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1. Motivation e Low-rank approximation (LRA, Konakli and Su-
dret, 2016)
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The uncertain input parameters of a system 6, described
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by their joint PDF fg. can be reduced by means of it

Bayesian updating. Since, typically, not every parameter

in @ can be learned. 0 is split as @ — 04, 05]7. whero The model parameters z and b are computed via an

0 represents all parameters included in the updating alternating least squares method. All LRAs have been

process. The data enters the Bayesian formulation in computed at £t = 1.

shape of the likelihood function L(0p) = f(D|@p) which :
L . Updating
measures how well a realization of @ may explain the
obtained data D through comparing the data with the  After having built the meta-models, updating is per-
output of a numerical model. Formally, the posterior = formed with BUS and subset simulation (Straub and

distribution f (0%) = f (0p|D) reads Papaioannou, 2015). BUS uses an acceptance-rejection
70, L(0@p)f(0p) formulation of the updating problem to recast it as a re-
B er L(0g) f(0g)dOp liability problem with an associated limit-state function

(LSF) h(0B) = U1y — cL(0p). Posterior samples are
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and therefore more accurate predictions of any quantities

simulation.

of interest (Figure 1 ).
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N ii m’ A The considered predictive Qol will be the distribtion of
) ! ) . the tailure probabilitiy conditioned on the posterior vec-
{ Reality J_, Num?‘%g” fodel 4{ Bayesian tor of reducible parameters @z. The probability of failure
L ) Updatmg oiven OQp is defined as:
f ] 4_[ Forward } [ N } P.(0p) = Eq,[1(g(04,05) <0)|05],
A Problem where ¢ is the failure event LSF and [ is the indica-

tor function. P. is a function of the reducible uncertain

parameters @ and therefore is itself a random variable.
Figure 1 : Bayesian updating and reliability with different types of The estimated den81ty f B then CXPLESSES the uneertamty
uncertainty. about the predicitive quantity P(F") associated with the

In complex models, the large number of required model ~ Stochastic model of Op.

evaluations often renders Bayesian updating computa-

tionally intractable. Meta-models (MM), which mimic Methodology

the numerical model at a small fraction of the computa-

tional cost, can be used the enhance the computational (Orlgmal Model (OM)

efliciency of Bayesian updating.
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Meta-models
Bayesian Updating with
We compare the performance of two meta-modeling tech- %{Rehabﬂity bileihods (BUS)}F
niques, which, using a set of training points (or experi-
mental design) £ = { X¢, Y¢} obtained from the original ’[Reﬁabﬂity PrediCtiOHS}
model (OM) G: Y = G(X)), X c R™! mimic G. Or-
thogonal polynomial bases {w [(X:),0 < j <pii <d} Figure 2 : Flow diagram of the proposed methodology.
of order p; in the i-th input are used to construct the
metacmodels
e Sparse polynomial chaos expansion (PCE, Su- A one-dimensional beam under constant Gumbel-
dret et al., 2013): distributed line load ¢ with p, = 3EN 1s considered
P d (Figure 3 ).
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The model parameters a are determined via the or- S
dinary least squares method. « is a truncated set \ fi(z,05) l
of d-dimensional multi-indices, in which P elements * " L ¥ w(z)

have been retained. In sparse PCEs, P is minimized

C.8. by UsINg model selection algonthms like least- Figure 3 : Cantilever beam under constant line load.

— 1O7N/m, OR —
3 - 10°N/m) is modelled through a lognormal random

angle regression to find an optimal set of regressors The beam stiffness R = EI (up

H?:1 w(@j (X;) to best describe G.
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field (RF) represented by a Karhunen-Loeve-expansion:
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R(x,0p) = exp< Min R T UlnRZ V A0k () 05 7,

)
where (g, ¢y) are t_fle eigenpairs of the correlation kernel

of the underlying Gaussian RF I'y(Ax) = 1/o1, g In|1 +
exp{—|Az|/lr}], in which w, z and oy, g are its mean

and standard deviation and 0%, are standard-normal ran-
dom numbers (ng; = 10). For ng = 10° points,

which is obtained by latin hypercube sampling, the op-
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timal polynomial orders are found to be p and

pHt4 = 6. A single observation at R*(z) and ¢* = 3,
results in a true deflection w*(z) and the noisy deflec-

tion observation w(x). The observation error €, is as-

sumed as exponentially correlated (I, = 1m) Gaus-
sian (e, = 0, 0., = 1Imm) additive error, such that
w(x) = w(x) + €,(x).
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Figure 4 : solid - OM, dashed: PCE, dot-dashed: LRA | (a): bold -
Posterior stiffness mean p/p(x), thin - 95% credibility intervals, green - true R* |
(b): bold - deflection mean relative to prior deflection mean conditional on g
ft| g+ (T) — faylg+ (), thin - 95% credibility intervals, green & solid - true w*,
green & circles - observed w .

Figure 4 shows, LRA and PCE perform comparably
in the updating (note that the for the updating with
PCE/LRA, 10° model calls are required compared to
approximately 6 - 10* for the OM) while Figure 5 pro-
vides evidence that the LRA model has an advantage in
predicting fpc.

Figure 5 : PDF and CDF of P.. x denotes true values (obtained with R*).
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