

Understanding the effects of climate change on the livelihood strategies of small farmers of the Andean Region: A modeling approach

Vidal M.

Lima, 02 August 2011

Presentation outline

- 1. General information about the research project
- 2. Methodology
- 3. Research progress
- 4. Next steps

1. General Information

Main research objective:

To analyze farmers' agronomic adaptation strategies to climate change and the effects of these strategies on the farmers' socioeconomic status. The focus is on traditional farmers of the Andean Region of Peru.

Specific objectives

Obj.1: To analyze past climate trends and elaborate future climate scenarios based on the detected trends.

Obj.2: To investigate how climate change impacts the livelihood strategies of local farmers.

*Obj.3:*Characterize the productive strategies farmers are using for coping with climate change, concretely: shelterbelts, irrigation, forest plantations, and change in the type of cultivar.

Obj.4: Simulate the probable adaptation responds of farmers to the proposed climate change scenarios.

Obj.5: To estimate the socioeconomic outcomes for each scenario.

Obj.6: Analyze the trade-off between the different adaptation strategies evaluated.

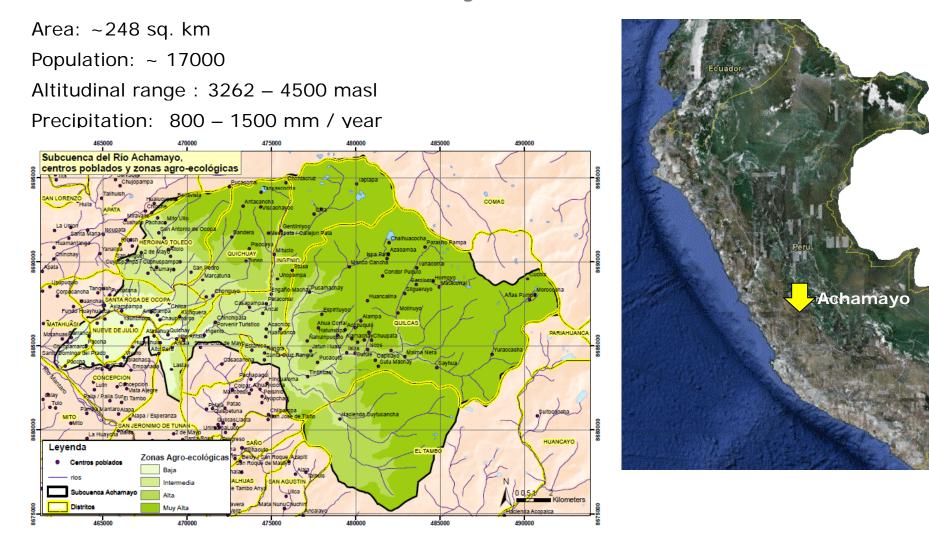
Research questions

Q1: Are there already signs of climate change in the study area? Of which kind?

Q2: Do farmers of the Andean Region have already been experiencing issues concerning climatic change? What is the nature of these issues?

Q3: Which productive strategies are being used by farmers of the Andean Region to cope with Climate Change?

Q4: Which farmers' adaptation strategies can be expected under the different future climate change scenarios? How will they develop in time?


Q5: How do the strategies adopted (in the different CC scenarios) will impact the socioeconomic status of the farmers at a household level?

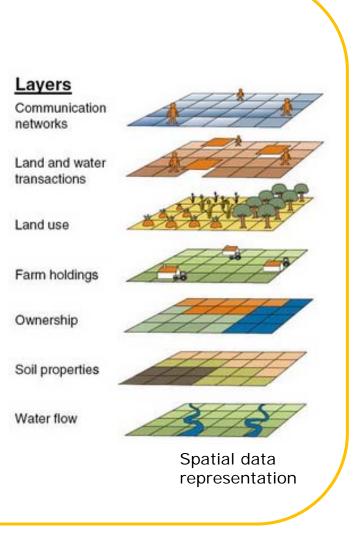
Q6: What are the expected trade-offs between the different adaptation strategies under study?

Research site: the Achamayo sub watershed

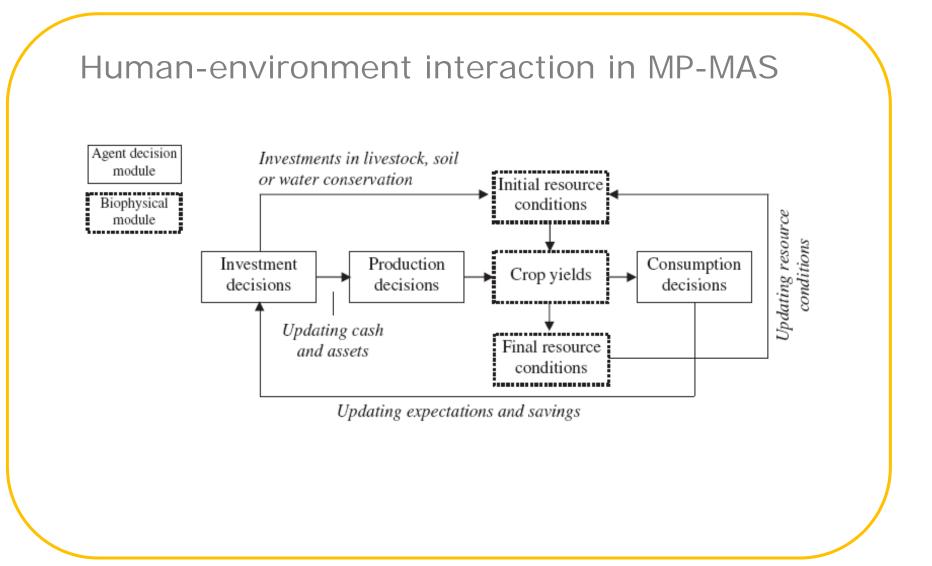
2. Methodology

2. Methodology

Main Tool: MP-MAS


Name: Mathematical Programming-based Multi-Agent Systems (Version 2.0)

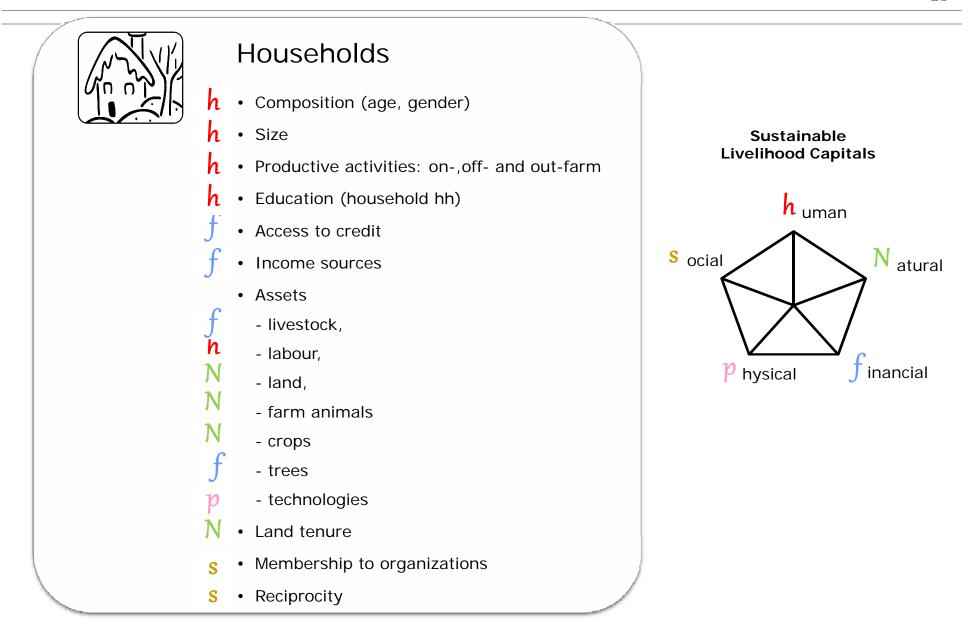
Developers: Berger, T. and P. Schreinemachers (2009) University of Hohenheim.


www.mp-mas.uni-hohenheim.de

Used for simulating land use change in agriculture and forestry. It combines socio economic models of decision-making with biophysical models simulating the crop yield response to changes in environmental factors e.g. water supply, soil nutrients.

The model needs to be adapted (or complemented by another program) to also incorporate the effect of changes in T° , e.g. for frost events.

MP-MAS: Information requirement

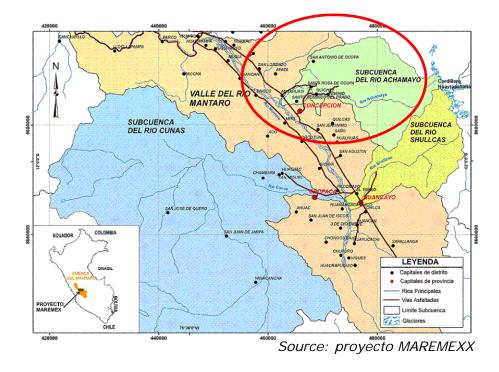

Climate •Historical weather records		\checkmark	IGP
Population •Demographic composition •Asset composition	• Location	✓	Field data
Households •Composition (age, gender), size •Assets (labour, land, animals, crops,) •Productive activities •Education (household hh)	 Access to credit Land tenure Income sources Membership to organiza 	ations	Field data
Technologies Characteristics % of population currently using the technology 	• Minimum investment y		Ongoing (Amos + field data)
Markets •Production costs •Selling and purchasing prices		X	Field data
Land use •Land use classification •Soil clasiffication			Ongoing (Medina + second. data)

MP-MAS: Information requirement

Climate •Historical weather records		IGP
Population Demographic composition Asset composition 	 Location 	Field data
Households •Composition (age, gender), size •Assets (labour, land, animals, crops,) •Productive activities •Education (household hh)	 Access to credit Land tenure Income sources Membership to organizat 	Field data
Technologies Characteristics % of population currently using the technolog 	• Minimum investment Iy	Ongoing (Amos + field data)
Markets Production costs Selling and purchasing prices 		Field data
Land use •Land use classification •Soil clasiffication		Ongoing (Medina + second. data)

An example: indicators of the livelihood approach 2. Methodology

- 3. Research Progress
- Data collection
- Data analysis


Data collection

- a) Selection of the study site
- b) Participatory workshops
- c) Semi-structured interviews
- d) Interview with key informants
- e) Frost research
- f) Networking

a) Selection of the study site

- Literature review
- Definition of selection criteria
 - Evidence of climatic change affecting the livelihood strategies of farmers.
 - Agriculture is one of the main economic activities.
 - Traditional agricultural practices are still in use
 - Population is conformed by small-farmers
 - Forestry is a complementary economic activity
- Meetings with key informants
 - \rightarrow IGP, Agrorural
- Field visits to watersheds

3. Research progress

b) Participatory workshops

- 5 participatory workshops in:
 - ✓ Marcatuna
 - ✓ La Libertad
 - ✓ San Antonio
 - ✓ San Pedro

- Main information collected:
 - ✓ Seasonal calendars for agriculture and forestry
 - ✓ Perceptions about climate in the past, present and future
 - \checkmark Transects of the community, thematic maps
 - ✓ Agricultural production and costs
 - ✓ Main productive problems

c) Semi-structured interviews

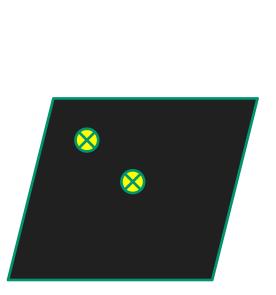
- 70 semi-structured intervies at household level were conducted in:
 - ✓ Marcatuna
 - ✓ La Libertad
 - ✓ San Antonio
 - ✓ San Pedro
 - ✓ Santa Rosa de Ocopa
 - ✓ Huanchar

- ✓ Quilcas (Huancayo) 15 interviews
- ✓ Ingenio (Huancayo) 15 interviews
- ✓ Quichuay (Huancayo) 15 interviews
- ✓ Nueve de Julio (Concepción) 15 interviews

d) Interview with key informants

- IGP
 - ✓ Ing. Raúl Yaranga
 - Ing. Enma Nunez
 - ✓ (...)

AgroRural


- ✓ Ing. Francisco Amaro Salazar, Director Zonal Junín
- ✓ Ing. Daniel Torpoco, Esp. Manejo RRNN DZonal Junín-Huancayo-Peru
- ✓ Ing. Guillermo Malpartida Lagos jefe de la Agencia Zonal Concepción-Jauja
- Ing. Miriam Vergara, Esp. Forestal Agencia Zonal Concepción-Jauja
- INRENA
 - ✓ Ing. Luis Baldeón Jara, Adm. Forestal y de Fauna Silvestre-Sierra Central
- ANA
- Municipalidades
 - ✓ Heroínas Toledo
 - ✓ Santa Rosa de Ocopa

e) Example for adaptation strategies: frost research

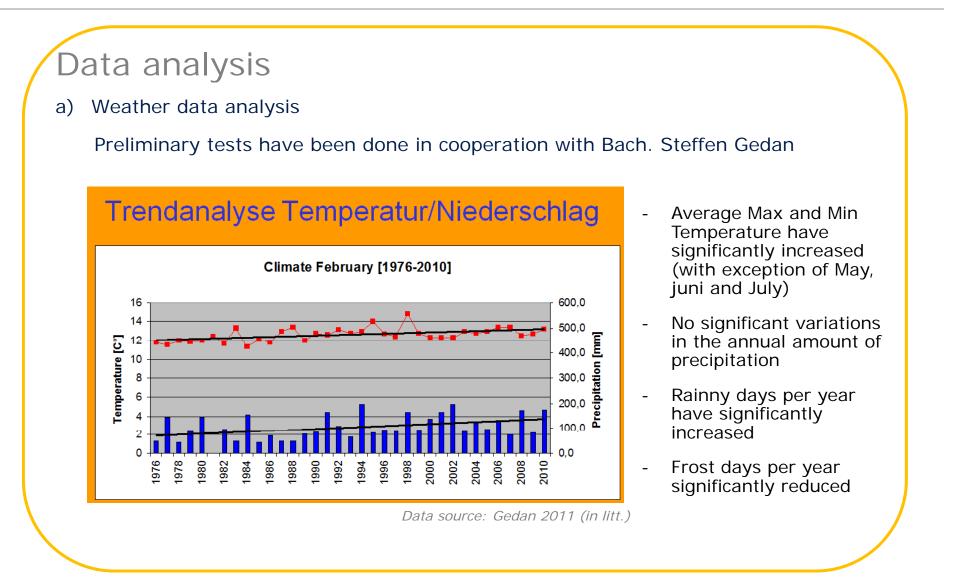
• Research question: Does shelterbelts contribute to increase the minimum temperature during frost events, therefore, protecting crops against them?

Agricultural plot

Agroforestry plot

-Registration of minimum temperature during frost events

e) Frost research (...)



- Also: ongoing research of the effects of shelterbelts on droughts (Msc. Jost)

4. Next steps

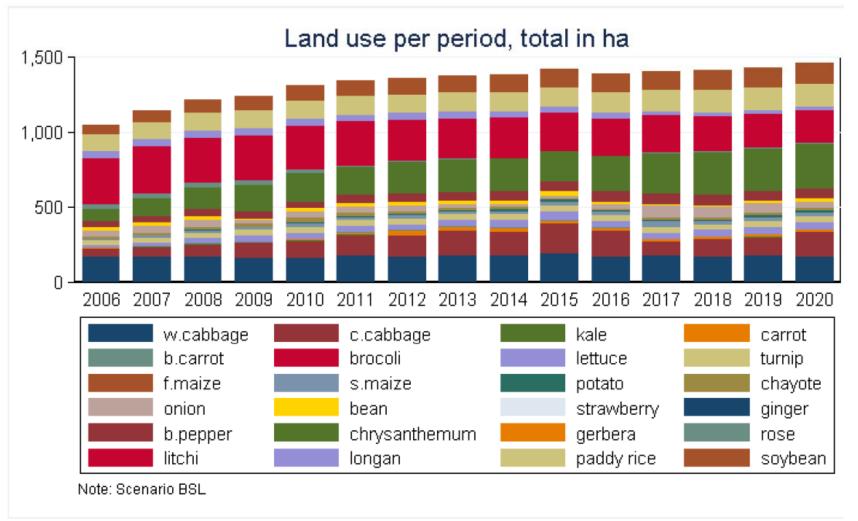
4. Next steps

4. Next steps

Schedule

No	No. Actividad		2011					2012											
NO.			Α	S	0	Ν	D	J	F	Μ	Α	Μ	J	J	Α	S	0	Ν	D
1	Presentation of the final research proposal																		
2	Kolloquium 1																		
3	3 Visit to Hohenheim for learning MP-MAS (HOHENHEIM)																		
4	4 First parametrization of the model																		
5	5 First simulation experiments and data analysis																		
6	6 Kolloquium 2																		
7	7 Data collection (PERU)																		
8	8 Model preliminary implementation																		
9	9 Kolloquium 3																		
10	Modification of the model to fit the objectives of the study																		
11	Simulation experiments with the adapted version of MP-MAS																		

MUCHAS GRACIAS!


MP MAS : application examples

Research questions addressed in MP-MAS applications

Country	Research question	Key references
Chile	What would be the impact of water pricing on the efficiency of irrigation water use and land use dynamics?	Berger et al., 2007; Berger, 2001
Germany	What could be the impact of climate change on land use and farm incomes?	Berger et al. 2010
Ghana	What would be the impact of a transition from rain fed to irrigated agriculture?	Birner et al. 2010
Thailand	What would be the impact of four fruit tree technologies (fruit drying, artificial flower induction, extended shelf-life, and improved irrigation) on land use, erosion and levels of pesticide use?	Schreinemachers et al., 2009, 2010
Uganda	What would be the impact of hybrid maize varieties and better access to farm credit on poverty and environmental sustainability?	Schreinemachers et al. 2007, Schreinemachers, 2006
Vietnam	How would the adoption of soil conservation measures affect short- and long-term household incomes?	Quang et al., 2010

Example of a watershed in Thailand: how introduction of technologies affect land use

Example of a watershed in Thailand: how introduction of technologies affect economical and environmental criteria

Table 4 Results for alternative fresh fruit prices, with and without innovations, average values

Fresh litchi	Lite orchare		House inco		Pesti loa		Erosion soil loss			
price	with	without	with	without	with	without	with	without		
6 bt/kg	98	94	100	100	100	101	101	101		
9 bt/kg	106	100*	100	100*	97	100*	98	100*		
12 bt/kg	124	111	99	99	94	98	94	97		
15 bt/kg	140	122	98	98	90	94	89	92		
18 bt/kg	148	132	101	98	86	92	87	89		
21 bt/kg	153	139	104	99	85	90	86	86		
24 bt/kg	156	145	108	102	84	89	85	85		

2006-2020 expressed as index numbers (baseline scenario=100).

Note: * Baseline scenario (same as in Table 4).