

Faculty of Forest, Geo and Hydro Sciences Department of Forest Sciences Institute of International Forestry and Forest Products Professorship of Tropical Forestry

Forest and trees and their influence in adaptation and mitigation of Climate Change in rural areas of the Andes

MSc. François Jost Vargas

Supervisor: Prof. Dr. Pretzsch

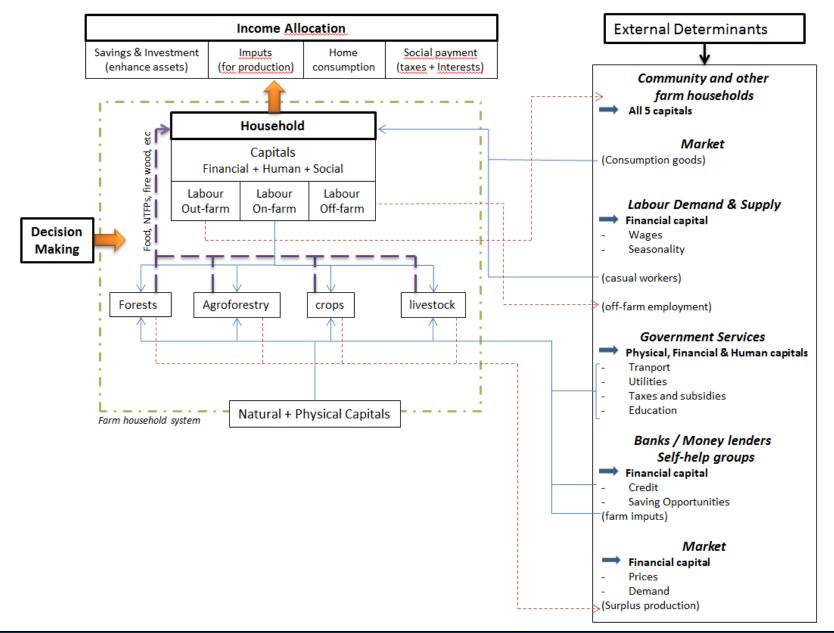
Tharandt, 25 September 2012

OUTLINE

- 1. Objectives
- 2. Research approach
- 3. Study area
- 4. Methodology
- 5. Field trips
- 6. Research status
- 7. Preliminary results
- 8. Next steps & time schedule

1. Objectives

Analyze the use of trees as a **measure** of **adaptation** to agricultural droughts (AD) and as a **contribution** to the mitigation of CC:

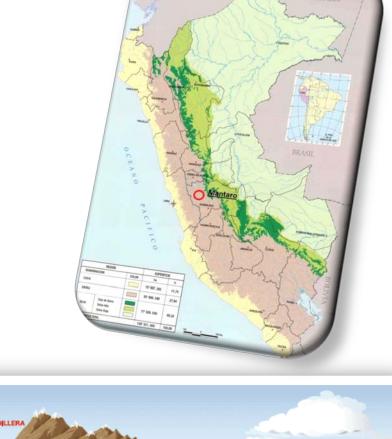

- Analyze the **implications of AD** in the farm household systems (FHS)
- Identify the **local strategies** used to cope with the AD
- Assess the **role of AF systems** in relation to AD

1. Objectives

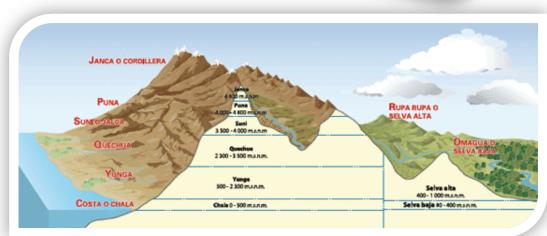
- Assess the influence of trees on water availability and yield variation inside the farm staple crops
- and identify its implications between the different production systems and the food security (vulnerability and risk reduction)
- Analyze the **trade-off** between the different production alternatives evaluated.

2. Research Approach

3. Study Area: Mantaro – Peru


Subbasin: Achamayo

3000 - 4500 m.a.s.l.


T°: 4-18 °C

Pp: 450-900mm (83% Oct-Apr)

Subsistence economy based on agriculture and livestock.



3. Study Area:

- Selection of 5 communities and annexes:
 - La Florida
 - San Antonio
 - La Libertad
 - San Pedro
 - Santiago de Marcatuna
- In every location:
 - 1 participatory rural appraisal (PRA) workshop took place
 - Household interviews (158 Households)

4. Methodology:

Research methodology

- Secondary data analysis
- Field laboratories
 Interviews, round table,
 participant observation
- Natural resource assessment
- Semi-structured interviews (2 levels)
- Key informant interviews

4. Methodology: Overview of the different surveys dimensions

- Household surveys: 158 households were interviewed allover the watershed – Random Sampling (+ viveros)
- **General interviews** (AD and EE in the FHS): 15/community n=45 Random Sampling
- In-depth interviews (focus on Labor and Income allocation): 4/community n=12 - Purposively selected (selected FHS + diverse sorts of FHS to broaden the understanding)
- **Key informant interviews** main Stakeholders (IGP/Agrorural/local authorities)
- Participant observation and mini pre-post harvest survey in production systems – 6 selected production systems in the 3 communities

5. Mantaro Field trips: Meetings & participatory rural appraisals

TU Dresden

International Network on Climate Change "INCA"

Production systems selection from farm household systems

5. Mantaro – Fieldwork December

5. Mantaro – Fieldwork December

International Network on Climate Change "INCA"

5. Mantaro – Fieldwork May-July

- Yield measurements -> Participant observation and mini pre-post harvest survey
- General interviews (AD and EE in the FHS)
- In-depth interviews (focus on Labor and Income allocation)

International Network on Climate Change "INCA"

6. Research Status: Research step 1

Farming system and farm household systems

- General description of the study area
 - \rightarrow info. from partner institutes and secondary data (eg. IGP, INEI).
- Specific description of the farming system in the area
 → complemented with PRAs using diverse tools
- Assessment on the land-use decision making in the area
 → mainly Semi-Structured Interviews + PRAs
- In-depth description of the selected farm household systems
 Focus on Labor and Income allocation
 → Semi-Structured Interviews

6. Research Status: Research step 2

Vulnerability and adaptation capacities

- Description of AD in the area, their distribution and historical evolution

→ secondary data (e.g. IGP)
 + PRA (Mapping {community + extreme events} + past trends)

Specific description of AD in the FHS to infer:

Damage Pattern, Severity, derived Consequences, Reaction and Adaptation measures adopted by farmers

→ Semi-Structured Interviews

6. Research Status: Research step 3

Assessment of an adaptation alternative

- Selection of 6 production systems from the FHS (in pairs)
 (3 agroforestry systems + 3 agricultural systems).
 → Same crops + external variables will be minimized.
- Analyze the influence of trees on **Soil Moisture** and **Yield**
 - → Semi-Structured Interviews + Participant Observation (harvest)
 - + Soil Moisture measurements.
- Assess local attitude towards AF systems and their influence on the FHS (in contrast to crops)
 - → Semi-Structured Interviews + PRAs (ranking + analysis of adaptation alternative)

7. Preliminary Results

- Farmers acknowledge the presence of agricultural droughts,
- > They relate **origin** to temperature and rainfall changes.
- > There is **low social capital** resources used to address this issue
 - lack of organization and technical support
- > The Physical and Financial limitations could be overcome
 - With good organization in the community.
- The lack of training and knowledge to face AD (human capital), affects the reaction and adaptation measures of the farmers.

7. Preliminary Results

The presence of trees in the farm household systems enables farmers to:

- > reduce risks from weather hazards, providing more sustainable incomes
- trees are regarded as:
 - > an **insurance** (e.g. for accidents or other financial shortages),
 - > an **investment tool** (increasing their decision-making power) or
 - > a retirement pension.

8. Following steps

- Analyze the gathered information
- Identification of Potential interventions for system enhancement
- Present and discuss the results with the farmers and main stakeholders
- Assess the obtained feedback
- Develop specific key informant surveys
 - Interview key informants
- > Doctoral thesis writing, DAAD report, look for publications

8. Time Schedule (2012-2014)

Time Schedule from 2012 to the completion of the research																
Activity	2012						2013								2014	
Activity		0	Ν	D	J	F	М	Α	Μ	J	J	A	S	0 1	I D	J
Biodiversity and INCA workshops																
Analysis of the information acquired																
Results + Analysis and evaluations																
DAAD Annual Report																
Identification of information gaps and planning for typification + writing																
Field Trip to Peru																
Typification process + Community workshops and Discussions																
Identification of Potential interventions for system enhancement																
Analysis of the information acquired (Typification + Discussions) + writing																
DAAD Annual Report																
Doctoral thesis writing + submission and defense																
Joint publications																
DAAD Final Report																

Droughts

Droughts	Variables				
Metheorological Drought	Rainfall				
Hydrological Drought	River runoff				
	Streamflow				
	Reservoir levels				
	Groundwater				
Agricultural Drought	Soil moisture				
	Consumptive use				