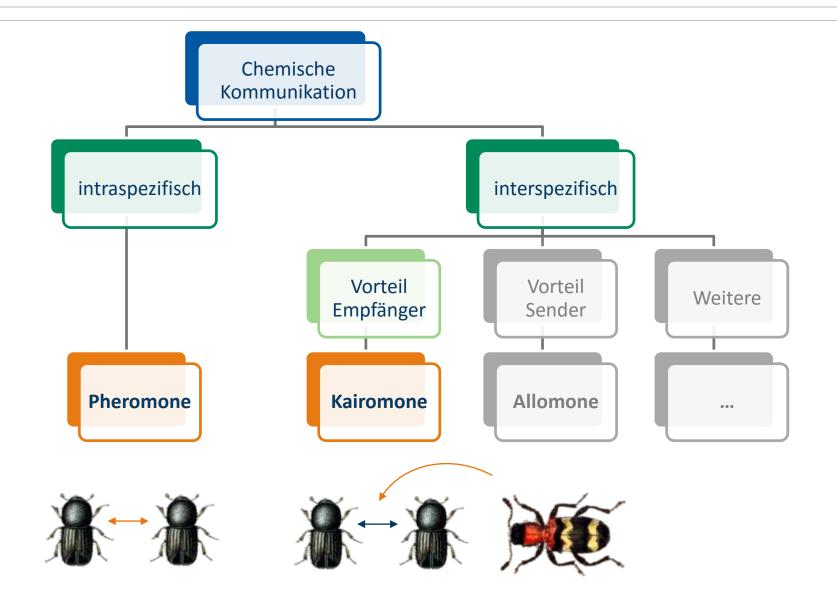


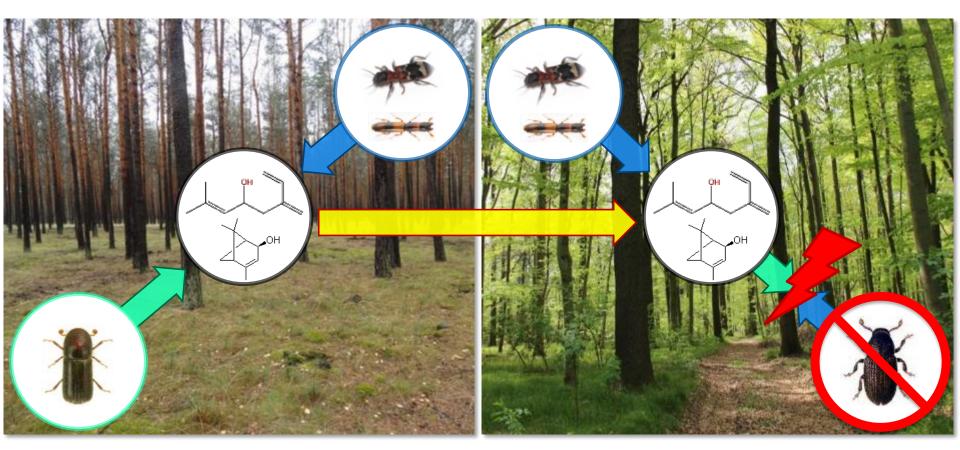
Allochthone Kairomone??

Wie kommunizieren Insekten?


TimesCall.com

www.sawtoons.blogspot.com

Was sind Kairomone?



Wie werden Kairomone allochthon?

Kairomonale Beziehungen in einem Nadelwaldhabitat Allochthone Anwendung von Kairomonen aus einem

Nadelwaldhabitat in einem Laubwaldhabitat

insektizidfreie Regulation von Borkenkäfern durch Anlockung und Aggregation von Antagonisten mit Hilfe allochthoner Kairomone

AK*-Forschung von 2004 bis heute

Müller, M. (2004): Steuerung von Borkenkäferprädatoren durch art- und habitatfremde Kairomone. Mitteilungen der Biologischen Bundesanstalt, (396): 237-238.

- 1 Bachelorarbeit
- 3 Masterarbeiten
- 12 Diplomarbeiten
 - 4 Tagungsbeiträge
 - 5 Zeitungsartikel (davon einer peer-reviewed)
 - 2 Dissertationen (Hellmund, M. 2014; Wehnert, M. 2014)

Verbundprojekt bioProtect (12/2015–12/2018)

Entwicklung und Implementierung biotechnischer Verfahren der insektizidfreien Borkenkäferregulation durch Nutzung und Steuerung natürlicher Borkenkäferantagonisten als Maßnahmen zum Erhalt der Biologischen Vielfalt und der damit verbundenen CO2-Senkenfunktion

Das Verbundprojekt bioProtect

Projektpartner: Technische Universität Dresden, Professur für

Waldschutz, Prof. Dr. Michael Müller

(Projektleitung)

Georg-August-Universität Göttingen, Abteilung

Forstzoologie und Waldschutz, Prof. Dr. Stefan Schütz

Ostdeutsche Gesellschaft für Forstplanung mbH,

Dr. Michael Wehnert

Unterstützende

Staatsbetrieb Sachsenforst

Projektpartner:

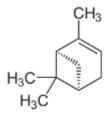
Niedersächsische Landesforsten

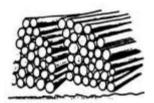
Förderprogramm: Waldklimafonds

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

Arbeitsinhalte im Projekt bioProtect


Universität Göttingen


TU Dresden

OGF

- Sammlung von Volatilen aus Nadel- und Laubbaumarten
- Aufklärung von Semiochemikalien von laubholzbesiedelnden Borkenkäfern
- Wahrnehmungstest (GC/MS-EAD) der Substanzen an Borkenkäfern und Prädatoren, Wahrnehmungsschwellen, Dosis-Antwort-Kurven
- Erprobung von Allochthonen Kairomonen, Nichtwirtsbaumvolatilen und Antiaggregationspheromonen aus Nadelwaldhabitaten in Laubwaldhabitaten an den Modellen Falle und Fangholz
- Erprobung der o. a. Substanzgruppen aus Laubwaldhabitaten in Nadelwaldhabitaten an den Modellen Falle und Fangholz
- Verhaltensexperimente

- Erprobung unterschiedlicher Applikationsformen und Verdachtssubstanzen an Holzpoltern
- Erprobung einer geeigneten Applikationsform an einem Windwurf
- Erprobung unterschiedlicher Verdachtssubstanzen an simulierten Windwürfen

Versuchsaufbau 2016, TU Dresden

Erprobung aus der Literatur bekannter Kairomone aus Nadelwaldin Laubwaldhabitaten am Modell Falle und am Modell Fangholz

Falleninseln mit je sechs Schlitzfallen, vier Inseln je Lockstoff-Testgruppe A und B

Fangholzinseln mit je sechs Fanghölzern, sechs Inseln je Lockstoff-Testgruppe A und B

Laubwaldhabitate = Rotbuche, Eichen und Gemeine Esche (144 Fallen und 216 Fanghölzer)

Versuchsaufbau 2016, TU Dresden

Erprobung aus der Literatur bekannter Kairomone aus Nadelwaldin Laubwaldhabitaten am Modell Falle und am Modell Fangholz

Rotbuchenbestand Tharandter Wald (10. Mai 2016)

Eichenbestand Wermsdorf (10. Mai 2016)

Eschenlochhieb Schkeuditz (03. Mai 2016)

Versuchsaufbau 2016 TU Dresden

Erprobung aus der Literatur bekannter Kairomone aus Nadelwaldin Laubwaldhabitaten am Modell Falle und am Modell Fangholz

<u>Lockstoff-Testgruppe A</u> <u>Lockstoff-Testgruppe B</u>

Cis-Verbenol

I psdienol

Sexowit

Pheroprax

Ethanol Null

Chalcogran

ChG+Ips

ChG+Cis

Chalcoprax

Ethanol Null

Aggregationspheromon

Mischung aus zwei

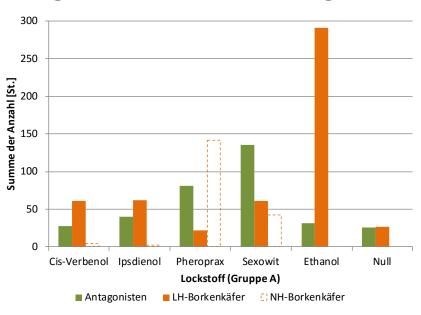
Aggregationspheromonen

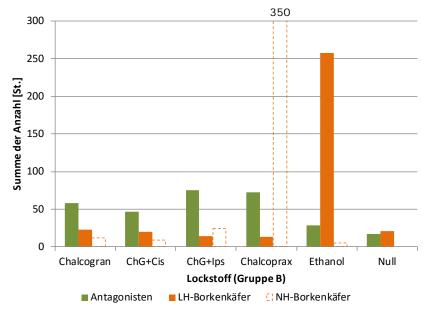
Standarddispenser

Wirtsbaumvolatil Kontrolle

Versuchsaufbau 2016 TU Dresden

> Zeitplan der Fallen-, Fangholz- und Verhaltensexperimente 2016


ВА	Schadorganismus	Monat/Kalenderwoche Schwärmzeit/Versuchsaubau-, -aktivierung, -abbau																					
		März April		Mai			Juni			Juli													
		9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Buche	Taphrorychus bicolor																						
	Trypodendron dom.																						
	Fallen*						Setup				Aktiv.	1.L	2.L	3.L	4.L*	5.L	6.L/ U	1.L	2.L	3.L/Ab			
	Fanghölzer							Setup			Aktiv.				*				Abbau				
Eiche	Scolytus intricatus																						
	Trypodendron sig.														Jungkäf	fer							
	Xylosandrus germ.																						
	Fallen*			Setup	Aktiv.		1.L	2.L	3.L	4.L**	5.L	6.L	7.L	8.L	9.L*	10.L	11.L	12.L		Abbau			
	Fanghölzer			Setup	S+A			*		**					*					Abbau			
Esche	Hylesinus fraxini																						
	Trypodendron sig.																						
	Fallen*		Setup		Aktiv.		1.L	2.L	3.L	4.L**	5.L	6.L				Abbau							
	Fanghölzer		Setup		Aktiv.			*		**				Abbau									
	* mindestens 6 Leerungen						* Kontrolle/Ersatz						* Kontrolle, Ethanoltausch beide, Sexo				de, Sexo	wit-, Pheroprax-, Ipsdienol-					
							** Kontrolle/Ethanoltausch							und Cis-Verbenol-Austausch in Eiche, U			= Umbau für Bärlauchversuch						
Verhal	tensexperimente: Y-Ol	faktor	neter-	-Versu	che m	it <i>Tha</i>	nasim	us fori	micari	ius													



Erste Ergebnisse aus bioProtect: TUD

Ergebnisse der Fallenfänge in Esche (TU Dresden)

	Cis	lps	Phero	Sex	Eth	Null	Gesamt
Antagonist	28	40	81	135	31	26	341
LH-Borkenkäfer	61	62	22	61	291	27	524
Anta:Bokä	0.5	0.6	3.7	2.2	0.1	1.0	0.7

	ChG	ChG+Cis	ChG+lps	ChP	Eth	Null	Gesamt
Antagonist	58	47	75	72	29	17	298
LH-Borkenkäfer	23	20	14	13	258	21	349
Anta:Bokä	2.5	2.4	5.4	5.5	0.1	0.8	0.9

Summe der Fangzahlen in Schlitzfallen in Abhängigkeit vom Lockstoff bei Lockstoff-Testgruppe A (links) und Lockstoff-Testgruppe B (rechts)

Erste Ergebnisse aus bioProtect: TUD

Gruppe A Gruppe B
Artenanzahl [St.]

Hylesinus fraxini 46 % Pteleobius vittatus 46 % Gruppe A Gruppe B

10

76 % Hylesinus fraxini 13 % Pteleobius vittatus

Pityogenes chalcographus 65 % Ips typographus 21 %

NH-Bokä 6

99,8 % Pityog. chalcographus 0,2 % Hylastes opacus

Thanasimus formicarius 39 % Salpingidae 25 %

Anta

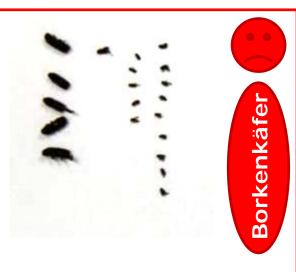
LH-Bokä

18

17

10

40 % Rhizophagus spec. 18 % Glischrochilus spec.


Fotos: © Christoph Benisch, www.kerbtier.de

Erste Ergebnisse aus bioProtect: TUD

Beispiel eines Fallenfangs mit Sexowit in Esche

Ips sexdentatus Ips acuminatus Pityogenes chalcographus Pteleobius vittatus

4 Arten (1 LH) 20 Individuen (9 LH)

Thanasimus formicarius (Ameisenbuntkäfer)

Uleiota planata (Raubplattkäfer)

Vincenzellus ruficollis (Scheinrüssler)

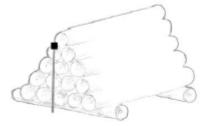
Nemosoma elongatum (Jagdkäfer)

Rhizophagus perforatus/bipustulatus (Rindenglanzkäfer)

Bitoma crenata (Rindenkäfer)

7 Arten

32 Individuen


Erste Ergebnisse aus bioProtect: OGF

Versuch zu Applikationsvarianten an Eschenpoltern

• Versuchsorte: Schkeuditz (SCHK 1+2) und Bad Gottleuba (LSH 1+2)

Versuchsvarianten: 0, 1, 2, 4 und 9 Sexowit-Dispenser je Polter

Einfacher Dispenserbesatz

Zweifacher Dispenserbesatz

Vierfacher Dispenserbesatz

Neunfacher Dispenserbesatz

 Versuchsdesign: Polterinsel mit sechs Poltern und einer Schlitzfalle im Zentrum, je zwei Polterinseln pro Standort

Auswertung: Anzahl der Einbohrlöcher sowie Brutbildanalyse in drei

Testfenstern an ausgewählten Stämmen des Polters,

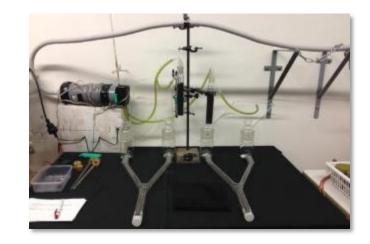
Fangzahlen der Schlitzfallen

Erste Ergebnisse aus bioProtect: OGF

Versuch zu Applikationsvarianten an Eschenpoltern

Anzahl der Einbohrlöcher an Eschenholzabschnitten in Abhängigkeit von der Dispenseranzahl am Polter

Summe von	Bohrlöcher/m	2					
		LSH 1	LSH 2	SCH	IK 1 SC	CHK 2 G	esamtergebnis
	_0		8667	1670	13168	89	23594
	1		227	662	10556	1352	12797
Anzahl an Dispensern	2	:	11232	792	7384	257	19665
Bisperisern	4		3729	218	1063	374	5383
	_9		385	98	2283	173	2939
Gesamtergebnis			24240	3440	34453	2244	64377



Ausblick ins nächste Jahr

Arbeitsprogramm 2017

- 1 Erprobung von **Allochthonen Kairomonen** aus LW an NHbesiedelnden BoKä-Arten an den Modellen Falle und Fangholz
- 2 Erprobung von **Nichtwirtsbaumvolatilen** aus NW-Habitaten an LHbesiedelnden BoKä-Arten an den Modellen Falle und Fangholz
- 3 Erprobung von **Antiaggregationspheromonen** an NH-besiedelnden BoKä-Arten an den Modellen Falle und Fangholz
- 4 Verhaltensexperimente
- → Versuchsbestände in Gemeiner Kiefer, Gemeiner Fichte, Rotbuche, Eichen und Gemeiner Esche
- → Y-Olfaktometer- und alternative Verhaltensexperimente an Borkenkäfern und Prädatoren

Ausblick zum Projektende

Ziele des Projekts bioProtect

- ✓ Entwicklung und Implementierung naturnaher insektizidfreier biotechnischer Verfahren zur Steuerung und Regulation von Borkenkäferpopulationen
 - Vermeidung von Schäden im Wald sowie positive Rückkopplung auf die biologische Vielfalt im Wald (Nützlingsförderung, Vermeidung von Nebenwirkungen) und die Anpassungsfähigkeit der Wälder an den Klimawandel
 - Neue Monitoringmöglichkeiten für Borkenkäfer
- ✓ Praxisleitfaden mit Handlungsempfehlungen zu alternativen Verfahren im Borkenkäfermanagement
- Übertragung des Prinzips der Allochthonen Kairomone auf andere potenzielle Schadorganismen und deren Antagonisten im Wald

