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ABSTRACT

The paper presents several improvements to volumetric particle
image velocimetry (PIV) with the goal of optimizing the
efficiency and the flexibility of the method. An approach of
sequential projective transformation of each camera imageinto
each depth layer of the object voxel space, combined with a
MinART (minstore algebraic reconstruction technique) is used
for volumetric reconstruction. 3-D tracking is performed by
3-D least squares matching determining 12 parameters of a
3-D affine transformation between cuboids in successive voxel
datasets. Besides the cuboid translation, these parameters also
include information on the shear tensor of each cuboid.

1. INTRODUCTION

Elsingaet al. [1] have proposed an approach to 3-D PIV, which
is based on a tomographic reconstruction of the observation
volume and subsequent 3-D cross correlation in time-resolved
voxel data. Tomographic PIV generates a tomographic
reconstruction of a particle constellation from a limited number
of camera views, for instance by applying Herman and Lent’s
[6] MART algorithm (multiplicative algebraic reconstruction
technique). 3-D velocity field information can be obtained from
time-resolved voxel data by dividing the data into cuboids of a
pre-defined size and tracking these cuboids. Herein, 3-D cross
correlation is a straightforward enhancement when advancing
from 2-D PIV to 3-D PIV.

Disadvantages of both, MART and 3-D cross correlation can be
seen in the computational effort causing rather long processing
times. In the following, we will present an alternative
efficient approach on volumetric reconstruction (Sec. 2) and
a 12-parameter least squares approach for cuboid tracking in
voxel data sequences (Sec. 3). In Sec. 4, we will present results
obtained in the measurement of a vortex ring in a water tank.

2. VOLUMETRIC RECONSTRUCTION

As an alternative volumetric reconstruction technique,
we developed a scheme based on a multiple projective
transformation of each camera image contents into each depth
layer of the object space [4] [5]. Compared to pixel-wise
line-of-sight based implementations, this approach may save
a considerable amount of computation time, especially if
graphics card functionality can be used.

In a first step, a voxel structure of adequate resolution is defined
in object space and initialized by setting the value of every
voxel to 255. The reconstruction of the object space light
intensity field is performed by transforming the content of each

camera image into each depth layer of the voxel space. Using
homogeneous coordinates, a simple and fast computation can
be performed. The relationship between the image coordinates
x′ of a camera image and the voxel coordinates of a depth layer
Di in object space is

x′ = Hi ·Di (1)

Hi contains the 8 parameters of a projective transformation. For
a first layerD0, the elements ofH0 can be determined from the
parameters of the exterior and interior orientation of the camera
(projection centerX0,Y0,Z0, 3× 3 rotation matrixR, camera
constantc):

H0 =





−c · r11 −c · r21 c · (r11 ·X0 + r21 ·Y0 + r31 ·Z0)

−c · r12 −c · r22 c · (r12 ·X0 + r22 ·Y0 + r32 ·Z0)

r13 r23 −r13 ·X0− r23 ·Y0− r33 ·Z0



 (2)

The transformation matricesHi of all further depth layers can
be determined by adding an incrementhi to H0. Due to
the parallelism of the depth layers, the determination ofhi is
simplified:

hi =





0 0 −c · r31 ·Zi
0 0 −c · r32 ·Zi
0 0 r33 ·Zi



 (3)

Hi = H0 +hi (4)

In homogeneous coordinates, it is sufficient to go through the
transformation for the corner pixels of a layer only. All other
gray values can be obtained by a bilinear interpolation.

After transforming the contents of the first camera image into
the volumetric reconstruction space, the procedure is repeated
for all other cameras. Obviously, each object space voxel will
obtain different gray values from different views. The voxel
space particle reconstruction is based on a simple assumption:
A voxel belonging to a valid particle must have a high gray
value in every image. This rule is realized by a multiplication
of the gray values from each projection in the MART algorithm.
The rule can be implemented even more efficiently by a
minimum operator, where the gray value of a voxelGV is the
minimum of its gray values in all viewsgv j:

GV = min
{

gv j
}

, gv j ∈ {0. . .255} (5)

Applying this MinART (minstore algebraic reconstruction
technique), only those voxels, which get a high gray value
from every view, will ‘survive’. A 3-D particle constellation
can then easily be obtained by a thresholding in voxel space.
A background image derived from spatio-temporal histogram
analysis is subtracted from each image beforehand to eliminate
the effect of background reflections. In our approach we used
four cameras, but the technique can be applied to an arbitrary
number of views. The method may also be extended to the



use in liquids by integrating a ray tracing procedure into the
multiple rectification approach or by using telecentric lenses.

3. 3-D LEAST SQUARES TRACKING

Eulerian 3-D velocity field information in time-resolved
voxel space representations can be obtained by applying
volume-based tracking methods. Here, 3-D least squares
tracking (3-D LST) forms a rather interesting alternative to 3-D
cross correlation. 3-D LST is a volumetric tracking technique,
which is adaptive to cuboid deformation and rotation. It was
first presented by Maaset al. [3] for tracking structures in
3-D LIF (laser induced fluorescence) data. It is formulated
as an iterative least squares adjustment procedure, where the
gray values of a cuboidg1 at a time instanceT1 are transformed
into the gray values of a cuboidg2 at a time instanceT2. The
geometric transformation between the two cuboids is a 3-D
affine transformation:

x2 = a0 +a1x1 +a2y1 +a3z1

y2 = b0 +b1x1 +b2y1 +b3z1

z2 = c0 +c1x1 +c2y1 +c3z1

(6)

In addition to the three cuboid translation vector components
(a0,b0,c0), the 12 parameters of the 3-D affine transformation
in 3-D LST contain scale, rotation and shear information for
each cuboid. This allows for a higher precision especially in
case of velocity gradients in the interrogation volume, as the
cuboid shape is adapted. Moreover, these parameters enablethe
determination of a shear tensor for each interrogation cuboid.
The 12 affine transformation parameters are obtained in an
iterative manner, starting from approximate values and usually
converging to the correct solution within a few iterations.
Approximate values may be obtained from pre-knowledge on
the flow or by hierarchically applying the technique on multiple
resolution pyramid levels of the voxel data.

The least squares adjustment model in 3-D LST states the
equality of two cuboidsg1 andg2, adding an error vectore to
consider noise in the data:

g1(x,y,z)−e(x,y,z) = g2(x,y,z) (7)

If only a translation(a0,b0,c0) between the two cuboids is
allowed, we get a linearized observation equation

g1(x,y,z)−e(x,y,z) = g0
2(x,y,z)

+
∂g0

2(x,y,z)

∂x
a0 +

∂g0
2(x,y,z)

∂y
b0 +

∂g0
2(x,y,z)

∂z
c0

(8)

whereing0
2 is the cuboid in the 2nd time instance at its initial

approximate position and(∂g0
2/∂x,∂g0

2/∂y,∂g0
2/∂z) are gray value

gradients in the cuboid.

If the transformation is a 3-D affine transformation, we get

g1(x,y,z)−e(x,y,z) = g0
2(x,y,z)

+
∂g0

2(x,y,z)

∂x
dx+

∂g0
2(x,y,z)

∂y
dy+

∂g0
2(x,y,z)

∂z
dz

(9)

with dx = (∂x/∂d pi) ·dpi , dy = (∂y/∂d pi) ·dpi , dz = (∂z/∂d pi) ·dpi,

pi ∈ (a0,a1,a2,a3,b0,b1,b2,b3,c0,c1,c2,c3)

With

gx =
∂g0

2(x,y,z)

∂x
, gy =

∂g0
2(x,y,z)

∂y
, gz =

∂g0
2(x,y,z)

∂z
(10)

this leads to a linearized observation equation

g1(x,y,z)−e(x,y,z) = g0
2(x,y,z)

+gxda0 +gxx0
2da1 +gxy0

2da2 +gxz0
2da3

+gydb0 +gyx0
2db1 +gyy0

2db2 +gyz0
2db3

+gzdc0 +gzx0
2dc1 +gzy0

2dc2 +gzz0
2dc3

(11)

Each voxel in a cuboid produces one observation equation.
The complete equation system is solved in a Gauss-Markov
estimation model determining the 12 transformation parameters
in a way that the sum of the squares of gray value differences
between the voxel of the two cuboids reaches a minimum.

The result of 3-D LST applied to sequences of tomographically
reconstructed voxel structures is a dense 3-D velocity vector
field with additional shear tensor information. When applied to
liquid flow data, an incompressibility constraint is introduced
to force the volume of a cuboid to remain constant during the
iterative transformation.

As a least squares adjustment method, 3-D LST also delivers
information on the precision, determinability and reliability
of the 12 affine transformation parameters. This includes the
standard deviation of each of the parameters as well as the
correlation between parameters. This allows for the application
of significance tests on each parameter in each cuboid to decide
whether a transformation parameter is significant or not. In
our approach, all non-significant parameters (except the three
translation parameters) are set to zero and excluded. A more
detailed description of 3-D LST can be found in [3].

4. PRACTICAL RESULTS

The tomographic reconstruction and cuboid tracking has been
implemented and tested in the investigation of a vortex ringin
a water tank. A volume of about 10×10×1 cm3 is illuminated
by a 3-D laser beam device and is recorded by a system of four
1024×1024 pixel high speed cameras equipped with telecentric
lenses [2]. Neutrally buoyant seeding particles were injected
into the center of the vortex generator. The experiments are
performed with an image rate of 1000frames/s.

The four-camera system was calibrated by taking image
sequences of a target, which was moved through the observation
volume by a 3-D translation stage. From these reference
positions and their respective image coordinates, the orientation
parameters of each camera were determined in a parallel
projection telecentric optics camera model. The transition
of the optical paths from the camera through the plain glass
interface into the water could be neglected due to the fact that
the cameras were equipped with telecentric lenses warranting
a parallel projection rather than central perspective projection.
Lens distortion was less than 0.5 pixel.

Figure 1 shows the four camera views of one epoch. From these
images, a volumetric representation of 278×1112×944voxel
was generated applying the technique as described in Sec. 2.
Each voxel corresponds to (90 µm)3.

A regular grid of 253 voxel cuboids was defined into the
volumetric reconstruction to apply the 3-D LST. For each
cuboid, the 12 parameters of the 3-D affine transformation were
determined as described in Sec. 3. Parameters, which turned
out insignificant in the significance test, were excluded from the
transformation. A volume constraint was applied to consider
the incompressibility of the liquid. Outliers in the results were
removed in a outlier detection procedure based on the following



Figure 1 : Vortex ring imaged with four high speed digital
cameras equipped with telecentric lenses at one epoch.

criteria:

• Affine transformation parameter standard deviation:
The standard deviations of the cuboid transformation
parameters, which are part of the result delivered by 3-D
LST, were analyzed. The results of those cuboids with
standard deviations exceeding a preset threshold were
deleted.

• Convergence behavior: 3-D LST is an iterative procedure,
which usually converges after a few iterations. Cuboids
with a diverging or oscillating solution were rejected.

• Vector length: Translation vectors exceeding a preset
threshold were eliminated.

• Neighborhood correlation: The differences of the
translation vector components between neighboring
cuboids were analyzed. Vectors with deviations from their
neighborhood exceeding a preset limit were eliminated.

The 3-D LST steering parameters were set on the basis of
a-priori knowledge on the flow and empirically on the basis
of a series of program runs. The parameters controlling the
outlier elimination process were set automatically following
3-sigma rules. In total, 822 out of a total of 4908 (b=17 %)
tracked cuboids were excluded for the first epoch for one half
of the axis-symmetric vortex ring as shown in Figure 2 and 3.
Herein, outliers are mainly situated in border regions of the
vortex ring, and rather rigid outlier elimination criteriawere
applied. Optionally, gaps in the vector field can be closed by
neighborhood based interpolation.

Figure 2 shows a color-coded visualization of selected layers
in the 3-D LST results. Only the cuboid translation vectors
are shown here. Table 1 lists the mean, minimum and
maximum velocities obtained in this experiment. The vortex
was generated in Z-direction with a speed of approximately
50mm/s, but experience an acceleration within the ring due to
induced velocity.

Figure 3 shows the translation vector lengths of one half of the
vortex ring in a frontal view. As one can see, some velocity
vectors in the centrum of the vortex were eliminated as potential
outliers. This has to be attributed to the finite cuboid size

Figure 2 : Cross sections of color-coded velocity in voxel space.

vx vy vz
mean 4.78 13.69 37.20
min 0.00 0.00 0.00
max 25.58 46.10 69.88

Table 1 : Mean, minimum and maximum velocities (inmm/s).

and the fact that the 3-D affine transformation parameters can
only recover linear cuboid deformations. The results mightbe
improved by some parameter fine tuning or by a higher seeding
density allowing for smaller cuboids.

Figure 3 : Color coded vector lengths of one half of the vortex
ring (frontal view, X=const=13.14 mm).

Table 2 gives an overview on the percentage of significant
3-D affine transformation parameters over all accepted cuboids.
As the cuboid translation parameters(a0,b0,c0) were not
excluded as a rule in the significance tests, they all have
100 % here. The scale parameters(a1,b2,c3), constrained
by the incompressibility condition, were only significant in
relatively few cuboids, while the rotation and shear parameters
(a2,a3,b1,b3,c1,c2) were significant especially in the center of
the vortex (Figure 4). In total, about 20 % of the cuboids showed
at least one significant non-translation parameter, proving the
adequateness of the 3-D LST approach.

Besides the actual 3-D affine transformation parameters, 3-D
LST also delivers the standard deviation of all transformation
parameters. In the experiment described here, the standard
deviation of unit weight produced by the least squared



a0 b0 c0
100 100 100

a1 b2 c3
1.95 2.68 3.75

a2 a3 b1 b3 c1 c2
4.42 10.47 6.40 10.77 6.07 12.61

Table 2 : Percentage of significant parameters in accepted
trajectories.

Figure 4 : Velocity vector display with vectors belonging to
cuboids with at least one significant non-translation 3-D affine
transformation parameter coded in green.

adjustment process, averaged over all accepted cuboids, was
2.5 gray values. Table 3 shows the average standard deviations
of the 12 affine transformation parameters. As one can see,
the internal precision of the cuboid translation parameters
is in the order of1/100 of a voxel. However, one has to
consider that these internal precision figures are only realistic
if the assumed functional and stochastic model is correct (3-D
affine transformation and least squares adjustment assuming
Gaussian error distribution). Further verification tests have to be
performed to get a better estimate of the real accuracy potential
of the method.

a0 b0 c0
0.0132 0.0105 0.009

a1 b2 c3
0.0024 0.0018 0.0016

a2 a3 b1 b3 c1 c2
0.0024 0.0023 0.0017 0.0018 0.0016 0.0016

Table 3 : Average standard deviations of transformation
parameters (in voxel).

5. CONCLUSION

The suggested approach based on sequential projective
transformation and 3-D least squares tracking turned out to
be an efficient and accurate volumetric PIV technique. The

sequential projective transformation has the advantage ofbeing
fast and graphics card implementation friendly. 3-D LST
as a cuboid tracking technique has the great advantage of
inherently determining 12 affine transformation parameters of
each cuboid. These 12 parameters allow to adapt to linear
deformations of cuboids, thus improving the precision and
reliability of cuboid translation parameters. Moreover, they
form a basis for the determination of a shear tensor for each
tracked cuboid. The fact that about 20 % of tracked cuboids
in a vortex ring experiment showed at least one significant
non-translation parameter, proves the relevance of determining
not only transformation parameters in cuboid tracking.

Future work will concentrate on the optimization of the
parametrization of the algorithms with the goal of achieving a
maximum number of reliable velocity vectors and shear tensors.
While in the experiment reported here, cubic interrogation
areas have been used, a transition to oriented non-cubic
cuboids, adapted to the flow pattern, will contribute to a
reduction of the number of eliminated vectors. Beyond, the
linear transformation model in 3-D LST can be extended by
introducing higher order polynomials. The resolution of the
velocity field may also be improved by identifying individual
particles in voxel space and tracking those particles, using the
results of the volume-based tracking as good approximation.
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