

Faculty of Environmental Sciences Department of Geosciences

Geodetic Institute

Nadir angle and elevation angle dependent GPS code delay variations

Lambert Wanninger Hael Sumaya Susanne Beer

IGS Workshop on GNSS Biases 2015, Berne, 5-6 Nov. 2015

Older Work on GPS Code Delay Variations

GPS Satellite Antennas

Receiving Antennas

Springer and Dilssner 2009:

- derived from ground measurements, iono.-free
- several 10 cm level
- largest: SVN55

Haines et al. 2012, 2014:

- derived from GRACE measurements, iono.-free
- several 10 cm level
- largest: Block IIR

Wübbena et al. 2008:

- derived from robot
 - calibrations, L1, L2, \rightarrow iono.-free
- 5 DM type antennas,
 2 other CR antennas

MP observable: code / dual-frequency phase

Regression Model: Calibration of code variations with respect to carrier-phases C1 and P2 separately → all linear combinations

GPS Code Delay Variations

Geodetic Institute TU Dresden Challenges

code multipath

 \rightarrow low-pass filtering, many different stations

dependence on tracking channel characteristics ?

→ (receiver selection,) majority voting, averaging

code/phase, frequency dependent properties

- \rightarrow common reference point at antennas
- \rightarrow phase wind-up

• separation sat. ant. from rec. ant.

- $(\rightarrow$ absolute calibration values for receiving antennas)
- \rightarrow reference antenna type

Common reference points for phase observations

 \rightarrow Modification of IGS08.ATX:

new L1/L2 PCO of satellite antennas, no changes for iono.-free linear combination

Receiving Antennas

4 Dorne-Margolin type AOAD/M_T ASH700936?_M LEIAT504GG TRM29659.00 9 more antenna types JAV_RINGANT_G3T LEIAR25.R3 LEIAR25.R4 SEPCHOKE_MC TPSCR.G3 TRM41249.00 TRM55971.00 TRM57971.00 TRM579800.00

differences of radomes / receiver types ignored selected code signals: C1, P2 RMS (MP) considered: ele. range 10-90 deg RMS (MP) < 0.5 m for C1, P2

Station distribution: GPS week 1843 (123-129/15)

43 stations + 85 other stations with 9 additional types of receiving antennas

Results for satellite antennas – all 43 stations

31 SV

Results sat. ant. – comparison with Haines

18 identical satellites

Results – per GPS satellite block

Receiving Antennas: 4 DM type

Receiving Antennas: 4 DM + 9 more

3 - LEIAR25.R3 4 - LEIAR25.R4 J - JAV_RINGANT_G3T **Combined Corrections – Various Combinations**

31 SV x 13 antenna types = 403 correction data sets

Combined Corrections – Various Combinations

TEC Determination

SVN55 LEIAR25.R4

at IGS station KRGG DoY 160/2015

Differences: TEC from phase - TEC from code

unfiltered, low-pass filtered

code uncorrected, corrected

DCB C1P2, own results: DoY 160/2015, 320 IGS stations

Summary, Conclusions

GPS code delay variations

- from MP linear combinations of reference stations
- for C1, P2 \rightarrow linear combinations

GPS satellites

- good agreement with results from Haines et al. 2012, 2014
- largest corrections for Block IIR

Receiving antennas

 esp. large corrections for some antenna types: LEIAR25.R3, LEIAR25.R4, JAV_RINGANT_G3T

Improvements wherever code is used for precise applications

- single-frequency code/phase PPP
- PPP ambiguity fixing
- TEC from code GPS Code Delay Variations