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ABSTRACT

This paper presents the extension of certain, fundamental digital photogrammetric concepts, theories and
strategies to three dimensions, and their performance in an interdisciplinary application for 3-D image
sequence analysis in a technical chemistry experiment. Specifically, we present an image analysis technique
for examining the fine scale (Kolmogorov scale) variations of the mixing process in a turbulent flow. The objec-
tive is to trace the interaction of two flows by identifying their motions in a sequence of 3-D images obtained
with a system based on a high-speed solid state camera. After briefly describing the imaging process and the
particularities related to the capture of quasi-continuous 3-D image sequences, we focus on theoretical and
implementational issues associated with feature tracking in 3-D image sequences. We present the extension
of least squares matching from pixels, associated with 2-D images, to voxels, associated with 3-D images.
The use of additional constraints of radiometric and/or geometric nature strengthens the matching solution. In
addition, the large amount of data associated with 3-D image sequences in general, and the high and multidi-
rectional velocities involved in this application in particular, make the devision of an efficient matching strategy

quite important.

1. INTRODUCTION

The methods used for the measurement of velocity
fields in flows can be distinguished into single-point
techniques, aiming at the determination of the
velocity vector (or components of it) at one point with
high temporal resolution, and multi-point techniques,
aiming at the simultaneous determination of multiple
velocity fields. The latter are usually based on flow
visualization, which can either be attained in discrete
manner by seeding with particles, or in continuous
manner by addition of dyes. Particle visualization
has often been used for the determination of velocity
fields in turbulent flows, with 2-D velocity fields deter-
mined by particle-imaging-velocimetry (PI1V) [Adrian,
1986], or 2-D particle-tracking-velocimetry (2-D
PTV) [Adamczyk & Rimai, 1988], and 3-D velocity
fields and trajectories determined by 3-D PTV
[Papantoniou & Dracos, 1989], [Maas, 1991, 1992a].

In the experiments described in this paper, contin-
uous visualization with dyes is used for the examina-
tion of a mixing process. A fluid (fluid 2) is injected
into a vessel already filled with another fluid (fluid 1)
and the two are mixed under turbulent flow condi-
tions. Fluid 2 has been previously marked with fluo-

rescine which absorbs light of a certain wavelength
and emits light of a different, usually higher, wave-
length and can thus be made visible when illumi-
nated by a laser beam of proper wavelength. When
the fluids are being mixed, fluid 2 starts spreading
and dissolving into fluid 1. The local concentration of
fluid 2 inside a 3-D volume of the mixed fluids corre-
sponds to the local fluorescine content. To visualize
cross-sections of the mixed fluids we use a laser
beam widened to a lightsheet by a cylindrical lens
and aimed at the vessel (LIF - laser induced fluores-
cence). An image of the cross section of the mixed
fluids thus illuminated by the laser sheet is captured
by a high-speed solid state camera positioned above
the vessel, with its optical axis perpendicular to the
laser sheet. By moving the laser sheet in depth
direction parallel to itself, and capturing digital
images at fixed, differential time intervals, 3-D flow
tomography datasets are generated in a quasi-simul-
taneous manner (Fig. 1). By using a 256 x 256 pixel
high-speed solid state camera with a maximum
imaging rate of 500 frames per second, we generate
volume datasets with a typical size of 256 x 256 x 50
voxels at a rate of 10 volume datasets per second.



These datasets are treated as 3-D images, with
voxel gray values derived from the corresponding
pixel gray values. By properly calibrating the imaging
process, these voxel values are directly proportional
to the fluorescine content of the corresponding finite
3-D element of the object space, and therefore they
represent a local measure of fluid 2 content.

The aim of our experiments is to examine the mixing
process in the vessel by determining the temporal
development of the scalar concentration gradient
field [Dahm et al, 1990] and the associated velocity
fields.

2. HARDWARE CONFIGURATION

The experimental set-up for the acquisition of flow
tomography data sequences was developed in a
cooperation of the Laboratory for Technical Chem-
istry, the Institute of Hydromechanics and Water
Resources Management and the Institute of
Geodesy and Photogrammetry at ETH Zurich
[Merkel et al., 1993] and it is shown in Fig. 1. The
beam of a 26W Argon-ion laser is widened to a 2-D
lightsheet by a cylindrical lens and is shifted step-
wise in depth direction by a mirror mounted on a
piezo element. A laser focus system assures
minimum lightsheet thickness. This way the observa-
tion volume is scanned in depth direction and
recorded by a high-speed camera synchronized with
the stepper mirror. To avoid reflections, e.g. at
bubbles in the water, an optical filter with a filter edge
at ~525 nm is used, which cuts off the wavelength of
the laser (514 nm), so that only fluorescine emission
(~540 nm) is being imaged.
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Fig. 1: Application Set-up

To allow for the recognition of the smallest scales of
turbulence (Kolmogorov scales), a relatively small
observation volume of 15 x 15 x 3 mm?® was chosen.
The camera used in the system is an EG&G Reticon
MC4256 [Maas, 1992b, 1993, 1994] and the
resulting images are stored on a 64 MB sequence
memory in RAM. For the observation volume of 15 x

15 x 3 mm® a 3-D volume dataset of 256 x 256 x 50
voxels results in a voxel size of 60 x 60 x 60 pm3 in
object space. The minimum thickness of the scan-
ning lightsheet attainable by the laser focusing
system was also 60 um. The size of the sequence
memory limits the duration of such an experiment to
1024 images (~ 2 seconds of data), which allows for
the acquisition of 20 consecutive volume datasets of
256 x 256 x 50 voxels each.

Fig. 2 shows an example of a flow tomography
sequence in a turbulent mixing process. The data
consists of 5 volumina with 50 layers of 256 x 256
pixels each in an observation volume of 15x15x3
mm?3; the temporal resolution was 10 volumina per
second.

Fig. 2: Volume datasets: 5 consecutive volumina with
50 layers of 256 by 256 pixels each (total 16 MB
= 0.5 seconds of flow data)



3. LEAST SQUARES MATCHING WITH VOXELS

Least squares matching (LSM) is a correlation tech-
nigue, used in photogrammetry mainly for the estab-
lishment of correspondences [Griin, 1985], [Grin &
Baltsavias 1988]. LSM was proven to be well suited
for the establishment of temporal correspondences
through structure tracking in 2-D image sequences
[Papantoniou et al., 1990].

Least squares matching can be extended to a 3-D
algorithm, working with 3-D volume data and voxels
rather than 2-D images and pixels. To match two
cuboids g,(x,y,z), g,(x,y,z) taken from two
volume datasets V; and V, cuboid g; has to be
transformed into g, in a way that

gl(X,y,Z) = gz(X,y,Z) (1)

To better accommodate noise and various radio-
metric and geometric dissimilarities in the imaging
conditions of two 3-D datasets, which are not
covered by eq. (3), a true error vector has to be
added

gl(X,y,Z)—e(X,y,Z) = gz(X,y,Z) (2)

To express the geometric relationship between
conjugate cuboids, the 6-parameter affine transfor-
mation used to relate conjugate patches in 2-D least
squares matching has to be substituted by a 12-
parameter 3-D affine transformation, as

Xp = agta Xy +tay,+tagz,
Y, = bgt+byx;+byy; +bszy (3

CotCyXy+Coy,+C32Z,

Z,

with (ag,bg,cg) being shifts, (a;,b,,c3) scales, and
(ap,a3,b1,b3,¢4,C5) shears. Equation (2) can be line-
arized to yield observation equations as
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the observation equations become

9;(x,y,2)—e(x,y,2) = g5(x,y,2) +
+0,dag+g,X50a; + 0,50, + 9, 2503, ©
+g,dbg+g,x5db; +g,y5db,+g,z5dbg
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and they can be grouped in a Gauss-Markov estima-
tion model as

—-e(x,y,z) = Ax-1 ; P (9)

2.-1

E(€) =0 E(ee') = o2P (10)

where the coefficient matrix A, observation vector |
and vector of unknowns x are

_ 0 0 0 0 0
A = 19y 95X 2 9xY2:9522,9y,9yX5.9yY 5.

(11)
0 0 0 0
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x' = [da,, da,,da,,da
01 11 21 31 (13)

dbg, db,, db,, dbg, dcg, deg, de,, de,]

The values gy, gy, g, are numeric gray value first
derivatives, calculated either in g, or in g, or aver-
aged over both. In contrast to typical photogram-
metric applications a radiometric correction should
be avoided this time, as it would interfere with the
original radiometric calibration of the system.

The vector x of unknown parameters is determined
by minimizing the sum of squares of the estimated
residuals v(x,y,z) as

-
v Pv

r

-1
% = (ATPA) (ATPI) ; &%= (14)
The fact that g,(x,y,z) actually contain stochastic
quantities is neglected here (as typically done in

LSM) to allow the use of the Gauss-Markov model
[Griin & Baltsavias, 1988].

Velocity field components are deduced with subpixel
accuracy from the adjusted shift parameters as

_ o Po Co
U= CAt’ At’ AtD (15)

while information on the deformation behaviour of
fluid elements is included in the remaining 9 transfor-
mation parameters (a,, a,, as,b;,b,,b5,c4, €5, C3) .



4. ADDITIONAL CONSTRAINTS

Experience with 2-D matching has shown that there
exist several gray value patterns for which some of
the affine transformation parameters cannot be
determined due to lack of sufficient contrast or high
correlation between parameters [Grin & Stallmann,
1991]. Similar situations can occur in 3-D voxel
matching. In such cases, either certain undetermin-
able parameters have to be excluded from the vector
of unknowns, or additional constraints have to be
introduced to strengthen the system. In the following
some constraints for 3-D cuboid matching will be
explained. It has to be mentioned that they arise
from the special task of matching flow tomography
sequences and are not necessarily valid for general
applications of least squares image matching.

4.1 Incompressibility Constraint

A fundamental property of the mixing fluids that are
being used in teh project described here is their
incompressibility. That means that a cuboid, while
changing it's shape due to deformations, will have a
constant volume. This fact can be exploited to
prevent cuboids from uncontrolled growing or
shrinking in the matching process.

The incompressibility constraint is formulated as

vol; = vol, (16)

where voly is ny x ny x n, and vol, is calculated as
the volume of the affine transformed vol,. This yields
an additional equation for the Gauss-Markov model

e, = Ax, Iy 17

A, = [0, volxx20,voIXyZC,voIXZZC,O,vonXZC,

18)

volyyZC, V0|y22C, O,voIZXZC,voIZyZC,voIZZZCﬁ

I, = vol,—vol, (29)

The derivatives dvol/dp are calculated numerically.

4.2 Intensity Constraint

This is a highly specialized constraint, stemming
from the particular nature of the application at hand,
forcing the gray value sums sg within cuboids g4, g,
to be equal. This constraint can only be valid in 3-D,
since for 2-D applications fluorescine might simply
move into the third dimension and violate this crite-
rion. In 3-D it is only valid when linearity between
fluorescine content and voxel gray values can be
assumed. The basic formulation of the condition

S0, = S0, (20)

yields an additional equation for the Gauss-Markov

model

-, = Ax—=l, ; P, (22)

At = [SQX' SOy X2c: SOxY 2¢: ngZZC’Sgy 'SgyXZ&’Z)
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l; = sg,-sg, (23)

where sg,, sgy, sg, are the numeric first derivatives
of gray value sum and (Xy¢, Yo, Zpc) iS the trans-
formed central voxel of the g, cuboid. Note that sg,
is the total intensity over the volume covered by the
transformed cuboid g,, not over the matrix g,.

This constraint may be very valuable especially for
preventing drifts of the scale parameters of the affine
transformation in regions of low contrast, but it may
be extremely dangerous in general applications. If
for example a bright signalized target on dark back-
ground is imaged with different scales by two
cameras in a close range photogrammetric applica-
tion and one tries to match from a larger patch in g;
to a smaller patch in g,, the basic condition of conti-
nuity of total intensity is hurt implicitly, and cannot
even be fulfilled by changed scale parameters, as no
intensity can be gained. In this case the numeric
derivatives sgy, sgy, sg, in g, remain constant and
convergence is not achieved.

4.3 Smoothness of Velocity Field

This constraint is based on the assumption that the
sampling frequency is sufficiently high, ensuring that
consecutive datasets are correlated to a certain
extend and Lagrangian acceleration is relatively low.
For its implementation matching is no longer
performed with only two datasets at time instances
T;->Tj41, but at least a third dataset Tj,, is also avail-
able and correlation between the parameters of the
affine transformations T;->T;y; and Ti1->Tio IS
assumed. The constraint can be formulated as addi-
tional observation equations for the parameters.
Considering for example the shift parameter in x-
direction, the associated equation becomes

a =2[a - -
0. 2 0p.1 => —V = 2[3%”)_6‘

%02 (24)
The remaining 11 equations can be formulated
accordingly. The smoothness constraints produce
additional equations

s = Ax—lg ; Pyg (25)
where

A = [2, =151 (26)

with 1,, being the 12x12 unit matrix, and
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By manipulating the associated weight matrix P ¢ the
constraint can be invalidated (P, = 0), or strictly
enforced (P, - «) in which the parameter sets of
consecutive transformations are forced to be iden-
tical. Eq. 19 shows the implementation for three
datasets T;->T;;1->Ti+p. It can be straightforwardly
extended to more consecutive time steps T->Tj.1->
. >Tin

4.4 Multi-Patch Matching

This geometric constraint forces neighbouring
cuboids to remain fit together after their boundaries
are reshaped by the matching adjustment. An analo-
gous approach has been formulated for DTM gener-
ation applications by [Griin, 1985] and [Rosenholm,
1986]. For the 3-D implementation [Maas, 1994] it is
realized by adding observation equations for the
coincidence of the corner pixels of neighboring
elements (7 neighbors at 8 corner voxels).

This multi-patch constraint implies that parameters
of single cuboids cannot be solved independently
anymore. In the extreme case, the transformation
parameters of all cuboids of the complete dataset
have to be estimated together in one system.
Combined with the smoothness constraint which ties
multiple datasets together, the resulting equation
system can become extremely large. Despite its
sparsity, it will impose immense computational
burdens. In a realistic experiment with 256x256x64
voxels per each dataset and a cuboid size of e.g.
17x17x17 voxels with smoothness constraints
applied only for consecutive datasets, a total of
24576 unknowns per volume dataset would have to
be solved. It is clear that such a system would be
computationally too expensive and therefore the
equation system has to be split into smaller,
manageable parts. A promising idea is to search for

cuboids with sufficient contrast for a independent
solution in a first step and then triangulate the
volume dataset with a tetrahedra-structure, within
which the multi-patch constraint and the smoothness
criterium will have to be applied.

5. GLOBAL SOLUTION

A global matching solution is obtained for a single
pair of cuboids by the introduction of the incom-
pressibility and intensity constraints as

-1
R = (ATPA+AIPVAV+AtTPtAt)
(28)
(ATPI+AP I +AlP1)

Considering more than two consecutive cuboids, a
multitemporal global matching solution is obtained
by further introducing the smoothness of velocity
field constraint as

-1
2 = (ATPA+ATP A, +ATPA +AIP.A)
T T T T (29)
(ATPI+AP I +A P I +AlP )

In the above equation, all matrices contain informa-
tion from all involved templates, and matrices in
equation (28) are submatrices of their counterparts
in equation (29). The introduction of a multi-patch
constraint would allow us to tie multiple patches in a
multitemporal matching adjustment.

6. STRATEGIES

Considering the large amount of data associated
with 3-D image sequences in general, and the multi-
directional velocities involved in this specific applica-
tion, it is evident that the devision of an efficient
matching strategy can optimize the application of the
excellent matching tool which is the above described
3-D least squares matching. In particular, the task of
initial value selection for the matching parameters
(especially for the three shifts a,, b, and c.) is
crucial since erroneous selection can cause
matching to fail. The use of a hierarchical strategy
can greatly facilitate this task.

Multigrid hierarchical strategies proceed in a number
of levels, from coarse to fine, by employing succes-
sively refined grid structures [Li, 1989]. Applied to
the matching problem at hand, the implementation of
a 3-D multigrid hierarchical strategy proceeds by
selecting

e a 3-D grid structure, defined by its grid element
size (ry, rys r,) , to cover a 3-D dataset, and

» acorresponding cuboid size(c,, Cy: c,).

For this initial configuration (level 1) matching is
performed using cuboids of the chosen size



centered at the grid positions. Depending on the
cuboid and grid element sizes, neighboring cuboids
can share common borders ( ; =c; where
i O{x,y,z} ), overlap ( ;<c;), or not overlap at all
( ;>c,;). Obviously, the multi-patch constraint can
only be applied in the first case, while overlapping
cuboids will produce velocity data correlated to a
certain extent. For sufficiently large cuboid sizes
trivial initial approximations can be provided and a
matching solution can still be achieved. The
matching solution X~from this first configuration
provides the necessary information to update the
conjugate positions. Using these results we proceed
on the next level, at which the grid element and/or
cuboid sizes become smaller. At this level, approxi-
mations for the new adjustment solution are based
on the matching solution X~ of the previous level.
These approximations need not be restricted solely
to the obvious choice of the three shifts, but could
include the scale and shear parameters as well.
However, to alleviate computational burdens, it is
adviseable in low, coarse levels to solve only for the
shift parameters which are typically more crucial for
successful matching. The procedure continues with
approximations for level i+1 provided directly or indi-
rectly (via interpolation) from the matching adjust-
ment solutions of level i. Thus is devised a globally
iterative process for which different levels corre-
spond to a change in the number and/or size of the
cuboids, and minor iterations (local adjustment solu-
tions) form single iterative steps of the complex
multigrid solution procedure. Matching results from
coarse grid levels correspond to low frequency
components of the velocity vectors, while in finer
levels the effect of high frequency velocity compo-
nents is also considered.

To optimize the potential of this solution process, a
modified 3-D multigrid hierarchical strategy can be
used. Once a grid structure has been defined, grid
locations can be modified by the employment of an
interest operator, to coincide with distinct voxels in
the vicinity of their original positions. The application
of Forstner’'s operator [Forstner, 1986] to 2-D image
windows allows the detection of distinct interest
points as points with circular and small confidence
ellipses. The extension of this operator for applica-
tion to 3-D datasets proceeds by analyzing for each
point the size and sphericity of the local confidence
ellipsoid. The associated normal matrix N is

2
59y 29,9, 29,9,
- 2
N =l3g,0, Zg; 30,9, (30)

2
20,9, 29,9, Z9;

and contains information on whether local gray value

variations make a voxel distinct or not. The trace of N
and its eigenvalues (or their product in the determi-
nant) uniquelly define the distinctness of the associ-
ated voxel. The roundness criterion

4detN
Q== (31)
tr'N

and the precision criterion

_ 2detN
trN

(32)

can be calculated in direct analogy to their 2-D coun-
terparts [Forstner, 1993]. When the value of either
criterion is very small, at least one of the three asso-
ciated eigenvalues is approaching 0, denoting the
presence of a nearly linear edge pattern. On the
other hand, points for which both Q and W are above
acceptable limits are considered 3-D interest points.
It is worth mentioning that the 2X2 submatrices
formed along the diagonal of matrix N

2
N = 2g; Zgigj

i ; i#£jandi,jO{x,y,z} (33)

2
ZQigj Zgj

are the normal matrices in the (x,y), (v,z) and (x,z)
planes. Their roundness and precision indices, ajj
and i respectively, express independently in each
of these planes the potential presence of interest
points. The product of these indices can provide an
approximation to the Q and W criteria of equations

31 and 32.

Interest point search is performed within a rather
small 3-D area centered on the initial grid location.
The size of the search area is defined by the grid
element and cuboid sizes, to avoid redundant opera-
tions and extreme computational burdens. In the
case where the search area coincides with the
cuboid size, the elements of thTe ;i matrix of Eq. 32
will also be elements of the ~ PA matrix of Eq. 14
and some repetition can thus be avoided.

3-D interest points detected by this procedure will
offer excellent matching potential. If an interest point
cannot be found within the search area, the original
grid point can be used, but information from the
above interest analysis can be used to remove
certain undeterminable parameters from the
matching solution which will follow.

The advantage associated with the use of distinct
cuboids for matching is twofold:

* From the photogrammetric point of view, cuboids
centered at such positions provide sufficient con-
trast and good determinability, ensuring robust
matching solutions and reliable results.



» From the specific application point of view, in-
terest points correspond to characteristic locati-
ons within edges, and therefore they better
describe the interaction of the two fluids and the
mixing process itself.

7. SOME RESULTS

The 3-D implementation of least squares matching
shown in this paper has been programmed and
combined with the constraints shown in chapters 4.1
- 4.3. The multi-patch constraint discussed in
chapter 4.4 does still need some work in order to
keep the computational effort on a reasonnable
level. First tests have shown that due to the contrast
situation in the flow tomography sequence shown in
Fig. 2 the cuboids for least squares matching had to
be chosen relatively large (typically about 15x15x15
voxels) and the introduction of the constraints was
often necessary. Fig. 3 shows shifts and deforma-
tions of a typical cuboid through the iterations.

patch 2: 0. 1. 2. 5. 8.it.
Fig. 3: 15 x 15 x 15 voxel cuboid through 8 iterations

In some regions of the datasets no velocity vectors
could be determined, in other regions only certain
parameters of the 3-D affine transformation could be
determined. The decision, whether a vector could be
determined at all and which transformation param-
eters could be determined, was met after a contrast
check in the cuboid and reliability tests.

Fig. 4: Result - velocity vectors centered at a data layer

A partial result displaying velocity vectors computed
for the center layer of one of the datasets of Fig. 2 is

shown in Fig. 5. Only the incompressibility constraint
was used, the other constraints were disabled. The
least squares matching yielded a oy of 2-5 greyval-
ues for most of the cuboids, the standard deviations
of the shift parameters were ~1/30 - 1/50 of a voxel,
which corresponds to ~1-2um in object space. A
total of 1675 velocity vectors could be computed.
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Fig. 5: Zoom on Fig. 5

Fig. 5 shows a zoom on this dataset showing a high
local correlation in the velocity field, which was over-
sampled, but computed without the multi-patch con-
straint.
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