### Bedienungshilfe für die Nutzung von LPS (Leica Photogrammetry Suite)

Inhalt:

- Anlegen eines neuen Projekts
- Einfügen von Bildern in ein Projekt
- Berechnung von Bildpyramiden
- Definieren des Kamera-Models
- Festlegen der inneren Orientierung eines Bildes
- Festlegen der äußeren Orientierung eines Bildes
- Messen von Pass- , Kontroll- und Verknüpfungspunkten
- Automatisches Messen von Verknüpfungspunkten
- Bildtriangulation
- Stereoauswertung
- Orthophotogenerierung
- Betrachtung von Orthobildern
- Sichern der Ergebnisse

#### Anlegen eines neuen LPS- Projekts

- 1. Starten von LPS
- 2. Im sich öffnenden Window Auswahl  $\rightarrow$  File $\rightarrow$  New auswählen  $\rightarrow$  OK
- 3. Auswahl des Zielordners
- 4. Eingabe des Projektnamens  $\rightarrow \mathbf{OK}$
- Im sich öffnenden Window kann nun die Art des Aufnahmesystems gewählt werden (Frame Camera, Digital Kamera...) → OK
- 6. Im folgenden Window den Menüpunkt Set Projection anwählen
- 7. Entsprechendes Bezugsmodell des Koordinatensystems auswählen → OK
- 8. Anwählen des Menüpunktes Next
- Festlegen der Einheiten der Orientierungselemente und des Objektkoordinatensystems (z.B. Horizontal Units → Meters)
- 10. Anwählen des Menüpunktes Next
- 11. Auswahl der Art der Festlegen der äußeren Orientierung (Reihenfolge der Rotationen)
- 12. Festlegen der durchschnittlichen Flughöhe der Aufnahmeplattform (optional)
- 13.  $\rightarrow$  **OK**  $\rightarrow$  LPS Menü

#### Einfügen von Bildern in ein Projekt

- 1. Auswahl des Menüpunktes Edit → Add Frame
- 2. Im sich öffnenden Window Auswahl der entsprechenden Bilder (\*.img)
- 3.  $\rightarrow \mathbf{OK}$

# Berechnen der Bildpyramiden

- 1. Auswahl des Menüpunktes Edit -> Compute Pyramid Layers
- Im sich öffnenden Window Festlegen der gewünschten Auswahloption → OK (Nach erfolgter Berechnung sollte das Paramid-Layers- Statusfeld grün gefärbt sein)

# Definieren des Kamera-Models

- 1. Auswahl des Menüpunktes Edit → Frame Editor
- 2. In dem sich öffnenden Window Anwahl des Sub-Windows Sensor

|                | 12 Frame Editor (col90p1.img)                    | _ D ×        |
|----------------|--------------------------------------------------|--------------|
|                | Sensor Interior Orientation Exterior Information |              |
| Aktuelles Bild | Image File Name: collipting                      | OK<br>Bevice |
|                | Block Model Type: Frame Camera                   | Next         |
|                | Servor Name: Defoult Wild Edit. New.             | Help         |
|                |                                                  |              |
|                |                                                  | li.          |
|                | Definieren einer neuen<br>Kamera                 |              |

- Auswahl einer bereits festgelegten Kamera (im Scroll-Down-Menü) → oder Neudefinition eines Sensors mit dem Button New → dann weiter mit Punkt 4
- 4. Im sich öffnenden Window Eingabe eines Kameranamens, der Kamerakonstante und der Lage des Hauptpunktes usw. (für weitere Details siehe Hilfe unter Erdas); ist bereits ein entsprechender \*.cam File in einem anderen Projekt definiert worden, kann dieser über die Funktion Load importiert werden
- 5.  $\rightarrow \mathbf{OK}$

## Festlegen der inneren Orientierung eines Bildes

- 1. Auswahl des Menüpunktes Edit → Frame Editor
- 2. In dem sich öffnenden Window Anwahl des Sub-Windows Interior Orientation



- 3. Festlegung der Orientierung des Bildkoordinatensystems bezüglich des
  - Landeskoordinatensystems
- 4. Auswahl des Viewer-Icons
- 5. In dem sich öffnenden Window Anwahl des Sub-Windows Interior Orientation



- 6. Positionieren der Link-Box über der entsprechenden Rahmenmarke mittels 🔊 -Icon
- Messen der Rahmenmarke mittels D-Icon über einfaches Klicken auf die Rahmenmarke in der Detailansicht ( in der Tabelle sollten dann in den entsprechenden Spalten die Bildkoordinaten der gemessenen Rahmenmarke aufgelistet sein)
- 8. Automatische Grobanwahl der nächsten zu messenden Rahmenmarke
- 9. weiter mit 6. bis alle Rahmenmarken gemessen sind
- Automatische Berechnung der Transformation zwischen Bild- und Kamerakoordinaten der Rahmenmarken nach Messung aller Rahmenmarken
- Beurteilung des mittleren Fehlers der Bildkoordinaten der Rahmenmarken (der Fehler kann über dem Solve-Button abgelesen werden)
- 12. Automatische Messung der Rahmenmarken in allen Bildern mit Hilfe des Auto Locate-Buttons
- Im sich öffnenden Menü Anwahl des gewünschten Auswahlmodus und Angabe von Messparametern (im Allgemeinen können die angegebenen Werte benutzt werden)
- 14. → **RUN**
- 15. Beurteilung des Resultats im Report (Anwahl über **Report-Button**); bei zu hohem Fehler gegebenenfalls Neumessung der Rahmenmarken ( 6.) ("schlecht" gemessene Rahmenmarken können über die zugehörigen mittleren Fehler in x und y erkannt werden)
- 16. Ergebnis im annehmbaren Rahmen  $\rightarrow$  Accept  $\rightarrow$  Close
- 17. → **OK**

# Festlegen der äußeren Orientierung eines Bildes

- 1. Auswahl des Menüpunktes Edit -> Frame Editor
- 2. In dem sich öffnenden Window Anwahl des Sub-Windows Exterior Orientation



- 3. Eingabe der näherungsweise bekannten Parameter der äußeren Orientierung eines Bildes
- 4. Setzen des Parameterstatus auf Initial
- 5.  $\rightarrow$  Next und weiter mit 3. und 4. bis alle Bilder genähert orientiert sind
- 6.  $\rightarrow \mathbf{OK}$

### Messen von Pass-, Kontroll- und Verknüpfungspunkten

- 1. Auswahl des Menüpunktes Edit -> Point Measurement
- 2. In dem sich öffnenden Window Anwahl des Sub-Windows Exterior Orientation



- Messen des Bildpunktes mittels
  Icon über einfaches Klicken auf den gewünschten Punkt in der Detailansicht ( in der Bildkoordinatentabelle sollten dann in den entsprechenden Spalten die Bildkoordinaten des gemessenen Punktes aufgelistet sein)
- 12. Anmessen des homologen Punktes im rechten Bild wie unter 6. und 7.
- 13.  $\rightarrow$  Save
- 14. Für das Messen weiterer Punkte weiter mit 4.-9.
- 15.  $\rightarrow$  Close

#### Automatisches Messen von Verknüpfungspunkten

1. Auswahl des Menüpunktes Edit -> Point Measurement

!Beachte! Für diesen Vorgang müssen die Parameter der äußeren Orientierung als Initial deklariert sein!

2. Anklicken des 🔳 -Icons zum Öffnen des Menüs Atomatic Tie Point Collection



- 3. Setzen der Parameter
- 4.  $\rightarrow$  **Run**
- Nach erfolgter automatischer Messung Kontrolle der gefundenen Punkte im Point Measurement – Window durch anwählen diverser Verknüpfungspunkte und Vergleich in beiden Bildern des jeweiligen Bildpaares
- Eventuelles deaktivieren oder Nachmessen (siehe Messen von Pass-, Kontroll- und Verknüpfungspunkten, Unterpunkte 6-8) von augenscheinlich falsch gefundenen Verknüpfungspunkten
- 7.  $\rightarrow$  Save
- 8.  $\rightarrow$  Close

# Bildtriangulation

1. Festlegen der Triangulationsparameter im Menüpunktes Edit -> Triangulation Properties



!Beachte! Für die Triangulation müssen die Parameter der äußeren Orientierung als Initial deklariert sein!

- 2.  $\rightarrow$  **RUN**
- 3. Anzeigen des Reports durch Pressen des Report-Buttons
- Nach Beurteilung Übernahme der Ergebnisse durch Pressen von Accept und Update oder nochmalige Berechnung mit veränderten Parametern
- 5.  $\rightarrow \mathbf{OK}$

Stereoauswertung zur Beurteilung der berechneten Orientierung

- 1. Auswahl des Menüpunktes Process → Interactive Terrain Editing
- 2. Anwahl eines Bildpaares  $\rightarrow$  rechte Maustaste  $\rightarrow$  Add to All Views
- 3. Anwahl des Menüs **Move Cursor**  $\rightarrow$  Click Live Update
- 4. Anmessen ausgewählter Punkte durch Positionierung der Messmarke durch Maus
- 5. Bewegung der Messmarke in Aufnahmerichtung durch Scrollrad

