

Projekt bioProtect – Auf der Suche nach neuen Stoffen in der chemischen Kommunikation

Duftstoffe für den Polterschutz

Christine Rachow

Abt. für Forstzoologie und Waldschutz, Georg-August-Universität Göttingen

VOC (Volatile organic compounds)

Volatile Organic Compounds = VOCs = flüchtige organische Verbindungen

- Organische Stoffe primär aus Kohlenstoff und Wasserstoff
- Geringe Molekülmasse und hoher Dampfdruck
- Siedebereich von 60°C bis 250°C (WHO)

Einleitung

VOC im Pflanzenreich

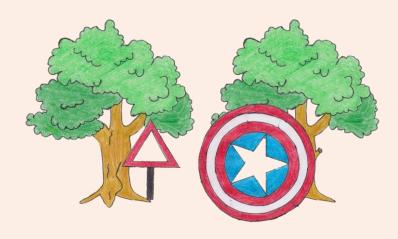
Sind ortsgebunden -> können ihren Feinden nicht ausweichen

VOC besitzen im Pflanzenreich verschiedene Funktionen

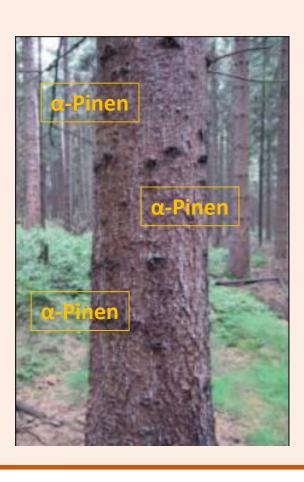
Einleitung

Diskussion

VOC im Pflanzenreich


Kommunikationsmittel

- Fortpflanzung
- Verteidigung
- WarnungAbwehrmechanismus



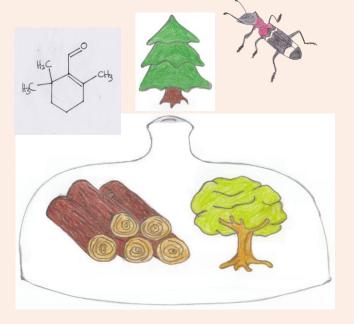
Chemische Kommunikation

- 1. Dispersionsflug der Männchen
- → Empfang von Duftsignalen
- → KAIROMONE

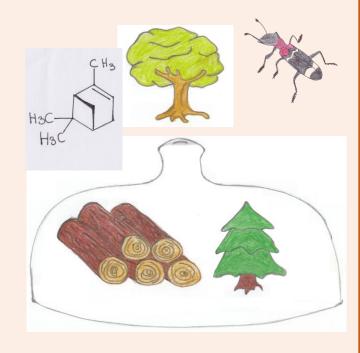
2. Pioniermännchen locken

Artgenossen an

→ PHEROMONE


Einleitung

Zielsetzung bioProtect

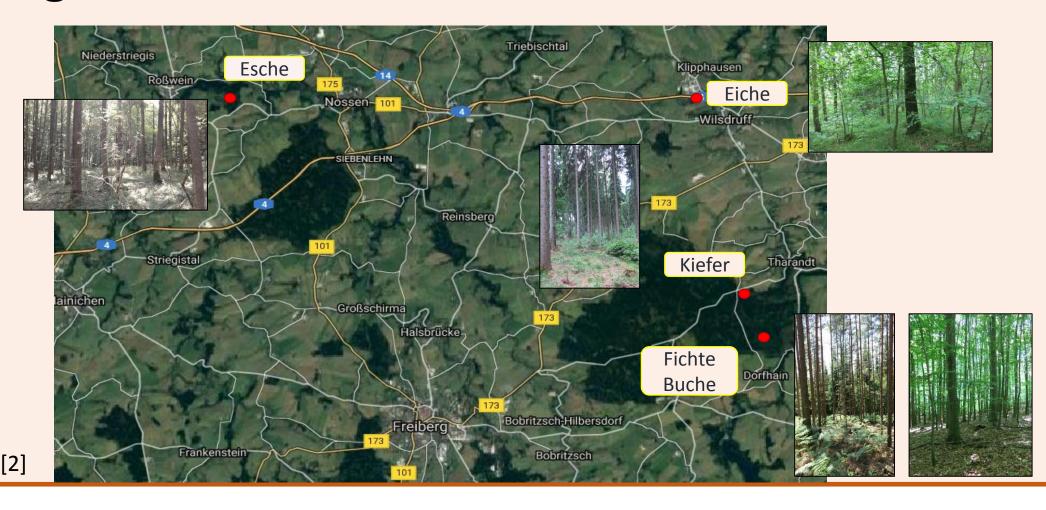

Polterschutz durch:

Einleitung

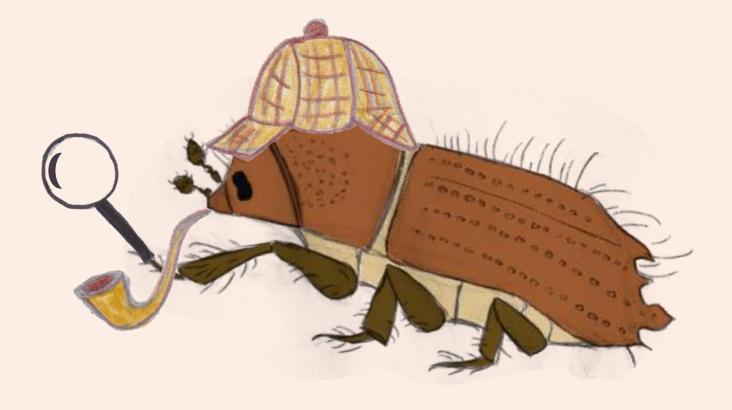
- insektizidfreie Borkenkäfer- Regulierung
- Anlockung von Antagonisten
- → mithilfe von Volatilen

Diskussion

bioProtect


Einleitung

Aufgaben und Ziele der Arbeitsgruppe Göttingen


- Sammlung von Polter-Volatilen
- Aufklärung von Semiochemikalien
- Test der Wahrnehmung der gesammelten Volatile
- Verhaltensversuche

Lage der Standorte

Auf der Suche nach VOC

Auf der Suche nach VOC

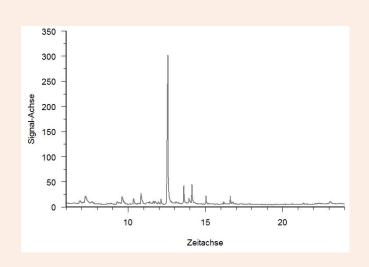
- Stammabsaugkammer
- Gaschromatographie
- Käferrennbahn
- Elektrophysiologie

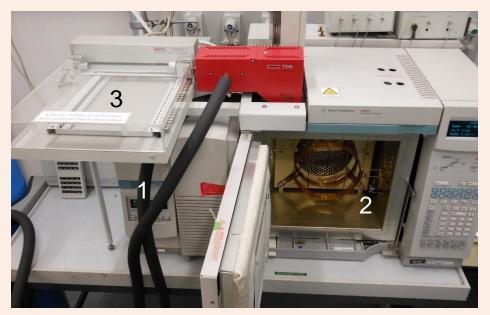
Stammabsaugkammer

Stammabsaugkammer

- 1. Dichtungsmatte (Isomatte)
- 2. Kammer (Bratschlauch)
- 3. Fixierband (Spanngurt)
- 4. Teflonschlauch
- 5. Sammelmittel (Absorbens)
- 6. Pumpe

VOC Analyse

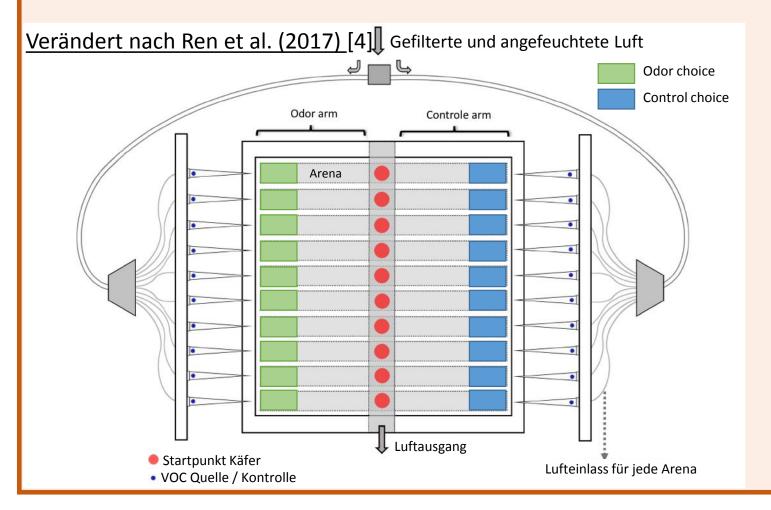

Einleitung


Zweistündige Beprobung; anschließende Analyse mit Hilfe

Ergebnisse

Identifizierung der Volatile mit einer Standardsubstanz (Referenz)

Gaschromatographie-Massenspektrometrie (GC-MS)


GC-MS

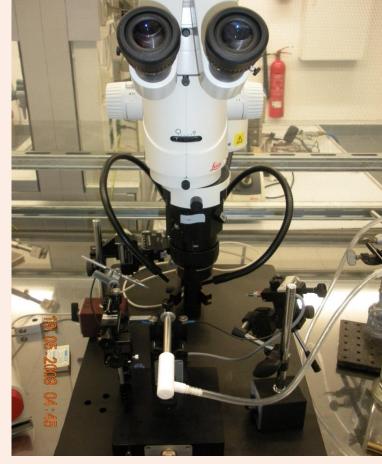
1: MS (Massenspektrometer)

2: GC-Säule

3: TDS-Probenhalter

- VOC Verdünnung (10⁻³) in Paraffin-Öl
- Käfer wurden zufallsbedingt auf die Arenen verteilt
- Kontrollproben: Luft und Paraffin

Einleitung

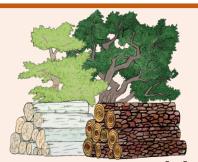


[3]

Einleitung

Elektrophysiologie

- EAG Dosis-Antwort-Kurven (Verdünnungsreihen 10⁻² bis 10⁻⁶)
- Kontrolle : Silikonöl
- Standard-VOC f. d. Normalisierung: (Z)-3-Hexenol 10-3



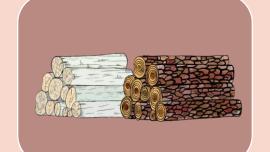
Elektroantennogram (EAG) Aufbau mit einem Mikromanipulator

Einleitung VOC-Suche Ergebnisse Diskussion

Methode

[1]

Esche

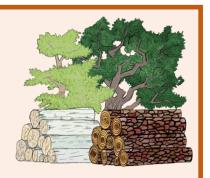

Buche

Eiche

Fichte

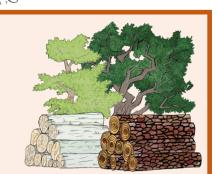
Kiefer

4 Standorte in Sachsen


Aufnahmezeitpunkte:

- vor Befall
- bei Befall
- nach Befall

VOC Messung



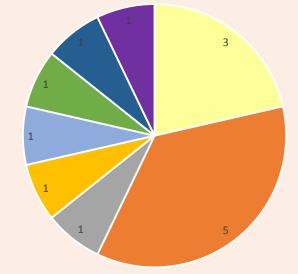
VOC Messung

Einleitung

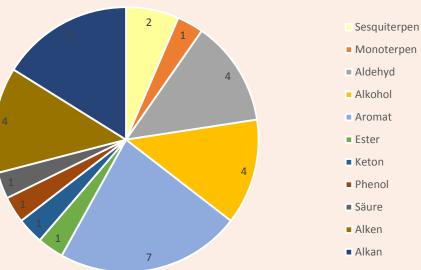
Unterschiedlich viele VOCs zu den verschiedenen Messzeitpunkten

Tabelle 1: Anzahl der gefundenen Volatile zu der jeweiligen Messkampagne.

Diskussion


	Vor Befall	Bei Befall	Nach Befall
Gesamte Volatile	125	114	98
Laubbaumbürtige Volatile	78	54	42
Nadelbaumbürtige Volatile	36	34	31
Laub-und nadelbaumbürtige Volatile	14	26	25

Stoffgruppenzugehörigkeit


Volatile identifiziert, die sich potenziell für den Schutz von Laubholzpolter eignen

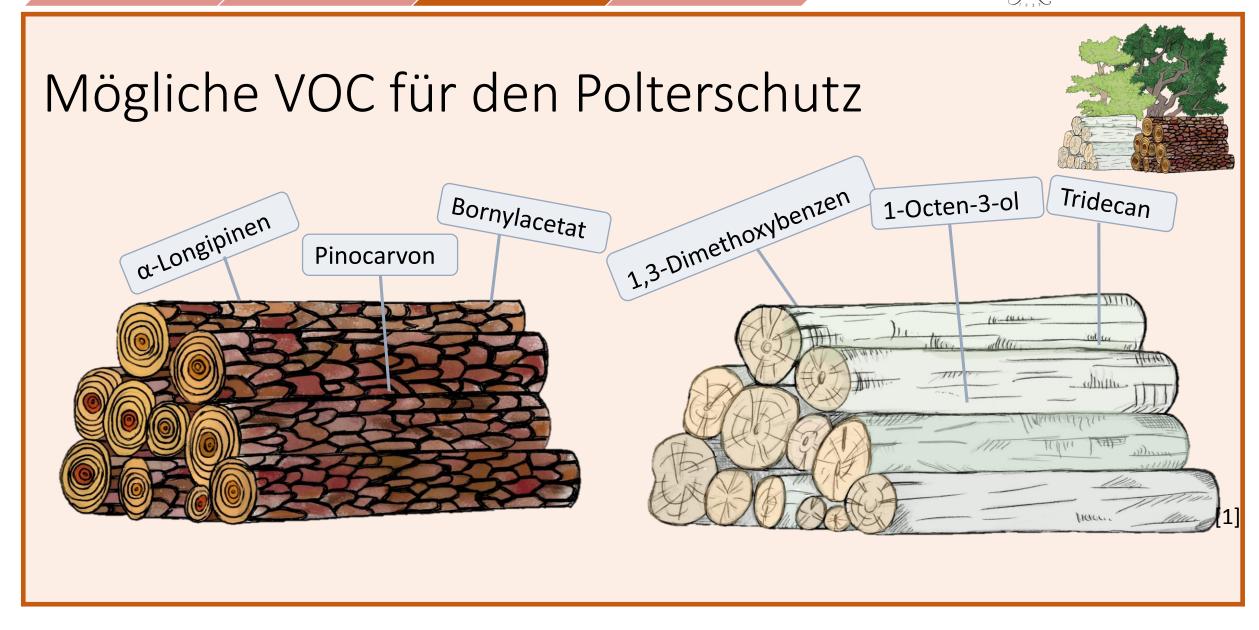
identifiziert, Volatile die sich für Schutz potenziell den von Nadelholzpolter eignen

Laubbaumvolatile

Sesquiterpen

Monoterpen

Aldehyd


Alkohol

Aromat

Ester

Keton

Alkylbenzen

Diskussion

Einleitung

Totale Bewegungsdistanz von

Thanasimus spp. bezogen auf die
verschiedenen VOC im Vergleich
zum Mittelwert aller getesteten
VOC (rot).

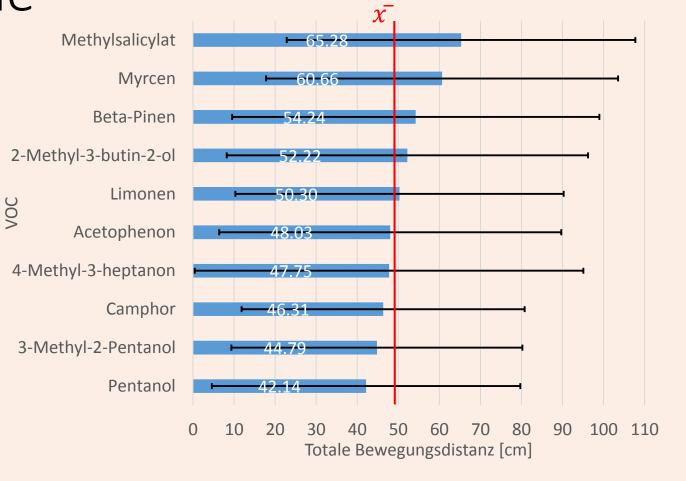


Tabelle 2: Unterschiede der

Einleitung

Aufenthaltsdauern der Zone "Odor-Choice"

(Bonferroni-Post-Hoc-Test)

** = Signifikanzniveau 90% (α = 0,1)

*** = Signifikanzniveau 95% (α = 0,05)

Verglichene VOC (Odor-Choice-Zone)	p-Wert	Signifikanz
Methylsalicylat & 3-Methyl-2-pentanol	0.0598	**
Methylsalicylat & 4-Methyl-3-heptanon	0.0623	**
Methylsalicylat & Acetophenon	0.0124	***

- Thanasimus spp. bewegte sich in den Verhaltensversuch bei Methysalicylat am meisten.
- Die Aufenthaltsdauer zw. Mehylsalicylat und Acetophenon ist significant unterschiedlich.

Methylsalicylat

Einleitung

- ✓ VOC aus der Rinde von Angiospermen (Zhang and Schlyter, 2004).
- ✓ Bekannt als nicht Wirtsbaum-VOC für Borkenkäfer (Zhang and Schlyter, 2004)

Acetophenon

✓ Löst bei *T. formicarius* repellente Verhaltensreaktionen aus (Wehnert 2013)

Potenzielles allochthones Kairomon

EAG data normalization (Ren et al. 2017)

(EAG(std1) + EAG(std2)) / 2 - (EAG(ctl1) + EAG(ctl2)) / 2

Where A is the amplitude (mV) of the EAG response to compound;

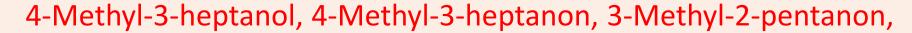
EAG(ct11) is the EAG response to control at the beginning of the recording;

EAG(ct/2) is the EAG response to control at the end of the recording;

EAG(std1) is the EAG response to standard at the beginning of the recording;

EAG (std2) is the EAG response to standard at the end of the recording.

Einleitung


Diskussion

Diskussion

Elektrophysiologie

Einleitung



Methylheptenon, Pentanal

- → Nicht-Wirtsbaum Volatile von *I. typographus*
- T. formicarius zeigte hohe Antennenreaktionen bei: Camphor, β-

Pinen und Acetophenon

- → Wirtsbaum Volatile von *I. typographus*
- T. formicarius zeigte Antennenreaktionen bei: Methylsalicylat

Diskussion

VOC-Muster von Nadelholz- und Laubholz-Polter:

- Gemeinsame VOC
- Nadelholz- und laubholzbürtige VOC
- > Freilandversuche

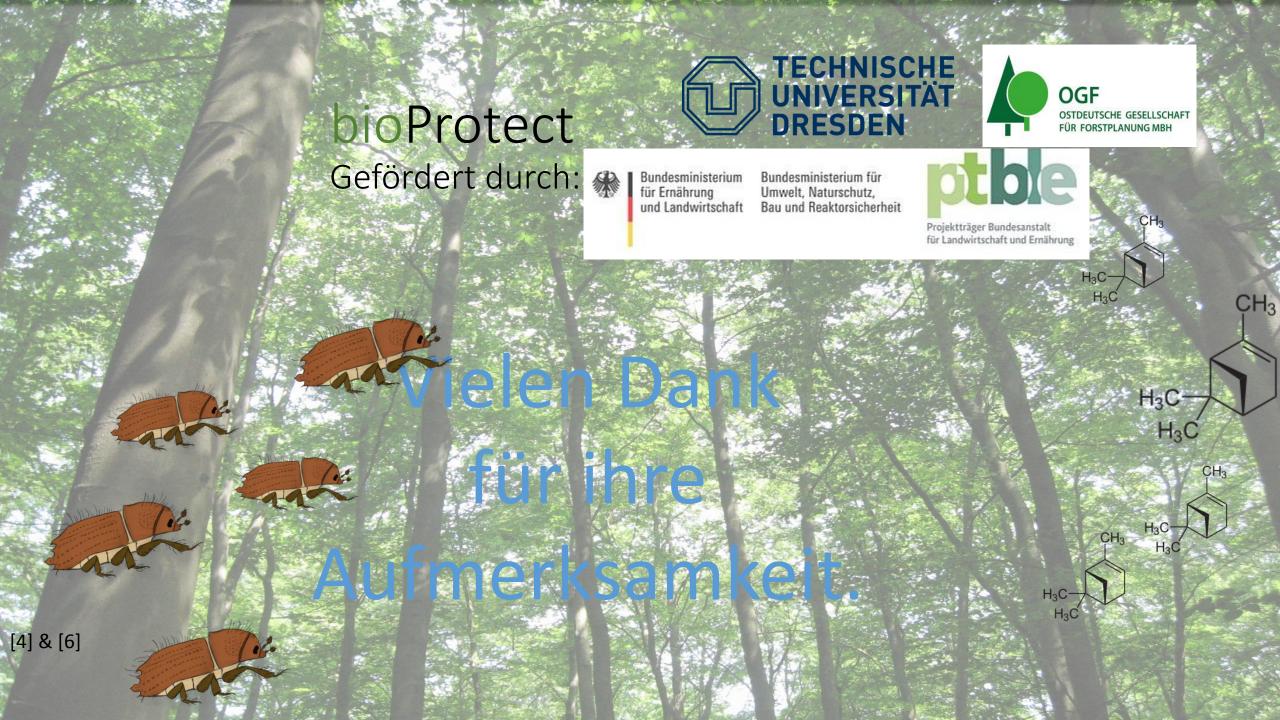
Unterschiedliches Verhalten von Thanasimus auf die untersuchten VOC:

> Besonders interessant Methylsalicylat

Elektrophyiologie

Einleitung

T. formicarius zeigt höhere Antennenreaktionen als I. typographus



Literatur

- 1. Zhang, Q.-H. und Schlyter, F. (2004): Olfactory recognition and behavioural avoidance of angiosperm nonhost volatiles by conifer-inhabiting bark beetles. Agricultural and Forest Entomology, 6(1):1-20.
- 2. Wehnert, M. (2013): Analyse und olfaktorische Steuerung bast- und holzbesiedelnder sowie diese natürlich regulierender zoophager Insekten an Laubbäumen als Grundlage für ein zukunftsfähiges und nachhaltiges Risikomanagement. Dissertation, Technische Universität Dresden
- 3. li Ren, L., Balakrishnan, K., qing Luo, Y., & Schütz, S. (2017). EAG response and behavioral orientation of Dastarcus helophoroides (Fairmaire)(Coleoptera: Bothrideridae) to synthetic host-associated volatiles. *PloS one*, 12(12), e0190067.
- 4. Balakrishnan, K., Holighaus, G., Weißbecker, B., & Schütz, S. (2017). Electroantennographic responses of red flour beetle Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) to volatile organic compounds. *Journal of Applied Entomology*, 141(6), 477-486.

Abbildung

- 1. Sarah Köngeter
- 2. Kartendaten © 2017 GeoBasis-DE/BKG (©2009), Google
- 3. Lena-Marie Simon
- 4. Ren, L., Balakrishnan, K., Luo, Y., und Schütz, S. (2017). EAG response and behavioral orientation of *Dastarcus helophoroides* (Fairmaire) (Coleoptera: Bothrideridae) to synthetic host-associated volatiles. PLoS one, 12(12):e019006

