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1. Motivation

The uncertain input parameters of a system θ, described
by their joint PDF fθ, can be reduced by means of
Bayesian updating. Since, typically, not every parameter
in θ can be learned, θ is split as θ = [θA,θB]T , where
θB represents all parameters included in the updating
process. The data enters the Bayesian formulation in
shape of the likelihood function L(θB) = f (D|θB) which
measures how well a realization of θB may explain the
obtained data D through comparing the data with the
output of a numerical model. Formally, the posterior
distribution f (θ′B) = f (θB|D) reads

f (θ′B) =
L (θB) f (θB)∫

ΩθB
L (θB) f (θB) dθB

.

This results in a refined prediction of system responses
and therefore more accurate predictions of any quantities
of interest (Figure 1 ).
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Figure 1 : Bayesian updating and reliability with different types of
uncertainty.

In complex models, the large number of required model
evaluations often renders Bayesian updating computa-
tionally intractable. Meta-models (MM), which mimic
the numerical model at a small fraction of the computa-
tional cost, can be used the enhance the computational
efficiency of Bayesian updating.

Theory

Meta-models

We compare the performance of two meta-modeling tech-
niques, which, using a set of training points (or experi-
mental design) E = {XE, YE} obtained from the original
model (OM) G: Y = G(X)), X ∈ Rd×1, mimic G. Or-
thogonal polynomial bases {ψ(i)

j (Xi), 0 ≤ j ≤ pi i ≤ d}
of order pi in the i-th input are used to construct the
meta-models.

• Sparse polynomial chaos expansion (PCE, Su-
dret et al., 2013):

GPCE(X) =

P∑
j=1

aj

d∏
i=1

ψ(i)
αij

(Xi),

The model parameters a are determined via the or-
dinary least squares method. α is a truncated set
of d-dimensional multi-indices, in which P elements
have been retained. In sparse PCEs, P is minimized
e.g. by using model selection algorithms like least-
angle regression to find an optimal set of regressors∏d

i=1ψ
(i)
αij(Xi) to best describe G.

• Low-rank approximation (LRA, Konakli and Su-
dret, 2016)

GLRA(X) =

R∑
k=1

bk

d∏
i=1

pi∑
j=1

zijkψ
(i)
j (Xi).

The model parameters z and b are computed via an
alternating least squares method. All LRAs have been
computed at R = 1.

Updating

After having built the meta-models, updating is per-
formed with BUS and subset simulation (Straub and
Papaioannou, 2015). BUS uses an acceptance-rejection
formulation of the updating problem to recast it as a re-
liability problem with an associated limit-state function
(LSF) h(θB) = U(0,1) − cL(θB). Posterior samples are
obtained by solving the reliability problem with subset
simulation.

Prediction

The considered predictive QoI will be the distribtion of
the failure probabilitiy conditioned on the posterior vec-
tor of reducible parameters θB. The probability of failure
given θB is defined as:

Pc(θB) = EθA [I (g(θA,θ
′
B) ≤ 0) |θB] ,

where g is the failure event LSF and I is the indica-
tor function. Pc is a function of the reducible uncertain
parameters θB and therefore is itself a random variable.
The estimated density f̂Pc then expresses the uncertainty
about the predicitive quantity P(F ) associated with the
stochastic model of θB.
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Figure 2 : Flow diagram of the proposed methodology.

Example
A one-dimensional beam under constant Gumbel-
distributed line load q with µq = 3kN is considered
(Figure 3 ).
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Figure 3 : Cantilever beam under constant line load.

The beam stiffness R = EI (µR = 107N/m, σR =

3 · 106N/m) is modelled through a lognormal random

field (RF) represented by a Karhunen-Loeve-expansion:

R (x,θB) = exp

{
µlnR + σlnR

nKL∑
k=1

√
λkφk (x) θkB

}
,

where (λk, φk) are the eigenpairs of the correlation kernel
of the underlying Gaussian RF ΓN (∆x) = 1/σlnR ln[1 +

exp{−|∆x|/lR}], in which µlnR and σlnR are its mean
and standard deviation and θkB are standard-normal ran-
dom numbers (nKL = 10). For nE = 103 points,
which is obtained by latin hypercube sampling, the op-
timal polynomial orders are found to be pPCE = 9 (and
pLRA = 6. A single observation at R∗(x) and q∗ = 3µq
results in a true deflection w∗(x) and the noisy deflec-
tion observation w̃(x). The observation error εw is as-
sumed as exponentially correlated (lεw = 1m) Gaus-
sian (µεw = 0, σεw = 1mm) additive error, such that
w̃(x) = w∗(x) + εw(x).
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Figure 4 : solid - OM, dashed: PCE, dot-dashed: LRA | (a): bold -
Posterior stiffness mean µ′R(x), thin - 95% credibility intervals, green - true R∗ |
(b): bold - deflection mean relative to prior deflection mean conditional on q∗
µw′|q∗(x)− µw|q∗(x), thin - 95% credibility intervals, green & solid - true w∗,

green & circles - observed w̃ .

Figure 4 shows, LRA and PCE perform comparably
in the updating (note that the for the updating with
PCE/LRA, 103 model calls are required compared to
approximately 6 · 104 for the OM) while Figure 5 pro-
vides evidence that the LRA model has an advantage in
predicting f̂Pc.

Figure 5 : PDF and CDF of Pc. ∗ denotes true values (obtained with R∗).
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