
 

 
 

Fakultät Bauingenieurwesen Institut für Massivbau 

 

Erkennung struktureller Veränderungen an realen Brücken 

unter Nutzung von Methoden des Maschinellen Lernens 
 

Detection of structural changes in bridges  

using machine learning methods 

 

Vorgelegt von 

Frederik Wedel 

an der Fakultät für Bauingenieurwesen 

 

Dissertation 

Zur Erlangung des akademischen Grades 

Doktor-Ingenieur (Dr.-Ing.) 

 

Erstgutachter 

Prof. Dr.-Ing. Steffen Marx 

 

Zweitgutachter 

Prof. Dr.-Ing. Karsten Geißler 

Prof. Dr.-Ing. Thomas Braml 

 

Tag der Einreichung: 04.04.2025 

Tag der Verteidigung: 10.10.2025 

 

  



 

 Hauptreferent: Prof. Dr.-Ing. Steffen Marx 
Institut für Massivbau 
Technische Universität Dresden 

 
 Korreferent: Prof. Dr.-Ing. Karsten Geißler 

Entwerfen und Konstruieren – Stahlbau 
Technische Universität Berlin 

 
 Korreferent: Prof. Dr.-Ing. Thomas Braml 

Institut für konstruktiven Ingenieurbau 
Universität der Bundeswehr München 

 
 Kommissionsmitglied: Prof. Dr.-Ing. Robert Jockwer 

Institut für Stahl- und Holzbau 
Technische Universität Dresden 

 
 Vorsitzender: Prof. Dr.-Ing. habil. Karsten Menzel 

Institut für Bauinformatik 
Technische Universität Dresden 



 

i 

Kurzfassung 

Die zunehmende Anzahl alternder Brückenbauwerke und die damit verbundene Notwendigkeit, ihre 

Sicherheit und Nutzungsdauer zu gewährleisten, erfordern eine automatisierte Überwachung. Strukturelle 

Anomalien sollen frühzeitig erkannt werden, um rechtzeitig Maßnahmen einleiten zu können und kritische 

Schäden zu verhindern. Obwohl es in der Forschung zahlreiche Methoden zur Anomalieerkennung gibt, 

bleibt deren Übertrag in die Praxis begrenzt. Häufig werden diese Ansätze auf Labor- oder simulierten 

Daten getestet, deren Übertragbarkeit auf reale Bedingungen ungewiss ist. 

In dieser Arbeit wird eine regressionsbasierte Methode auf reale Messdaten angewendet und ihre 

Praxistauglichkeit untersucht. Die Methode wurde gezielt gewählt, da sie Langzeitmonitoringdaten nutzt, 

die häufig an Bauwerken, wo ein Monitoring durchgeführt wird, erfasst werden und somit ohne 

zusätzlichen Messaufwand verfügbar sind. Die vorliegende Arbeit basiert auf Daten realer Bauwerke, bei 

denen dokumentierte strukturelle Änderungen erfasst wurden. Die Methode basiert auf der Vorhersage 

von Tragwerksreaktionen aus Temperaturmessungen mittels Machine-Learning-Modellen. Abweichungen 

zwischen den vorhergesagten und gemessenen Daten werden als Anomalien interpretiert, deren 

ingenieurtechnische Bewertung weiterhin auf physikalischen Zusammenhängen und Fachwissen beruhen 

muss. Dabei wird die Peak-Over-Threshold-Methode für die robuste Schwellenwertbestimmung 

verwendet, um zuverlässige Aussagen über das Vorliegen struktureller Änderungen zu treffen. Die 

Ergebnisse zeigen, dass die Methode auch unter praxisnahen Bedingungen zuverlässig funktioniert und 

robuste Vorhersagen liefert. Durch systematische Untersuchungen zu den erforderlichen 

Trainingsparametern konnte eine effektive und frühzeitige Anwendung der Methode ermöglicht werden. 

Zusätzlich wurden praxisorientierte Empfehlungen erarbeitet, die die Robustheit und Übertragbarkeit der 

Methode weiter stärken. Besonders hervorzuheben ist, dass die Methode in der Lage ist, strukturelle 

Anomalien, die sich in den gemessenen temperaturbedingten Tragwerksreaktionen widerspiegeln, 

frühzeitig zu erkennen und dabei flexibel auf unterschiedliche Bauarten und Problemstellungen anwendbar 

ist. Sie eignet sich sowohl für Massivbauwerke als auch für Verbundbauwerke und kann lineare 

Zusammenhänge ebenso modellieren wie nichtlineare Beziehungen, beispielsweise das 

temperaturbedingte Lagerverhalten. Dabei kommt die Methode mit Ausnahme der ingenieurtechnischen 

Interpretation ohne komplexe physikalische Modelle aus, was ihre Anwendbarkeit in der Praxis erheblich 

erleichtert. 

Die durchgeführten Untersuchungen zeigen, dass der Multi-Layer-Perceptron-Regressor das 

leistungsstärkste Modell für die Vorhersage von Tragwerksreaktionen ist. Er ist leicht und schnell zu 

trainieren und ermöglicht eine präzise Abbildung sowohl linearer als auch nichtlinearer Zusammenhänge 

bei hoher Effizienz und Robustheit gegenüber Overfitting. 

Ein wesentlicher Erkenntnisgewinn liegt weiterhin in der Unterscheidung zwischen Messfehlererkennung 

und struktureller Anomaliedetektion. Während zur Messfehlererkennung korrelierte Tragwerksreaktionen 

als Eingangsdaten genutzt werden, um Sensorausfälle oder Kalibrierprobleme zu identifizieren, werden zur 

Erkennung struktureller Änderungen ausschließlich externe Einwirkungen wie Temperatur verwendet. Dies 

verhindert, dass Strukturänderungen durch Korrelationen in den Eingangsdaten überdeckt werden.  

Außerdem erfordert die Anwendung der Methode eine ingenieurtechnische Expertise in mehreren 

zentralen Bereichen: Zunächst ist eine sorgfältige Datenwahl erforderlich, um geeignete Eingangsgrößen 

für die Modellierung der Tragwerksreaktionen auszuwählen und sicherzustellen, dass relevante 

Einflussfaktoren angemessen berücksichtigt werden. Auch beim Feature-Engineering, das die Identifikation 
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und Aufbereitung relevanter Merkmale umfasst, insbesondere zur Abbildung transienter Prozesse, die das 

Tragverhalten beeinflussen ist ingenieurtechnische Expertise erforderlich. Ebenso spielt sie bei der 

Ergebnisinterpretation eine wesentliche Rolle, da erkannte Anomalien hinsichtlich ihrer Ursachen 

differenziert bewertet werden müssen. Insbesondere im Hinblick darauf, ob es sich um Messfehler oder 

tatsächliche strukturelle Veränderungen handelt. Die Methode ist demnach nicht darauf ausgelegt, ohne 

kritische Überprüfung angewendet zu werden, sondern sollte stets im Kontext ingenieurtechnischer 

Annahmen und Domänenwissen genutzt werden. 

Weiterhin kann die Methode unter günstigen Bedingungen bereits nach vier Monaten Messzeitraum 

angewendet werden. Dennoch zeigt sich, dass ein längerer Zeitraum von sechs bis neun Monaten und 

idealerweise ein Jahr zu robusteren Ergebnissen führt, da so eine höhere Variabilität in den Trainingsdaten 

abgedeckt wird. 

Außerdem wurde beobachtet, dass Strukturänderungen innerhalb des Trainingszeitraums einen nahezu 

linearen Einfluss auf die Modellperformance haben. Das bedeutet, dass Modelle, die überwiegend mit 

Daten aus der Zeit vor einer Strukturänderung trainiert wurden, das ursprüngliche Tragverhalten stärker 

widerspiegeln, während Modelle mit Daten nach der Änderung das neue Tragverhalten besser erfassen. 

Dies unterstreicht die Notwendigkeit einer gezielten Auswahl des Trainingszeitraums bei der Anwendung 

datengetriebener Methoden im Bauwerksmonitoring. 

Insgesamt liefert die Arbeit einen Beitrag zur Entwicklung einer praxistauglichen und robusten Methode. 

 

Schlagwörter Brücke, Monitoring, Temperaturverhalten, Maschinelles Lernen; Vorhersage, Anomaliedetektion 
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Abstract 

The increasing number of ageing bridge structures and the associated necessity to ensure their safety and 

longevity require automated monitoring systems. Structural anomalies must be detected at an early stage 

to allow timely interventions and prevent critical damage. Although numerous methods for anomaly 

detection exist in research, their transfer to practical applications remains limited. These approaches are 

often tested on laboratory or simulated data, whose applicability to real-world conditions is uncertain. 

In this study, a regression-based method is applied to real measurement data, and its practical applicability 

is examined. The method was deliberately chosen because it utilizes long-term monitoring data, which are 

commonly collected at bridges where monitoring is conducted and are therefore available without 

additional measurement effort. This study is based on data from real structures where documented 

structural changes have been recorded. The method relies on predicting structural responses from 

temperature measurements using machine learning models. Differences between predicted and measured 

data are interpreted as anomalies. The Peak-Over-Threshold method is used for robust threshold 

determination to make reliable statements about the presence of structural changes. The results 

demonstrate that the method performs reliably under practical conditions and provides robust predictions. 

Systematic investigations of the necessary training parameters enabled an effective and early application 

of the method. Additionally, practice-oriented recommendations were developed to further enhance the 

robustness and transferability of the method. A key aspect is that the method can detect structural 

anomalies at an early stage while being flexible in its application to different structural types and challenges. 

It is suitable for both reinforced prestressed concrete and composite structures and can model linear 

relationships as well as nonlinear behaviors, such as temperature-induced bearing movement. The method 

does not rely on complex physical assumptions, significantly facilitating its practical applicability. 

The conducted investigations show that the Multi-Layer Perceptron (MLP) regressor is the most effective 

model for predicting structural responses. It is lightweight and quick to train, enabling precise modeling of 

both linear and nonlinear relationships with high efficiency and robustness against overfitting. 

Another major scientific contribution lies in the differentiation between measurement fault detection and 

structural anomaly detection. While correlated structural responses are used as input data to detect sensor 

faults or calibration issues, only external loads such as temperature are considered for the detection of 

structural changes. This ensures that structural changes are not masked by correlations within the input 

data. 

Furthermore, applying the method requires engineering expertise in several key areas. First, careful data 

selection is necessary to choose appropriate input variables for modeling structural responses and to 

ensure that relevant influencing factors are properly considered. Feature engineering is also critical, 

involving the identification and processing of relevant features, particularly for capturing transient 

processes that affect structural behavior. Additionally, result interpretation plays a crucial role, as detected 

anomalies must be carefully assessed regarding their causes. Especially in distinguishing between 

measurement faults and actual structural changes. Thus, the method is not designed to be applied without 

critical evaluation but should always be used in the context of engineering assumptions and domain 

knowledge. 

Moreover, the method can be applied under favorable conditions after just four months of measurement 

data. However, findings indicate that a longer period of six to nine months, ideally one year, leads to more 

robust results, as it ensures greater variability in the training data. 
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Additionally, it was observed that structural changes occurring within the training period have an almost 

linear effect on model performance. This means that models trained primarily on data from before a 

structural change tend to reflect the original structural behavior more strongly, whereas models trained on 

data after the change better capture the new structural behavior. This highlights the importance of 

carefully selecting the training period when applying data-driven methods in structural health monitoring. 

Overall, this study contributes to the development of a practically applicable and robust method for 

monitoring structural behavior using machine learning. 
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