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ABSTRACT: 

 

This paper presents a new hardware-accelerated approach on volumetric reconstruction of trees from images, based on the methods 

introduced by Reche Martinez et. al [Rec04]. The shown system applies an adapted CT procedure that uses a set of intensity images 

with known interior and exterior camera parameters for creating a 3D model of a tree, while requiring considerably less images then 

standard CT. At the same time, the paper introduces a GPU-based solution for the system. As tomographic reconstructions are rather 

complex tasks, the generation of high-resolution volumes can result in very time-consuming processess. While the performance of 

CPUs grew in compliance with Moore’s law, GPU architectures showed a significant performance improvement in floating-point 

calculations. Regarding well parallelizeable processes, today’s end-user graphics-cards can easily outperform high-end CPUs. By 

improving and modifying the existing methods of volumetric reconstruction in a way, that allows a parallelized implementation on 

graphics-hardware, a considerable acceleration of the computation times is realized. The paper gives an overview over the single 

steps from the acquisition of the oriented images displaying the tree till the realization of the final system on graphics processing 

hardware. 
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1. INTRODUCTION 

The three-dimensional reconstruction of real life objects for 

virtual representations gains more and more importance in 

different fields of scientific research, industry and multimedia 

entertainment. While current methods such as laser scanning or 

structured light projection are able to generate satisfying results 

for most artificial structures, they are only of limited use for the 

acquisition and replication of complex objects like plants. The 

multifaceted geometric shape of plants (especially treetops), 

which is characterized by a large number of occlusions and a 

huge amount of self similarities, complicates the creation of 3D 

tree-models. A possible solution to circumvent these 

complications has been introduced by Reche Martinez (Reche 

et. al 2004) realizing the tree-models as volumetric grids that 

contain an opacity value for every voxel. As this approach is 

based on the principles of x-ray computed tomography, the 

model is created from projections from object to image space 

instead of estimating discrete points of the tree surface. Thus 

geometric difficulties such as the mentioned self similarities 

have no effect on the actual reconstruction.  

While Reche intends to generate low resolution volumes that 

use view dependent microfacette billboards (Yamazaki et. al 

2002) for visually detailed models, this paper extends and alters 

the approach in a way that realizes high resolution grids with 

precise measurements. However, as tomographic procedures are 

rather time-consuming and as the amount of data calculated 

grows cubically in the resolution of the volume, the generation 

of higher resolutions can lead to very high computation times. 

To speed up reconstruction, the presented approach shows a 

solution for a GPU-based out-of-core implementation, enabling 

large grids to be computed on low budget graphics cards in less 

than 1/100th of the time as needed by a CPU implementation. 

2. IMAGE ACQUISITION 

The fundamental input to the system is a series of images with 

known orientation and camera calibration parameters. For a 

detailed reconstruction, the precision of the image orientation is 

essential. Small deviations lead to wrong projections between 

the image and the volume space so that details as thin twigs and 

branches can easily disappear from the model.   

Among the examined systems, the AICON-3D-Studio  (AICON 

3D Systems 2009) has proven to be able to accomplish the 

required precision in combination with an on-the-job calibration 

of the used camera. For the actual image acquisition, a larger 

number of markers was placed within the tree’s surrounding 

area, which were used to locate positions and rotations of the 

images by bundle adjustment. AICON-3D-Studio  (AICON 3D 

Systems 2008) uses a set of encoded markers that can 

automatically be found inside the images and recognized by 

their cyclic code.  

 

 
Figure 1:  Detail view of markers (encoded and uncoded) placed 

around a tree 
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During favourable conditions (little or slight wind), the marker 

positions within the measurement environment could be 

pinpointed with an average  precision below 0.5mm for a tree of 

10m height, which allows also thin branches of the trees to be 

preserved within the volume. 

For a complete reconstruction of a tree, about 20 exposures 

from different sides were sufficient for good visual results. 

 

 

3. ALPHA MATTING 

Each pixel of an image represents a projection from the actual 

surrounding onto the image plane. Thus, each pixel can be 

regarded as a projection of the tree displayed in the image or its 

background. Same as presented in (Reche et. al 2004), masks 

are required that segment the pictures into those two areas, the 

tree and it’s background. Those masks are generally known by 

the term alpha-mattings. Usually, trees situated in natural and 

urban areas are surrounded by further objects with similar 

appearance and color, that can prevent the successful 

segmentation of the images. To reconstruct every plant 

regardless of it’s environment, an alpha matting algorithm 

stable against such influences is required. Experiments with 

various algorithms  (Chuang, et al. 2001) (Grady, et al. 2005) 

(Sun, Jia und Tang 2004) have shown, that the closed form 

matting as introduced by  (Levin et. al 2008) generated the best 

results in most cases while requiring only little user-input.  

 

 
Figure 2: Alpha matting of an image using the closed form 

matting algorithm by (Levin et. al 2008). Left: the 

original image; Middle: image with scribbles by 

user-input; Right: resulting alpha image, separating 

the image in fore- and background. 

 

The algorithm is based on a local smoothness assumption on the 

fore- and background colors of the images. Regarding the 

segmentation of an image into two regions, each pixel can be 

interpreted as a combination of the local fore- and background 

colors:  

 

 



Ii  iFi  1 i Bi     (1) 

 

 

where  I = image 

 i = pixel i 

 α = alpha value 

 F = foreground colors, B= background colors 

 

Given this assumption, 



Fi  and 



Bi  are constant within a 

window w enclosing a pixel i. As the assumption is only locally 

introduced, F and B may vary in different areas of the image. At 

the same time, sharp edges in the image are preserved, as only 

the color spaces are smoothed while the spatial affiliation stays 

untouched.  

For the algorithm to know which part of the image belongs to 

the foreground, additional information about the images is 

required. By simple user-input (scribbles and strokes) areas that 

belong entirely to the fore- or background are defined. Based on 

this input, the algorithm estimates the alpha value of the yet 

undefined pixels.  

Experiments have shown, that depending on the amount of 

interfering textures within an image, more or less user-input is 

required. How much the alpha-matting is influenced by the 

image content depends on the contrast and regional distance 

between fore- and background color spaces on the image plane. 

Thus, the segmentation of an picture, containing an isolated tree 

only needs a minimum of user-input. Referring to the amount of 

interferences and complexity of the trees structure, the time, 

necessary to prepare an image for the alpha matting varied 

between 1 and 5 minutes. In most instances, satisfying matting 

results were obtained. Only in cases where  the tree-top area 

was covered by similar trees in the background, good mattings 

were difficult to achieve. 

 

 

4. GENERAL PURPOSE COMPUTATION ON 

GRAPHICS PROCESSING UNITS 

Over the last few years, the processing abilities of graphics 

cards developed from simple graphic processing units with 

fixed computation pipelines, to flexible, programmable 

multiprocessor units.  (NVidia 2009a) These changes made it 

possible to use graphics cards for jobs apart from general 

rendering tasks and formed the term “general purpose 

computation on graphics processing units” (GPGPU).  

Each GPU consists of several multiprocessor units able to 

execute arbitrary calculations, similar to CPUs. The 

multiprocessors consist of several scalar-value processors 

sharing a common instruction unit.  

Nevertheless, GPUs underly certain restrictions that have to be 

taken into account for a successful implementation of the 

system on GPU hardware. While it is possible to assign 

arbitrary threads to the cores of a CPU, the scalar-processors 

within the GPU’s multiprocessor are only able to execute 

multiple threads if those perform the same instructions at the 

same time. Otherwise, the threads have to run sequentially. 

Therefore, GPUs achieve best performance, when all threads 

follow the same order of instructions, allowing best 

parallelization of the tasks. Another limitation of GPUs is not 

being able to execute recursive functions and the lack of atomic 

instructions for writing to a certain memory location 

consecutively. Only certain GPUs offer atomic instructions in 

their instruction sets, yet until now, these are still limited to 

simple computations on integer values. Because of the 

architecture of graphic cards that runs parallel threads in so 

called warps (NVidia 2009b) on a multiprocessor, the usage of 

mutex structures is difficult and can easily lead to deadlocks. 

Yet, the established approach by (Reche et. al 2004) requires 

sequential write instructions to be feasible in this context. 

Taken these limitations into account, the following chapters 

introduce a solution for the volumetric reconstruction on 

graphics processing units. 

 

4.1 CUDA 

For the implementation of the algorithms on GPUs, different 

APIs have been analyzed regarding their advantages for the 

given tasks. In this context, nVidia’s Compute Unified Device 
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Architecture (CUDA) has proven to be a good solution. CUDA 

is a parallel programming model which is suitable for 

outsourcing complex algorithms for parallel processing of large 

data streams to the GPU. It presents a new way of 

multithreading, allowing the user to implement the algorithm 

for a single thread which is used as a template for a 

multidimensional field of threads generated and executed during 

runtime. E.g. to process an image with 320x240 pixel, a thread 

can be assigned to each pixel, resulting in a field of 768000 

threads that can be executed concurrently. The main advantage 

of CUDA over most other GPU-APIs is flexible access to the 

GPUs memory, allowing direct access of the global memory as 

well as the multiprocessors shared memory for reading and 

writing instructions. 

While most APIs only allow limited access to the global 

memory, marking memory locations as read only or write only, 

CUDA enables both, read and write access to the same memory 

block. For the reconstruction of the trees, this implicates that 

only one representation of the voxel grid is required in the 

GPUs global memory instead of one read only input and one 

write only output data grid. 

 

 

5. RECONSTRUCTION 

For the reconstruction of the tree, a volume is specified within 

the world space defined by the positions of the calibrated 

images and the measurement fields encoded and uncoded 

markers. The system introduced in this paper makes direct 

usage of the marker locations to determine a fitting volume 

position and size.  

To simplify the implementation of the algorithm for GPUs, a 

regular grid containing the voxels is used to represent the 

volume. The actual algorithm for the reconstruction is divided 

into 2 steps: 

 

5.1 Initialization 

At first, an initial volume is created by applying a space carving 

algorithm which determines the photo consistency of the voxels 

and generates a first approximation of the 3D model. For this 

purpose, every voxel of the volume is projected into all image 

spaces to calculate the alpha value of the voxel from every 

given line of sight.  

 

 
Figure 3: Projection of a voxel into the image plane of an 

exposure. 

 

Comparing the obtained alpha-values and storing only the 

minimum value into the corresponding voxel results in a good 

representation of the outer hull and the general structure of the 

tree.  

However, the model shows a significantly too high number of 

non-transparent voxels, especially within the area of the tree-

top. This is due to the fact, that during the space carving, only 

those voxels opacity is set to transparent, where the actual 

projections are transparent in at least one matting. In contrast, 

voxels that should be transparent in an optimal representation, 

but are covered by opaque elements in all mattings, are also 

erroneously initialized to an opaque value. As consequence, the 

model will appear overfilled from different angles.  

 

Conventional CT-methods are able to deal with this problem, as 

the density information from x-ray exposures allows a direct 

reconstruction of the parts of the object that are hidden in the 

alpha images. (Peters 2002) 

However, the alpha mattings only represent a silhouette of the 

trees and thus, the use of a CT-approach to reduce the number 

of non-transparent hidden voxels in the presented model is not 

feasible.  

 

Nevertheless, a visually convincing result can be achieved from 

the alpha mattings by adjusting the voxel opacities in a way, 

that a raycasted rendering through the volume results in an 

intensity image which resembles the according alpha-matting 

with the same orientation. 

 

 
Figure 4: Comparison between an alpha-matting of a tree (left) 

and the according visual result of a raycasted 

rendering through the initialized volume, given the 

same orientation (right). 

 

5.2 Iterative Solution 

One possible solution to improve the visual appearance of the 

volume is to improve the volume transparencies by minimizing 

the differences between the renderings of the volume and the 

input alpha-mattings.  

This aim can be achieved by calculating the weighted mean 

difference between the actual voxel values and their expected 

correct values. The mean differences can then be used to 

improve the current voxel transparencies. By iterating this 

procedure, the visual appearance of the volume converges, 

resulting in a minimum deviation from the alpha-mattings. 

 

Regarding the implementation on GPUs, the approach by 

(Reche et. al 2004) is suitable only to a limited extend, as it 

requires large amounts of memory and atomic instructions on 

floating point data. The approach, presented in this paper 

provides a new solution, separating the task into 2 sequential 

tasks, well suited for today’s GPU hardware. 

 

At first, an adjustment image is calculated for every input alpha-

matting. These images are generated from the deviation between 

the input images and the projections of the current volumes with 

the same orientation and camera calibration parameters. They 

contain correcting values that can be used to improve the voxel 

transparencies for a better visual appearance. 
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The current transparency values of the projected images are 

obtained by applying a ray-casting algorithm that gathers the 

voxel values along a ray through every pixel. All parameters, 

required for the ray-casting, are taken from the interior and 

exterior orientation of the alpha-mattings to render the new 

images from the same point of view. The raycasting is 

implemented, assuming a simple absorption model for the 

volume, based on the volume rendering equation as shown in 

(Reche et. al 2004): 



log( p )  log
i1

n

 ( i)
     (2) 

 

where 



 p  = transparency value of image at pixel p 

 



 i   = transparency value of the volume at voxel i 

 1..n = voxel that were sampled by the ray  

  

This way, the raycasting can be simplified to a mere addition of 

the values sampled along the ray from the entry- to the exit-

point of the volume (Figure 5). 

 

 
Figure 5: 2D example for a raycasting through the volume, 

gathering the voxel values along the ray. 

 

The rendered images represent the actual appearance of the 

current volume. By interpreting the alpha-mattings as the 

targeted appearances, the adjustment images can be calculated 

directly: 

 



corrp  log( p ) /log( p )     (3) 

 

where 



corrp  = adjustment image pixel p 

 



log( p ) = alpha matting image pixel p 

 



log( p )   = raycasted projection image pixel p 

 

 
Figure 6: Creation of an adjustment image from the given alpha-

matting and the via raycasting rendered volume. 

 

The resulting images contain a correcting value for every pixel. 

This procedure is repeated for all alpha-images used in the 

reconstruction to generate the required set of adjustment 

images. 

 

By projecting a voxel onto the image planes once again, a 

corrected transparency value can be calculated for every pixel in 

the projections: 

 



log( i ')  log( i)  corrp      (4) 

 

where 



 i ' = corrected transparency value 



 i  

 

For the estimation of the weighted mean deviation of the voxel 

values, an additional value pair σ and ω is specified. σ defines 

the total deviation of the actual voxel value from the targeted 

value, weighted by the influence of the respective image ray on 

the voxel and ω defines the total weight of all image-rays that 

intersect the voxel. 

 

The total deviation of a voxel i  is calculated as followed: 

 



 i  ( i,p ' p ) i,p 
p

      (5) 

 

where 



 i,p  = corrected transparency value of voxel I for the 

image ray through pixel p 



 i,p  = weight factor of the influence of the image ray 

through pixel p on the voxel i  

 

The total weight: 

 



i  (
p

 i,p )
     (6) 

 

An essential factor for the weight of a deviation is the length the 

respective image ray intersects the voxel. This can be 

determined by a simple bounding box test, that returns the 

entry- and exit point of the ray through the voxel. 

 

 
Figure 7: 2D example for an intersection of an image ray and a 

voxel. The ray intersects the image for the length of l 

from t_min to t_max 

 

Finally, the new correcting value for the voxel transparencies 

can be estimated: 



 i  i /i
     (7) 

 

If the resulting transparency value of an element is above a 

chosen level, the voxel is assumed to be completely transparent 

and excluded from the calculations of the following iterations. 

The iterative process is terminated when all correcting values of 

an iteration are below a certain threshold. 
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Figure 8: Left: Alpha-matting original; Center: Raycasted image 

of the initialized volume; Right: Raycasted image of 

the converged volume after 4 iterations. 

 

6. IMPLEMENTATION ON GPU 

As mentioned earlier, for realization using CUDA, the 

algorithm has to be implemented as a template for a single 

thread that will be assigned to a multitude of threads during 

runtime.   

 

6.1 Initialization 

For the initialization of the volume, it’s suitable to assign every 

voxel to a thread of its own and thus, define a three dimensional 

grid of threads that is distributed amongst the multiprocessors 

of the GPU. As the number of threads in a 3D-grid is currently 

limited to a maximum of 64 in direction of the z-axis, a two 

dimensional array of threads is defined instead with one thread 

for every x,y index of the volume that iterates over all voxels 

along the respective z-axis (Figure 9). 

 

 
Figure 9: CUDA thread-array for the initialization of the voxel 

values.  

 

The data-grid that represents the content of the volume is copied 

directly as a whole grid onto the graphics-card, while the alpha-

mattings are loaded sequentially into and removed from the 

GPU-memory after being processed. In this way, the amount of 

memory required on the GPU is dramatically reduced, allowing 

for larger grids to be computed at once. When an image is 

loaded onto the GPU, the voxels are projected into the image 

plane and the maximum transparency value is computed for 

every voxel. 

After the initialization is complete, the resulting volume data is 

copied back into the computers main storage. 

 

6.2 Iterative Solution 

For the refinement of the voxel values, the volume is copied 

onto the GPU as a CUDA 3D array. Together with the actual 

volume data, additional arrays are allocated for σ and ω as well 

as for an adjustment image.  

Realizing the raycasting procedure on the GPU is easily done 

by assigning an own thread to every pixel of the output image. 

The resulting image is written back to the main storage and the 

adjustment image is created as presented in 5.2.  

Finally, the total deviation and weight can be computed on the 

GPU using the same strategy as the one presented for the 

initialization.  

The new transparency values of the voxels are calculated on the 

host computer and written back onto the GPU for the following 

iteration. 

 

6.3 Out of core solution for large volumes 

Another limitation to the computation of large volumes on 

GPUs is the amount of video memory available on today’s end-

user graphics-cards, which is small compared to the average 

computer’s main-storage. The advantage of the introduced 

algorithm is that it is easily segmentable, allowing the volume 

to be split up into several smaller sub-volumes that can be 

calculated independently. 

For the volume initialization, the segmentation is done as the 

voxels are independently projected onto the image planes of the 

alpha mattings. The volume is directly split up in smaller sub-

volumes that fit onto the GPUs global memory. Every sub-

volume is then independently initialized and can be recombined 

to a complete volume afterwards. 

In contrast, the voxel values are largely dependent from each 

other during the iterative correction. This is based on the fact 

that the adjustment images are created from raycastings through 

the complete volume and contain the required information for 

the improvement of voxel values. 

As taken from formula (2), all pixels of the raycasted images are 

calculated from the sum of all sampled 



log( i) values of each 

ray. Consequently, the rays can also be split up into several 

sections, containing partial results that can be added to the 

complete solution: 

 



log( p )  log( i)
i1

n _ n

  log( i)
i1

n _1

  log( i)
i n _1

n _ 2



... log( i)
i n _ n1

n _ n



 log( p _1)  log( p _ 2)  ... log( p _ n )

    (8) 

 

Transferred to the volumetric reconstruction, the raycasting of a 

sub-volume corresponds to the calculation of such a section. By 

adding the partial renderings the required image can be 

calculated. The required adjustment image is obtained by: 

 



diffp 
log( p )

log( p _1) log( p _ 2) ... log( p _ n )
 

    (9) 

 

and can be used for the iterative solution as presented in 6.2. 

 

 

7. RESULTS 

The GPU-based implementation was realized for a significant 

boost of the computing time it takes to reconstruct a volume at 

high resolutions. To examine the actual performance growth, 

the volume initialization has been compared between GPU as 

well as CPU. As for the implementation on the CPU, a single-

threaded solution was realized. Thus only one core was active 

during the reconstruction. All o the following tests were carried 

out by the same machine with the following specs: 

 

CPU Intel Core 2 Duo 

2.4 Ghz, 3MB L2 

RAM 4GB DDR3 

1067Mhz 

GPU NVidia GeForce 

9600M GT  

VRAM 256MB 

Table 1. System configuration of the test environment  

 

For the evaluation, the ailanthus (Figure 2) was reconstructed at 

different resolutions of the volume as well as of the input 

matting images.  
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The resulting data (Figure 10 and Figure 11) shows a 

remarkable performance gain for the GPU implementation, of 

up to 75 times the speed of the CPU. 

 

 
Figure 10: Evaluation of the performance growth of the GPU-

based implementation. Used Dataset: Ailanthus, 

image resolution: 2376x1584. 

 

 
Figure 11: Evaluation of the performance growth of the GPU-

based implementation. Used Dataset: Ailanthus, 

image resolution: 1188x792.  

 

 

8. CONCLUDING REMARKS 

In this paper, a new approach for the volumetric reconstruction 

from natural images has been realized that allows the generation 

of 3D tree models of within a short amount of time. The 

presented algorithms and techniques make it possible to sub-

divide the process into many small independent tasks that can 

be easily parallelized for outsourcing the computations onto 

GPUs. At the same time, the maximum volume size is not 

limited by the amount of available VRAM as the introduced 

out-of-core solution splits the whole volume into swapable sub-

volumes. 

Together with the precise calibration and orientation of the 

images by the AICON 3D Studio and the detailed alpha-matting 

generated by using the closed form matting algorithm (Levin et. 

al 2008), high resolution volumes of detailed tree models are 

possible and can be generated in a minimum amount of time. 

 
Figure 12: Sample rendering of reconstructed trees. Left: 

Ailanthus; Right: Rowan tree 
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