Lessons learned from the Tunari Nationalpark, Bolivia

Institute of Biology/Geobotany, Martin-Luther-University Halle-Wittenberg, Germany Centre for Development and Environment (CDE), University of Bern, Switzerland

*Contact: regine.brandt@botanik.uni-halle.de

Identification of Agroforestry Plants

Agroforestry: adaptation strategy to Climate Change

(Verchot et al. 2007, Bellow et al. 2008)

Methods from quantitative ethnobotany → use value, cultural importance of plants (Hoffman and Gallaher 2007)

Frequent and early citation in freelisting exercise \rightarrow perception

(Quinlan 2005; Quinlan 2010)

Quality, intensity and exclusivity of plant uses known and applied; symbolic values

(Turner 1988)

Level of agreement among the informants (informant consensus)

Intra-Cultural Knowledge Variation

Perception and knowledge about plants are not equally shared in a given cultural group

(Tardío and Pardo-de-Santayana 2008)

Factors that predict intra-cultural distributions:

Demographic: *age, gender*

(e.g., Begossi et al. 2002, Voeks and Leony 2004)

Socioeconomic and cultural: market integration, migration, modernization, education

(e.g., Godoy et al. 2005, Nesheim et al. 2006, Ceuterick et al. 2011, Quinlan and Quinlan 2007, Voeks and Leony 2004)

Intra-Cultural Knowledge Variation

Analysis of factors and dynamics that are behind such intra-cultural variations

Understanding attitudes and social relationships of actors

(e.g., Lozada et al. 2006, Santos et al. 2011, Mathez-St. et al. 2012)

Intra-Cultural Knowledge Variation

Studies about intra-cultural variation of perception and knowledge about multifunctional trees and shrubs grown in farming land are still rare !

(e.g., González-Insuasti et al. 2011, Chepstow-Lusty and Winfield 2000)

Research questions

1) Intra-cultural variation of perception and knowledge about plant uses according to different actor groups (gender, age, migration)?

2) Adaptation of Andean communitybased agroforestry towards the land users' interests and skills?

Study Area

Kewiña (Polylepis subtusalbida) > 3600 m

Molle (Schinus molle) < 3200 m

T'ola (Baccharis dracunculifolia) < 3900 m

Thaqo, algarrobo (Prosopis laevigata) < 3200 m

Methods

Data Collection

Freelisting exercises, semi-structured interviews 14 selected local woody species (e.g., *Schinus molle, Prosopis laevigata*) 40 community members

Data Analysis

9 use categories (e.g., construction, tools) \rightarrow Cultural Importance (CI) Composite Salience (CompS)

(Smith 1993; Quinlan 2005, 2010, Tardío and Pardo-de-Santayana 2008)

Spearman rank correlations ANOVA and Tukey post hoc-tests Two-sided binomial tests for comparison of proportions Generalized linear mixed models

R software

(Bates et al. 2011, Bolker et al. 2008, Crawley 2007)

- BD = Baccharis dracunculifolia, BeC = Berberis commutata, BuC = Buddleja coriacea,
- CB = Clinopodium bolivianum, EG = Eucalyptus globulus, GP = Gynoxys psilophylla,
- LG = Lepechinia graveolens, KS = Kaunia saltensis, MO = Minthostachys ovata,
- PL = Prosopis laevigata, PS = Polylepis subtusalbida, SA = Senna aymara, SM = Schinus molle,

SP = Sambucus peruviana

Results

BeC = Berberis commutata, EG = Eucalyptus globulus, GP = Gynoxys psilophylla , LG = Lepechinia graveolens, PL = Prosopis laevigata, PS = Polylepis subtusalbida, SM = Schinus molle, SP = Sambucus peruviana

Results

Fixed effects	con	env	fie	fod	food	fuel	med	oth	tool
Intercept	-0.994	-0.714	-2.356	-0.355	-2.881	-0.765	-1.853	-2.651	-2.537
age [a]							0.013**	0.014*	0.011**
gender(men)									
migr(yes)	-0.391**			-0.377**				-0.975**	
age : gender(men)									
gender(men) : migr(yes)									
age : migr(yes)									
age: gender(men) : migr(yes)									

<u>Use- categories</u>: con = construction, env = environmental use, fie = field use, fod = fodder, food, fuel, med = medicine, oth = other use, tool

Conclusions

Women and Men

→ specific gender roles reflected by knowledge differences. No trend

Elder Know More Than Younger → accumulated knowledge with longer experience, or knowledge loss?

Migration

→ difference in young people's perception of cultural importance of exotic species! Loss of knowledge about traditional plant uses

Conclusions

Loss of Traditional Knowledge

Species degradation (e.g., *Polylepis, Berberis*)

Species substitution (e.g. timber of native vs. exotic trees)

Loss of traditional plant uses (e.g. "chicha de molle")

Substitution by other materials (e.g. timber vs. plastic)

Conclusions

Adaptation of Community-based Agroforestry

Consideration of specific knowledge and underlying social roles, gender perspective \rightarrow women's participation!

Migration: interests, skills and limitations of young people

Recognition, use and innovation of endogenous knowledge, regional cooperations and native agrobiodiversity in accordance to socioeconomic, ecological, cultural context

Potentials, niches, new perspectives?

Acknowledgements

Andrea-von-Braun-Stiftung, München

Comunidad de Tres Cruces, Tapacarí, Cochabamba, Bolivia

Prof. Dr. Isabell Hensen - Institute of Biology/Geobotany, Martin-Luther-University Halle-Wittenberg, Germany

PD Dr. habil. Stephan Rist - Centre for Development and Environment (CDE), University of Bern, Switzerland

Dr. Freddy Delgado – Agroecología Universidad Cochabamba (AGRUCO), Bolivia

i Muchas gracias !

References

Bates D, Maechler M and Bolker B. 2011. Ime4: Linear mixed-effects models using S4 classes. R package version 0.999375-39. http://CRAN.R-project.org/package=Ime4

Begossi A, Hanazaki N and Tamashiro JY. 2002. Medicinal plants in the Atlantic forest (Brazil): knowledge, use, and conservation. Human Ecology 30:281–299

Bellow J, Hudson R and Nair P. 2008. Adoption potential of fruit-tree-based agroforestry on small farms in the subtropical highlands. Agroforestry Systems 73:23-36

Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH and White JSS. 2008. Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution 24:127-135

Ceuterick M, Vandebroek I and Pieroni A. 2011. Resilience of Andean urban ethnobotanies: a comparison of medicinal plant use among Bolivian and Peruvian migrants in the United Kingdom and in their countries of origin. Journal of Ethnopharmacology 136(1):27-54

Chepstow-Lusty A and Winfield M. 2000. Inca agroforestry: lessons from the past. Ambio 29(6):322-328

Crawley M J. 2007. The R book. Wiley, West Sussex, UK

Godoy R, Reyes-García V, Byron E, Leonard WR and Vadez V. 2005. The effect of market economies on the well-being of indigenous peoples and on their use of renewable natural resources. Annual Review of Anthropology 34:121–138

González-Insuasti MS, Casas A, Méndez-Ramírez I, Martorell C and Caballero J. 2011. Intra-cultural differences in the importance of plant resources and their impact on management intensification in the Tehuacán Valley, Mexico. Human Ecology 39:191–202

Hoffman B and Gallaher T. 2007. Importance indices in ethnobotany. Ethnobotany Research and Applications 5:201-218

Lozada M, Ladio A and Weigandt M. 2006. Cultural transmission of ethnobotanical knowledge in a rural community of northwestern Patagonia, Argentina. Economic Botany 60:374–385

Mathez-Stiefel SL and Vandebroek I. 2012. Distribution and transmission of medicinal plant knowledge in the Andean highlands: a case study from Peru and Bolivia. Evidence-Based Complementary and Alternative Medicine Vol 2012. doi:10.1155/2012/959285

Nesheim I, Dhillion SS and Stølen KA. 2006. "What happens to traditional knowledge and use of natural resources when people migrate?" Human Ecology 34(1):99-131

Quinlan M. 2005. Considerations for collecting freelists in the field: examples from ethnobotany. Field Methods 17(3):219

Quinlan M. 2010. Ethnomedicine and ethnobotany of fright, a Caribbean culture-bound psychiatric syndrome. Journal of Ethnobiology and Ethnomedicine 6:9. http://www.ethnobiomed.com/content/6/1/9

Quinlan M and Quinlan RJ. 2007. Modernization and medicinal plant knowledge in a Caribbean horticultural village. Medical Anthropology Quarterly 21:169–192

Reyes-García V, Huanca T, Vadez V, Leonard W and Wilkie D. 2006. Cultural, practical, and economic value of wild plants: a quantitative study in the Bolivian Amazon. Economic Botany 60:62-74

Santos FS, Ramos MA, Hanazaki N and Albuquerque UP. 2011. Dynamics of traditional knowledge of medicinal plants in a rural community in the Brazilian semi-arid region. Revista Brasileira de Farmacognosia 21:382–391

Smith JJ. 1993. Using ANTHOPAC 3.5 and a spreadsheet to compute a free-list salience index. Field Methods 5:1

Tardío J and Pardo-de-Santayana M. 2008. Cultural Importance indices: a comparative analysis based on the useful wild plants of Southern Cantabria (Northern Spain). Economic Botany 62(1):24-39

Turner NJ. 1988. "The importance of a rose": evaluating the cultural significance of plants in Thompson and Lillooet Interior Salish. American Anthropologist 90(2):272-290

Verchot LV, Van Noordwijk M, Kandji S, Tomich T, Ong C, Albrecht A, Mackensen J, Bantilan C, Anupama KV and Palm C. 2007. Climate change: linking adaptation and mitigation through agroforestry. Mitigation and Adaptation Strategies for Global Change 12(5):901-918

Voeks RA and Leony A. 2004. Forgetting the forest: assessing medicinal plant erosion in Eastern Brazil. Economic Botany 58:S294-S306