes, or by applying a predefined expression or function, 
respectively. 
Except for simple one-to-one relationships between entities and their attributes, a number 
of aggregation relations are supported as well. These include: ARRAY – a fixed size 
collection of data items of the same type with order; BAG – a collection of data items with 
no order and allowed duplications, SET – a collection of items with no order and no 
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duplication, and LIST – an ordered sequence of items, optionally declared as UNIQUE, i.e. 
with no duplications. For each of these aggregate types the lower and upper bounds of the 
aggregation may be specified. In bags, lists and sets, a zero (0) specified as the lower bound 
denotes that the aggregation is optional (may contain zero elements), and a question mark (?) 
specified as upper bound denotes that the maximal number of elements is not fixed. 
Inverse attributes 
The representation of relationships between entities in EXPRESS appears to be one-
directional. In fact, this is not the case: all relationships are essentially bi-directional, but 
EXPRESS makes only the “more important half” explicit. However, there is always an 
implicit reverse relationship. If necessary, this can be captured explicitly by means of 
INVERSE rules. An INVERSE rule does not create new relationships, it just makes the 
reverse relationship visible by giving it a name, and allows to constrain it and to specify 
the needed multiplicity (optional, one to one, multiple bag, set, list values etc.). 
Local constraints 
In addition to UNIQUE, DERIVE and INVERSE, it is possible to specify certain constraints 
that apply to every instance of an entity class. Such local constraints are introduced within 
the definition of the entity with the help of WHERE rules. Each WHERE rule is a logical 
expression which must evaluate to TRUE to satisfy the specified requirement for the given 
attribute value(s). 
The two (almost complete) IFC entities in the example below expose most of the discussed 
features of EXPRESS attributes. IfcCovering illustrates the specification of required, 
optional, derived and inverse attributes, and a local constraint. IfcApplication shows 
how strings can be constrained to have fixed maximum number of characters, as well as 
two unique rules – for a single attribute, and for a group of two attributes. 
ENTITY IfcCovering 
  SUBTYPE OF (IfcBuildingElement); 
    PredefinedType   : IfcCoveringTypeEnum; 
    LayerInformation : IfcMaterialLayerSetUsage; 
    calcCoveringArea : OPTIONAL IfcAreaMeasure; 
  DERIVE 
    SELF\IfcBuildingElement.HasMaterial :  
         IfcMaterialSelect := LayerInformation.ForLayerSet; 
  INVERSE 
    AttachedTo : SET [0:?] OF IfcRelAttachesToBoundaries 
                 FOR RelatedCoverings; 
  WHERE 
    WR62: 'IFCPROPERTYRESOURCE.IFCMATERIALLAYERSET' IN  
                 TYPEOF(SELF\IfcBuildingElement.HasMaterial); 
END_ENTITY; 

ENTITY IfcApplication; 
    ApplicationIdentifier : STRING(16); 
    ApplicationFullName   : STRING(255); 
    Version               : STRING(255); 
  UNIQUE 
    UR1: ApplicationIdentifier; 
    UR2: ApplicationFullName, Version; 
END_ENTITY; 
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Note that in IfcCovering the derived attribute, HasMaterial, presents a specialisation 
of the same attribute in one of the ancestors of the entity, restricting it only to values 
“derived” from the given expression. The attribute IfcRelAttachesToBoundaries 
represents the inverse relationship to RelatedCoverings which is also specified in one of 
the entity’s ancestors. 

Other features 

In addition to the presented “basics” of EXPRESS, there exist many other features and 
constructs that contribute to the representational power of the language. These include: 
algorithmic units (FUNCTION, PROCEDURE, RULE), standard constants, functions and 
procedures, global constraints, schema interfacing (USE, REFERENCE) etc. 
The complexity of the language may be construed from the fact that its reference manual 
(ISO 10303-11 1994) is more than 200 pages long, and the formal language specification 
includes 122 different keywords and 318 syntax productions (Fowler 1995). 

I.2 EXPRESS-G  constructs 

EXPRESS-G is a graphical notation for a subset of EXPRESS intended for human communi-
cation. Everything drawn in EXPRESS-G can be defined in EXPRESS, but not everything 
that can be defined in EXPRESS can be drawn in EXPRESS-G. However, although it does 
not support all the features of the language, EXPRESS-G provides for cross-referencing 
between schemas and for multi-page diagrams for a single schema. This is fortunate, as 
EXPRESS-G is a generally “verbose” language, and requires more diagrams for a given 
model than other graphical languages, such as ER, NIAM or UML. 

In particular, EXPRESS-G supports: 

– SCHEMA level diagrams, enabling to illustrate schemas and inter-schema links,  and 

– ENTITY level diagrams, enabling the graphical specification of references to defini-
tions in other schemas, multi-page references, ENTITY definitions, TYPE definitions, 
attributes, relationships and cardinalities, as well as several “shortcuts” for the 
presence of constraints. 

Expressions, functions and other “more verbose” textual elements cannot be represented in 
EXPRESS-G. ARRAYS, BAGS, SETS and LISTS are abbreviated to A, B, S and L 
respectively.  Other “shortcuts” in relationship names include: (DER) for derived, (INV) 
for inverse and (RT) for redefined attributes, as well as asterisks (*) denoting the presence 
of a WHERE and/or UNIQUE rule. 

Fig. I.1 on the next page presents most of the available graphical symbols in EXPRESS-G.  
Appendix VII provides the full graphical notation of the IFC Kernel Model for reference, 
and the full graphical notation of a model proposed as a structural domain extension to the 
IFC framework. Spanning over 7 pages and referencing at many places the “upper layers” 
of the IFC framework, this domain model can be useful also as an illustrative example for 
the capabilities provided by the EXPRESS-G notation. 
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Fig. I.1: EXPRESS-G graphical symbols 
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Appendix II Information Container API for Java 

The formal Information Container specification presented in section 4.2 has been designed 
so that an implementation of its constructs in an object-oriented programming language 
can be easily accomplished. 
As an example, this section presents the developed Information Container API for Java, i.e. 
the available classes and public methods that can be used directly by client applications 
written in Java version 1.1 or higher (see e.g. Heller et al. 1997; Kühnel 1997; JDK 1.1 or 
SDK 1.2 at java.sun.com etc.). 
According to their functionality the classes defined in the Information Container library 
(package ptdms.ic) can be subdivided into three categories: public classes, exception 
classes and utility classes. 
The public classes provide straight-forward mapping of the components of the Information 
Container specification. Each of them contains several methods enabling their use by 
applications written in Java. They all have one or more constructor methods that allow to 
create respective instances by providing their “external” (textual) representation as input. 
Symmetrically, all they possess a method toString() which returns syntactically correct 
externalisations of the respective object instances as string values. In addition, a Parser 
class is provided to support the definition of Information Container subclasses if needed 
for specific applications. 
The exception classes enable differentiated treatment of errors that are associated with the 
syntax and semantics of the Information Container specification. 
The utility classes are used internally for RMI-based communication. They are not public 
and may not be invoked directly by an application. Therefore, these classes are not shown 
in the following description of the Information Container API. 

II.1 Class hierarchy 

Primary classes: 

class java.lang.Object 
class ptdms.ic.InfoContainer (implements java.io.Serializable) 
class ptdms.ic.Aggregation (implements java.io.Serializable) 
class ptdms.ic.Select (implements java.io.Serializable) 
class ptdms.ic.ObjectRef (implements java.io.Serializable) 
class ptdms.ic.BLOB (implements java.io.Serializable) 
class ptdms.ic.ICSymbol (implements java.io.Serializable) 

class ptdms.ic.ICSname (implements java.io.Serializable) 
class ptdms.ic.ICLogical (implements java.io.Serializable) 

class ptdms.ic.ICParser 
class ptdms.CEEsession (implements java.io.Serializable) *) 

                                                 
*) This class is actually not a part of the Information Container package. It is included here for 

convenience, as it is used in several methods of the API. 
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Exception classes: 

class java.lang.Object 
class java.lang.Throwable (implements java.io.Serializable) 

class java.lang.Exception 
class ptdms.ic.FeatureTypeException 
class ptdms.ic.MalformedICstringException 
class ptdms.ic.MalformedICsyntaxException 

Utility classes (for internal use): 

class java.lang.Object 
class java.rmi.server.RemoteObject 

class java.rmi.server.RemoteServer 
class java.rmi.server.UnicastRemoteObject 

class ptdms.ic.adapters.ICRmiImpl (implements ic.ptdms.adapters.ICRmiInter) 
interface java.rmi.Remote 

interface ptdms.ic.adapters.ICRmiInter 

II.2 Class definitions 

This section presents a detailed specification of the public object classes of the Infor-
mation Container API. A description of the utility classes is not provided as these classes 
are intended only for internal use. 
The constructors and public methods of each class are given in tabular form, with full 
specification of the method signature, a short functional description and, where applicable, 
a list of possible exceptions. For conciseness, the exceptions thrown by the separate object 
methods are abbreviated as follows: 

FType  = FeatureTypeException 
MString  = MalformedICstringException 
MSyntax  = MalformedICsyntaxException 

For standard Java exceptions the following abbreviations are used: 
NullPtr  = NullPointerException 
IllegalArg = IllegalArgumentException 
ArrayOut = ArrayOutOfBoundsException 
IO   = IOException 
MURL  = MalformedURLException 
Security  = SecurityException 

A FeatureTypeException is thrown when an attempt is made to read or write a feature 
with a wrong data type. 
A MalformedICstringException is thrown when an incorrect token is encountered in the 
externalisation of an Information Container or one of its component. 
A MalformedICsyntaxException is thrown when the externalisation of an Information 
Container or one of its components does not match the defined EBNF syntax. 
Standard Java exceptions have their usual meaning. 
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Class  ptdms.ic.InfoContainer 

java.lang.Object 
| 
+----ptdms.ic.InfoContainer 

Synopsis: 
This is the main class of the Information Container API. It is used to package and represent 
all types of data that can be exchanged in client-server communication on the basis of the 
developed project data management services. For reference, the EBNF syntax of the 
InfoContainer externalisation, as defined in section 4.2, is as follows: 

InfoContainer     =  label '(' { feature }* ')' . 
where: 

label             =  symbol | refID . 
feature           =  symbol ':' valueSelect . 
valueSelect       =  typedValueSelect | InfoContainer . 

Class Declaration: 
public class InfoContainer extends Object implements Serializable 

Constructors: 

Constructor signature Description Throws 
InfoContainer( ) The default empty constructor.  
InfoContainer(CEEsession sess) Creates an empty InfoContainer instance 

and assigns it a session. 
Security 

InfoContainer(String s, 
       boolean XMLinput)
 

InfoContainer(CEEsession sess, 
       String s, 
       boolean XMLinput) 

Creates an InfoContainer instance  
from string s, which must be a valid 
InfoContainer externalisation.  If sess  
is provided, the InfoContainer is assigned 
to a session, and if XMLinput is present 
and true, the input string s is expected to 
conform to the alternative syntax defined 
by the XML DTD presented in App. III. 

MString 
Msyntax 
Security*) 

InfoContainer(String lbl,  
     String[ ] names, Object[ ] values)
 

InfoContainer(CEEsession sess,  
     String lbl, String[ ] names, 
     Object[ ] values) 

Creates an InfoContainer instance  
with label lbl containing the features 
(name-value pairs) specified in the two 
parameter lists of the constructor call. 
If sess is provided, the InfoContainer is 
assigned also to the respective session. 

IllegalArg
Ftype 
Security*) 

Public Methods: 

Method signature Description Throws 
Aggregation getAggregAt(String f) Retrieves the Aggregation object  

stored at feature f. 
FType 

BLOB getBLOBAt(String f) Retrieves the BLOB object stored  
at feature f. 

FType 

                                                 
*) Only for the second form of the constructor. 
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boolean getBooleanAt(String f) Retrieves the boolean value stored at 
feature f. 

FType 

Class getClassAt(String f) Retrieves the class of the object stored at 
feature f. 

 

String[ ] getFeatureNames( ) Returns in a String array all feature 
names contained in an InfoContainer. 

 

Hashtable getFeatureTable( ) Returns all features contained in an 
InfoContainer as a reference to a Hash-
table, with keys – the feature names, and 
values – the feature values (as Objects). 

 

Class[ ] getFeatureTypes( ) Returns an array of "class" objects for all 
features contained in an InfoContainer. 

 

Object[ ] getFeatureValues( ) Returns an array of objects for all feature 
values contained in an InfoContainer. 

 

InfoContainer getICAt(String f)  Retrieves the InfoContainer object  
stored at feature f. 

FType 

String getLabel( ) Returns the label of this InfoContainer.  
ICLogical getLogicalAt(String f)  Retrieves the logical value (instance of 

ICLogical) stored at feature f. 
FType 

long getLongAt(String f)  Retrieves the long value stored at f. FType 
ObjectRef getObjectRefAt(String f) Retrieves the ObjectRef object stored at 

feature f. 
FType 

double getRealAt(String f) Retrieves the double value stored at f. FType 
Select getSelectAt(String f) Retrieves the Select object stored at 

feature f. 
FType 

CEEsession getSession( ) Returns the session in which this 
InfoContainer is created, or null  
if there is no assigned session. 

 

String getStringAt(String f) Retrieves the String stored at feature f. FType 
ICSymbol getSymbolAt(String f) Retrieves the symbol object (ICSymbol) 

stored at feature f. 
FType 

Object getValueAt(String f) Generic access method to retrieve any 
type of object stored at feature f. 

 

boolean isAggregAt(String f) Tests if the value of feature f is an aggre-
gation. 

 

boolean isBLOBAt(String f) Tests if the value of feature f is a BLOB, 
i.e. a reference to an external data file to 
be uploaded or downloaded, e.g. a STEP 
physical file. 

 

boolean isBooleanAt(String f) Tests if the value of feature f is a boolean 
value. 

 

boolean isFeature(String f) Tests if feature f exists in this 
InfoContainer instance. 
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boolean isICAt(String f) Tests if the value of feature f is a valid 
InfoContainer instance. 

 

boolean isLogicalAt(String f) Tests if the value of feature f is a boolean 
value, i.e. true, false or unknown.. 

 

boolean isLongAt(String f) Tests if the value of feature f is a long 
integer number. 

 

boolean isObjectRefAt(String f) Tests if the value of feature f is an object 
reference, i.e. instance of ObjectRef. 

 

boolean isRealAt(String f) Tests if the value of feature f is a real 
number (mapped to Java double). 

 

boolean isSelectAt(String f) Tests if the value of feature f is an 
instance of the Select object class. 

 

boolean isStringAt(String f) Tests if the value of feature f is a String.  
boolean isSymbolAt(String f) Tests if the value of feature f is a symbol, 

i.e. a predefined enumeration item,  
a class or an attribute name. 

 

int numberOfFeatures( ) Returns the number of contained features.  
String setLabel(String lbl) Sets the InfoContainer label. NullPtr 
Object setValueAt(String f, 
      Object obj)  

Sets a new value for feature f, or adds  
the feature with the given value to the 
InfoContainer if it is a new feature. 

NullPtr 
FType 

String toString( ) Overrides java.lang.Object.toString( ) 
providing a syntactically correct exter-
nalisation of InfoContainer objects. 
By using toString( ) it is possible to “pipe” 
the output of a server response from Java to 
another implementation written in some other 
programming language, which provides its 
own InfoContainer parser on the basis of  
the specified syntax*). 

 

String toXMLString( ) Provides a syntactically correct exter-
nalisation of InfoContainer objects 
according to the XML DTD presented  
in Appendix III. 

 

Void XMLOutput  
  (OutputStream out, 
    String encoding,  
    String indent) 

Writes a XML InfoContainer document 
to the OutputStream out. 
The argument encoding provides the name of 
the encoding to use, UTF-16 or ISO-8859-1. 
If not null, the argument indent provides the 
desired indentention for “pretty printing”. 

IO 
NullPtr 

                                                 
*) Another possibility to connect the Java Information Container API to an application written in 

another programming language is to provide wrapper classes for each component class of the 
API. Such wrapper classes are responsible to translate the InfoContainer components into some 
meta format, more suitable for processing by that other language. In fact this technique has 
been used also for the project data server which is implemented in Common LISP. 
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Class  ptdms.ic.Aggregation 

java.lang.Object 
| 
+----ptdms.ic.Aggregation 

Synopsis: 
This class is used to represent aggregations like lists, sets, bags and arrays (as defined in 
ISO 10303-11 1994). The EBNF syntax of the legal externalisation of Aggregation objects is: 

aggregation       =  '[' { valueSelect }* ']' . 

where: 
valueSelect       =  typedValueSelect | InfoContainer . 

Class Declaration: 
public class Aggregation extends Object implements Serializable 

Constructors: 

Constructor signature Description Throws 

Aggregation( ) Default empty constructor.  
Aggregation(Vector v) Constructs an Aggregation instance and 

fills it with the elements of Vector v. 
NullPtr 
FType 

Aggregation(String agg) Creates an Aggregation instance from  
string agg, which must be a valid aggre-
gation (list or set) externalisation. 

MString 
MSyntax 
FType 

Public Methods: 

Method signature Description Throws 
void add(Object obj) Appends a new element at the end  

of an aggregation. 
NullPtr 
IllegalArg

Aggregation getAggregAt 
     (int index) 

Retrieves the Aggregation instance  
found at position index. 

FType 
ArrayOut 

BLOB getBLOBAt(int index) Retrieves the BLOB instance found at 
position index. 

FType 
ArrayOut 

boolean getBooleanAt(int index) Retrieves the Boolean instance found  
at position index and converts it to the 
basic boolean type. 

FType 
ArrayOut 

Object getElementAt(int index) Retrieves the Object found at pos. index. ArrayOut 
InfoContainer getICAt(int index) Retrieves the InfoContainer instance 

found at position index. 
FType 
ArrayOut 

ICLogical getLogicalAt(int index) Retrieves the ICLogical instance found 
at position index. 

FType 
ArrayOut 

long getLongAt(int index) Retrieves the Long instance found at 
position index and converts it to the 
basic long type. 

FType 
ArrayOut 
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ObjectRef getObjectRefAt 
     (int index) 

Retrieves the object reference (ObjRef) 
found at position index. 

FType 
ArrayOut 

double getRealAt(int index) Retrieves the Double instance found  
at position index and converts it to  
the basic double type. 

FType 
ArrayOut 

Select getSelectAt(int index) Retrieves the Select instance found at 
position index. 

FType 
ArrayOut 

int getSize( ) Returns the number of elements in an 
aggregation. 

 

String getStringAt(int index) Retrieves the String instance found  
at position index. 

FType 
ArrayOut 

ICSymbol getSymbolAt(int index) Retrieves the ICSymbol instance found 
at position index. 

FType 
ArrayOut 

Object getValueAt(int index) Retrieves the value stored at pos. index. ArrayOut 
Vector getVector( ) Returns the content of an aggregation 

instance as a Java Vector. 
 

void insert(Object obj, int index) Inserts a new element at position index 
in an aggregation. 

ArrayOut
IllegalArg

boolean isAggregAt(int index) Tests if the value at index is an aggre-
gation. 

ArrayOut 

boolean isBLOBAt(int index) Tests if the value at index is a BLOB 
object. 

ArrayOut 

boolean isBooleanAt(int index) Tests if the value at index is a boolean. ArrayOut 
boolean isICAt(int index) Tests if the value at index is an 

InfoContainer. 
ArrayOut 

boolean isLogicalAt(int index) Tests if the value at index is an 
ICLogical object. 

ArrayOut 

boolean isLongAt(int index) Tests if the value at index is a long 
integer number. 

ArrayOut 

boolean isObjectRefAt(int index) Tests if the value at index is an instance 
of the ObjectRef class. 

ArrayOut 

boolean isRealAt(int index) Tests if the value at index is a real 
(mapped to double in the Java API). 

ArrayOut 

boolean isSelectAt(int index) Tests if the value at index is a Select. ArrayOut 
boolean isStringAt(int index) Tests if the value at index is a String. ArrayOut 
boolean isSymbolAt(int index) Tests if the value at index is a symbol 

i.e. an ICsymbol object. 
ArrayOut 

void remove(int index) Removes the element at index. ArrayOut 
void replace(Object obj, int index) Replaces the element at position index 

with the object obj. 
ArrayOut
IllegalArg

String toString( ) Overrides java.lang.Object.toString( ) 
providing a syntactically correct exter-
nalisation of an aggregation. 
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Class  ptdms.ic.Select 

java.lang.Object 
| 
+----ptdms.ic.Select 

Synopsis: 
This class represents SELECT data types as defined in (ISO 10303-11 1994). The EBNF 
syntax of the legal externalisation of Select objects is: 

select           =  symbol '(' selectValueType ')' . 

where: 
selectValueType  =  literal | Obj_Ref | structuredValueType . 

Class Declaration: 
public class Select extends Object implements Serializable 

Constructors: 

Constructor signature Description Throws 

Select( ) Default empty constructor.  
Select(ICSymbol name, Object obj)
Select(ICSymbol name, boolean b)
Select(ICSymbol name, long l) 
Select(ICSymbol name, double d) 
Select(ICSymbol name, String s) 
Select(ICSymbol name,  
  ICLogical logicalValue) 
Select(ICSymbol name,  
  Aggregation agg) 
Select(ICSymbol name,  
  ObjectRef oRef) 
Select(ICSymbol name, Select sel) 

Constructs a Select instance with the 
specified name and value.  
The alternative forms of the constructor 
allow to store different types of values in 
a Select, without the need of an explicit 
type casting. 

NullPtr 

Select(String selstr) Creates a Select instance from the 
string selstr, which must be a valid  
select type externalisation. 

MString 
MSyntax 

Public Methods: 

Method signature Description Throws 
boolean getAggregation( ) Retrieves the Aggregation object 

stored in this Select instance. 
FType 

boolean getBoolean( ) Retrieves the boolean value stored in 
this Select instance. 

FType 

boolean getClass( ) Retrieves the Class of the underlying 
data type. 

 

ICLogical getLogical( ) Retrieves the ICLogical object stored in 
this Select instance. 

FType 
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long getLong( ) Retrieves the long value stored in this 
Select instance. 

FType 

ICSymbol getName( ) Retrieves the name of the select type.  
double getReal( ) Retrieves the double value  

stored in this Select instance. 
FType 

ObjectRef getObjectRef( ) Retrieves the ObjectRef stored in this 
Select instance. 

FType 

Select getSelect( ) Retrieves the Select stored in this Select 
instance (in the case of a nested select 
type). 

FType 

String getString( ) Retrieves the String value stored in this 
Select instance. 

FType 

String getSymbol( ) Retrieves the ICSymbol object stored in 
this Select instance. 

FType 

Object getValue( ) Retrieves the value stored in this Select 
instance as a generalised Object instance. 

 

boolean equals(Object obj) Overrides java.lang.Object.equals( ). 
This method enables the correct 
comparison of Select objects. 

 

boolean isAggregation( ) Tests if the value of the Select is an 
Aggregation object. 

 

boolean isBoolean( ) Tests if the value of the Select is a 
boolean value. 

 

boolean isLogical( ) Tests if the value of the Select is an 
ICLogical object. 

 

boolean isLong( ) Tests if the value of the Select is a long 
integer number. 

 

boolean isReal( ) Tests if the value of the Select is a real 
(mapped to double in the Java API). 

 

boolean isObjectRef( ) Tests if the value of the Select is an 
instance of the ObjectRef class. 

 

boolean isSelect( ) Tests if the value of the Select is itself  
a Select. 

 

boolean isString( ) Tests if the value of the Select is a String.  
boolean isSymbol( ) Tests if the value of the Select  

is an ICSymbol object. 
 

String setName(String name) 
String setName(ICSymbol name) 

Sets the name of this Select instance. NullPtr 
MSyntax 

Object setValue(Object obj) Sets the value of this Select instance. NullPtr 
MSyntax 

String toString( ) Overrides java.lang.object.toString( ) 
providing a syntactically correct exter-
nalisation of Select objects. 
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Class  ptdms.ic.ObjectRef 

java.lang.Object 
| 
+----ptdms.ic.ObjectRef 

Synopsis: 
This class represents remote object references in the Information Container API. It enables 
a client application to address and execute methods of any registered remote object on the 
project data server. 
The EBNF syntax of the legal externalisation of ObjectRef is: 

Obj_Ref  = OREF '(' refID ')' . 

where: 
refID    = modelID | objID . 
modelID  = ID . 
objID    = [ modelID ':' ] ID . 
ID       = symbol [ '.' { symbol | longint } [ version ] ] . 

Class Declaration: 
public class ObjectRef extends Object  
                       implements Serializable 

Constructors: 

Constructor signature Description Throws 
ObjectRef( ) Default empty constructor.  
ObjectRef(CEEsession sess) Creates an empty ObjectRef instance  

and assigns it a session. 
Security 

ObjectRef(String oref) Creates an ObjectRef instance from  
the string oref, which must be a valid 
object reference externalisation. 

MString 
MSyntax 

ObjectRef(CEEsession sess, 
    String oref) 

Same as above, but assigns also  
a session. 

MString 
MSyntax 
Security 

Public Methods: 

Method signature Description Throws 
InfoContainer execMeth  
     (String meth, 
       InfoContainer par) 
InfoContainer execMeth 
     (String meth, 
       InfoContainer par, 
       boolean SyncMode)

This method establishes automatically  
an appropriate connection with the pro-
ject data server and executes the remote 
method meth for the referenced object, 
returning the result provided by this 
method packed as a new InfoContainer 
instance. 
The parameter par packages all the para-
meters for the remote method (when the 
method requires no parameters, the value 
of par should be set to null). 

MURL 
MString 
MSyntax 
Security 
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ObjectRef getClassRef( ) Retrieves the class of the object 
reference as an addressable object 
reference itself. 

 

String getClassByName( ) Returns the class name of the referenced 
object as a String suitable for use as an 
'OID' parameter in a client request. 

 

ObjectRef getConcept( ) Synonymous method to getClassRef( ).  

ObjectRef getContent( ) Returns the content of the ObjectRef 
instance as an InfoContainer object. 

This method is in fact a more efficient 
and straight-forward implementation of: 

 execMeth(“inspect”, null, true) 
  .getICAt(“content”) 
   .getICAt(“attributes”) 
(see section V.1 for a description of the 
“inspect” operation). 

MURL 
Security 

String getObjectID( ) Retrieves the unique ID of the 
referenced object in the project. 

 

CEESession getSession( ) Returns the session in which this object 
reference is established, or null if there 
is no assigned session. 

 

String setObjectID (String id) Sets the object ID to id.  
This method is legal only for the server 
maintaining the unique IDs of the res-
pectively registered object classes. 

NullPtr 
Security 

String toString( ) Overrides java.lang.Object.toString( ) 
providing a syntactically correct exter-
nalisation of an ObjectRef. 

 



280 A Mapping Language for Concurrent Engineering Processes 

Class  ptdms.ic.BLOB 

java.lang.Object 
| 
+----ptdms.ic.BLOB 

Synopsis: 

This class is used to represent binary large objects (BLOBs). It allows a client application 
to upload or download BLOBs, i.e. local files on the client’s computer, to/from the project 
data management server. Such files can be in any of the acceptable formats by the server, 
currently STEP physical file format for upload and download, and DXF, VRML, HTML 
and ASCII text for download only*). Normally, BLOB would be used in conjunction with 
remote method invocation for ObjectRef instances, where the input or output parameters 
are specified as BLOBs, typically for creating or checking in/out product data contained in 
STEP physical files. 
The EBNF syntax of the externalisation of BLOB is: 

BLOB_Ref = BLOB '(' refID ')' . 

where: 
refID    = modelID | objID . 
modelID  = ID . 
objID    = [ modelID ':' ] ID . 
ID       = symbol [ '.' { symbol | longint } [ version ] ] . 

Class Declaration: 
public class BLOB extends Object implements Serializable 

Constructors: 

Constructor signature Description Throws 
BLOB( ) Default empty constructor.  
BLOB(CEEsession sess) Creates an empty BLOB instance  

and assigns it a session.  
Security 

BLOB(String blob) Creates a BLOB instance from the string 
blob which must be a valid BLOB exter-
nalisation. 

MString 
MSyntax 

BLOB(CEEsession sess, 
   String blob) 

Same as above, but assigns also  
a session. 

MString 
MSyntax 
Security 

                                                 
*) VRML and DXF output is primarily intended for viewing/presentation purposes. It is achieved 

with the help of a generically defined server method. However, the implementation of this 
method is not independent of the specific product data model as it needs concrete knowledge of 
the way geometry is represented in the model. In the prototype implementation of the project 
data server this method is realised for the COMBI, ToCEE and IFC data models, the latter two 
only for ‘Bounding Box’ geometric representations. 
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Public Methods: 

Method signature Description Throws 
String getBlobID( ) Retrieves the BLOB ID.  
InputStream getInStream( ) Creates an input stream and associates it 

with the BLOB for subsequent upload. 
A similar public method for respective 
downloading of BLOBs, such as e.g. 
getOutStream( ) is not needed, since the 
output stream is created automatically 
by the server. Applications are not 
allowed (and not required) to influence 
the download process. 

IO 

CEEsession getSession( ) Returns the session in which this BLOB 
instance is created, or null if there is no 
assigned session. 

 

void loadFromFile(String fname) Uploads a local file to the server and 
associates it with the BLOB object.  
The user or application must have 
appropriate access rights to execute this 
method. 

IO 
Security 

void saveAsFile(String fname) Downloads the file associated with the 
BLOB from the server and saves it 
locally in the specified file.  
As with loadFromFile(…), the user or 
application must have appropriate access 
rights to execute this method. 

IO 
Security 

void setBlobID(String id) Sets the BLOB ID. The execution  
of this method also depends on the 
actual access rights of the user or the 
application. 

NullPtr 
Security 

void setInStream(InputStream is) Sets the input stream associated with  
the BLOB object and prepares the 
upload of the data. A similar public 
method for downloading of BLOBs, 
such as e.g. setOutStream( ) is not 
needed, since an output stream is  
created automatically by the server. 

IO 

String toString( ) Overrides java.lang.Object.toString( )  
providing a syntactically correct exter-
nalisation of BLOB objects. 

 

URL toURL( ) Converts the BLOB reference into 
a URL object 
(useful for http-based download/upload). 

 



282 A Mapping Language for Concurrent Engineering Processes 

Class  ptdms.ic.ICSymbol 

java.lang.Object 
| 
+----ptdms.ic.ICSymbol 

Synopsis: 

The ICSymbol class is used basically for representing class names, attribute names and 
enumeration values contained in Information Containers. There is a constructor provided 
for this class, but it is seldom necessary to create ICSymbol instances explicitly as they are 
generated automatically when needed by the InfoContainer constructor itself. 
The EBNF syntax of the legal externalisation of a symbol is:  

symbol  = letter { letter | digit | '_' }* . 

Class Declaration: 
public class ICSymbol extends Object implements Serializable 

Constructors: 

Constructor signature Description Throws 
ICSymbol( ) Default empty constructor.  

ICSymbol(String sym) Creates an ICSymbol instance from the 
string provided in the parameter sym. 

IllegalArg

Public Methods: 

Method signature Description Throws 
boolean equals(Object obj) Overrides java.lang.Object.equals( ).  

This method can be used to compare 
symbol objects correctly. 

 

String toString( ) Overrides java.lang.Object.toString( ). 
This provides a syntactically correct 
externalisation of ICSymbol and its 
subclasses ICSName and ICLogical  
in the Information Container API. 

 

String valueOf( ) Returns the string representation of an 
ICSymbol. 
This method is in fact identical to the 
method toString( ) and is provided only 
for conceptual reasons, to enable the 
handling of symbol objects in the same 
way as the wrapper objects for the lite-
rals long, double, boolean etc., which  
all  contain  a  respective  valueOf( ) 
method. 
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Class  ptdms.ic.ICSName 

java.lang.Object 
| 
+----ptdms.ic.ICSymbol 
     | 
     +----ptdms.ic.ICSName 

Synopsis: 

This object class is used primarily to enable the construction of refIDs and InfoContainer 
labels. Unlike symbols, refIDs and labels may contain special characters, such as  '.' , ':', 
';'  and  '-'.  In any other aspects ICSname is identical to ICSymbol.  
ICSName objects are also created automatically by the InfoContainer constructors when-
ever necessary, the class’ own constructors are seldom needed. 

Class Declaration: 
public class ICSName extends ICSymbol implements Serializable 

Constructors: 

Constructor signature Description Throws 

ICSName( ) Default empty constructor.   

ICSName(String name) The primary ICSName constructor.  
Creates an ICSName instance from the 
string provided in the parameter name. 

IllegalArg

Public Methods: 

Method signature Description Throws 

boolean equals(Object obj) Overrides ptdms.ic.ICSymbol.equals( )  
providing correct comparison for labels 
and refIDs. 

 

String toString( ) Inherited from ptdms.ic.ICSymbol.  

String valueOf( ) Inherited from ptdms.ic.ICSymbol.  
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Class  ptdms.ic.ICLogical 

java.lang.Object 
| 
+----ptdms.ic.ICSymbol 
     | 
     +----ptdms.ic.ICLogical 

Synopsis: 

This class represents LOGICAL data types as defined in (ISO 10303-11 1994). It is treated 
similar to enumerations, except that the enumeration values are always constant symbols, 
i.e. true, false or unknown. 

Class Declaration: 

public class ICLogical extends ICSymbol implements Serializable 

Constructors: 

Constructor signature Description Throws 
ICLogical( ) Default empty constructor.   

ICLogical(String str) Creates an ICLogical instance from the 
string provided in the parameter str. 

IllegalArg

ICLogical(boolean booleanValue) Creates an ICLogical instance from the 
boolean value provided by the para-
meter booleanValue. This constructor 
cannot be used to create an ICLogical 
object containing the value unknown. 

 

Public Methods: 

Method signature Description Throws 
boolean getBoolean( ) If the logical value stored in this 

instance is true or false, it is returned  
as a boolean value. If the value is 
unknown, an exception is thrown. 

FType 

boolean equals(Object obj) Overrides ptdms.ic.ICSymbol.equals( )  
providing correct comparison of logical 
values. 

 

boolean isBoolean( ) Checks if the value of this logical object 
can be converted to boolean. 

 

String toString( ) Inherited from ptdms.ic.ICSymbol.  

String valueOf( ) Inherited from ptdms.ic.ICSymbol.  
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Class  ptdms.ic.ICParser 

java.lang.Object 
| 
+----ptdms.ic.ICParser 

Synopsis: 

This is a convenience class that can be used to parse the external representation of an 
InfoContainer before creating it. It contains a set of public class methods useful for 
tokenizing an InfoContainer string and for querying the type or content of a token. 

Class Declaration: 
public final class ICParser extends Object  

Constructors: 

none. 

Public Methods: 

Method signature Description Throws 

boolean parse(String icstr, 
      boolean XMLinput) 

Checks if icstr is a valid InfoContainer 
externalisation.  Unlike the respective 
constructor of the InfoContainer class, 
parse does not throw an exception,  
but simply returns false when an error 
occurs. 
If XMLinput is true, icstr is expected  
to conform to the alternative syntax 
defined by the XML DTD presented in 
Appendix III. 

 

boolean testToken(Object testObj, 
         Class class) 

Tests if an InfoContainer token (testObj) 
is an instance of a given class. 

 

boolean testToken(Object testObj, 
         Object pObj) 

Tests if an InfoContainer token (testObj) 
is equal to the pattern object pObj. 

 

Vector tokenizeICstring(String s) Tokenizes an InfoContainer string into 
component constructs according to the 
InfoContainer specification, i.e. ObjRef, 
symbol, aggregation etc. 

MString 
MSyntax 
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Class  ptdms.CEEsession 

java.lang.Object 
| 
+----ptdms.CEEsession 

Synopsis: 
CEEsession is used to obtain a session from the project data server. A session is primarily 
needed to dispatch properly client requests in asynchronous communication mode, where all 
responses can be packaged and routed together to the client. Within a session a local variable 
closure is established which allows the execution of several ‘linked’ requests. CEEsession is 
not part of the ptdms.ic package. Its brief description is included here for convenience. 

Class Declaration: 
public class CEEsession extends Object 

Constructors: 

Constructor signature Description Throws 

CEEsession( ) The default session constructor.  
Establishes a new session and returns a 
respective CEEsession object for use in 
InfoContainer, Aggregation, ObjectRef 
and BLOB object methods. 

Security 

Public methods: 

Method signature Description Throws 

InfoContainer execRequest 
      (ObjectRef reqRef) 

InfoContainer execRequest 
      (String reqStr) 

Executes a request created in and 
associated with this session 
(the details of the Request class are not 
presented here for conciseness). 

 

InfoContainer getClient( ) Returns the available information about 
the client that has issued the session. 

 

InfoContainer getHost( ) Returns the available information about 
the host of the client in the session. 

 

ICSymbol[ ] getProtocols( ) Returns the applicable communication 
protocols, e.g. TCP, RMI, HTTP. 

 

boolean isProtocol(String prot) 
boolean isProtocol(ICSymbol prot)

Tests if the comm. method provided by 
prot is available for this session. 
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II.3 Example use of the Information Container API for Java 

The following Java function retrieves the parameters of an IfcBoundingBox instance 
describing the geometry of an IfcBeam, provided that a bounding box representation is found 
among the geometric representations of the IfcBeam instance (see IAI 1999c). An ObjectRef 
for this IfcBeam is assumed to be available at the server’s data repository. 
(01)  import ptdms.*; 
(02)  import ptdms.ic.*; 
(03)  import java.util.Vector; 
(04)  import java.rmi.*; 
(05)  Vector BboxForElement(ObjectRef oref) throws Exception { 
(06)  // oref is the referenced entity (i.e. the IfcBeam object) 
(07)  InfoContainer ic;            // local variables for temporary 
(08)  Aggregation   aggr, aggr2;   // Information Container structures 
(09)  ObjectRef     shapeRef; 
(10)  Vector bbox = new Vector();  // this Vector accomodates the result 
(11)  try { 
(12)    // get the content of the IfcBeam instance 
(13)    // with the help of the server operation "inspect"; 
(14)    ic = oref.execMeth("inspect",null).getICAt("attributes"); 
(15)    // check if "Representations" exist 
(16)    if (ic.isFeature("Representations") && 
(17)        ic.isAggregAt("Representations")) { 
(18)        // get and scan the list of all available Representations 
(19)        aggr = ic.getAggregAt("Representations"); 
(20)        for (int i=0; i<aggr.getSize(), i++) { 
(21)          // get the content of the referenced Representation 
(22)          ic = aggr.getObjectRefAt(i).execMeth("inspect",null); 
(23)          ic = ic.getICAt("attributes"); 
(24)          // check if "ShapeRepresentations" exist 
(25)          if (ic.isFeature("ShapeRepresentations") && 
(26)            ic.isAggregAt("ShapeRepresentations")) { 
(27)            // scan the list of all ShapeRepresentations 
(28)            aggr2 = ic.getAggregAt("ShapeRepresentations"); 
(29)            for (int j=0; j<aggr2.getSize(); j++) { 
(30)              shapeRef = aggr2.getObjectRefAt(); 
(31)              // check if it is an "IfcBoundingBox" instance 
(32)              if (shapeRef.getClassByName().equals("IfcBoundingBox")) { 
(33)                 // get the content and store it in Vector bbox 
(34)                 ic = shapeRef.execMeth("inspect",null); 
(35)                 ic = ic.getICAt("attributes"); 
(36)                 bbox.add(ic.getElementAt("Corner")); 
(37)                 bbox.add(ic.getElementAt("Xdim")); 
(38)                 bbox.add(ic.getElementAt("Ydim")); 
(39)                 bbox.add(ic.getElementAt("Zdim")); 
(40)                 // as only 1 BoundingBox per elem. is allowed 
(41)                 // return immediately the extracted values 
(42)                 return bbox; 
(43)            } }  // end inner if block and inner for loop 
(44)        } }      // end outer if block and outer for loop 
(45)    } else throw new Exception("No bounding box repr. found."); 
(46)  } catch (Exception e) { /* more error checking if needed ... */ } 
(47)  } // end BboxForElement(ObjectRef oref). 
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Comment: 

The above function will work properly by RMI-based communication between the client 
application and the project data server, i.e. when the distributed object architecture of Java 
is used. However, by TCP/IP-based communication, in place of execMeth(…) called 
three times in the example code (lines 14, 22, 34), the generic request format providing the 
InfoContainer content in externalised form, as specified in section 4.2, should be used 
instead. 

To accommodate both approaches, execMeth(…) should be overloaded in a subclass of 
ObjectRef, e.g. as follows: 

InfoContainer execMeth (String meth, InfoContainer par, boolean syncMode, 
                        CEESession sess) 
                        throws Exception { 
  InfoContainer ic = null;     // initialisation 
  if (sess.isProtocol("RMI"))  // test the communication protocol 
     // the current comm. protocol is RMI, therefore: 
     // call execMeth and return the result (an InfoContainer) 
     return execMeth(meth, par); 
  else if (sess.isProtocol("TCP")) { 
     // the current comm. protocol is TCP/IP, therefore: 
     // execute a (string-based) TCP/IP request which returns 
     // a response with the result of the called method contained 
     // in the output parameter "content", also an InfoContainer 
     ic = sess.execRequest("request(OID:\"" + getObjectAddress() + "\"" + 
                           "meth:" + meth + "inParams:" + par.toString() + 
                           "syncMode:" + syncMode + ")" ); 
     if (ic.getSymbolAt("status").valueOf().equals("ok")) 
        return ic.getFeatureAt("content"); 
     else 
        throw new Exception(ic.getStringAt("exceptionMessage")); 
  }  // end else if block 
  else 
     // not a known protocol, throw an Exception 
     throw new Exception("Non valid communication mode"); 
} 

The second approach, presented by the outer else-if  block, is obviously less elegant, but on 
the other hand, it allows to implement the given method in a front-end pre-processor for an 
application written in another language, and not using the Information Container API.  
In fact, with this approach the application does not have to bother about the communication 
with the server at all; this task can be entirely delegated to the Java pre-processor. 

The chained invocation of execMeth(…) and getICAt(…) in line (14) is used to retrieve in 
one step the attributes of an object instance packaged in an InfoContainer by "inspect" 
(see section V.1 further below for a description of the inspect operation). 



 Appendix III   XML DTD for Information Container Externalisation 289 

Appendix III XML DTD for Information Container Externalisation 

Due to their clear, hierarchical structuring, the components of the InfoContainer model can 
easily be mapped to a corresponding XML-based representation*). This alternative syntax, 
enabled by the well-formed semantics of the developed model, has certain advantages as 
follows: 

– XML data is easily parsable. There exist two well-defined standardised parsing 
methods: an event-driven method (SAX), and a model-based method (DOM).  
A number of software implementations are available and can be adopted for parsing a 
XML-based Information Container externalisation. 

– XML provides a non restrictive representation format which makes existing appli-
cations less vulnerable to future extensions of an existing DTD. 

– The processing of Information Containers with WWW-Browsers can be realised more 
efficiently on the basis of XML which facilitates http-based communication. 

– At last, as XML is becoming a de facto standard for the exchange of structured data, its 
use can contribute to the wider acceptance of the suggested modelling concepts. 

However, this approach has also some disadvantages. 

First, the adaptation of Information Containers to XML leads to an inevitable design 
compromise due to the fact that XML has actually been designed for the structured 
representation of documents whereas Information Containers are intended basically for the 
representation of object-oriented product data. 
Second, the XML format is quite verbose. Thus, the use of Information Containers is less 
compact than with the dedicated syntax introduced in section 4.2 which has negative 
consequences especially when greater amounts of data need to be exchanged. 
Third, an implementation of the Information Container API on the basis of the DOM 
model, enabling the automated parsing of Information Container data with off-the-shelf 
parsers, would lead to complex object-oriented data structures that are more difficult  
(and unnatural) to use. 
Last but not least, the data representation in XML is less explicit compared to the syntax 
presented in section 4.2. It does not cover the full range of data types needed which leads 
to much more sophisticated type resolution methods. As a consequence, a pre-processor for 
XML-based Information Container data requires greater internal knowledge of the under-
lying data models which greatly reduces the advantages of using a standardised parser. 

Therefore, XML is suggested basically as an alternative externalisation format for 
WWW-Browser based clients, and not as a replacement to the Information Container 
syntax introduced in chapter 4 and the Information Container API detailed in Appendix II.  
The two utility methods toXMLString and XMLOutput of the InfoContainer class in the 
Information Container API provide the necessary functionality for this approach. 

                                                 
*) There exists plenty of literature about XML. A good overview of the features, the syntax, the 

scope and the areas of application of XML is provided e.g. in (Goldfarb & Prescod 1998). 
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III.1 Formal specification of the XML DTD for Information Container Externalisation 

The following DTD presents the externalisation of the Information Container constructs in 
XML format. All Information Container specific data types (InfoContainer, Feature, 
Aggregation, Object Reference, BLOB, Select, Symbol, Expression), as well as the basic 
data types in EXPRESS, are provided as XML elements with respectively defined tags. 
Most of these tags are chosen so that the InfoContainer externalisation does not become 
too verbose. Thus, InfoContainer is mapped to <IC>, Feature to <F> (short form), 
Aggregation to <AGG>, Object Reference to <OREF>, BLOB to <BLOB>, Symbol to <SYM>. 
The basic EXPRESS data types are provided as follows: BOOLEAN is mapped to <BOOL>, 
LOGICAL to <LOGICAL>, INTEGER to <INT>, REAL to <REAL> and STRING to <STR>. In 
addition, ENUMERATION is mapped to <ENUM> and SELECT to <SEL>. LIST, BAG and SET 
all map to <AGG>,  and NUMBER is mapped to  <INT>  or  <REAL>  depending on the value. 

<?xml version="1.0" encoding="UTF-8"?> 
<!--  Information Container DTD Specification for 
      XML-based communication and exchange of AEC data. 
--> 
<!-- Base element: may contain 1 or more InfoContainers 
     although currently only one InfoContainer is supported 
     by the implemented InfoContainer API. 
--> 
<!ELEMENT XIC (IC)+ > 
<!-- 
  Entity definitions 
--> 
<!ENTITY % label "LBL CDATA #REQUIRED" > 
<!ENTITY % featureElement "FEATURE | F" > 
<!ENTITY % icValue "IC" > 
<!ENTITY % typedValueSelect 
           "BOOL|LOGICAL|INT|REAL|STR|ENUM|EXPR|OREF|BLOB|AGG|SEL" > 
<!ENTITY % selectValueType 
           "BOOL|LOGICAL|INT|REAL|STR|ENUM|OREF|AGG|SEL" > 
<!ENTITY % valueSelect  "%icValue; | %typedValueSelect;" > 
<!ENTITY % booleanValue "VAL (true | false) #REQUIRED" > 
<!ENTITY % logicalValue "VAL (true | false | unknown) #REQUIRED" > 
<!ENTITY % integerValue "VAL CDATA #REQUIRED" > 
<!ENTITY % realValue    "VAL CDATA #REQUIRED" > 
<!ENTITY % stringValue  "VAL CDATA #REQUIRED" > 
<!ENTITY % enumValue    "VAL NMTOKEN #REQUIRED" > 
<!ENTITY % expression   "VAL CDATA #REQUIRED" > 
<!ENTITY % symbolName   "NAME NMTOKEN #REQUIRED" > 
<!ENTITY % refID "REFID CDATA #REQUIRED" > 
<!-- elementID and elementRef are provided for future extension: 
     to enable the definition of more than one InfoContainer in 
     a XML document, as well as references b/n the elements within 
     that document. 
--> 
<!ENTITY % icElementID  "ID ID #IMPLIED" > 
<!ENTITY % icElementRef "HREF IDREF #IMPLIED" > 
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<!-- 
  Elements 
--> 
<!-- The basic InfoContainer data type: 
     contains a list of 0 or more features --> 
<!ELEMENT IC (%featureElement;)* > 
<!ATTLIST IC %label; > 
<!-- Feature: name-value pair corresponding to EXPRESS attributes. 
     The name is given as a XML attribute, the value can be one of  
     several data types providing a mapping for the allowed EXPRESS 
     attributes in a data model. --> 
<!ELEMENT FEATURE (%valueSelect;) > 
<!ATTLIST FEATURE %symbolName; > 
<!-- Shortcut for FEATURE --> 
<!ELEMENT F (%valueSelect;) > 
<!ATTLIST F %symbolName; > 

<!-- Simple data types --> 

<!ELEMENT BOOL EMPTY > 
<!ATTLIST BOOL %booleanValue; > 
<!ELEMENT LOGICAL EMPTY > 
<!ATTLIST LOGICAL %logicalValue; > 
<!ELEMENT INT EMPTY > 
<!ATTLIST INT %integerValue; > 
<!ELEMENT REAL EMPTY > 
<!ATTLIST REAL %realValue; > 
<!ELEMENT STR EMPTY > 
<!ATTLIST STR %stringValue; > 
<!-- ENUM allows the mapping of EXPRESS enumeration items 
     to be recognised correctly; except for its use context, 
     it is semantically equivalent to other symbolic names 
     represented by the entity %symbolName in this DTD --> 
<!ELEMENT ENUM EMPTY > 
<!ATTLIST ENUM %enumValue; > 
<!-- EXPR can be used to define embedded knowledge-based 
     operations enabling enhanced data queries --> 
<!ELEMENT EXPR EMPTY > 
<!ATTLIST EXPR %expression; > 
<!-- ObjectReference: enables remote references to EXPRESS 
     entities (classes or instances) --> 
<!ELEMENT OREF EMPTY > 
<!ATTLIST OREF %refID; > 
<!-- BLOB: enables the specification of large objects as elements 
     of a XML document, typically ISO 10303-21 files --> 
<!ELEMENT BLOB EMPTY > 
<!ATTLIST BLOB  
          URL CDATA #IMPLIED 
          MIME-TYPE NMTOKEN "SPF" 
> 
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<!-- Structured data types --> 
<!-- Aggregation: generalized type representing EXPRESS Lists, 
     Sets, Bags and Arrays --> 
<!ELEMENT AGG (%valueSelect;)* > 
<!ATTLIST AGG TYPE NMTOKEN #IMPLIED > 
<!-- SELECT: represents EXPRESS SELECT constructs --> 
<!ELEMENT SEL (%selectValueType;) > 
<!ATTLIST SEL %symbolName; > 
<!-- End of the InfoContainer DTD Specification --> 

III.2 Examples 

To provide a better basis for comparison, the two examples shown in section 4.2.3 are  
re-used here. They illustrate many of the mentioned advantages and disadvantages of the 
XML approach. In addition, a third example adapted from the first example in section 4.3.4 
demonstrates how a request/response sequence can be recorded with the help of XML, 
enabling the display of session logs by XML-aware WWW-Browsers. 

Example  1: (see section 4.2.3, page 76) 

The Information Containers shown in the original example, i.e.: 

1. line.L1(pnt:oRef(P1) dir:oRef(V1)) 
2. cartesian_point.P1(coordinates:[0.0 0.0 0.0]) 
3. vector.V1(orientation:oRef(D1) magnitude:2.5) 
4. direction.D1(direction_ratios:[1.0 1.0 0.0]) 

can be represented in the following way by using the proposed XML DTD: 
<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE XIC SYSTEM "xic.dtd"> 
<XIC> 

<IC LBL="line.L1"> 
<F NAME="pnt"> <OREF REFID="P1" /> </F> 
<F NAME="dir"> <OREF REFID="V1" /> </F> 

</IC> 
<IC LBL="cartesian_point.P1"> 

<F NAME="coordinates"> 
<AGG> <REAL VAL="0.0" /> <REAL VAL="0.0" /> <REAL VAL="0.0" /> 
</AGG> </F> 

</IC> 
<IC LBL="vector.V1"> 

<F NAME="orientation"> <OREF REFID="D1" /> </F> 
<F NAME="magnitude"> <REAL VAL="2.5" /> </F> 

</IC> 
<IC LBL="direction.D1"> 

<F NAME="direction_ratios"> 
<AGG> <REAL VAL="1.0" /> <REAL VAL="1.0" /> <REAL VAL="0.0" /> 
</AGG> </F> 

</IC> 
</XIC> 
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Example  2: (see section 4.2.3, page 78) 

The Information Container for an IfcBeam object shown in the original example, i.e.: 

IfcBeam.12345 ( 
   GlobalID:"12345"  
   OwnerHistory:oRef(IfcOwnerHistory.1175223) 
   LocalPlacement:oRef(IfcLocalPlacement.9731211) 
   calcBeamSectionArea:1200.0 
   Label:"BEAM-1" ) 

can be represented in the following way by using the proposed XML DTD: 

<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE XIC SYSTEM "xic.dtd"> 
<XIC> 

<IC LBL="IfcBeam.12345"> 
<F NAME="GlobalID"> <STR VAL="12345" /> </F> 
<F NAME="OwnerHistory">  

<OREF REFID="IfcOwnerHistory.1175223" /> </F> 
<F NAME="LocalPlacement">  

<OREF REFID="IfcLocalPlacement.9731211" /> </F> 
<F NAME="calcBeamSectionArea"> <REAL VAL="1200.0" /> </F> 
<F NAME="Label"> <STR VAL="BEAM-1" > </F> 

</IC> 
<XIC> 

Example  3: (see section 4.3.4, page 84) 

In order to use XML for recording a client/server session with PROMISE, it is necessary to 
modify the definition of the XIC element and to introduce two new elements as follows: 

<!-- Modified definition for XIC: 
     changed model, added attribute declarations --> 
<!ELEMENT XIC (IC | REQ | RESPONSE)+ > 
<!ATTLIST XIC 
          LBL CDATA #IMPLIED 
          CONTENT-TYPE (SESSION | REQUEST | RESPONSE | IC) "IC" > 
<!-- Additional elements for the C/S data exchange 
     capturing client requests (tag: REQ)  
     and server responses (tag: RESPONSE). 
     This allows to record automatically a session. --> 
<!ELEMENT REQ (%icValue;)? > 
<!ATTLIST REQ 
          %label; 
          ID      ID      #REQUIRED 
          CONCEPT NMTOKEN #REQUIRED 
          OID     CDATA   #REQUIRED 
          LOCALID CDATA   #IMPLIED 
          METH    NMTOKEN #REQUIRED 
          MODE    (sync | async) "sync" > 
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<!ELEMENT RESPONSE (%icValue;)? > 
<!ATTLIST RESPONSE 
          %label; 
          REQREF  IDREF   #REQUIRED 
          CONCEPT NMTOKEN #IMPLIED 
          OID     CDATA   #IMPLIED 
          LOCALID CDATA   #IMPLIED 
          METH    NMTOKEN #IMPLIED 
          STATUS  NMTOKEN #IMPLIED 
          EXCEPTION-MESSAGE CDATA #IMPLIED > 

Using this extended definition, the request/response sequence of the original example, i.e.: 

Input> Request1(session:oRef(session.1)  
                OID:"MODEL.STRUCT_1:IfcBeam.232" 
                meth:"getAttribute" 
                inParams:InfoContainer(attName:"GenericType")  
                localID:"BEAM-1" 
                syncMode:sync 
                status:sent) 
Sync request accepted. Request name: "Request.43" . 
Server response: 
Response1( 
  responseTo:oRef(Request.43) 
  status:ok 
  content:outParams(attName:"GenericType" attContent:TRUSS) 
  session:oRef(session.1) 
  OID:oRef(MODEL.STRUCT_1:IfcBeam.232) 
  localID:"BEAM-1" 
  meth:"getAttribute") 

can be recorded as a XML document e.g. as follows: 
<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE XIC SYSTEM "xic.dtd"> 
<XIC LBL="session.1" CONTENT-TYPE="SESSION"> 
  <REQ LBL="Request1" ID="43" CONCEPT="IfcBeam"  
       OID="MODEL.STRUCT_1:IfcBeam.232" LOCALID="BEAM-1"  
       METH="getAttribute" MODE="sync" > 
    <IC LBL="InfoContainer"> 
        <F NAME="attName"> <STR VAL="GenericType" /> </F>  
    </IC> 
  </REQ> 
  <RESPONSE LBL="Response1" REQREF="43" STATUS="OK"> 
    <IC LBL="outParams"> 
        <F NAME="attName" <STR VAL="GenericType" /> </F> 
        <F NAME="attContent"> <ENUM VAL="TRUSS" /> </F> 
    </IC> 
  </RESPONSE> 
</XIC> 

Note that this suggested extension of the DTD would not influence in any way an imple-
mentation of the Information Container model using the original specification shown in 
section III.1 above. 
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Appendix IV XML DTD for CSML Externalisation 

Similar to Information Containers, a mapping specification in CSML can easily be 
converted to XML due to the structured, declarative character of the CSML language. The 
advantages of this alternative syntax for mapping specifications are, as by Information 
Containers, in the easy parsing of XML data, the non restrictive representation format and 
the possibility to view a mapping with a standard WWW-Browser, making full use of 
available hypertext techniques. Its disadvantages are also similar to the XML-based 
externalisation of Information Containers. However, there are also two important 
differences. 

First, a mapping specification requires a rich set of data types including the symbolic 
representation of entity classes, attributes and functions which is not provided by XML. 
This can be partially overcome by using the XML Schema specification proposed by W3C 
(Fallside et al. 2000) but it would lead to an extremely verbose and convoluted represen-
tation with almost no added value to the design of correct mappings, neither to the 
mapping process itself. However, without such capabilities, the reverse conversion of a 
mapping from XML to CSML, as well as its correct, unambiguous parsing are not 
possible. This sets the scope of XML usage to an output presentation format for CSML. 

Second, whilst Information Containers are primarily intended to support client-server 
communication, the role of CSML is on conceptual level, complementing the data model 
schemas used in the environment. There is no need to exchange mapping specifications in 
a running system since a mapping operation (represented in Information Container format) 
only references a CSML-based specification, but does not include it in its data arguments. 

Therefore, the primary benefit of using XML as an alternative format for mappings is in 
supporting the mapping development process - for authoring, discussion, coordination 
and documentation purposes. In accordance with that, the rationale of the proposed XML 
DTD is (1) to enable the automatic generation of XML data from existing CSML speci-
fications, and (2) to provide features for cross-linking the mapping specification with the 
underlying EXPRESS schemas, function definitions and other related mappings. 

IV.1 Formal specification of the XML DTD for CSML Externalisation 

The following DTD presents the proposed externalisation of CSML in XML format. 
Unlike the DTD for Information Container externalisation it does not define specific 
constructs for each of the data types that may appear in a mapping specification. Its focus 
is on the automatic generation of a XML document from a correct CSML specification, 
and not on the validation of that specification itself. Thus, it provides a compact, straight-
forward representation of the main constructs of CSML, whereas the rich set of available 
lexical elements in CSML is basically mapped to human readable character data without 
specific care of their formal semantics. Consequently, all basic data types are mapped to 
#PCDATA in the content models of the respective XML elements, and as CDATA or 
NMTOKENs in attribute definitions, whereas high-level constructs are kept as similar as 
possible to the corresponding CSML definitions. However, due to the specific syntactic 
features of XML, several deviations from the CSML constructs were nevertheless 
necessary, as described below: 
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– To allow for the representation of variables as NMTOKENs and at the same time 
distinguish them from schema elements like class/attribute names etc., the definition of 
variables is changed  
 from: variable = '?' symbol   
 to:  variable = '_' symbol  
and the syntax for keywords is changed respectively  
 from: keyword = ['_'] symbol  
 to:  keyword = ['_ _'] symbol. 

– For similar reasons, the addressing operator '->' is substituted by '.'. Thus, in XML  
a complex attribute reference of the form schema:class->attribute will  
be represented by schema:class.attribute, and class->?variable will be 
represented by  class._variable  respectively. 

– Simple templates and literals are all represented as <SRC> elements, and all kinds of 
expressions are represented as <EXPR> elements, both with #PCDATA content. 

– Positional CSML constructs, as well as keywords that may appear in different context, 
are defined by globally unique tags in the XML DTD as required by the XML  
syntax. This applies to the tags <MAP-SCHEMA>, <MAP-CLASS>, <COPY-CLASS>,  
<MAKE-VAR>, <REL>, <GROUPING>, <EXCLUDE> and <FN>. 

– The target of a class or attribute mapping declaration (which is also positional in 
CSML) is provided by means of a TARGET attribute of type NMTOKENS. 

– The representation of comments is dropped since XML supports the definition of 
comments at any place. 

– Finally, a few keywords of CSML are renamed for better readability in the context of a 
XML document. 

<?xml version="1.0" encoding="UTF-8"?> 

<!-- Base element: enables the representation 
     of multiple schema mapping specifications 
     in a single XML document. --> 

<!ELEMENT CSML (MAP-SCHEMA)+ > 
<!ATTLIST CSML TITLE CDATA #IMPLIED > 
<!-- General definition for the representation of terms. 
     Note:  
     Template and term operators are adopted from CSML as is, 
     whereas variable, simpleTemplate, literal and NUL are all 
     mapped to <SRC>, and  expressions are mapped to <EXPR>. 
     The practical implementation of the latter may use PIs  
     in place of CDATA. --> 

<!ENTITY % term "SRC | EXPR | 
                 APPLY | ASSOC | DESCENDANTS | 
                 ITERATE-ON | MAPCAR | NEW | REF | 
                 USER-CHOICE | USER-INPUT | 
                 ONEOF | LISTOF | SETOF | MAX | MIN" > 

<!-- General definition for the representation of functions. --> 

<!ENTITY % fn-decl "(FN | EXPR), ARGS?" > 
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<!-- Parameter entities for attributes 
     representing common CSML constructs --> 
<!ENTITY % classes   "CLASS   NMTOKENS  #REQUIRED" > 
<!ENTITY % froms     "FROM    NMTOKENS  #REQUIRED" > 
<!ENTITY % targets   "TARGET  NMTOKENS  #REQUIRED" > 
<!ENTITY % assigns   "ASSIGN  NMTOKENS  #REQUIRED" > 
<!ENTITY % for-attrs "FOR     NMTOKENS  #IMPLIED"  > 
<!ENTITY % ref       "REF     NMTOKEN   #IMPLIED"  > 
<!ENTITY % valueType "TYPE    NMTOKEN   #REQUIRED" > 
<!ENTITY % condType  "TYPE    (ALL | ONEOF) 'ALL'" > 
<!-- Common constructs for hyperlinks --> 
<!ENTITY % id        "ID        ID      #IMPLIED"  > 
<!ENTITY % attref    "ATTREF    IDREF   #IMPLIED"  > 
<!ENTITY % fnref     "FNREF     IDREF   #IMPLIED"  > 
<!ENTITY % classrefs "CLASSREFS IDREFS  #IMPLIED"  > 
<!-- General definition for lists of hypertext links that 
     can be used with lists of classes, attributes etc. 
     e.g. in the form "see: http://... http://...". 
     Uses a simplified version of the HTML element <A>. --> 
<!ELEMENT LINKS (#PCDATA | A+)* > 
<!ELEMENT A (%text;)+ > 
<!ATTLIST A  
          %id; 
          HREF %URI; #IMPLIED > 
<!ENTITY % text "#PCDATA" > 
<!ENTITY % URI  "CDATA" > 
<!-- 
  Schema mapping header 
--> 
<!ELEMENT MAP-SCHEMA (((CLASSES+) | DEPENDENT-CLASSES | 
                      DEPENDENTS | PRESETS), (LINKS?)) > 
<!ATTLIST MAP-SCHEMA 
          LBL CDATA #IMPLIED 
          %id; 
          %froms; 
          %targets; 
          PARTIALLY (YES | NO) "NO" 
> 
<!--  
  Top-level constructs 
--> 
<!ELEMENT CLASSES (COPY-CLASS | MAP-CLASS)+ > 
<!ELEMENT DEPENDENT-CLASSES (COPY-CLASS | MAP-CLASS)+ > 
<!ELEMENT DEPENDENTS (COPY-CLASS | MAP-CLASS)+ > 
<!ELEMENT PRESETS (PLUG-IN-FN | MAKE-VAR)+ > 
<!ELEMENT PLUG-IN-FN (#PCDATA | A)* > 
<!ATTLIST PLUG-IN-FN 
          %id; 
          RUN  (BEFORE | AFTER | WHEN-CALLED) "WHEN-CALLED" 
          SRC  %URI; #IMPLIED 
> 
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<!-- 
  Class level constructs 
--> 
<!ELEMENT COPY-CLASS (CONDITIONS | EXCLUSIONS)* > 
<!ATTLIST COPY-CLASS 
          %id; 
          %froms; 
          %targets; > 
<!ELEMENT MAP-CLASS (GROUPS | VAR | CONDITIONS | EXCLUSIONS | 
                     ATTRIBUTES+)+, (LINKS?)) > 
<!ATTLIST MAP-CLASS 
          %id; 
          %froms; 
          %targets; > 
<!ELEMENT GROUPS (GROUPING)+ > 
<!ELEMENT GROUPING (COND?, LINKS?) > 
<!ATTLIST GROUPING 
          %id; 
          %assigns; 
          %classes; > 
<!ELEMENT VAR (MAKE-VAR)+ > 
<!ELEMENT MAKE-VAR (FROM+ | CONSTRUCTOR) > 
<!ATTLIST MAKE-VAR 
          %id; 
          %assigns; > 
<!ELEMENT CONDITIONS (REL | PRED)+ > 
<!ATTLIST CONDITIONS %condType; > 
<!ELEMENT COND (REL | PRED) > 
<!ATTLIST COND %condType; > 
<!ELEMENT REL (#PCDATA) > 
<!ELEMENT PRED (%fn-decl;) > 
<!ELEMENT EXCLUSIONS (EXCLUDE)+ > 
<!ELEMENT EXCLUDE (LINKS?) > 
<!ATTLIST EXCLUDE 
          %classes; 
          %for-attrs; 
          %classrefs; > 
<!-- 
  Attribute mapping constructs 
--> 
<!ELEMENT ATTRIBUTES (SAME | MAKE)+ > 
<!ELEMENT SAME (LINKS?) > 
<!ATTLIST SAME 
          %id; 
          %froms; 
          %targets; > 
<!ELEMENT MAKE ( (FROM+ | CONSTRUCTOR), DEFAULT?, LINKS?) > 
<!ATTLIST MAKE 
          %id; 
          %targets; > 
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<-- Basic representation of the source attributes 
    in attribute mappings --> 

<!ELEMENT FROM ( (%term;)+, (%suffix-op;)? ) > 
<!ELEMENT CONSTRUCTOR (%fn-decl;) > 

<!--  
  Simple templates 
--> 

<!ELEMENT SRC ( #PCDATA | A )* > 
<!ELEMENT EXPR ( #PCDATA ) > 

<!-- 
  Term operators 
--> 

<!ELEMENT ONEOF (%term;)+ > 
<!ELEMENT LISTOF (%term;)+ > 
<!ELEMENT SETOF (%term;)+ > 
<!ELEMENT MAX (%term;)+ > 
<!ELEMENT MIN (%term;)+ > 

<!--  
  Template operators 
--> 

<!ELEMENT APPLY (%fn-decl;) > 

<!ELEMENT ASSOC (COND?, LINKS?) > 
<!ATTLIST ASSOC 
          %classes; 
          %for-attrs; 
          %classrefs; 
          %ref; 
          %attref; > 

<!ELEMENT DESCENDANTS (COND?, LINKS?) > 
<!ATTLIST DESCENDANTS 
          %classes; 
          %for-attrs; 
          %classref; > 

<!ELEMENT ITERATE-ON ((%term;)+, COND?, LINKS?) > 

<!ELEMENT MAPCAR (%fn-decl;) > 

<!ELEMENT NEW (COND?, LINKS?) > 
<!ATTLIST NEW 
          %classes; 
          %classrefs; 
          %for-attrs; 
          %ref; 
          %attref; > 

<!ELEMENT REF ((%term;)+, LINKS?) > 
<!ATTLIST REF 
          ATTR NMTOKEN #REQUIRED 
          %attref; > 
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<!ELEMENT USER-CHOICE ((ONEOF | LISTOF), INIT+, DEFAULT?, LINKS?) > 
<!ATTLIST USER-CHOICE 
          PROMPT CDATA #IMPLIED 
          RUN CDATA #IMPLIED > 
<!ELEMENT USER-INPUT (INIT+, DEFAULT?, LINKS?) > 
<!ATTLIST USER-INPUT 
          PROMPT CDATA #IMPLIED 
          RUN CDATA #IMPLIED 
          %valueType; > 
<!--  
  Embedded constructs 
--> 
<!ELEMENT INIT ((%term;)+, LINKS?) > 
<!ELEMENT DEFAULT ((%term;)+, LINKS?) > 
<!ENTITY  % suffix-op "APPLY | MAPCAR | MAP" > 
<!ELEMENT MAP (%fn-decl;) > 
<!ATTLIST MAP %valueType; > 
<!ELEMENT FN EMPTY > 
<!ATTLIST FN 
          NAME NMTOKEN #REQUIRED 
          %fnref; > 
<!ELEMENT ARGS ((%term;)+, LINKS?) > 

<!-- End of the XML DTD for CSML externalisation --> 

IV.2 Examples 

To provide a better basis for comparison, five selected examples from chapter 6 are  
re-used. The first four examples apply to the representation of the relational operations 
shown in section 6.5, and the last is reproduced from the sixth mapping example shown in  
section 6.6. 

Example 1:  Projection (see section 6.5.1, page 183) 

The principal CSML specification for a projection, i.e.: 

(MAP CLASS T FROM S  
   ATTRIBUTES (SAME t1 ... tm AS st1 ... stm ) 
 ) 

will be externalised in the following way on the basis of the proposed XML DTD: 

<MAP-CLASS TARGET="T" FROM="S"> 
  <ATTRIBUTES> 
    <SAME TARGET="t1 ... tm" FROM="st1 ... stm"/> 
  </ATTRIBUTES> 
</MAP-CLASS> 

This example shows the close correspondence of the XML DTD to the native CSML-based 
structure of a mapping specification. 
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Example 2:  Intersection (see section 6.5.2, page 185) 

The principal CSML specification for an intersection, i.e.: 

(MAP CLASS T FROM R S 
   CONDITIONS 
     ( r1 = s1 ) ... ( rk = sk ) 
   ATTRIBUTES 
     (SAME t1 ... tn AS r1 ... rn ) 
 ) 

will be externalised in the following way on the basis of the proposed XML DTD: 

<MAP-CLASS TARGET="T" FROM="R S"> 
  <CONDITIONS> 
    <REL> r1 = s1 </REL> 
    <REL> rk = sk </REL> 
  </CONDITIONS> 
  <ATTRIBUTES> 
    <SAME TARGET="t1 ... tn" FROM="r1 ... rn"/> 
  </ATTRIBUTES> 
</MAP-CLASS> 

The great similarity between the CSML and the XML representations is evident here as 
well. However, relations of the form rk = sk are simply ordinary text in XML and cannot 
be directly interpreted by a parser. 

Example 3:  Telescope (see section 6.5.4, page 189) 

The principal CSML specification for the virtual integration operation “telescope”, i.e.: 

(MAP CLASS T FROM R 
   ATTRIBUTES 
     (SAME t1 ... tn AS r1 ... rn ) 
     (MAKE tn+1 FROM (REF rS FOR s1)) 
     ... 
     (MAKE tn+p FROM (REF rS FOR sp ))) 

will be externalised in the following way on the basis of the proposed XML DTD: 

<MAP-CLASS TARGET="T" FROM="R"> 
  <ATTRIBUTES> 
    <SAME TARGET="t1...tn" FROM="r1...rn"/> 
    <MAKE TARGET="tn1"> 
      <FROM> <REF ATTR="rs"> <SRC> s1 </SRC> </REF> </FROM> 
    </MAKE> 
    ... 

    <MAKE TARGET="tn+p"> 
      <FROM> <REF ATTR="rs"> <SRC> sp </SRC> </REF> </FROM> 
    </MAKE> 
  </ATTRIBUTES> 
</MAP-CLASS> 
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In this only a bit more complex example, the verbosity of the XML format and the lack of 
adequate capabilities for the representation of different data types can already be noticed 
(s1 and sp are just character data). 

Example 4:  Addition (see section 6.5.4, page 189) 

The principal CSML specification for adding a new entity class to the target model in a 
mapping, i.e.: 

(MAP CLASS T FROM S 
   VAR (MAKE ?A CONSTRUCTOR F ARGS X Y ... ) 
   ATTRIBUTES 
     (SAME ALL) 
     (MAKE ta FROM ?A )) 

will be externalised in the following way on the basis of the proposed XML DTD: 

<MAP-CLASS TARGET="T" FROM="S"> 
  <VAR> 
    <MAKE-VAR ASSIGN="_A"> 
      <CONSTRUCTOR> 
        <FN NAME="F"/> 
          <ARGS> <SRC> x </SRC> <SRC> y </SRC> ... 
          </ARGS> 
      </CONSTRUCTOR> 
    </MAKE-VAR> 
  </VAR> 
  <ATTRIBUTES> 
    <SAME TARGET="ALL" FROM="ALL"/> 
    <MAKE TARGET="ta"> 
      <FROM> <SRC> _A </SRC>  
      </FROM> 
    </MAKE> 
  </ATTRIBUTES> 
</MAP-CLASS> 

The differences between the CSML and the XML representation evident from the previous 
example are even more stronger here. This example also shows the “weak” representation 
of a function in the <CONSTRUCTOR> element, and the modified syntax for variables  
( _A instead of ?A ). 

Example 5:  adapted from (Amor 1997) (see ex. 6,  section 6.6,  page 197) 

Along with most of the aforementioned issues, this somewhat longer example 
demonstrates the main advantages of the XML format, i.e. (1) the specification of hyper-
links to other related resources, and (2) the capability to represent multiple mapping 
specifications in a single XML document. 
The use of hyperlinks is illustrated only in the forward mapping specification, for the 
attributes height and width of the source entity wall, and for the two EXPRESS 
schemas themselves, but it can be easily extended for all other referenced elements.  
The representation of both mappings in one XML document has no influence on the actual 
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mapping operations executed in a running environment but it provides advantages for 
publishing and discussing a mapping specification during its development. 

CSML specification from the original example: 

Mapping specification  shared_model -> local_model : 
(MAP local_model FROM shared_model 
 CLASSES 
  (MAP wall FROM wall 
    ATTRIBUTES 
      (MAKE area FROM 
                 (APPLY (LAMBDA (X Y) (* X Y)) 
                        ARGS height width)) 
    ) 
 ) 

Inverse mapping: 
(MAP shared_model FROM local_model 
 CLASSES 
  (MAP wall FROM wall 
    ATTRIBUTES 
      (MAKE height FROM (USER-INPUT 
                         REAL "Height of wall ~: " OBJECTNAME)) 
      (MAKE width FROM (APPLY (LAMBDA (A H) (/ A H)) 
                               ARGS area (NEW wall FOR height))) 
    ) 
 ) 

Corresponding XML representation: 
<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE CSML SYSTEM "csml.dtd"> 
<CSML> 
<MAP-SCHEMA LBL="Ex.5: Forward mapping shared_model->local_model" 
            TARGET="local_model" FROM="shared_model"> 
  <CLASSES> 
  <MAP-CLASS TARGET="wall" FROM="wall"> 
    <ATTRIBUTES> 
      <MAKE TARGET="area"> 
        <FROM> 
        <APPLY> 
          <EXPR> (LAMBDA(X Y) (* X Y)) </EXPR> 
          <ARGS>  <-- as hyperlinks to the resp. EXPRESS spec’s --> 
          <SRC> <A HREF="shared_model.html#wall">height</A> </SRC> 
          <SRC> <A HREF="shared_model.html#wall">width</A> </SRC> 
          </ARGS> 
        </APPLY> 
        </FROM> 
      </MAKE> 
    </ATTRIBUTES> 
  </MAP-CLASS> 
  </CLASSES> 
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  <LINKS> 
  <-- hypertext references to the resp. EXPRESS schema spec’s --> 
  See: <A HREF="shared_model.html">shared_model</A> and 
       <A HREF="local_model.html">local_model</A>. 
  </LINKS> 
</MAP-SCHEMA> 
<MAP-SCHEMA LBL="Ex.5, Inverse mapping local_model->shared_model" 
            TARGET="shared_model"  
            FROM="local_model"> 
  <CLASSES> 
  <MAP-CLASS TARGET="wall" FROM="wall"> 
    <ATTRIBUTES> 
      <MAKE TARGET="height"> 
        <FROM> 
        <USER-INPUT PROMPT="Height of wall ~ " TYPE="REAL"> 
             <INIT> <SRC> <?csml OBJECTNAME ?> </SRC> </INIT> 
        </USER-INPUT> 
        </FROM> 
      </MAKE> 
      <MAKE TARGET="width"> 
        <FROM> 
        <APPLY> 
          <EXPR> (LAMBDA(A H) (/ A H)) </EXPR> 
          <ARGS> <SRC> area </SRC> 
                 <NEW CLASS="wall" FOR="height"/> </ARGS> 
        </APPLY> 
        </FROM> 
      </MAKE> 
    </ATTRIBUTES> 
  </MAP-CLASS> 
  </CLASSES> 
</MAP-SCHEMA> 
</CSML> 
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Appendix V Prototyped Project Data Management Operations 

This appendix provides an overview of the currently prototyped basic operations supported 
by the developed project data server, PROMISE. 
The content is structured in four equally formatted tables (V.1 to V.4) as follows: 
– in the first column, the names of the respective operations are given, grouped by 

object classes and sorted alphabetically within each class; operations marked with an 
asterisk (*) are valid only for the IFC Project Model, all other operations are applicable 
for any EXPRESS-based models that might be used in the environment. 

– the second column, C/I, indicates if the operation is applicable to a class (C), its 
instances (I), or both; 

– the third column provides a short description of the operation including its purpose, 
the input and output arguments, and the user access rights required for its execution. 

In addition, a summary table of all operations (table V.5) details the type of each  
operation, the triggered model state transitions and the permissible execution modes 
(synchronous/asynchronous, abbreviated to sync/async respectively), as introduced in 
principle in section 4.6. 

Notes: 

1. The data types of the arguments of each operation conform to the Information 
Container specification presented in section 4.2. Optional arguments, indicated by the 
keyword OPT have the same meaning as in EXPRESS-C. 

2. When using an operation in TCP/IP-based requests, the name of the addressed class or 
instance and the name of the operation should be provided in the OID parameter and the 
meth parameter of the Request object respectively, and the input parameters of the 
operation should be provided as the value of the parameter inParams, packaged in an 
InfoContainer as name-value tupples. The output is returned in a Response object, 
packaged in an InfoContainer as the value of the parameter content. An example of this 
kind of usage of the prototyped operations is given in section 4.3. 

3. When using an operation with the Java API presented in Appendix II, the generic 
execMeth method should be called for the required class or instance, with the name of 
the operation as the first parameter, and the values of the input parameters packaged in 
an InfoContainer, as the second parameter of the method call, respectively. The output 
is returned also as an InfoContainer, and can then be individually processed with the 
help of the methods provided by the Java API. An example of this usage is given in 
section II.3. 

4. If used in a CORBA-based environment, an operation should be declared as an IDL 
interface, with in and out arguments corresponding to the in and out arguments 
from the tables below (the IDL inout argument type is not used). The mapping of the 
elements of the InfoContainer schema to respective CORBA data types is relatively 
easy to achieve; some more difficulty provides only the symbol type which may e.g. be 
mapped to a scoped_name CORBA type (cf. OMG 1998). In this way, an imple-
mentation of any operation in another programming language, such as C/C++, Smalltalk 
or Ada, can be realised (see e.g. Orfali et al. 1997). 

5. The mapping to EXPRESS-C is done by using the InfoContainer schema. The symbol 
data type (not found in EXPRESS) is mapped to a defined type with underlying STRING 
type to distinguish it from the “normal” base string type. 
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6. By any kind of usage of an operation, the overall result and/or eventual error messages 
are always returned in the high-level arguments of the Response, whereas the output 
parameters are all packaged in the attribute content. 

7. The specified access rights for each operation indicate the user roles which are 
privileged to execute the operation; f(ACL) means that the access rights of the user or 
application are determined on the basis of the Access Control List for the current object; 
owner means that the operation can be executed only by the primary model user, e.g. an 
architect for an architectural domain model; admin means that the operation is allowed 
only for users with administrator rights – normally, one person authorised by the project 
manager. The user roles are inheritable, i.e. f(ACL) automatically includes the owner, 
and owner automatically includes the administrator. 

8. By many operations there is an output argument named modelRef. In such cases the 
operation returns one or more lists of objects which all belong to the same model. To 
reduce the output, the model reference is returned only in the argument modelRef, 
whereas all other Obj_Ref’s are provided in short form, i.e. without a modelID prefix. 
Similarly, several operations have an argument named localFileRef. When used as input, 
it indicates the location of a local file to be uploaded to the project data repository, and 
when used as output – the location to which a downloaded file should be saved. In both 
cases, the read/write permission should be set as appropriate at the client platform to 
enable the execution of the upload or download process respectively. 

V.1 Generic top-level server operations for all modelling objects 

The following table presents the operations implemented for the top-level meta model object 
Concept, and the top-level IFC class IfcRoot respectively. 
All operations for IfcRoot are generic and are also valid for the meta model class 
Concept. Thus they are applicable for any defined entity in any data model, and not only for 
the entities of the IFC Project Model. IfcRoot merely emphasises that the operations shown 
in the table are valid for all IFC object classes. 

Table V.1:  Generic top-level server operations for all modelling objects 

Operation C/I Description 

Class:  Concept / IfcRoot  
create C Creates an instance of the referenced class in the currently opened 

model from the server’s project data repository, assigns it a globally 
unique ID, and returns the reference ID of the new instance. 
Arguments: 
in: content:  InfoContainer 
out: objRef:  Obj_Ref 
Access rights:  owner 

checkIn I Stores an object instance that has been checked out back into the 
respective model in the project data repository. If the model is in use 
by others, a new model version is created. 
Arguments: 
in: content:  InfoContainer 

OPT status: string ("changed", "unchanged", "unknown") 
out: objRef:  Obj_Ref 
Access rights:  owner 
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Table V.1 (cont.):  Generic top-level server operations for all modelling objects 

Operation C/I Description 
checkOut I Retrieves an object instance from the project data repository for local 

processing and sets the model in LongWrite state. This is the basic 
method to retrieve and modify arbitrary subsets of the model data 
from the project data server. However, this feature is enabled only for 
the model owner. 
Arguments: 
in: N/A 
out: attributes:  InfoContainer   

    (each attribute: name-value tupple) 
Access rights:  owner 

find C Searches for objects in the given class satisfying the search criteria 
and returns their IDs for use in subsequent requests. A search 
criterion may be e.g. an attribute value, a range of values, a predicate 
over the attribute values combined with a boolean operation etc.
(see section 4.7) 
Arguments: 
in: searchExpr:   lisp_expr  (as string) 

OPT forModel: Obj_Ref 
out: resultSet:    aggregation(valueSelect) 

      (the type of ‘valueSelect’ depends on the query) 
Access rights:    f(ACL) 

getAccessRights I Returns the access rights of the user specified in the argument 
forUser w.r.t. the referenced object. However, currently the access 
rights are set on model level. This operation is provided basically for 
future extensions. 
Arguments: 
in: OPT forRole:   symbol 

OPT forUser:   Obj_Ref 
out: accessRights:   aggregation(symbol) 
Access rights:    f(ACL) 

getAttribute I Returns the value of the specified attribute of the referenced object. 
Arguments: 
in: attName:    symbol 
out: attName:    symbol 

attContent:   typedValueSelect 
Access rights:    f(ACL) 

getInstances C Returns all instances of the referenced class in the current model, or 
in another model, respectively specified in the parameter forModel. 
Arguments: 
in: OPT forModel:  Obj_Ref 
out: modelRef:    Obj_Ref 

objRefs:    aggregation(Obj_Ref) 
Access rights:    f(ACL) 
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Table V.1 (cont.):  Generic top-level server operations for all modelling objects 

Operation C/I Description 

getMethod C/I Returns the argument names and types of the specified operation. 
This is basically a reflection possibility that may be useful for 
advanced applications. 
Arguments: 
in: methName:   symbol 
out: methParams:   InfoContainer 

      (each element: name-type tupple, as symbols) 
Access rights:    f(ACL) 

getMethods C/I Returns the names of all operations on the referenced object that are 
accessible to the logged in user. 
Arguments: 
in: N/A 
out: methNames:   aggregation(symbol) 
Access rights:    f(ACL) 

getRelationships I Returns the relationships of the referenced object to/from other 
objects in the current model. By default, all “direct” pointers to/from 
other objects are examined. The search can be constrained – by 
specifying the set of classes to be considered, or expanded – by 
specifying a deeper level for the relationship graph (the default depth 
is 1, a depth of –1 means “the whole relationship graph”). 
Arguments: 
in: OPT classRefs: aggregation(Obj_Ref) 

OPT depth:   longint  (default: 1) 
out: relating:    aggregation(Obj_Ref) 

related:    aggregation (aggregation(Obj_Ref)) 
      (nested level depth depends on context) 

Access rights:    f(ACL) 

inspect C/I Returns the content of the referenced object as an InfoContainer. This 
is the basic function to examine any kind of modelling objects on the 
project data server. However, in order to be processed, an object has to 
be first checked out. ‘Inspect’ provides only a viewing capability. 
When inlineRef is true, attributes shall contain the full representation 
of the object instances referenced by the “inspected” object, and not 
only their Obj_Refs. However, such output can be quite verbose. 
Arguments: 
in: OPT inlineRef:  boolean 
out: 
 for Classes:   parentRef: Obj_Ref 
       childRefs:  aggregation(Obj_Ref) 
       attributes:  aggregation(symbol) 
 for Instances:   parentRef: Obj_Ref 

      attributes:  InfoContainer 
          (each attribute is a feature, 
         i.e. a  name-value tupple) 

Access rights:    f(ACL) 
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Table V.1 (cont.):  Generic top-level server operations for all modelling objects 

Operation C/I Description 

retrieve I Similar to 'inspect', but returns the object’s data in more concise form. 
This operation is limited only to viewing the content of an object. 
Arguments: 
in: N/A 
out: attributes:    InfoContainer 
Access rights:    f(ACL) 

setAccessRights C/I Sets the access rights for the specified user (see getAccessRights). 
Arguments: 
in: forRole:    symbol 

forUser :    Obj_Ref 
accessRights:   aggregation(symbol) 

out: N/A 
Access rights:    owner 

setAttribute I Sets the value of the specified attribute of the referenced object to 
the value given in attContent. 
Arguments: 
in: attName:    symbol 

attContent:   valueSelect 
out: N/A 
Access rights:    owner 

status I Returns the status and the version history of the referenced object. 
The status information is presented according to the IfcUtilityResource 
schema (see IAI 1999c). 
Arguments: 
in: OPT forAllVersions: boolean 
out: currentStatus:   aggregation(string) 

OPT versions:   aggregation(Obj_Ref) 
OPT versionStatus: aggregation (aggregation(string)) 

Access rights:    f(ACL) 

testAttribute I Tests if the specified attribute of the referenced object is set. 
Arguments: 
in: attName:    symbol 
out: isSet:     logical 
Access rights:    f(ACL) 

unsetAttribute I Unsets (i.e. sets to 'Unknown') the value of the specified attribute. 
Arguments: 
in: attName:    symbol 
out: N/A 
Access rights:    owner 

update I Updates the content of an entity instance. 
The arguments and access rights are the same as by the create 
operation. 
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V.2 Specific server operations for IfcKernel objects 

Table V.2 presents operations that have been specifically designed for IFC-based 
implementation. All these operations are defined at the Kernel Model level, and are 
therefore available also for any domain/application model extensions. 
At the time when they were developed, the available IFC version was 1.5 final. Efforts 
have been made to adapt these operations to the current IFC version; however, as this has 
been done late, and with not much time available, the author apologises for possibly 
existing inconsistencies that might have remained undiscovered. 

Table V.2:  Specific server operations for IfcKernel objects 

Operation C/I Description 
Class:  IfcRelationship 
getRelatingObject* I Returns the "Relating" object referenced through the specified “rela-

tionship” object. This operation is actually a shortcut for getAttribute, 
with parameter attName = "Relating". 
Arguments: 
in: N/A 
out: modelRef:   Obj_Ref 

objRef:    Obj_Ref 
Access rights:    f(ACL) 

getRelatedObjects* I Returns the "Related" objects referenced through the specified 
“relationship” object. 
Arguments: 
in: N/A 
out: modelRef:   Obj_Ref 

objRefs:    aggregation(Obj_Ref) 
Access rights:    f(ACL) 

getRelations* I Returns the "Relating" and "Related" objects referenced through the 
specified “relationship” object. 
Arguments: 
in: N/A 
out: modelRef:   Obj_Ref 

relating:    Obj_Ref 
related:    aggregation (Obj_Ref) 

Access rights:    f(ACL) 
Class:  IfcRelGroups 
addToGroup* I Adds an object to the referenced “group” object. 

Arguments: 
in: objRefs:    aggregation(Obj_Ref) 
out: N/A 
Access rights:    owner 

removeFromGroup* I Removes an object from the referenced “group” object. 
Arguments: 
in: objRefs:    aggregation(Obj_Ref) 
out: N/A 
Access rights:    owner 
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Table V.2 (cont.):  Specific server operations for IfcKernel objects 

Operation C/I Description 
Class:  IfcObject 
getDocAssignment* I Returns a list of references to document URLs associated with this 

model (see IAI 1999c). 
Arguments: 
in: N/A 
out: modelRef:   Obj_Ref 

DocRefs:    aggregation(string) 
Access rights:    f(ACL) 

getPropertySets* I Returns the “property sets” associated with the given object. 
The result set can optionally be restricted by specifying the type of 
property sets for which the search should be performed (this type 
is assumed to be found in the attribute Name of IfcProperty and its 
respective subclasses – IfcEnumeratedProperty, IfcPropertyList, 
IfcSimpleProperty, IfcSimplePropertyWithUnit, IfcObjectReference).
Arguments: 
in: OPT classifier:  aggregation(string) 
out: modelRef:   Obj_Ref 

objRefs:    aggregation(Obj_Ref) 
Access rights:    f(ACL) 

getRelations* I Finds all "Related" objects to the referenced object, specified with 
the help of “relationship” objects. The output argument relating 
contains instances of subtypes of IfcRelationship in which the given 
object plays the role "Relating", and the argument related contains a 
list of respective aggregations, comprising all the "Related" objects. 
Arguments: 
in: N/A 
out: modelRef:   Obj_Ref 

relating:    aggregation(Obj_Ref) 
related:    aggregation (aggregation(Obj_Ref)) 

Access rights:    f(ACL) 
Class:  IfcProject 
merge* I Merges two or more model versions associated with this “project” 

object, and returns the reference to the new “merged” model.  
In fact, due to the specific architecture of the IFC modelling framework, 
an IfcProject instance is the basic reference to all models associated 
with a given project. Therefore, merge is actually a typical model-level 
operation,. accordingly defined for the MODEL entity class (see Table 
V.3). Its use with IfcProject is merely for convenience. 
Arguments: 
in: baseModel:   Obj_Ref 

targetModelRefs:  aggregation(Obj_Ref) 
OPT mergePolicy:  symbol  

out: modelRef:   Obj_Ref 
Access rights:    admin 
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Table V.2 (cont.):  Specific server operations for IfcKernel objects 
Operation C/I Description 
Class:  IfcProduct 
view* I Returns a BLOB containing the geometric representation of the 

referenced product object in a format suitable for processing with a 
visualisation or CAD tool, and optionally downloads that BLOB to the 
location given in LocalFileRef. Currently, only 'Bounding Box' geo-
metry is supported, i.e. representationType defaults to BoundingBox. 
As the output file is “partial”, i.e. contains data only about the 
referenced entity, it is on the responsibility of the application to inter-
pret it correctly in the context of its other data. The view types TEXT, 
HTML and XML are provided for future extensions. 
Arguments: 
in: viewType:   symbol (one of  DXF, VRML, TEXT, HTML)

OPT representationType: symbol 
OPT localFileRef:    BLOB_Ref 

out: repositoryRef:     BLOB_Ref 
Access rights:    f(ACL) 

V.3 Generic model-level server operations 
Table V.3 presents the operations applicable to a whole model. They enable global model 
management functions, such as checkIn, checkOut, map, match etc., in the same way as 
when individual entities are addressed. To invoke any of these operations, a respective 
instance of the Meta model object  MODEL  has to be referenced in the request. 
Table V.3:  Generic model-level server operations 
Operation C/I Description 

Class:  MODEL 
abortTransaction I Aborts the current transaction for the referenced model. 

Arguments:  N/A 
Access rights:    f(ACL) 

beginTransaction I Begins a transaction (request/response block) for the ref. model. 
Arguments: 
in: OPT mode:   symbol 

      (one of R, W, LR, LW, CI, MRG – see sect. 4.6) 
out: N/A 
Access rights:    f(ACL) 

checkIn I Uploads a model that has been checked out for local processing back 
to the project data repository. 
If specified, the argument spf should reference a local STEP physical 
file containing the model data. 
This argument controls the way in which the operation is performed: 
- if not present, checkIn assumes that the model has not been 

modified and “unlocks” it, without creating a new version (in this 
case, none of the other input arguments need to be provided); 

- if spf is specified, checkIn assumes that the model has been 
modified and uploads it to the project data repository, creating 
a new model version and optionally matching it with the latest 
existing version of the model. 
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Table V.3 (cont.):  Generic model-level server operations 

Operation C/I Description 

checkIn 
(cont.) 

 The argument verbose controls the amount of the output data. 
If not provided or false, only the result status is returned. Otherwise, 
checkIn returns three parallel lists containing the object references of 
all objects in the checked in model, their respective numbers in the 
STEP physical file, and the status of each object (in the case that 
model matching has been performed as well). 
Arguments: 
in: OPT spf:    BLOB_Ref 

OPT verbose:   boolean 
OPT noMatch:   boolean 

out: OPT objRefs:   aggregation(Obj_Ref)  
OPT objNums:  aggregation(longint) 
OPT objStatus:  aggregation(string) 
      (one of: “Same”, “New”, “Changed”,  
        “NewOrChanged”,“Unknown”) 

Access rights:    f(ACL) 

checkOut I This is the basic method to retrieve and modify a whole model stored 
in the project data repository maintained by PROMISE. It checks out 
the model for local processing and sets a LongWrite lock. After a 
checkOut, only checkIn and rollback (in that case equal to “abort”) are 
available for the user who checked out the model. 
If the argument retrieve is set to false, the model is not downloaded, 
but only checked out and the LongWrite lock is set. This option is 
useful when the model is already available locally but has not yet been 
processed and is not yet locked. 
Arguments: 
in: OPT retrieve:   boolean 

OPT localFileRef: BLOB_Ref 
out: repositoryRef:  BLOB_Ref 
Access rights:    f(ACL) 

checkConsistency I Proves if all model data are consistent with respect to the underlying 
EXPRESS specification, i.e. if there are no dangling links, empty, 
but required attributes etc. Optionally, when targetModelRef is 
provided, the current model can be compared for consistence with 
another model used as “reference”. In that case, a matching is 
performed, and the models are assumed consistent if there are no 
differences found. This operation is not yet sufficiently tested. 
Arguments: 
in: OPT targetModelRef:  Obj_Ref 

OPT verbose:   boolean 
out: OPT objRefs:   aggregation(Obj_Ref) 

OPT objStatus:  aggregation(string) 
Access rights:    f(ACL) 

closeModel I Closes an opened model. 
Arguments:    N/A 
Access rights:    f(ACL) 
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Table V.3 (cont.):  Generic model-level server operations 

Operation C/I Description 

commitPrepare I Sends a "prepare to commit" request to the project data server 
(this operation is only needed if a safe two-step commit protocol is 
implemented in the environment). 
Arguments: 
in: N/A 
out: N/A 
Access rights:    f(ACL) 

commit I Commits all changes made to the referenced model and ends the 
open transaction. A commit is final, and cannot be undone. However, 
without commitPrepare, it is not safe w.r.t. possible system crashes. 
Arguments: 
in: N/A 
out: N/A 
Access rights:    f(ACL) 

create C In principle, this operation is quite similar to checkIn. It is needed 
whenever a model is “checked in” for the first time.  
The argument spf is mandatory, as well as a user-defined model name. 
Also, unlike checkIn, create allows to specify a “reference” model 
(optionally based on another domain model schema). In that case, the 
newly created model is compared with this reference model, using the 
provided mapping specification, and all equivalent objects (in the 
sense of the mapping transformation) are assigned the same IDs as in 
the reference model, whereas the rest are given new IDs. However, 
this use of create is only possible if the mapping is not interactive, and 
may not succeed by complicated mappings.  
The output of create is identical to that of checkIn. 
Arguments: 
in: spf:     BLOB_Ref 

modelName:   string 
OPT refModel:  Obj_Ref 
OPT mappingRef: Obj_Ref 
OPT verbose:   boolean 
      (see checkIn) 

out: modelRef:   Obj_Ref 
OPT objRefs:    aggregation(Obj_Ref)  
OPT objNums:  aggregation(longint) 
OPT objStatus:  aggregation(string) 
      (see checkIn) 

Access rights:    owner 

delete I Deletes a model from the project data repository (can be executed 
only by a user with administrator privileges). 
Arguments: 
in: N/A 
out: N/A 
Access rights:    admin 
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Table V.3 (cont.):  Generic model-level server operations 

Operation C/I Description 

find C/I Searches for objects in the referenced model that satisfy the given 
search criteria.  
This operation is basically the same as the respective find operation 
defined for Concept. However, here the search criteria are applied to 
all object instances in the model, and not only to the instances of one 
object class. 
Arguments: 
in: searchExpr:   lisp_expr  (as string) 
out: resultSet:    aggregation(valueSelect) 

      (the type of ‘valueSelect’ depends on the query) 
Access rights:    f(ACL) 

getAccessRights I Returns the access rights of the user specified in the argument 
forUser w.r.t. the referenced model. 
Arguments: 
in: OPT forRole:   symbol  

OPT forUser:   Obj_Ref 
out: accessRights:   aggregation(symbol) 
Access rights:    f(ACL) 

getAllModels C Returns a list of all available models in the project data repository 
which are currently associated with the referenced model schema. 
Arguments: 
in: N/A 
out: modelRef:   aggregation(Obj_Ref) 

modelSchema: aggregation(Obj_Ref) 
Access rights:    f(ACL) 

getGroups* I Returns a list of references (Obj_Ref 's) for all instances of the 
subclasses of IfcGroup contained in the model (valid only for IFC  
models). 
Arguments: 
in: N/A 
out: modelRef:   Obj_Ref 

objRefs:    aggregation(Obj_Ref) 
      (contains references to instances of  
       any of the subclasses of IfcGroup) 

Access rights:    f(ACL) 

getModelVersions C/I Similar to getAllModels, but returns only the available versions of 
the referenced model or model schema. 

getObjects I Returns a list of Obj_Refs for all object instances contained in the 
model. 
Arguments: 
in: N/A 
out: modelRef:   Obj_Ref 

objRefs:    aggregation(Obj_Ref) 
Access rights:    f(ACL) 
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Table V.3 (cont.):  Generic model-level server operations 

Operation C/I Description 

getProductObjects* I Returns a list of Obj_Ref 's for all instances of the subclasses of 
IfcProduct contained in the model (valid only for IFC models). 
Arguments: 
in: N/A 
out: modelRef:   Obj_Ref 

objRefs:    aggregation(Obj_Ref) 
Access rights:    f(ACL) 

map I Performs a mapping for the referenced model using the mapping 
specification addressed through the argument mappingRef. 
Map can be used as an interactive operation. If not aborted, it will 
always create a new (target) model version. 
The argument mode controls the manner in which the mapping is 
performed, and the argument verbose controls the amount of output 
produced by the operation in a similar way as by checkIn. 
Arguments: 
in: mode:     symbol (one of  interactive, partial, complete)

mappingRef:   Obj_Ref 
OPT verbose:   boolean 
OPT     localFileRef:  BLOB_Ref 

out: modelRef:   Obj_Ref 
OPT objRefs:   aggregation(Obj_Ref) 
OPT objStatus:  aggregation(string) 

Access rights:    f(ACL) 
mapTry I This operation is essentially the same as map, except that it creates a 

temporary model. It can be useful to check if a map operation, that 
might require quite a long time to execute, would be successful. 
mapTry performs fewer checks and is faster than map. 
All arguments and access rights are as by map. 

match I Performs a matching of two model versions based on the same model 
schema. The first model is the one on which the operation is invoked, 
and the second model is the one specified as refModel. 
The argument verbose controls the output produced by the operation: 
if verbose is false or not specified, only the detected new and changed 
objects are returned as lists of Obj_Ref 's in the output arguments 
newObjects and changedObjects respectively; if verbose is true, the 
status of all object instances is returned in a similar way as by checkIn.
By default, a matching of all objects contained in the model is 
performed. However, it can be restricted only to the instances of the 
object classes specified in the optional argument inclusionList. 
Arguments: 
in: refModel:    Obj_Ref 

OPT verbose:   boolean 
OPT inclusionList: aggregation(Obj_Ref) 

out: OPT newObjects:  aggregation(Obj_Ref) 
OPT changedObjects: aggregation(Obj_Ref) 
OPT objRefs:   aggregation(Obj_Ref) 
OPT objStatus:  aggregation(string) 

Access rights:    f(ACL) 
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Table V.3 (cont.):  Generic model-level server operations 

Operation C/I Description 

merge I This operation is conceptually identical to the merge operation 
specified for IfcProject, but is available for any data model, and not 
only for IFC-based models. It always locks the whole data store 
(see section 4.6). 
Arguments: 
in: targetModelRefs:  aggregation(Obj_Ref) 

OPT mergePolicy:  symbol 
out: modelRef:   Obj_Ref 
Access rights:    admin 

openModel I Opens the referenced model for subsequent transactions.  
openModel must always be executed before performing any other 
operations on the respective model or its objects. Once opened, a 
model can be subject to an unlimited number of transactions before it 
is closed. 
Arguments:    N/A 
Access rights:    f(ACL) 

retrieve I This operation is similar in function to checkOut, but the model is set 
in Read or LongRead state, depending on the execution mode 
(sync/async). Retrieve can be used only for viewing the content of 
the model locally; for modifying it has to be checked out. 
Arguments: 
in: OPT localFileRef:  BLOB_Ref 
out: repositoryRef:  BLOB_Ref 
Access rights:     f(ACL) 

rollback I Allows to undo all operations on the model, performed after it has 
been opened with beginTransaction. However, whilst conceptually 
an unlimited number of operations can be undone, in the prototype 
implementation this operation is restricted to the available amount of 
working memory. As a rule of thumb, the last executed operation 
can always be undone, the number of additional possible “undo” 
steps depends on the amount of data affected by the preceding 
operations. In any case, the previous consistent version of the model 
will at least be available for further work. 
Arguments:    N/A 
Access rights:    f(ACL) 

setAccessRights I Sets the overall access rights for the specified user and/or role w.r.t. 
the referenced model. 
The specified access rights are automatically applied to all objects in 
the model. 
Arguments: 
in: OPT forRole:   symbol  

OPT forUser:   Obj_Ref 
accessRights:   aggregation(symbol) 

out: N/A 
Access rights:    owner 
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Table V.3 (cont.):  Generic model-level server operations 

Operation C/I Description 
Class:  MODEL 
view I Returns a BLOB which contains the geometric representations of the 

tangible modelling objects in the referenced model in a format suitable 
for processing with a visualisation or CAD tool, and optionally down-
loads it to the location specified in LocalFileRef. 
The concrete implementation of the view operation varies according to 
the underlying model schema. For IFC-based models, it is similar to 
the respective view operation defined for IfcProduct in Table V.2 
above, but returns the respective geometric representations of all 
instances of the subclasses of IfcProduct contained in the model. 
Arguments: 
in: viewType:   symbol (one of  DXF, VRML, TEXT, HTML) 

OPT localFileRef:  BLOB_Ref 
out: repositoryRef:  BLOB_Ref 
Access rights:    f(ACL) 

Class:  ModelSchema 
getMappings I Returns the references to all available mapping specifications defined 

for this model schema. 
Arguments: 
in: N/A 
out: mappingSchemas:  aggregation(Obj_Ref) 

      (contains references to instances of class  
      MappingSchema) 

Access rights:    f(ACL) 

getModels I Returns the references to all available models in the project data 
repository that are associated with this model schema. 
Arguments: 
in: N/A 
out: modelRef:   aggregation(Obj_Ref) 

      (contains references to instances of class  
      MODEL) 

Access rights:    f(ACL) 

retrieve I Returns a reference to the EXPRESS data file corresponding to this 
model schema and optionally downloads that file to the location 
specified in localFileRef. 
Arguments: 
in: OPT localFileRef:  BLOB_Ref 
out: repositoryRef:  BLOB_Ref 
Access rights:    f(ACL) 

Class:  MappingSchema 
retrieve I Same as above, but for the respective mapping specification file. 

Arguments: 
in: OPT localFileRef:  BLOB_Ref 
out: repositoryRef:  BLOB_Ref 
Access rights:    f(ACL) 
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V.4 Server operations for communication control 

Table V.4 contains a set of operations that are not used for processing the model data 
themselves, but for controlling the overall client-server communication process (see also 
Wasserfuhr & Scherer 1999). 

Table V.4:  Server operations for communication control 

Operation C/I Description 
Class:  CEEsession 
openSession C Opens a session with the project data server. 

Arguments: 
in: N/A 
out: session:    Obj_Ref 
Access rights:    f(ACL) 

closeSession I Closes all open models and disconnects the client from the server. 
Arguments:    N/A 
Access rights:    f(ACL) 

execRequest I Generic operation to execute a request (see section II.2). 
Access rights:    f(ACL) 

Class:  Request 
getRequestStatus I Returns the status of an operation executed in asynchronous mode. 

If the returned status is equal to finished, the result of the referenced 
operation is already available and can be retrieved by a subsequent 
getResponse (see below). 
Arguments: 
in: N/A 
out: requestStatus:   symbol 

(one of  acknowledged, executing, deferred, finished, failed) 
Access rights:    f(ACL) 

getResponse I Returns the result of the referenced Request object. 
Arguments: 
in: N/A 
out: Depends on the referenced asynchronous Request 

in the OID parameter of the operation 
Access rights:    f(ACL) 

Class:  MODEL / ModelSchema / MappingSchema / CEEsession 
upload I This operation can be used to upload explicitly a data file to the 

project data repository (normally a side-effect of another operation). 
Arguments: 
in: localFileRef:   BLOB_Ref 
out: repositoryRef:  BLOB_Ref 
Access rights:    f(ACL) 

download I This operation can be used to download explicitly a data file from the 
project data repository (normally a side-effect of another operation). 
Arguments: 
in: OPT localFileRef:  BLOB_Ref 

repositoryRef:  BLOB_Ref 
out: N/A 
Access rights:    f(ACL) 
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V.5 Summary of operation types and model states 

This table lists all operations presented in the preceding tables V.I to V.4 from the point  
of view of their meta properties (operation type, model state triggered by the operation, 
permissible execution modes – see section 4.6). The access rights for the execution of each 
operation are replicated from these tables for completeness. The presentation sequence is 
the same as in the above tables. 

Table V.5:  Operation types and model states 

Operation Op. Type Triggered  
model state 

Permissible 
exec. modes 

Access 
rights 

Generic top-level operations 
Class: Concept / IfcRoot 
create Write Write sync owner 
checkIn CheckIn CheckIn sync owner 
checkOut LongWrite LongWrite sync owner 
find Read Read sync/async f(ACL) 
getAccessRights Read Read sync f(ACL) 
getAttribute Read Read sync f(ACL) 
getInstances Read Read sync f(ACL) 
getMethod Read Read sync f(ACL) 
getMethods Read Read sync f(ACL) 
getRelationships Read Read sync f(ACL) 
inspect Read Read sync f(ACL) 
retrieve Read Read sync f(ACL) 
setAccessRights Write Write sync owner 
setAttribute Write Write sync owner 
status Read Read sync f(ACL) 
testAttribute Read Read sync f(ACL) 
unsetAttribute Write Write sync owner 
update Write Write sync owner 
Operations for IfcKernel objects 
Class:  IfcRelationship 
getRelatingObject Read Read sync f(ACL) 
getRelatedObjects Read Read sync f(ACL) 
getRelations Read Read sync f(ACL) 
Class:  IfcRelGroups 
addToGroup Write Write sync owner 
removeFromGroup Write Write sync owner 
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Table V.5 (cont.):  Operation types and model states 

Operation Op. Type Triggered  
model state 

Permissible 
exec. modes 

Access 
rights 

Class:  IfcObject 
getDocAssignment Read Read sync f(ACL) 
getPropertySets Read Read sync f(ACL) 
getRelations Read Read sync f(ACL) 
Class:  IfcProject 
merge Merge Merge async admin 
Class:  IfcProduct 
view Read Read sync/async f(ACL) 
Generic model-level operations 
Class:  MODEL 
abortTransaction Abort Open sync f(ACL) 
beginTransaction Control N/A sync f(ACL) 
checkIn CheckIn CheckIn sync/async f(ACL) 
checkOut LongWrite LongWrite sync/async f(ACL) 
checkConsistency Control N/A async/sync f(ACL) 
closeModel Close Closed sync f(ACL) 
commitPrepare CommitPrep. ReadyToCommit sync/async f(ACL) 
commit Commit Commit sync f(ACL) 
create Create Closed sync owner 
delete Delete Deleted sync admin 
find Read Read sync/async f(ACL) 
getAccessRights Read Read sync f(ACL) 
getAllModels Read Read sync f(ACL) 
getGroups Read Read sync f(ACL) 
getModelVersions  Read Read sync f(ACL) 
getObjects Read Read sync f(ACL) 
getProductObjects Read Read sync f(ACL) 
map Source: Read 

Target: CheckIn 
Source: Read 
Target: CheckIn 

async/sync f(ACL) 

mapTry Read Read async/sync f(ACL) 
match Control N/A async/sync f(ACL) 
merge Merge Merge async admin 
openModel Open Open sync f(ACL) 
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Table V.5 (cont.):  Operation types and model states 

Operation Op. Type Triggered  
model state 

Permissible 
exec. modes 

Access 
rights 

retrieve Read 
LongRead 

Read 
LongRead 

sync/async f(ACL) 

rollback Rollback Open async f(ACL) 
setAccessRights Write Write sync owner 
view Read 

LongRead 
Read 
LongRead 

sync/async f(ACL) 

Class:  ModelSchema 
getMappings Read Read sync f(ACL) 
getModels Read Read sync f(ACL) 
retrieve Read Read sync f(ACL) 
Class:  MappingSchema 
retrieve Read Read sync f(ACL) 
Generic operations for communication control 
Class:  CEEsession 
openSession Control N/A sync f(ACL) 
closeSession Control N/A sync f(ACL) 
execRequest Depends on the 

request 
Depends on the 
request 

sync/async f(ACL) 

Class:  Request 
getRequestStatus Control N/A sync f(ACL) 
getResponse Control N/A sync f(ACL) 
Class:  MODEL / ModelSchema / MappingSchema / CEEsession 
upload Control N/A sync/async f(ACL) 

download Control N/A sync/async f(ACL) 
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Appendix VI Parsers and Converters 

The proposed representation formats for the conceptual issues addressed in chapters 4-6 of 
this thesis required the implementation of parsers (for all respective syntax specifications), 
as well as converters (to map the data types of one representation to another). This includes 
the parsing of (1) STEP physical files, (2) Information Container based requests,  
(3) Knowledge-based expressions and (4) Mapping specification files, and the respective 
conversion of the data from/to the internal data structures used in the KEE system.  
As neither of the underlying syntax specifications is of very high complexity, it was 
possible to implement a straight-forward top-down recursive parsing (Sedgewick 1992) 
in all cases. The parsing and converting of EXPRESS models, which have a much more 
complicated syntax, has not been part of the work in this thesis. 
This appendix provides a short overview of the developed LISP-based parsers and converters 
for the prototyped project data server PROMISE. They are intentionally implemented as 
ordinary functions, and not as object-oriented methods, in order to enable their stand-alone 
usage in other environments. The output is in all cases in the form of association lists, with 
keywords denoting the meaning of the individual sublists. This intermediate meta format was 
easy to transform into KEE data objects, and should not be difficult to use in another object-
oriented LISP environment, such as CLOS (cf. Steele 1990). 

VI.1 Parsers 

Information Container Parser 
This parser accepts as input a string representing a valid InfoContainer externalisation, and 
produces as output an association list of the form 
 (INFOCONTAINER label (component-association-lists … )) 
where for each component sublist, an association list headed by the respective Information 
Container keyword (AGGREGATION, OREF, BLOB etc.) is built. 
Here and in all other functions further below, the optional argument echo enables a verbose 
output which can be helpful by stand-alone use, or for testing purposes. In server mode, 
echo is always automatically set to false, i.e. no output. 
Function declaration: 
(defun ptdms-ic-parser (InfoContainer &optional echo) &body ) 

Knowledge-based Expressions Parser 
This parser takes as input a knowledge-based expression, specified according to the rules 
presented in section 4.7, and produces a Wff (well-formed formula) suitable for use with 
the specific KEE inference engine (see Intellicorp 1994). The currently prototyped imple-
mentation is only of limited value for other environments, but it could be easily adapted for 
another rule-based system providing a well-defined input format. 
Function declaration: 
(defun ptdms-kbexpr-parser (kbexpr &optional echo) &body ) 

CSML Parser 
This parser accepts as input a CSML mapping specification file, and produces as output an 
association list in a similar manner as ptdms-ic-parser. 
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Function declaration: 
(defun ptdms-csml-parser (map-file &optional echo) &body ) 

STEP Physical File Parser 
This function is used to parse a STEP physical file defined according to (ISO 10303-21 
1994). It produces a list containing the number of elements in the header and the data 
section of the file, and two arrays for the respective elements in these two sections. Each 
array element is an association list constructed in a similar way as by ptdms-ic-parser, e.g.: 
 (ENTITY name (attribute-list)) 
where attribute-list may contain nested lists depending on the specific values of the 
attributes. For instance, for an IFC “point” entity, it may have the form: 
 (ENTITY CartesianPoint ((0.0 1.0 2.0)) ) 
The function does not check if the data are correct w.r.t. the underlying EXPRESS model. 
Function declaration: 
(defun ptdms-step-in (step-file &optional echo) &body ) 

VI.2 Data conversion utilities 

STEP Physical File Export 
This utility function produces a STEP physical file from the internal representation of a 
model in KEE. By default, all objects contained in the model are output, but the argument 
initial-entities allows to specify explicitly the classes and/or instances to be pro-
cessed; in that case, a “partial” STEP file including only the addressed entities is produced. 
Function declaration: 
defun ptdms-step-out (step-file &optional echo 
                                &key (floating-pt-precision 12) 
                                     (initial-entities nil)) &body ) 

InfoContainer  ↔  KEE  Value  Conversion 
This pair of functions enables the conversion of any Information Container data type to the res-
pective KEE/LISP data type and vice versa. The additional optional arguments in the second 
function are only needed for its internal recursive usage, and not by its initial invocation. 
Function declarations: 
(defun ic-to-kee-value (val) &body ) 
(defun kee-to-ic-value (val &optional kbp (vcmax 1) (vl 1)) &body ) 

STEP  ↔  KEE  Value  Conversion 
This pair of functions enables the conversion of any STEP physical file data to/from the 
respective KEE/LISP data types. In the first function, if the argument step-value  is  
a STEP file entity reference in the form #nnn, the second argument inst-refs  must be 
specified to provide the link to the respective KEE object(s). It takes the same form as in 
the output of the function ptdms-step-in presented above. 
Function declarations: 
(defun step-to-kee-values (step-value inst-refs) &body ) 
(defun kee-to-step-values (kee-unit slot) &body ) 
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Appendix VII Referenced Data Models 

This appendix provides concise descriptions of the data modelling environments, parts of 
which have been used or referenced in several of the examples given in this thesis. 
In addition, selected data model schemas directly related to these examples are presented. 
These are: the IFC 2.0 Kernel Model, a proposed (and prototyped) structural domain 
extension for IFC 2.0, and an application-specific data model for structural analysis with 
the SOFiSTiK*) system. 

VII.1 Overview of the STEP Modelling Framework 

The scope of the ISO STEP standard is very broad. It covers many industry branches, such 
as the automotive, process plant, ship building, furniture and electronic industries, along 
with AEC. Therefore, it does not endeavour to detail how an IT environment based on 
STEP data models should be implemented, nor to specify how the underlying framework 
of such an environment should be assembled. These tasks are left to industry sub-
committees in STEP, or to developer groups external to STEP. As a consequence, there is 
actually no clearly defined modelling framework in the standard itself. 

On the other side, STEP does provide a methodology and an architecture for the con-
struction of standardised data models and STEP-conformant modelling frameworks. 

The methodology is based on a small number of principles, aiming to: (1) define product 
data models, providing stability and extensibility, (2) support and standardise industry 
application semantics, (3) specify requirements and implementation forms for product data 
exchange and sharing, and (4) specify requirements and methods for the assessment of the 
conformance of STEP-based applications. 

The architecture fully covers the first two modelling layers presented on fig. 2.5 in  
section 2.3.2, and provides guidelines for the specification of comprehensive data models 
as well as constructs facilitating their harmonisation. In particular, this includes: 

– definition of the modelling paradigm and the EXPRESS language (ISO 10303-11 1994); 

– implementation forms for file-based data exchange (ISO 10303-21 1994), and for data 
sharing through a standard data access interface (ISO 10303-22 1998); 

– an evolving set of standardised data specifications. 

The standardised data models resulting from the use of the STEP architecture fall into 
two categories: 

1) Application Protocols (APs), which are data specifications that satisfy the information 
needs of a given industry application domain,  and 

2) Integrated Resources (IRs), which are generic data specifications that support the 
consistent development of application protocols across the industry domains. 

                                                 
*) The SOFiSTiK system is developed and distributed by SOFiSTiK GmbH, Oberschleißheim, 

Germany. 
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The approach by which STEP APs are constructed and documented is illustrated on  
Fig. VII.1  below  (cf. Burkett & Yang 1995;  Fowler 1995). 
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Fig. VII.1:  High-level diagram of the key elements of the STEP architecture 
(the arrows express conceptual dependencies, and the grey boxes depict the documentation structure) 

Its essence is as follows: 

Industry needs are captured by an Application Activity Model (AAM). An Application 
Reference Model (ARM) provides detailed specifications of the data objects and their 
relationships that are required to support the activities within the scope of the AAM, and an 
Application Interpreted Model (AIM) fulfils the requirements that are formally represented 
by the ARM through selection and constraining of data constructs included in the Inte-
grated Resources. Mapping Tables present the links between the requirements of the ARM 
and the harmonised specifications included in the AIM. The documentation of all these 
components, along with respective conformance class specifications, forms a STEP AP. 

The Integrated Resources are specified in a set of consistent context-independent schemas. 
Their purpose appears to be twofold. On one side, they define high-level semantic constructs 
that belong, by meaning and intention, to the generic product model layer suggested in  
fig. 2.5. On another side, they contain a number of “primitive” constructs intended to prevent 
duplicate definitions of basic data types, such as geometrical and topological representation 
items, materials, date, time, person, organisation, measure, unit etc. 
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This concept is very interesting, but it is incomplete: the high-level constructs in the IRs have 
a similar problem as the GARM model (Gielingh 1988a), and the low-level data definitions 
ensure minimum conceptual redundancy but do not contribute to the overall consistency of a 
broader framework. What is missing is the “middle part”, i.e. a kernel data model. 

In anticipation of this problem STEP introduces the so called Integrated Application 
Resources (IAR) which are supposed to extend the generic resources and fill the gap. 
Unfortunately, the standard provides only vague guidelines as to how such more specific 
resources should be constructed. It neither prescribes nor denies that an IAR should play 
the role of a kernel data model with respect to a set of APs in a given industry domain.  
As a result, both approaches exist (e.g. Part 101 “Draughting” (ISO 10303-101 1994) is a 
representative of the first, and the proposed Part 106 “Building Construction Core Model” 
(ISO 10303-106 1997) is a representative of the second approach, respectively). However, 
according to the STEP methodology it seems that an AP should actually encompass all 
elements of the modelling framework for a whole industry domain, including individual 
model schemas that are harmonised in a similar way to the multi-schema integration 
approaches known from database research (cf. Reddy et al. 1994; Kim 1995). 

For the integration of two or more APs, STEP proposes the use of Application Interpreted 
Constructs (AICs) that should provide explicit specifications enabling the integration 
process. However, to the knowledge of the author, a successful implementation of this idea 
does not exist yet. This issue is in fact related to the semantic interoperability of non 
homogeneous modelling environments that are more or less neglected by STEP. It was 
discussed in detail in chapter 5. 



328 A Mapping Language for Concurrent Engineering Processes 

VII.2 Overview of the IFC modelling framework 

IFC is similar to STEP in many aspects. It adopts major STEP components including the 
EXPRESS modelling language, the STEP physical file format for data exchange, and a 
great portion of the Integrated Resources, as well as many of the methodological guidelines 
of STEP. However, IFC is also different from STEP in some substantial aspects: 
1) Whilst STEP assumes a homogeneous model world, the goal of IFC is to define a 

minimal core model and supporting modelling constructs, such that pre-harmonisation 
of domain-specific models can be achieved. It foresees also a mapping mechanism to 
communicate with disperse models surrounding its model parts. 

2) Whilst STEP is an ISO standard that spans over all industry sectors, IFC is an industry 
standard, specifically developed for the needs of the building industry. 

3) Unlike STEP, IFC endeavours to provide a complete layered modelling framework,  
the IFC Project Model, as a consistent basis for the development of domain-specific 
data models corresponding to the disciplines involved in the realisation and main-
tenance of construction facilities. 

4) IFC follows a more pragmatic model development approach than STEP and contains 
several concepts specifically intended to facilitate faster software implementation. 

The IFC model architecture provides a modular structure for the development of model 
components. As shown on  Fig. VII.2  below,  it contains four conceptual layers which use  
a strict referencing hierarchy. 

Within each conceptual layer a set of inter-related model schemas are defined. 

The Resource Layer provides resource constructs used by object classes on the higher 
levels. These classes are largely adopted from the STEP Integrated Resources and are 
utilised in a similar way. However, high-level generic product representation items are not 
defined on this layer by IFC, because it provides its own kernel level specifications for that 
purpose. 

The Core Layer contains the building kernel model and several kernel extensions.  
The kernel itself provides the basic concepts that are mandatory for all IFC models within 
the scope of the modelling framework. It determines the overall model structure and 
decomposition of the framework by defining fundamental concepts concerning relation-
ships, type definitions, attributes and roles, that must be observed in all other layers.  
The kernel extensions comprise a set of schemas containing AEC specific classes which 
are all specialisations of the generic classes of the kernel. 

The Interoperability Layer incorporates a set of concepts that are shared by multiple 
disciplines. Its key idea is the definition of object classes that should serve as “plug-ins” 
for the classes defined on the domain layer. It is expected that in this way multiple domain 
models can easily be interlinked. 

Finally, the Domain Layer provides the domain-specific aspect models. Each of these data 
models is defined in a separate schema which may use or reference any class defined in the 
Core and the Resource layers. The purpose of each domain schema is the provision of 
specialised object definitions that are tailored for the use within this domain. Currently,  
the IFC framework includes domain data models for architectural design, construction 
management, facilities management and HVAC. 
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The proposed lean structural domain model, presented in concise form in section VII.5 
further below, exposes some of the suggested methods by which the IFC modelling 
framework is being extended. 
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Fig. VII.2:  The IFC model architecture 
/ adapted from (IAI 1999c) / 

IFC provides a strict methodology for the construction of the model schemas according to 
this model archutecture. In addition, it defines several constraints to the EXPRESS 
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modelling paradigm that are intended to reduce the complexity of the models and facilitate 
their implementation by application software. 

The most important of these constraint are: 

1) the substitution principle of Liskov, which forbids the redeclaration of data types  
in subclasses,  and 

2) the specialisation of all object classes by single disjunctive inheritance only  
(OR-inheritance in EXPRESS terminology). 

To enable the integration of independently developed domain data models, a more prag-
matic approach compared to the STEP AICs is proposed. Its essence is the definition of 
generic Property Objects which may contain almost all of the IFC data types, defined in 
dedicated property sets. This “flattens” to some extent the object structure and may lead to 
redundant and/or ambiguous definitions, because the content of the property objects cannot 
be controlled automatically by the object system. On the other hand, it is a useful work-
around which allows to reduce the overall complexity of the framework and provides a 
method for user-defined extensions. 
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VII.3 Overview of the data models in the COMBI project 

COMBI was one of the early projects to deal with product data technology research and 
implementation in the AEC domain. It developed a prototype system for cooperative 
design focused on the area of structural engineering, but at the same time envisioned a 
broader environment based on the idea of “integration by communication” (Junge 1991). 
Though, initially, COMBI had less ambitious goals by comparison to ATLAS, EPISTLE, 
and later on ToCEE, VEGA and other large projects, it succeeded in establishing a 
modelling framework that became one of the precursors of the IFC modelling architecture 
(Junge & Liebich 1998; IAI 1999a). 

The COMBI models are arranged in a 3-layer hierarchy, in principle quite similar to the 
IFC framework, but with less distinct “kernel” level specifications. 

(1) The top level of the modelling hierarchy is comprised of the neutral model layer.  
It provides: a) constructs that can be referenced by all other, lower level models,  
b) generic specifications that can be used as “templates” for the schemas of the 
domain-specific partial model layer, and c) domain-independent definitions of 
“building” objects that serve for instantiating a “neutral” project context, linking the 
different modelling perspectives represented by the partial models in the run-time 
environment. These features of the neutral model layer are supported by three 
model schemas: Building_project, a small “control” model capturing design 
stages, domains, participants etc., Building_system, the “root” schema for all 
more specific partial model schemas, and Topology, supporting the common 
spatial-topological aspects of the implemented partial (domain) models. 

(2) The second, partial model layer comprises the schemas defining specific aspects 
of the addressed design domains. These schemas are similar to the view type 
models of the ATLAS project and the domain extension models of IFC. 

(3) Finally, the third, application model layer contains application-specific models, 
each of which is represented by one schema providing the specification of the 
application’s exchange structures. 

A specific feature of the COMBI framework is that its models, and the respective 
application tools, are only loosely coupled. This means that except for the use of common 
templates, a binding topology, and STEP-like generic resources, the COMBI models are 
not tightly harmonised. Their cooperative use relied heavily on mapping mechanisms 
(using early versions of CSML and XP-Rule respectively), as well as on the COMBI 
Communication Manager (CCM), developed by the author of this thesis, which exploited 
some of the available Internet techniques at that time (mainly ftp-based upload/download, 
coupled with form-based WWW requests) to provide for coordinated information sharing. 

Another specific feature, found only in a few other projects, is the important role allocated 
to topology. The respective COMBI model uses non-manifold topology, as defined in 
(Weiler 1986), which is in principle very similar to (ISO 10303-42 1994). However, unlike 
STEP and IFC, this model is not treated as a resource, but as part of the system kernel. 
This brought certain benefits, but did not awake further interest, probably because of the 
heavy burden it would have put on end-user CAD systems. 
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Fig. VII.3 below illustrates the architecture of the COMBI framework, and Table VII.1 on 
the next page provides summary information about the scope of the modelling effort. The 
shaded “background pyramid” in Fig. VII.3 is used to make the hierarchical structure of 
the models more apparent. 

Fig. VII.3:Schema level diagram of the COMBI modelling framework 
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Table VII.1:  Summary of the COMBI model schemas 

 Category / Layer Model Schemas No. of 
defined 
entity types 

No. of 
defined 
data types 

 Neutral models  Building_project     4     2 
  Building_system   17     0 
  Topology   24     6 
 Subtotal:   45     8 
 Partial models    
 Architectural model  Space_generating_system     9     0 
 Site model  Site_geology_system   17     3 
 Structural model  Physical_actions   27   16 
  Structural_system   67   11 
 Subtotal: 120   30 
 Application models    
 Preliminary design  Preliminary_design   37     7 
 Foundation design  Foundation_design   14     7 
 Structural analysis  Structural_analysis   37     7 
 Reinforcement design  Reinforcement_design   15     5 
 Subtotal: 103   26 
 Generic resources  Header_section_schema     4     5 
  Support_resource     2     8 
  Date_time   10   11 
  Measure     5   24 
  Construction_materials   17   11 
  Geometry   32     2 
  Section_geometry   11     3 
  Geometric_model     2     1 
  Building_grid     4     0 
 Subtotal:   87   65 
 Total: 355 129 

Note:  In the COMBI case studies, not all of these entity and data types have been tested and used. 

A comprehensive description of the COMBI models is given in (Ammermann et al. 1994); 
details of their rationale, implementation and usage are presented in (Katranuschkov & 
Scherer 1995). 

In the development of the models themselves participated several project partners.  
The main modelling work was done by (in alphabetical order): E. Ammermann, R. Junge, 
T. Liebich, R. Scherer, and the author of this thesis. 
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VII.4 Overview of the data models in the ToCEE project 

The ToCEE project triggered many of the issues discussed in this thesis, and its modelling 
framework served as one of the main sources for the validation of the developed concepts. 

The ToCEE framework is comprised of a 5-layered set of models (from top to bottom): 

(1) The Meta model layer presets the basic principles of the whole modelling paradigm.  
It server for the formal definition of all allowable basic and user-defined data types, 
as well as for the generic definition of object classes. Following the specifications in 
the Meta model, each object class in any other model has a parent concept and 
contains a set of attributes describing its state, and a set of operations defining its 
behaviour. Each attribute has in turn a tag indicating if it is part of the EXPRESS 
entity specification and should thus participate in the data exchange between 
applications. Each operation is defined through its signature (name, type and 
arguments). In addition, each class definition contains also an identification attribute 
which can be linked to one of the attributes defined in the EXPRESS schema as is the 
case with the ProjectID attribute of TC_IfcRoot and its subclasses. 

(2) The Kernel model layer defines in three schemas the high-level generic concepts 
which are common to all lower level models representing product, document and 
process related information. The first of these schemas, TC_IfcKernel, is a modified 
version of the IFC Kernel Model, version 1.5 final, extended with some additional 
data management concepts, such as views, approvals, more comprehensive access 
rights and authorisation specifications etc. The second schema, TC_Communication, 
is almost identical to the communication model presented in section 4.3. The third 
schema, TC_Population, is very similar in structure to the SDAI dictionary model 
(ISO 10303-22 1998), but is extended with important meta model information. It 
incorporates also the object class TC_MODEL, and the respective model-level 
operations implemented in ToCEE  (Hyvärinen et al. 1999). 

(3) The Neutral model layer presents the basic concepts for each modelling perspective, 
i.e. Neutral Product Model, Neutral Document Model, Neutral Process Model, 
Neutral Contract Model and a common high-level Conflict Model. These neutral 
models have been respectively implemented in the different data management servers 
of the ToCEE environment. 

(4) The Aspect model layer further specialises the Neutral Product Model for selected 
domains of building construction by defining aspect models for architectural, 
structural, HVAC and geotechnical design, as well as for facility management. These 
models are strictly harmonised with the upper model layers and do not require any 
mapping transformations. However, they are also quite limited in their scopes. 

(5) At last, the Application model layer is intended to accommodate the native models of 
diverse applications. In the scope of ToCEE, this layer includes, as practical 
examples, only a structural and a small geotechnical application model. 

In addition to these five model layers, a set of independent resources are available to all 
other models for referencing - except for the (self-contained) application models, which 
only copy constructs found useful. 

Fig. VII.4 below illustrates the architecture of the ToCEE framework, and Table VII.2 
provides summary information giving an impression of its scope. 
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Note: In the ToCEE scope only a structural and a geotechnical application model have been 
implemented. The architectural, HVAC and FM tools incorporated in the environment 
use directly the respective domain (or aspect) models. Ifc in the model name indicates 
that the model is very close or identical to the respective IFC schema (version 1.5 final). 

Fig. VII.4:  Schema level diagram of the ToCEE modelling framework 
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Table VII.2:  Summary of the ToCEE model schemas 

 Category / Layer Model Schemas No. of 
defined 
entity types 

No. of 
defined 
data types 

 Meta model (1) TC_META     5   11 
 Subtotal:     5   11 
 Kernel models TC_IfcKernel   21     4 
 TC_Communication   11     5 
 TC_Population     7     3 
 Subtotal:   39   12 
 Neutral models TC_PRODUCT_MODEL 

 (TC_NPtM + Shared Elem.) 
  72   31 

 TC_Document_Model  (TC_NDM)   25   10 
 TC_Process_Model (TC_NPsM)   13     1 
 TC_Contract_Model   24     3 
 TC_Conflict_Model   26     4 
 Subtotal: 160   49 
 Aspect models (2)    
 Architectural model ext. TC_IfcARC N/A N/A 
 HVAC model ext. TC_IfcHVAC N/A N/A 
 Structural model ext. TC_STRUCT N/A N/A 
 Geotechnical model ext. TC_GEO N/A N/A 
 FM model ext. TC_IfcFM N/A N/A 
 Subtotal: N/A N/A 
 Application models (3)    
 Struct. design appl. model SA_APM 127   96 
 Found. design appl. model FD_APM   18     8 
 Subtotal: 145 104 
 Resource models see (IAI 1997) and Fig. VII.4   47   61 
 Subtotal:   47   61 
 Total: 396 237 

Notes: 
(1) Formally, the Meta model includes 28 entity types and 11 defined data types, providing more 

strict definition of all basic information items supported in the environment. However, in the 
implementation, basic types like Integer, Real, Boolean etc. have been directly mapped to the 
appropriate data types provided by the respective programming languages. 

(2) As all aspect models are tightly harmonised with the kernel and neutral models, they introduce 
no new entity and data types, but only new property definitions, not shown in the above table. 

(3) The developed application models cover only the data exchange needs of the respective tools 
used in the ToCEE environment. Unlike the aspect models, they were used as long-form 
schemas, including all referenced resource objects from the resource model schemas. However, 
in the ToCEE demonstration scenario, not all of the specified entities have been tested. 
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A comprehensive description of the ToCEE models and their rationale is provided in 
(Hyvärinen et al. 1997). An extended summary of the developed concepts and the imple-
mentation are presented in (Hyvärinen et al. 1999). The ToCEE product data management 
services are discussed also in (Hyvärinen et al. 1999), as well as in (Katranuschkov & 
Hyvärinen 1998) and in (Scherer & Katranuschkov 1999). 

Whilst most of the ToCEE models closely follow IFC, version 1.5 final, the framework as 
a whole introduces several novel concepts, many of which are related to the approach 
developed in this thesis. 

The modelling work itself was basically performed by (in alphabetical order) R. Amor,  
J. Hyvärinen, P. Katranuschkov, Ž. Turk and R. Wasserfuhr, coordinated by J. Hyvärinen 
and the author of this thesis. 

Fig. VII.5 and Fig. VII.6 below, taken from the GUI of PROMISE, show the inheritance 
structure of TC_PRODUCT_MODEL, the basic model schema used in the ToCEE environ-
ment. Since this model closely follows the IFC Project Model, the presented figures can be 
interesting also for analysing the structuring of the IFC framework from the point of view 
of class inheritance, which is not so readily visible with EXPRESS-G. 

 

Fig. VII.5:  Screenshot (1 of 3) of the inheritance graph of schema TC_PRODUCT_MODEL 
 (entity classes belonging to the kernel model layer are grey shaded) 
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Fig. VII.6:  Screenshots (2 & 3 of 3) of the inheritance graph of schema TC_PRODUCT_MODEL 
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VII.5  Selected Data Model Schemas 

VII.5.1.  The IFC 2.0 Kernel Model 

This section provides an overview of the IFC Kernel Model, release 2.0 final, referenced at 
many places in this thesis. The EXPRESS-G diagrams, part of the original IFC docu-
mentation (cf. IAI 1999c), are reproduced here for informative purposes. 

 
©  International Alliance for Interoperability
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Note:  

The above diagrams provide only an overview of the entity classes defined in the IFC Kernel 
Model. For an in-depth view of IFC, the relevant reports and publications (Liebich & Wix 
1998; IAI 1999b,c,d), containing details of the rationale, textual descriptions of the separate 
classes and their purposes, specifications and explanation of property sets etc., should be 
consulted. 
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VII.5.2.  Prototyped structural domain extension for IFC 2.0 

This model has been developed in a diploma thesis (Weise 1999), conducted at the 
Dresden University of Technology under the supervision and guidance of the author. 

The goal of the model was to represent within the frames of the IFC modelling architecture 
the structural elements, mechanical assumptions and structural analysis models used in the 
design of a building, so that the structural design intent can be captured, and at the same 
time, the bilateral connection with the architectural data can be preserved. Not in scope 
was a detailed description of mechanical models, e.g. as needed for FE analysis, which 
limited the model in size to the most important structural characteristics that can be used as 
basis both for the structural designer’s work, and to support the co-operative work in a 
project. 

 
 
 
 
 
 
 
 
 

Fig. VII.7: Schematic presentation of the rationale of the 
developed structural domain extension model 

The developed concept fulfils a preset requirement to use as many as possible of the 
existing IFC object classes and define as few as possible new “structural domain” objects. 
This “minimal” extension is reached in first place by utilising the possibilities of property 
objects offered by the IFC model, and in second place by re-arranging the structural 
information in such way that it fits seamlessly into predefined IFC classes, or in subtyped 
object structures derived from high-level IFC concepts along the line of the IFC modelling 
paradigm. 

An important aspect in the model design has been the specific treatment of the topological 
connectivity of structural elements along with the mechanical properties of the 
connections. Another important aspect for the acceptance of the developed structural 
domain model are the offered capabilities for the mechanical modelling of a building’s 
bearing structure so that the structural engineer must not follow predefined ways to 
describe the building structure, but can choose his own preferred way of working.  
To tackle this issue, both spatial and planar mechanical models, as well as possibilities to 
define substructures, and support multiple, alternative mechanical models are foreseen. 
The dependencies between such “partial” mechanical models can be conveniently defined 
and stored, which normally is not supported in other known similar modelling efforts. 

Structural analysis 
application 

XY 

architectural model extensions by the structural eng.

IFC Project Model 
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In the context of this thesis, the developed model is interesting in three ways: 

(1) It allowed to analyse the benefits, as well as the limitations of the harmonisation 
approach to IFC model development; 

(2) It showed the applicability of a strictly aligned with IFC “lean” structural model to the 
solution of practical structural analysis tasks,  and 

(3) It provided the basis for the development of alternative interfaces to a structural 
analysis system (SOFiSTiK), which was used to perform simple 3-dimensional linear 
analyses for testing purposes. 

The software implementation enabled a quantitative evaluation of some of the inter-
operability issues addressed in this study. Out of that, the following observations could be 
made: 

1. Because of the tight harmonisation with the IFC Project Model, the generation of the 
initial structural model was easy, and did not require any mapping specification. 

2. In contrast, the interface to an example application-specific model developed for the 
SOFiSTiK system was, as expected, more difficult to implement. 
A straight-forward implementation in Java, directly using the provided Information 
Container API presented in Appendix II, yielded - for the example structure shown on 
Fig. 1.6 (chapter 1) and Fig. VII.7 above respectively - more than 800 client requests 
which took about 15 min. to execute. Most of this time was spent for “pure” TCP/IP 
communication, whereas the execution time of the operations at the server took less 
than half a minute. 
An improved implementation, using knowledge-based templates, allowed to reduce 
the number of requests by a factor of 3. This decreased the communication overhead 
almost three times by a slight increase of the server load of about 10-15%. 
Finally, with a mapping specification, only one request is needed, the client interface 
program can be reduced almost two times in size, and the main load of the needed 
operations is “pushed” to the server side. 
However, it must be noticed that quantitative results were obtained only for three 
comparatively small models. Since the relationship between the different approaches 
is not expected to be linear, more numeric investigations are needed to deduce 
practical hints when each of these approaches would be best to use. 

The EXPRESS-G diagrams shown on the next pages provide an overview of the developed 
model. They include: 
(1) an extension of the IfcSharedBuildingElements schema on one page, providing two 

“foundation” entities forgotten in IFC, and an “action” entity seen as useful for other 
domain models as well,  and 

(2) the actual structural domain model specification on seven pages. 

Not shown are the various property objects specified for the model. 

A comprehensive explanation of the model components and the defined 38 property 
objects is provided in (Weise 1999). 
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VII.5.3.  Example application-specific model for linear structural analysis 

This model has been developed “on the fly” (in about two days), for the purposes of testing 
the model presented in the previous section. It includes only the data required for linear 
structural analysis by the SOFiSTiK system, but was nevertheless quite useful for the 
implementation of different versions of the interface to PROMISE, as well as for 
demonstrating the possible differences between various “structural” models that might 
need to be tackled in an integration environment. The presented EXPRESS-G schema 
below is intended only as a brief overview of the model. It shows only the important links 
between the individual entities, whereas most of the value attributes are skipped. The 
names of the individual entities are basically taken from the respective keywords of the 
SOFiSTiK input, the short 2 and 3-letter names denote different loading characteristics. 
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The basic abbreviations used in this thesis are as follows: 

Term Meaning Area 

ACL Access Control List Information Technology 
AEC Architecture, Engineering, Construction Building Construction 
AI Artificial Intelligence Computer Science 
AIC Application Interpreted Constructs ISO STEP 
AIM Application Interpreted Model ISO STEP 
AP Application Protocol ISO STEP 
API Application Program Interface Information Technology 
ARM Application Reference Model ISO STEP 
BLOB Binary Large Object Information Technology (IT) 
CAD Computer Aided Design Information Technology  

in all industry areas 
CAE Computer-Aided Engineering Building IT 
CAx General term for CAD, CAM, CAE etc. Information Technology  

in all industry areas 
CALS Continuous Acquisition and Life-Cycle Support Information Technology  

in all industry areas 
CE Concurrent Engineering Abbrev. used in this thesis 
CEE Concurrent Engineering Environment Abbrev. used in this thesis 
CGI Common Gateway Interface Information Technology 
CIC Computer Integrated Construction 

(corresponds to CIM in mechanical eng.) 
Building IT 

CLOS Common LISP Object System Information Technology 
CORBA Common Object Request Broker Architecture Information Technology 
CSML Context-Independent Schema Mapping Language Acronym from this thesis 
DBMS Database Management System Information Technology 
EBNF Extended Backus-Naur format Information Technology 
EDI Electronic Data Interchange Information Technology 

in the business domain 
EDIFACT International standard for EDI messages Information Technology 

in the business domain 
EDM Electronic Document Management Information Technology 
ER Widely used abbreviation for the 

Entity-Relationship modelling paradigm 
Information Technology 

FM Facilities Management Building Construction 
FTP File Transfer Protocol Information Technology 
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Term Meaning Area 

GUI Graphical User Interface Information Technology 
HTML Hypertext Mark-Up Language Information Technology 
HTTP Hypertext Transfer Protocol Information Technology 
HVAC Heating, Ventilation and Air Conditioning Building Construction 
IAI International Alliance for Interoperability Building IT 
IDL Interface Definition Language for CORBA Information Technology 
IFC Industry Foundation Classes 

(the modelling framework developed by the IAI 
as a de facto industry standard for the building industry) 

Building IT 

IR Integrated Resources ISO STEP 
NIAM Nijssen’s Information Analysis Method Information Technology 
ODBC Open Data Base Connectivity Information Technology 
OMT Object Modelling Technique Information Technology 
OSI Open Systems Interconnection Information Technology 
PDM Product Data Management Information Technology  

in all industry areas 
PDT Product Data Technology Information Technology  

in all industry areas 
PROMISE Product Data Management Information Server Acronym from this thesis 
RDBMS Relational Database Management System Information Technology 
RFC Request For Change Building Construction 
RMI Remote Method Invocation 

(as introduced in the Java language) 
Information Technology 

SDAI Standard Data Access Interface ISO STEP 
SGML Standard Generalised Mark-Up Language Information Technology 
SPF Unofficial, but widely used abbreviation for the 

STEP physical file format 
ISO STEP 

SQL Structured Query Language, a standardised interface 
specification for database management systems 

Information Technology 

STEP Standard for the Exchange of Product Data Information Technology 
in all industry areas 

TCP/IP Transmission Control Protocol / Internet Protocol 
(the basic protocol family of the Internet) 

Information Technology 

UML Unified Modelling Language Information Technology 
VR Virtual Reality Information Technology 
VRML Virtual Reality Modelling Language Information Technology 
WfM Workflow Management Information Technology 
WfMC The Workflow Management Coalition Information Technology 
WWW The World Wide Web Information Technology 

in all areas 
XML Extensible Mark-Up Language Information Technology 
XML DTD XML Document Type Definition Information Technology 
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 concurrent engineering issues  35 
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CEE  --  see Concurrent Engineering  
     Environment 
CEE system  13, 47 
 architecture  56 
 basic design principles  49 
 modelling framework  50, 54 
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 requirements to PDT  48 
Client/Server system  7, 56, 64 
COMBI  10, 17, 331 
Communication event  79 
Communication model  79, 111 
 examples  83 
 scope and extent  80 
 structure and components  79 
Computer-integrated construction  13 
Conceptual model  13 
Concurrency  61 
Concurrent Engineering  1, 2, 13 
 in design  24 
 in construction  26 
 IT support  31 
 relationship to project 
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Concurrent Engineering Environment  13, 47 
Concurrent project processes  62 

Conflict management server  242 
Construction project  26 
 conventional  26 
 responsibilities  29 
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 parser  323 
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 representation of  
 set relational operations  183 
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 structure and components 156 
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 templates  162 
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EXPRESS  126, 263 
EXPRESS-C  87, 230, 305 
EXPRESS-G  267 

F 
Fast tracking  22 

G 
Gardner P. J.  31 

H 
Harmonisation  --  see  Model harmonisation 

I 
IFC  8, 19, 328, 339 
 adequacy for CEE  66 
 modelling framework  328 
 model harmonisation  120 
 structural domain extension model  344 
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I 
Information Container  60, 71, 111 
 API for Java  269 
 examples  76 
 externalisation  71 
 mapping of entities defined  
 in EXPRESS data models  75 
 parser  323 
 structure and components  72 
 syntax specification  74 
 XML representation  111, 289 
Information modelling layers  39 
Integration  13 
Interoperability  58 
 functional  58,  
 semantic  58 
 services 
 systemic  58, 67 
Interoperability services  234 
ISO/OSI model of communication  58 
ISO STEP  --  see STEP 

K 
Knowledge-based extensions  98, 248 
 examples  105 
 mapping of entities defined 
 in EXPRESS data models  103 
 parser  323 
 structure and components  99 
 syntax specification  100 
Knowledge level  59, 250 

M 
Mapping  125 
 case studies  203-228 
 examples  191-198 
Mapping language  153 
 CSML  140 
 EDM-2  145, 228 
 EXPRESS-M  142, 228 
 EXPRESS-V  143, 228 
 EXPRESS-X  144, 226, 228 
 OM  145 
 requirements  140 
 Transformr  142 
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Mapping patterns  132-139 
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 application  43, 55 
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 conceptual  13 
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 generic  40 
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Modelling framework  6, 9, 14, 43, 54 
 COMBI  10, 331 
 decomposition  51, 52 
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Model mapping  --  see  Mapping 
MODEL object  90, 110 

O 
Object  14 
 addressable  90 
 private  91 
 registered  90 
Object-oriented modelling  14 
Object Request Broker  56 
Ontology  59 
 Ontological commitment  59 
Operation  14, 60 

P 
PDT  --  see Product Data Technology 
Product data model  13 
Product model  13 
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 historical review  36 
Project data agent --  see Agent 
Project data operations  86, 111, 305 
Project data server  56 
PROMISE  229, 252, 258, 305 
(see also project data server) 
 application interfaces  232 
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