Kalibrierung von Satellitenantennen: aktuelle Arbeiten am AIUB

R. Dach, A. Jäggi,
H. Bock, S. Lutz, M. Meindl, L. Ostini, L. Prange, P. Steigenberger^a,
A. Steinbach, S. Schaer^b, D. Thaller, P. Walser, G. Beutler

rolf.dach@aiub.unibe.ch code@aiub.unibe.ch

Astronomisches Institut, Universität Bern, Sidlerstrasse 5, CH-3012 Bern

^a Institut für Astronomische und Physikalische Geodäsie, TU München

^b Bundesamt für Landestopographie, swisstopo

7. GNSS-Antennenworkshop

Dresden, 19–20 März 2009

Kalibrierung von Satellitenantennen

GLONASS–Satellitenantennen

- Motivation
- Reprocessing von CODE: Ergänzung von CODE-Repro01 f
 ür IGS mit GLONASS
- Update des GNSS-Satellitenantennenmodells (fast alle GLONASS-Satelliten, einige GPS-Satelliten)

LEO–Satellitenantennen

- Validierung, Verbesserung von Empfangsantennenmodellen von LEOs
- Einfluss auf Produkte aus LEO-Bahnen

GPS–Satellitenantennen

• Kann man LEO-Daten die GPS-Satellitenanennenmodelle verbesssern?

Neues GLONASS-Satellitenantennenmodell?

Das GLONASS-tracking Netz des IGS

Status: November 2005 (Tag im Jahr 2005:330)

Neues GLONASS-Satellitenantennenmodell?

Das GLONASS-tracking Netz des IGS

Status: Dezember 2008 (Tag im Jahr 2008:340)

Neues GLONASS-Satellitenantennenmodell?

Aktuelle GNSS–Konstellation

Tag im Jahr 2009:070

Dach und Jäggi: Kalibrierung von Satellitenantennen - p. 4/29

■ IGS-Repro01:

- Zeitraum 1994-2007 (2008)
- GPS-only Lösung
- Bis Ende 2009 abgeschlossen

■ IGS-Repro01, der CODE-Beitrag:

- Beitrag von CODE wird am IAPG/TUM (P. Steigenberger) gerechnet (IAPG/TUM ist seit Jan. 2009 neues Mitglied im CODE-Konsortium)
- Zeitraum 1994-2008, als GPS-only Lösung

IGS-Repro01, GLONASS-Erweiterung:

- Alle verfügbaren GLONASS-tracking Stationen in einem separaten Cluster (GPS+GLONASS) ausgewertet und zu GPS-only hinzugefügt
- zunächst für den Zeitraum 29. Juni 2003 bis Ende 2008 (Fortsetzung in die Vergangenheit bis zum Beginn IGEX, Herbst 1998, geplant)

Anzahl von GLONASS Stationen

Antennentypen auf den GLONASS-Stationen

(Tag im Jahr 2008:350)

Antennentypen auf den GLONASS-Stationen

(Tag im Jahr 2008:350)

Antennentypen auf den GLONASS-Stationen

(Situation im Dezember 2008)

Antennentypen auf den GLONASS-Stationen

(Situation im Dezember 2007)

Antennentypen auf den GLONASS-Stationen

(Situation im Dezember 2006)

Antennentypen auf den GLONASS-Stationen

(Situation im Dezember 2005)

Antennentypen auf den GLONASS-Stationen

(Situation im Dezember 2004)

Antennentypen auf den GLONASS-Stationen

(Situation im Dezember 2003)

Intervalle der aktiven GLONASS-Satelliten (PRN)

Anzahl der Messungstage pro GLONASS-Satellit (SVN)

Anzahl der Beobachtungen pro GLONASS-Satellit (SVN)

Bestimmung der GNSS-Satellitenantennenmodelle

- Aus dem Reprocessing liegen Eintageslösungen in Form von NEQ-Files vor.
- Daraus wurden Dreitageslösungen mit durchgängigen Satellitenbahnen erzeugt, um die Satellitenbahnparameter (insbesondere für die schlecht bestimmten GLONASS-Satelliten) zu stärken.
- Aus den 2000 Dreitageslösungen wurden eine Koordinatenlösung auf der Grundlage von IGS05 berechnet.
- Die Koordinatenlösung wurde eingeführt und nur noch Satellitenantennenparameter bestimmt. Es entstanden so 6 Jahreslösungen auf NEQ-Basis.

Nadirabhängige Variation des GNSS Satellitenantennenphasenzentrums

Dach und Jäggi: Kalibrierung von Satellitenantennen - p. 12/29

Nadirabhängige Variation des GNSS Satellitenantennenphasenzentrums

Dach und Jäggi: Kalibrierung von Satellitenantennen - p. 12/29

Nadirabhängige Variation des GNSS Satellitenantennenphasenzentrums

Dach und Jäggi: Kalibrierung von Satellitenantennen - p. 12/29

Nadirabhängige Variation des GNSS Satellitenantennenphasenzentrums

Jahreslösung 2006, mindestens 90 Tage

Nadir in degree

Nadirabhängige Variation des GNSS Satellitenantennenphasenzentrums

Dach und Jäggi: Kalibrierung von Satellitenantennen - p. 12/29

Nadirabhängige Variation des GNSS Satellitenantennenphasenzentrums

Nadirabhängige Variation des GNSS Satellitenantennenphasenzentrums

Jahreslösung 2003, mindestens 90 Tage

Nadirabhängige Variation des GNSS Satellitenantennenphasenzentrums

Jahreslösung 2004, mindestens 90 Tage

Nadirabhängige Variation des GNSS Satellitenantennenphasenzentrums

Jahreslösung 2005, mindestens 90 Tage

Nadirabhängige Variation des GNSS Satellitenantennenphasenzentrums

Jahreslösung 2006, mindestens 90 Tage

Nadirabhängige Variation des GNSS Satellitenantennenphasenzentrums

Jahreslösung 2007, mindestens 90 Tage

Nadirabhängige Variation des GNSS Satellitenantennenphasenzentrums

Jahreslösung 2008, mindestens 90 Tage

Nadirabhängige Variation des GNSS Satellitenantennenphasenzentrums

Satellit SVN 53/PRN G17, mindestens 90 Tage

Nadirabhängige Variation des GNSS Satellitenantennenphasenzentrums

Satellit SVN 59/PRN G19, mindestens 90 Tage

Nadirabhängige Variation des GNSS Satellitenantennenphasenzentrums

Satellit SVN 46/PRN G11, mindestens 90 Tage

Nadirabhängige Variation des GNSS Satellitenantennenphasenzentrums

Satellit SVN 56/PRN G16, mindestens 90 Tage

Nadirabhängige Variation des GNSS Satellitenantennenphasenzentrums

Nadirabhängige Variation des GNSS Satellitenantennenphasenzentrums

Satellit SVN 27/PRN G27, mindestens 90 Tage

Dach und Jäggi: Kalibrierung von Satellitenantennen - p. 14/29

Nadirabhängige Variation des GNSS Satellitenantennenphasenzentrums

Satellit SVN 45/PRN G21, mindestens 90 Tage

Nadirabhängige Variation des GNSS Satellitenantennenphasenzentrums

Satellit SVN 783/PRN R18, mindestens 90 Tage

Dach und Jäggi: Kalibrierung von Satellitenantennen - p. 15/29

Nadirabhängige Variation des GNSS Satellitenantennenphasenzentrums

Nadirabhängige Variation des GNSS Satellitenantennenphasenzentrums

Satellit SVN 701/PRN R06, mindestens 90 Tage

Nadirabhängige Variation des GNSS Satellitenantennenphasenzentrums

Satellit SVN 714/PRN R23, mindestens 90 Tage

GNSS Satellitenantennenoffset

AIUB

Dach und Jäggi: Kalibrierung von Satellitenantennen - p. 16/29

GNSS Satellitenantennenoffset

Mittleres GLONASS Satellitenantennenphasenzentrum

zum Vergleich: Ergebnis der alten Bestimmung

GLONASS Z-offsets

Fehlerbalken wurden um den Faktor 5 überhöht dargestellt.

GNSS-Satellitenantennenmodelle

- CODE hat das IGS-Repro01 Ergebnis um die GLONASS-Beobachtungen für die Jahre 2003 bis 2008 ergänzt.
- Damit konnte das Satellitenantennenmodell f
 ür die GLONASS-Satelliten unter besseren Voraussetzungen neu berechnet werden, als sie Anfang 2006 vorlagen (Berechnung der aktuellen Werte).
- Die Variationen der Antennenphasenzentren sind f
 ür alle GLONASS und GLONASS-M vergleichbar.
- Die Satellitenantennenoffsets lassen sich aus den Jahreslösungen auf etwa 5 cm reproduzieren. Längere Bahnbögen sollten diesen Wert aber noch verbessern können (insebsondere bei schwach beobachteten Satelliten).
- Bei den GPS-Satelliten BLOCK IIA scheint es bei den Variationen der Antnnenphasenzentrem mehrere Gruppen zu geben (evt. Alterungserscheinungen oder Resultat von Wartungsarbeiten?).

Bestimmung von Satellitenantennenmodellen für tieffliegende Satelliten (Beispiel GRACE)

- GPS-Antenne wurde zwar am Boden kalibiert, aber es gibt signifikante Systematiken (abhängig von Azimut und Höhenwinkel) in den Residuen.
- In Analogie zu "nearfield-multipath" eine Bodenantenne findet man bei Satelliten
 - Mehrwegeausbreitung an der Satellitenoberfläche und
 - Beeinflussung durch andere aktive Instrumente
- Analyse der Residuen einer reduziert-dynamischen Bahnbestimmung
 - Bestimmung eines verbesserten Antennenphasenmodells
 - Grid mit Auflösung 1x1°, vier Iterationen

Verbesserung der GRACE Satellitenbahn

gegenüber K-Band Messungen aus einem Jahr (2007) Daten

RMS über ein Jahr: (Angaben in mm) 11.9 ohne PCV 9.7 nach 1.Iteration 9.0 nach 2.Iteration 8.7 nach 3.Iteration 8.6 nach 4.Iteration

Verbesserung der GRACE Satellitenbahn

gegenüber K-Band Messungen aus einem Jahr (2007) Daten

RMS über ein Jahr: (Angaben in mm) 1.1 ohne PCV 0.8 nach 4.Iteration (Mehrdeutigkeiten gelöst)

Verbessertes Antennemodell für GRACE

aus einem Jahr (2007) Daten

- Basislinie zwischen GRACE A und B
- Mehrdeutigkeiten gelöst
- Parameter direkt aus NEQ bestimmt
- Auflösung $2x2^\circ$, eine Iteration
- bestätigt Modelle aus Residuenapproach

Flugrichtung —>

GRACE A

Dach und Jäggi: Kalibrierung von Satellitenantennen - p. 24/29

Bestimmung von Satellitenantennenmodellen für tieffliegende Satelliten (Beispiel GRACE)

- Verbesserung von LEO-Antennenmodellen ist aus den Daten möglich:
 - sowohl durch Analyse der Residuen als auch
 - direkt durch Lösen der Modellparameter aus der NEQ
- Die Verbesserung kann sowohl in den Bahnen selbst wie auch daraus abgeleiteten Produkten nachgewiesen werden.
- Heikel ist die Notwendigkeit, eine Satellitenbahn bei der Bestimmung des Antennenmodells einführen zu müssen:
 - Bestimmung des Antennenmodells erfordert eine dynamische Bahn.
 - Produkte (z.B. Schwerefeld) sollten jedoch aus einer kinematischen Bahn berechnet werden.

Kann man mit LEO-Daten die GPS-Satellitenantennenmodelle verbesssern?

- Mehrwegeausbreitung an der Satellitenoberfläche und Beeinflussung durch andere Instrumente
- LEO-Bahn muss auch aus GPS-Daten bestimmt werden
- nur wenige LEOs sind geeignet, praktisch nur ein Antennentyp
- heute nur LEOs mit GPS-Empfängern, kein GLONASS
- grosse Variabilität in der GPS-Satellitengeometrie
- bessere Bestimmung der Werte bei Nadirwinkel von >= 13°

Vergleich von GPS-Konstellation

Tag im Jahr 2007:105

Verwendung von GRACE

Die beiden GRACE-Satelliten sind sehr geeignet, um GPS-Satellitenantennenmodelle zu verbessern:

- sehr gute GPS-Empfänger an Bord
- zwei Satelliten fliegen mit einem Abstand von 200 km
- Mehrdeutigkeitslösung zwischen den beiden Satelliten möglich
- Kontrolle der GRACE-Bahn durch K-Bandmessungen (zumindest relativ und in Flugrichtung)

GRACE-Satelliten

GPS-Satellitenantennen-PCV

auf der Grundlage von einem Monat (April 2007) GRACE bestimmt

kein PCV-Modell für GRACE eingeführt

GPS-Satellitenantennen-PCV

auf der Grundlage von einem Monat (April 2007) GRACE bestimmt

Standard PCV-Modell für GRACE eingeführt

GPS-Satellitenantennen-PCV

auf der Grundlage von einem Monat (April 2007) GRACE bestimmt

eigenes PCV-Modell für GRACE eingeführt

GPS-Satellitenantennen-PCV

auf der Grundlage von einem Monat (April 2007) GRACE bestimmt

- GPS-Satellitenantennen-PCV sind sehr sensitive auf das LEO-Antennemodell
- Bestimmung von GPS- und LEO-Antennenmodellen sollte gleichzeitig erfolgen
- Kombination mit einem globalen Bodennetz scheint sinnvoll

erste Ergebnisse vielversprechend: insbesondere die Stabilität der Modellwerte bei Nadirwinkel von >= 13°

