

Evaluating the strategies for the management of biophysical resource in farm communities of the Mantaro Valley

Sady García, Eddie Schrevens

Departmento Academico de Suelos, UNALM Department of Biosystems, KULeuven

Tharandt, September 26th 2012

INTRODUCTION

OBJECTIVES

METHODOLOGY

RESULTS

GENERAL CONCLUSIONS

RECOMMENDATIONS

FUTURE WORK

Introduction

- Research in Mantaro Valley is extensive, but focuslimited.
 - Fertilization, animal production, social factors...
- Local farmers have considerable traditional endogenous knowledge.
 - Planting times, soil management...
- Integrated research on systems level is elusive.

INTRODUCTION

OBJECTIVES

- General
- Specific
- METHODOLOGY
- RESULTS
- GENERAL CONCLUSIONS
- RECOMMENDATIONS
- FUTURE WORK

General objective

Integrating the knowledge on systems level, with emphasis on biophysical factors related to technical sustainability aiming at optimizing resources management.

INTRODUCTION

OBJECTIVES

- General
- Specific
- METHODOLOGY
- RESULTS
- GENERAL CONCLUSIONS
- RECOMMENDATIONS
- FUTURE WORK

Specific objectives

- Characterizing the physical constraints affecting the production systems (climate and soil fertility).
- Evaluating the use of biophysical external inputs, the production of biomass and C- and NPK-balances.
- Describing the labor distribution for crop production.
- Characterizing the most frequent crop rotations in terms of biomass, C- and N-balance.

LEUVEN

INTRODUCTION

OBJECTIVES

METHODOLOGY

- Site description
- Data acquisition
- Data analysis

RESULTS

GENERAL CONCLUSIONS RECOMMENDATIONS FUTURE WORK

Site description

INTRODUCTION

OBJECTIVES

METHODOLOGY

- Site description
- Data acquisition
- Data analysis

FUTURE WORK

RESULTS

GENERAL CONCLUSIONS RECOMMENDATIONS

AL INF

Mantaro valley, Peru

KATHOLIEKE UNIVERSITEIT

INTRODUCTION

OBJECTIVES

METHODOLOGY

- Site description
- Data acquisition
- Data analysis

RESULTS

GENERAL CONCLUSIONS RECOMMENDATIONS FUTURE WORK

Data acquisition methodology

- Participatory rural appraisal
 - Participatory workshops
 (Colpar, Quilcas, Aramachay and Sincos).
 - Structured interviews.
 - Farm visits.
 - Farmers Database setup.

INTRODUCTION

OBJECTIVES

METHODOLOGY

- Site description
- Data acquisition
- Data analysis

RESULTS

GENERAL CONCLUSIONS RECOMMENDATIONS

FUTURE WORK

Data acquisition methodology

- Characterization of climate of experimental sites.
- Biophysical evaluation of pilotplots.
- Full input-output accountancy of biophysical unit operations on 38 pilot plots.
 - Biomass production.
 - Agricultural inputs.
 - Labor, machinery....
- Research Database setup.

OBJECTIVES

METHODOLOGY

- Site description
- Data acquisition
- Data analysis

RESULTS

GENERAL CONCLUSIONS

FUTURE WORK

• 95 cropping cycles recorded

•Most planted crop was potato (27%) followed by barley (12.6%)

Crop cycles evaluated

INTRODUCTION

OBJECTIVES

METHODOLOGY

- Site description
- Data acquisition
- Data analysis

RESULTS

GENERAL CONCLUSIONS RECOMMENDATIONS FUTURE WORK

Data analysis

- Multivariate exploratory data analysis:
 - Descriptive profiles (Trellis graphics).
 - Correlational biplots (principal component analysis).

- INTRODUCTION
- OBJECTIVES
- METHODOLOGY
- RESULTS
- GENERAL CONCLUSIONS
- RECOMMENDATIONS
- FUTURE WORK

Results

- Climate monitoring.
- Soil chemical fertility.
- Crops C- and NPK-mass balances.
- Labor distribution.
- Rotation systems.
- Farm level integration.

INTRODUCTION

OBJECTIVES

METHODOLOGY

RESULTS

- Climate monitoring
- Soil chemical fertility
- Crops C- and NPK-balances
- Labor distribution
- Rotation systems
- Farm level integration GENERAL CONCLUSIONS RECOMMENDATIONS FUTURE WORK

Climate monitoring

Average monthly distribution of precipitation during 2005-2008

INTRODUCTION

OBJECTIVES

METHODOLOGY

RESULTS

- Climate monitoring
- Soil chemical fertility
- Crops C- and NPK-balances
- Labor distribution
- Rotation systems
- Farm level integration GENERAL CONCLUSIONS RECOMMENDATIONS FUTURE WORK

Climate monitoring

Distribution of precipitation, potential evapotranspiration and crop evapotranspiration (potato)

INTRODUCTION

OBJECTIVES

METHODOLOGY

RESULTS

- Climate monitoring
- Soil chemical fertility
- Crops C- and NPK-balances
- Labor distribution
- Rotation systems
- Farm level integration GENERAL CONCLUSIONS RECOMMENDATIONS FUTURE WORK

Soil chemical fertility

Values for soil pH in six zones evaluated

INTRODUCTION

OBJECTIVES

METHODOLOGY

RESULTS

- Climate monitoring
- Soil chemical fertility
- Crops C- and NPK-balances
- Labor distribution
- Rotation systems
- Farm level integration GENERAL CONCLUSIONS RECOMMENDATIONS FUTURE WORK

Contents of soil organic carbon, total nitrogen, available phosphorus and potassium in six zones evaluated

- INTRODUCTION
- OBJECTIVES
- METHODOLOGY
- RESULTS
- Climate monitoring
- Soil chemical fertility
- Crops C- and NPK-balances
- Labor distribution
- Rotation systems
- Farm level integration GENERAL CONCLUSIONS RECOMMENDATIONS FUTURE WORK

Potato C and NPK-balances

Production of biomass by residues, harvest and weeds in potato

- INTRODUCTION
- OBJECTIVES
- METHODOLOGY

RESULTS

- Climate monitoring
- Soil chemical fertility
- Crops C- and NPK-balances
- Labor distribution
- Rotation systems
- Farm level integration GENERAL CONCLUSIONS RECOMMENDATIONS FUTURE WORK

Potato N-balance

Explained variance: 1st comp: 0.46 - 2nd comp: 0.22 - 3rd comp: 0.17

PCA biplot for the N-inputs, outputs and balance in potato

- INTRODUCTION
- OBJECTIVES
- METHODOLOGY
- RESULTS
- Climate monitoring
- Soil chemical fertility
- Crops C- and NPK-balances
- Labor distribution
- Rotation systems
- Farm level integration GENERAL CONCLUSIONS RECOMMENDATIONS FUTURE WORK

Potato C and NPK-balances

Characterization of production systems in potato

- INTRODUCTION
- OBJECTIVES
- METHODOLOGY
- RESULTS
- Climate monitoring
- Soil chemical fertility
- Crops C- and NPK-balances
- Labor distribution
- Rotation systems
- Farm level integration GENERAL CONCLUSIONS RECOMMENDATIONS FUTURE WORK

Corn C and NPK-balances

Characterization of production systems in corn

- INTRODUCTION
- OBJECTIVES
- METHODOLOGY

RESULTS

- Climate monitoring
- Soil chemical fertility
- Crops C- and NPK-balances
- Labor distribution
- Rotation systems
- Farm level integration GENERAL CONCLUSIONS RECOMMENDATIONS FUTURE WORK

Labor distribution

Explained variance: 1st comp: 0.35 - 2nd comp: 0.23 - 3rd comp: 0.21

PCA biplot for the labor distribution between gender and source for the communities

- INTRODUCTION
- OBJECTIVES
- METHODOLOGY

RESULTS

- Climate monitoring
- Soil chemical fertility
- Crops C- and NPK-balances
- Labor distribution
- Rotation systems
- Farm level integration GENERAL CONCLUSIONS RECOMMENDATIONS FUTURE WORK

Labor distribution

Distribution of labor, machinery and animal traction for all crops

INTRODUCTION

OBJECTIVES

METHODOLOGY

RESULTS

- Climate monitoring
- Soil chemical fertility
- Crops C- and NPK-balances
- Labor distribution
- Rotation systems

Farm level integration
 GENERAL CONCLUSIONS
 RECOMMENDATIONS
 FUTURE WORK

Rotation systems

DelC3years TotExpCHa08 CExportReskgAnHa08 CExportProdHa08 ToImpCHa08 WCkgHa08 CExportReskgFiHa08 OCImportHa08 DeCHa07 TotExpCHa07 CExportReskgAnHa07 CExportProdHa07 ToImpCHa07 WCkgHa07 CExportReskgFiHa07 OCImportHa07 DelCHa06 TotExpCHa06 CExportReskgAnHa06 CExportProdHa06 TotImpCHa06 WCkgHa06 CExportReskgFiHa06 OCImportHa06 -4000 0 -8000 -6000 -2000 Value Aramachay:12:Quinua:Barley:Barley Aramachay:13:Barley:Barley:Barley

Aramachay:13:Barley:Barley:Barley Aramachay:16:Wheat:Wheat:Wheat

C-inputs, outputs and balance in three-year monocultures of cereals (Aramachay)

KATHOLIEKE UNIVERSITEIT

- INTRODUCTION
- OBJECTIVES
- METHODOLOGY

RESULTS

- Climate monitoring
- Soil chemical fertility
- Crops C- and NPK-balances
- Labor distribution
- Rotation systems
- Farm level integration
 GENERAL CONCLUSIONS
 RECOMMENDATIONS
 FUTURE WORK

Rotation systems

Corn:faba bean ratios Colpar: 20:80 – 20:80 – 60:40 Molinos: 70:30 – 80:20 – 27:75

C-inputs, outputs and balance in three-year rotations of associated corn-faba bean

LEUVEN

- INTRODUCTION
- OBJECTIVES
- METHODOLOGY
- RESULTS
- Climate monitoring
- Soil chemical fertility
- Crops C- and NPK-balances
- Labor distribution
- Rotation systems
- Farm level integration GENERAL CONCLUSIONS RECOMMENDATIONS FUTURE WORK

Farm level integration

Farm level integration of fresh weights, N- and C- balances in Aramachay

INTRODUCTION

- OBJECTIVES
- METHODOLOGY

RESULTS

- Climate monitoring
- Soil chemical fertility
- Crops C- and NPK-balances
- Labor distribution
- Rotation systems
- Farm level integration GENERAL CONCLUSIONS RECOMMENDATIONS FUTURE WORK

Farm level integration

Costs, gross values and net returns estimated for different crop rotations at family level in Aramachay

- INTRODUCTION
- OBJECTIVES
- METHODOLOGY
- RESULTS
- GENERAL CONCLUSIONS
- RECOMMENDATIONS
- FUTURE WORK

- The climate is restrictive but local microclimate conditions are sufficient for rainfed agriculture of specific crops.
- Soil chemical fertility is not strongly limiting the production systems.
- Most agricultural inputs and resources are applied to potato, while other crops depend on residual effects.
- High variability was found between the fertilization rates and modalities, from nil to high rates (organic and/or inorganic).

- INTRODUCTION
- OBJECTIVES
- METHODOLOGY
- RESULTS
- GENERAL CONCLUSIONS
- RECOMMENDATIONS
- FUTURE WORK

- High variability in the use of labor between the communities, from subsistence to high input systems.
- Crop and livestock production systems are strongly linked, resulting in considerable export of C, N, P and K.
- Monoculture of grains (barley, wheat corn) lead to strongly negative C- and N-balances, while rotations including legumes result in positive balances.
- As an average, farmers in Aramachay manage 10 times more land than Colpar and Quilcas, and obtain 5 times more net returns.

- INTRODUCTION OBJECTIVES
- METHODOLOGY
- RESULTS
- GENERAL CONCLUSIONS
- RECOMMENDATIONS
- FUTURE WORK

Recommendations

- Fallow periods can be improved with inclusion of annual legume forages.
- Fertilization should be optimize for full rotation systems:
 - Reasonable doses.
 - Fractionation.
 - Application modalities.

- INTRODUCTION OBJECTIVES METHODOLOGY RESULTS GENERAL CONCLUSIONS
- RECOMMENDATIONS
- FUTURE WORK

Future work

- Methodology and data collection.
 - Implementing a methodology for evaluation of root biomass.
- Hypotheses to test experimentally.
 - Inclusion of forage legumes within the rotations.
 - Fertilization on barley, wheat and corn.
 - Liming of acidic soils.
- Evaluation of biological production systems.
 - Deeper analysis on livestock production system.
 - Evaluation of N_2 fixation capacity in legume crops.

Thanks for your attention