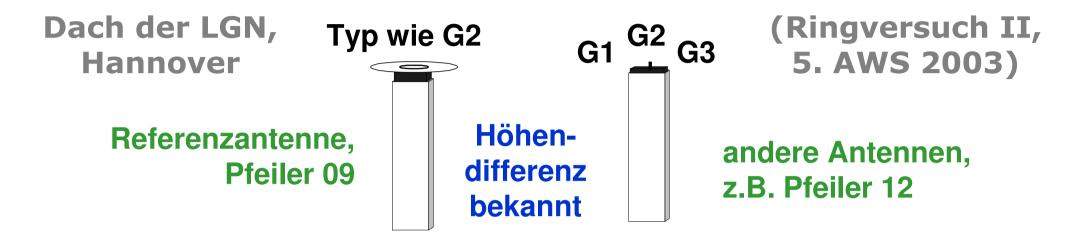


Fakultät Forst-, Geo-, Hydrowissenschaften, Fachrichtung Geowissenschaften, Geodätisches Institut

Kontrollierter Wechsel von GNSS-Referenzstationsantennen

- L. Wanninger¹, V. Frevert¹, A. Schmidt¹, M. Fettke²
- (1) Geodätisches Institut, TU Dresden
- (2) Landesamt für Vermessung und Geobasisinformation Rheinland-Pfalz

7. GNSS-Antennenworkshop, Dresden, 20.03.09


Motivation

Ursachen scheinbarer Positionsänderungen

Modellierung und Korrektion

Ergebnisbeispiele

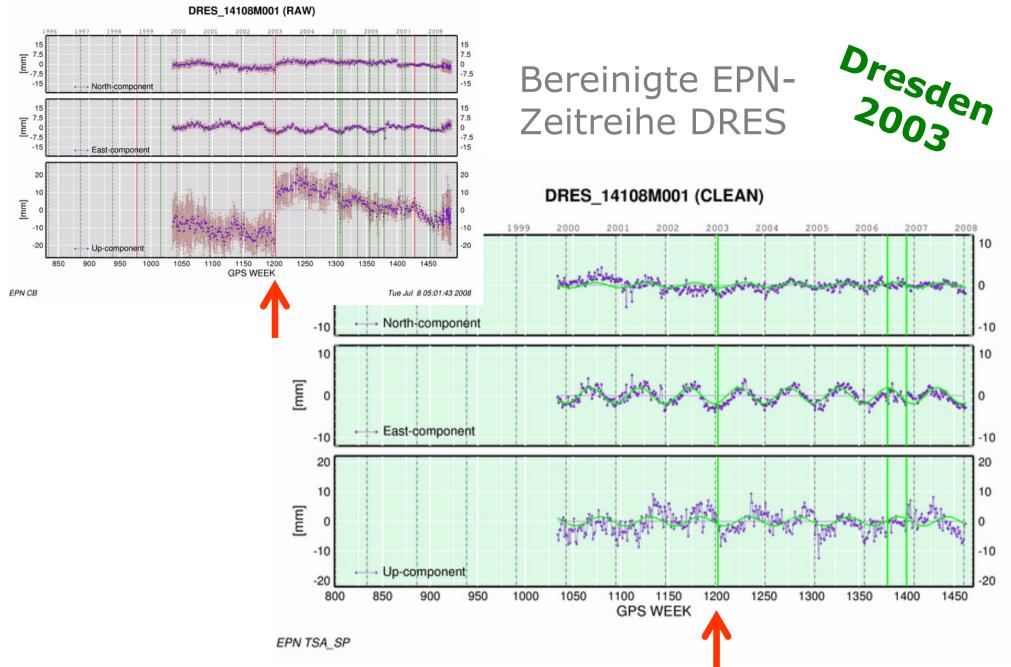
Systematische Einflüsse auf GNSS-Höhenbestimmung

Höhenabweichung (Vergleich zu niv. Sollwerten)

24 h Beobachtungen, Roboter-Kalibrierwerte berücksichtigt


Ant.	L1	L2	LO	L0+T
G1	0,4	1,1	-0,8	9,2
G2	-0,6	-0,3	-1,1	1,4
G3	-0,2	2,1	-3,8	10,3

Auswirkungen von Antennenwechseln

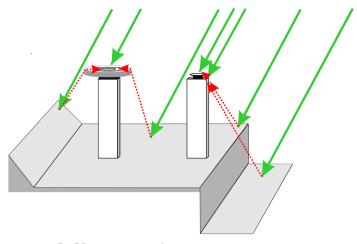

EPN Koordinaten-Zeitreihe DRES

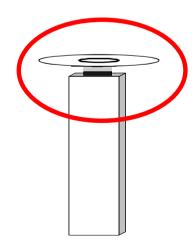
Netzlösung → Lösungstyp: L0+T

2. Referenzstation in wenigen Metern Abstand: DREJ

→ nur mit zeitlichem Abstand, nur für diesen Lösungstyp

Ursachen scheinbarer Positionsänderungen


Phasenmehrwegeeinflüsse


- Fernfeld: entfernte Reflektoren (Umweglänge > 1 m)

- z.B. durch Untergrund
- schnelle Veränderung der Umweglänge
 - → kurzperiodische Mehrwegeeinflüsse (< 60 Minuten),
- langperiodische Restfehler (bis zu einigen mm in L0)

Nahfeld: nahe Reflektoren (Umweglänge << 1 m)

- z.B. Pfeiler-, Stativoberkante, Dreifuß
- langsame Veränderung der Umweglänge
 - → langperiodische Mehrwegeeinflüsse (Stunden)
 - → wirkt größtenteils auf Koordinaten
- langperiodische Restfehler (bis zu einigen mm in L0)

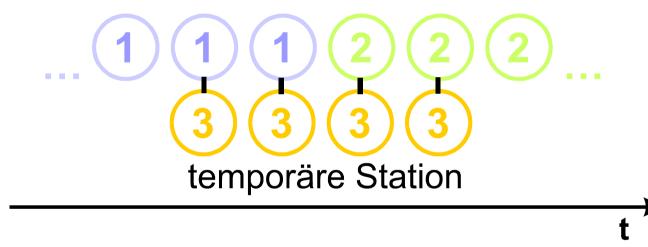
Mehrwegeempfindlichkeit

Antennen mit unterschiedlicher Mehrwegeempfindlichkeit, mit unterschiedlich großen Grundplatten, mit/ohne Choke Ring Elementen

→ Scheinbare Positionsänderungen

Antennenkalibrierung

Kalibrierverfahren


- (a) Labor z.B. Uni Bonn/GEObasis.NRW
- (b) Feld
- ohne Drehung und Kippung (z.B. NGS)
- mit Drehung, ohne Kippung (z.B. TUD)
- mit Drehung und Kippung (z.B. Geo++)
- Kalibrierabweichungen immer vorhanden, in unterschiedlicher Größenordnung, insbesondere wenn keine individuellen Kalibrierwerte verwendet werden
- Antennenwechsel
 - → Veränderung der Kalibrierabweichungen
 - → Scheinbare Positionsänderung

Modellierung und Korrektion

Erfassung der Veränderungen beim Ant.wechsel

Messprinzip "Kontrollierter Wechsel"

Verfahren der Antennenwechsel

SAPOS: IGS/EPN: Kontrollierter Wechsel:

Modellierung der Veränderungen

Mehrwegemodell vor Antennenwechsel (1)-(3):

Mehrwegeeinflüsse auf Ref. station mit alter Antenne

- + Mehrwegeeinflüsse auf temp. Ref.station
- + Ant.kalib.abweichung auf Ref.station mit alter Antenne
- + Ant.kalib.abweichung auf temp. Ref.station
- + Koordinatenabweichungen Basislinie

Mehrwegemodel nach Antennenwechsel (2)-(3):

Mehrwegeeinflüsse auf Ref.station mit neuer Antenne

- + Mehrwegeeinflüsse auf temp. Ref.station
- + Ant.kalib.abweichung auf Ref.station mit neuer Antenne
- + Ant.kalib.abweichung auf temp. Ref.station
- + Koordinatenabweichungen Basislinie

Differenz der Modelle (1)-(3)-((2)-(3))=(1)-(2):

Mehrwegedifferenzen auf Ref.station alte-neue Ant.

+ Ant.kalib.abw.differenzen auf Refstation alte-neue Ant.

Modellierung der Veränderungen

Modell der Veränderungen:

- keine Korrektionen, um auf korrektes Niveau zu kommen, Korrektionen nur zwischen zwei "falschen" Niveaus
- Antennenkalibrierresultate werden berücksichtigt: wurde eine der Antennen (alt oder neu) nicht kalibriert, wird dies automatisch mitkorrigiert

Korrektur auf Koordinaten- oder Beobachtungsebene

Korrektur auf Koordinatenebene:

- + drei Werte pro Lösungstyp
- viele Lösungstypen
- nur für jeweilige Software und deren Einstellungen gültig

Korrektur auf Beobachtungsebene:

- + Korrektionen nur für L1 und L2, allgemein gültig
- viele Modellparameterwerte

Korrektur auf altes Niveau / auf neues Niveau

Korrektur der neuen Messungen auf altes Niveau

- altes Referenzsystem bleibt unverändert

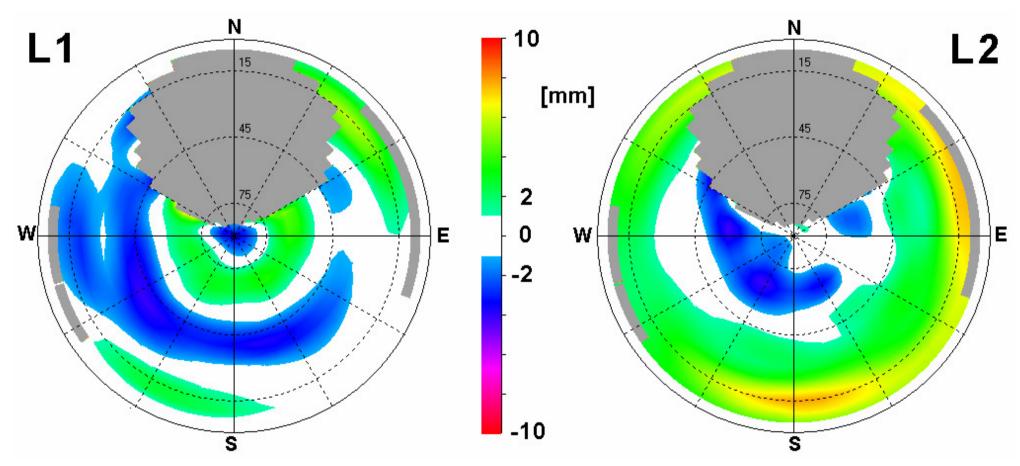
Korrektur der alten Messungen auf neues Niveau

- neues (hoffentlich bessere) Niveau wird auf alte Messungen übertragen
- bei Re-Prozessierung für geodynamische Fragestellungen / Realisierung des Referenzsystems

Modellierung der Veränderungen auf Koordinatenebene

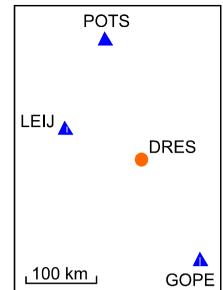
Nur gültig für: - Wa1 2.0

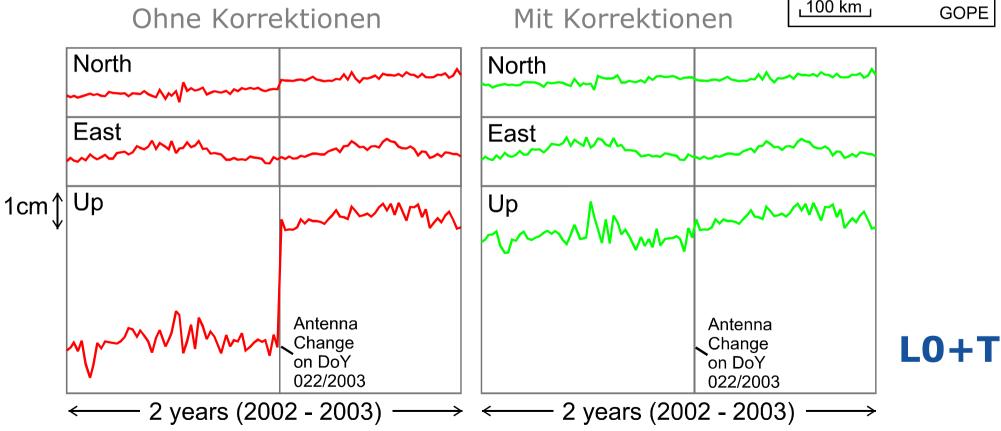
- 10 Grad Elevationsmaske


- elevationsabhängige Beobachtungsgewichtung

	L1	L2	LO	L0+T
Nord	0,4	-0,6	4,0	3,5
Ost	2,7	1,2	1,3	1,1
Höhe	3,8	-7,5	23,3	36,5

[mm]


Korrektionen auf Beobachtungsebene



Parametrisierung: Kugelflächenfunktionen Speicherformat: (modifiziertes) ANTEX

Anwendung im regionalen Netz

Ergebnisbeispiele:

Antennenwechsel im SAPOS-Netz von Rheinland-Pfalz

Antennenwechsel in Rheinland-Pfalz

Nov. 07 - Dez. 08

kontrollierter Antennenwechsel von GPS- nach GPS/GLONASS auf 8 von 18 Stationen

Antennenwechsel in Rheinland-Pfalz

Alte Antennentypen

Choke-Ring, nicht Typ D/M, mit/ohne Radome

Neuer Antennentyp

Choke-Ring, Typ D/M +DFB

1

6

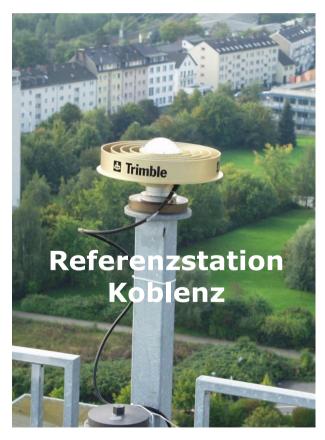
große Grundplatte, keine Choke-Rings

1

Choke-Ring, Typ D/M

alle Antennen individuell roboterkalibriert

Antennenwechsel in Rheinland-Pfalz


Umgebungsbedingungen

starke nahe Reflektoren

...

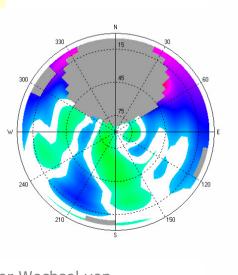
wenige nahe Reflektoren

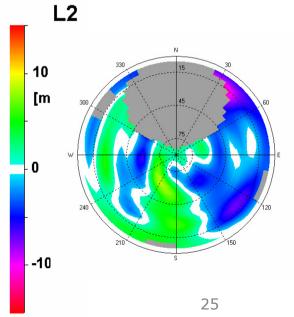
Scheinbare Höhenänderungen bei Antennenwechseln

Station	alte Antenne	Mehrwege- einfluss	L1	L2	LO	LO+T
Daun	k. CR	"stark"	0,3	-3,4	6,4	14,3
Simmern	CR	"gering"	0,5	0,6	0,5	5,6
Koblenz	CR-DM	"gering"	1,2	1,4	1,0	-0,1
Kaiserslau.	CR	"mittel"	1,2	-0,6	4,1	10,5
Pirmasens	CR	"mittel"	-7,4	-11,2	-1,5	6,9
Wissen	CR	"gering"	-2,6	-2,5	-2,1	-5,9
Ludwigsh.	CR	"gering"	0,7	-1,4	4,0	2,0
Trier	CR	"mittel"	2,4	-2,1	9,2	7,0

[mm]

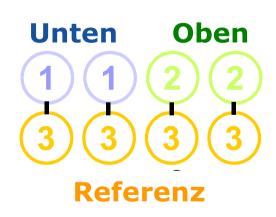
Scheinbare (oder tatsächliche?) Lageänderungen


Antennenwechsel Trier



	L1	L2	LO	L0+T
Nord	-3,9	-2,0	-7,1	-6,8
Ost	-2,4	-2,3	-2,5	-2,6
Höhe	2,4	-2,1	9,2	7,0
	[mm]			

7. GNSS-Antennenworkshop 20.03.2009


Kontrollierter Wechsel von GNSS-Referenzstationsantennen

Ergebnisbeispiele:

Mehrwegeempfindlichkeit von Antennentypen

"unten-oben" Experimente

- selber Standort (Pfeiler),
- andere Antennenhöhe (0,122 m Höhenunterschied)
- selbe Referenzantenne/-empfänger
- → Wie weit weicht der GNSS-bestimmte Höhenunterschied "unten-oben" vom bekannten Höhenunterschied ab?

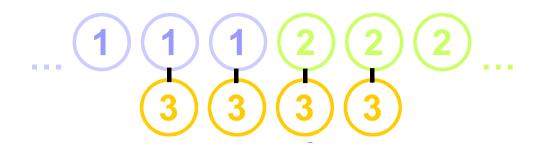
Unten

Oben

"unten-oben" Experimente

Abweichung vom Sollhöhenunterschied, L0+T-Lösung

RTK-Antenne, kleine Grundplatte

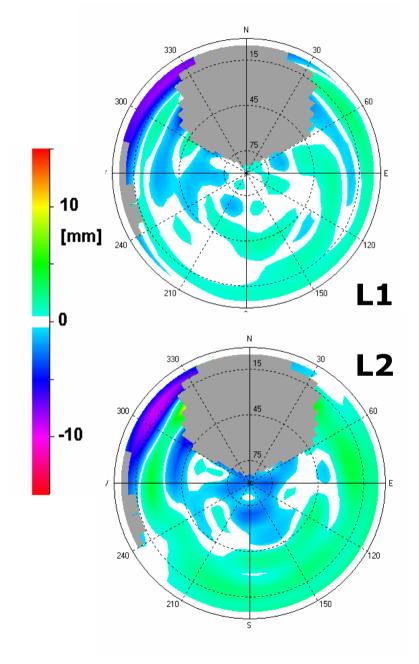

-7,4 mm

Geodätische Antennen mit großen Grundplatten oder Choke-Ringen

+2,4 mm - 2,6 mm

+6,8 mm

Zusammenfassung



Ein kontrollierter Antennenwechsel ermöglicht:

- die Erfassung von scheinbaren Positionsänderungen
- Korrektur dieser Einflüsse auf Beobachtungsebene

Er ermöglicht nicht:

 die absolute Korrektur der (mittleren) Mehrwegeeinflüsse

