

International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII, Part 5

Commission V Symposium, Newcastle upon Tyne, UK. 2010

586

 GPU-BASED VOLUMETRIC RECONSTRUCTION OF TREES FROM MULTIPLE

IMAGES

D. M. M. Vock a, b, *, S. Gumhold a, M. Spehr a, P. Westfeld b, H. G. Maas b

a
 Computer Science Faculty, Dresden University of Technology, Noethnitzer Street, 01067 Dresden, Germany

b
 Institute of Photogrammetry and Remote Sensing, Dresden University of Technology, Helmholtz Street, 01067

Dresden, Germany

Commission V, WG V/4

KEY WORDS: 3D Reconstruction, Image-based Modelling, Tomographic Reconstruction, Visualisation, Hardware Acceleration

ABSTRACT:

This paper presents a new hardware-accelerated approach on volumetric reconstruction of trees from images, based on the methods

introduced by Reche Martinez et. al [Rec04]. The shown system applies an adapted CT procedure that uses a set of intensity images

with known interior and exterior camera parameters for creating a 3D model of a tree, while requiring considerably less images then

standard CT. At the same time, the paper introduces a GPU-based solution for the system. As tomographic reconstructions are rather

complex tasks, the generation of high-resolution volumes can result in very time-consuming processess. While the performance of

CPUs grew in compliance with Moore’s law, GPU architectures showed a significant performance improvement in floating-point

calculations. Regarding well parallelizeable processes, today’s end-user graphics-cards can easily outperform high-end CPUs. By

improving and modifying the existing methods of volumetric reconstruction in a way, that allows a parallelized implementation on

graphics-hardware, a considerable acceleration of the computation times is realized. The paper gives an overview over the single

steps from the acquisition of the oriented images displaying the tree till the realization of the final system on graphics processing

hardware.

* Corresponding author. Contact: dmmvock@gmail.com

1. INTRODUCTION

The three-dimensional reconstruction of real life objects for

virtual representations gains more and more importance in

different fields of scientific research, industry and multimedia

entertainment. While current methods such as laser scanning or

structured light projection are able to generate satisfying results

for most artificial structures, they are only of limited use for the

acquisition and replication of complex objects like plants. The

multifaceted geometric shape of plants (especially treetops),

which is characterized by a large number of occlusions and a

huge amount of self similarities, complicates the creation of 3D

tree-models. A possible solution to circumvent these

complications has been introduced by Reche Martinez (Reche

et. al 2004) realizing the tree-models as volumetric grids that

contain an opacity value for every voxel. As this approach is

based on the principles of x-ray computed tomography, the

model is created from projections from object to image space

instead of estimating discrete points of the tree surface. Thus

geometric difficulties such as the mentioned self similarities

have no effect on the actual reconstruction.

While Reche intends to generate low resolution volumes that

use view dependent microfacette billboards (Yamazaki et. al

2002) for visually detailed models, this paper extends and alters

the approach in a way that realizes high resolution grids with

precise measurements. However, as tomographic procedures are

rather time-consuming and as the amount of data calculated

grows cubically in the resolution of the volume, the generation

of higher resolutions can lead to very high computation times.

To speed up reconstruction, the presented approach shows a

solution for a GPU-based out-of-core implementation, enabling

large grids to be computed on low budget graphics cards in less

than 1/100th of the time as needed by a CPU implementation.

2. IMAGE ACQUISITION

The fundamental input to the system is a series of images with

known orientation and camera calibration parameters. For a

detailed reconstruction, the precision of the image orientation is

essential. Small deviations lead to wrong projections between

the image and the volume space so that details as thin twigs and

branches can easily disappear from the model.

Among the examined systems, the AICON-3D-Studio (AICON

3D Systems 2009) has proven to be able to accomplish the

required precision in combination with an on-the-job calibration

of the used camera. For the actual image acquisition, a larger

number of markers was placed within the tree’s surrounding

area, which were used to locate positions and rotations of the

images by bundle adjustment. AICON-3D-Studio (AICON 3D

Systems 2008) uses a set of encoded markers that can

automatically be found inside the images and recognized by

their cyclic code.

Figure 1: Detail view of markers (encoded and uncoded) placed

around a tree

International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII, Part 5

Commission V Symposium, Newcastle upon Tyne, UK. 2010

587

During favourable conditions (little or slight wind), the marker

positions within the measurement environment could be

pinpointed with an average precision below 0.5mm for a tree of

10m height, which allows also thin branches of the trees to be

preserved within the volume.

For a complete reconstruction of a tree, about 20 exposures

from different sides were sufficient for good visual results.

3. ALPHA MATTING

Each pixel of an image represents a projection from the actual

surrounding onto the image plane. Thus, each pixel can be

regarded as a projection of the tree displayed in the image or its

background. Same as presented in (Reche et. al 2004), masks

are required that segment the pictures into those two areas, the

tree and it’s background. Those masks are generally known by

the term alpha-mattings. Usually, trees situated in natural and

urban areas are surrounded by further objects with similar

appearance and color, that can prevent the successful

segmentation of the images. To reconstruct every plant

regardless of it’s environment, an alpha matting algorithm

stable against such influences is required. Experiments with

various algorithms (Chuang, et al. 2001) (Grady, et al. 2005)

(Sun, Jia und Tang 2004) have shown, that the closed form

matting as introduced by (Levin et. al 2008) generated the best

results in most cases while requiring only little user-input.

Figure 2: Alpha matting of an image using the closed form

matting algorithm by (Levin et. al 2008). Left: the

original image; Middle: image with scribbles by

user-input; Right: resulting alpha image, separating

the image in fore- and background.

The algorithm is based on a local smoothness assumption on the

fore- and background colors of the images. Regarding the

segmentation of an image into two regions, each pixel can be

interpreted as a combination of the local fore- and background

colors:

Ii iFi 1 i Bi (1)

where I = image

 i = pixel i

 α = alpha value

 F = foreground colors, B= background colors

Given this assumption,

Fi and

Bi are constant within a

window w enclosing a pixel i. As the assumption is only locally

introduced, F and B may vary in different areas of the image. At

the same time, sharp edges in the image are preserved, as only

the color spaces are smoothed while the spatial affiliation stays

untouched.

For the algorithm to know which part of the image belongs to

the foreground, additional information about the images is

required. By simple user-input (scribbles and strokes) areas that

belong entirely to the fore- or background are defined. Based on

this input, the algorithm estimates the alpha value of the yet

undefined pixels.

Experiments have shown, that depending on the amount of

interfering textures within an image, more or less user-input is

required. How much the alpha-matting is influenced by the

image content depends on the contrast and regional distance

between fore- and background color spaces on the image plane.

Thus, the segmentation of an picture, containing an isolated tree

only needs a minimum of user-input. Referring to the amount of

interferences and complexity of the trees structure, the time,

necessary to prepare an image for the alpha matting varied

between 1 and 5 minutes. In most instances, satisfying matting

results were obtained. Only in cases where the tree-top area

was covered by similar trees in the background, good mattings

were difficult to achieve.

4. GENERAL PURPOSE COMPUTATION ON

GRAPHICS PROCESSING UNITS

Over the last few years, the processing abilities of graphics

cards developed from simple graphic processing units with

fixed computation pipelines, to flexible, programmable

multiprocessor units. (NVidia 2009a) These changes made it

possible to use graphics cards for jobs apart from general

rendering tasks and formed the term “general purpose

computation on graphics processing units” (GPGPU).

Each GPU consists of several multiprocessor units able to

execute arbitrary calculations, similar to CPUs. The

multiprocessors consist of several scalar-value processors

sharing a common instruction unit.

Nevertheless, GPUs underly certain restrictions that have to be

taken into account for a successful implementation of the

system on GPU hardware. While it is possible to assign

arbitrary threads to the cores of a CPU, the scalar-processors

within the GPU’s multiprocessor are only able to execute

multiple threads if those perform the same instructions at the

same time. Otherwise, the threads have to run sequentially.

Therefore, GPUs achieve best performance, when all threads

follow the same order of instructions, allowing best

parallelization of the tasks. Another limitation of GPUs is not

being able to execute recursive functions and the lack of atomic

instructions for writing to a certain memory location

consecutively. Only certain GPUs offer atomic instructions in

their instruction sets, yet until now, these are still limited to

simple computations on integer values. Because of the

architecture of graphic cards that runs parallel threads in so

called warps (NVidia 2009b) on a multiprocessor, the usage of

mutex structures is difficult and can easily lead to deadlocks.

Yet, the established approach by (Reche et. al 2004) requires

sequential write instructions to be feasible in this context.

Taken these limitations into account, the following chapters

introduce a solution for the volumetric reconstruction on

graphics processing units.

4.1 CUDA

For the implementation of the algorithms on GPUs, different

APIs have been analyzed regarding their advantages for the

given tasks. In this context, nVidia’s Compute Unified Device

International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII, Part 5

Commission V Symposium, Newcastle upon Tyne, UK. 2010

588

Architecture (CUDA) has proven to be a good solution. CUDA

is a parallel programming model which is suitable for

outsourcing complex algorithms for parallel processing of large

data streams to the GPU. It presents a new way of

multithreading, allowing the user to implement the algorithm

for a single thread which is used as a template for a

multidimensional field of threads generated and executed during

runtime. E.g. to process an image with 320x240 pixel, a thread

can be assigned to each pixel, resulting in a field of 768000

threads that can be executed concurrently. The main advantage

of CUDA over most other GPU-APIs is flexible access to the

GPUs memory, allowing direct access of the global memory as

well as the multiprocessors shared memory for reading and

writing instructions.

While most APIs only allow limited access to the global

memory, marking memory locations as read only or write only,

CUDA enables both, read and write access to the same memory

block. For the reconstruction of the trees, this implicates that

only one representation of the voxel grid is required in the

GPUs global memory instead of one read only input and one

write only output data grid.

5. RECONSTRUCTION

For the reconstruction of the tree, a volume is specified within

the world space defined by the positions of the calibrated

images and the measurement fields encoded and uncoded

markers. The system introduced in this paper makes direct

usage of the marker locations to determine a fitting volume

position and size.

To simplify the implementation of the algorithm for GPUs, a

regular grid containing the voxels is used to represent the

volume. The actual algorithm for the reconstruction is divided

into 2 steps:

5.1 Initialization

At first, an initial volume is created by applying a space carving

algorithm which determines the photo consistency of the voxels

and generates a first approximation of the 3D model. For this

purpose, every voxel of the volume is projected into all image

spaces to calculate the alpha value of the voxel from every

given line of sight.

Figure 3: Projection of a voxel into the image plane of an

exposure.

Comparing the obtained alpha-values and storing only the

minimum value into the corresponding voxel results in a good

representation of the outer hull and the general structure of the

tree.

However, the model shows a significantly too high number of

non-transparent voxels, especially within the area of the tree-

top. This is due to the fact, that during the space carving, only

those voxels opacity is set to transparent, where the actual

projections are transparent in at least one matting. In contrast,

voxels that should be transparent in an optimal representation,

but are covered by opaque elements in all mattings, are also

erroneously initialized to an opaque value. As consequence, the

model will appear overfilled from different angles.

Conventional CT-methods are able to deal with this problem, as

the density information from x-ray exposures allows a direct

reconstruction of the parts of the object that are hidden in the

alpha images. (Peters 2002)

However, the alpha mattings only represent a silhouette of the

trees and thus, the use of a CT-approach to reduce the number

of non-transparent hidden voxels in the presented model is not

feasible.

Nevertheless, a visually convincing result can be achieved from

the alpha mattings by adjusting the voxel opacities in a way,

that a raycasted rendering through the volume results in an

intensity image which resembles the according alpha-matting

with the same orientation.

Figure 4: Comparison between an alpha-matting of a tree (left)

and the according visual result of a raycasted

rendering through the initialized volume, given the

same orientation (right).

5.2 Iterative Solution

One possible solution to improve the visual appearance of the

volume is to improve the volume transparencies by minimizing

the differences between the renderings of the volume and the

input alpha-mattings.

This aim can be achieved by calculating the weighted mean

difference between the actual voxel values and their expected

correct values. The mean differences can then be used to

improve the current voxel transparencies. By iterating this

procedure, the visual appearance of the volume converges,

resulting in a minimum deviation from the alpha-mattings.

Regarding the implementation on GPUs, the approach by

(Reche et. al 2004) is suitable only to a limited extend, as it

requires large amounts of memory and atomic instructions on

floating point data. The approach, presented in this paper

provides a new solution, separating the task into 2 sequential

tasks, well suited for today’s GPU hardware.

At first, an adjustment image is calculated for every input alpha-

matting. These images are generated from the deviation between

the input images and the projections of the current volumes with

the same orientation and camera calibration parameters. They

contain correcting values that can be used to improve the voxel

transparencies for a better visual appearance.

International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII, Part 5

Commission V Symposium, Newcastle upon Tyne, UK. 2010

589

The current transparency values of the projected images are

obtained by applying a ray-casting algorithm that gathers the

voxel values along a ray through every pixel. All parameters,

required for the ray-casting, are taken from the interior and

exterior orientation of the alpha-mattings to render the new

images from the same point of view. The raycasting is

implemented, assuming a simple absorption model for the

volume, based on the volume rendering equation as shown in

(Reche et. al 2004):

log(p) log
i1

n

 (i)
 (2)

where

 p = transparency value of image at pixel p

 i = transparency value of the volume at voxel i

 1..n = voxel that were sampled by the ray

This way, the raycasting can be simplified to a mere addition of

the values sampled along the ray from the entry- to the exit-

point of the volume (Figure 5).

Figure 5: 2D example for a raycasting through the volume,

gathering the voxel values along the ray.

The rendered images represent the actual appearance of the

current volume. By interpreting the alpha-mattings as the

targeted appearances, the adjustment images can be calculated

directly:

corrp log(p) /log(p) (3)

where

corrp = adjustment image pixel p

log(p) = alpha matting image pixel p

log(p) = raycasted projection image pixel p

Figure 6: Creation of an adjustment image from the given alpha-

matting and the via raycasting rendered volume.

The resulting images contain a correcting value for every pixel.

This procedure is repeated for all alpha-images used in the

reconstruction to generate the required set of adjustment

images.

By projecting a voxel onto the image planes once again, a

corrected transparency value can be calculated for every pixel in

the projections:

log(i ') log(i) corrp (4)

where

 i ' = corrected transparency value

 i

For the estimation of the weighted mean deviation of the voxel

values, an additional value pair σ and ω is specified. σ defines

the total deviation of the actual voxel value from the targeted

value, weighted by the influence of the respective image ray on

the voxel and ω defines the total weight of all image-rays that

intersect the voxel.

The total deviation of a voxel i is calculated as followed:

 i (i,p ' p) i,p
p

 (5)

where

 i,p = corrected transparency value of voxel I for the

image ray through pixel p

 i,p = weight factor of the influence of the image ray

through pixel p on the voxel i

The total weight:

i (
p

 i,p)
 (6)

An essential factor for the weight of a deviation is the length the

respective image ray intersects the voxel. This can be

determined by a simple bounding box test, that returns the

entry- and exit point of the ray through the voxel.

Figure 7: 2D example for an intersection of an image ray and a

voxel. The ray intersects the image for the length of l

from t_min to t_max

Finally, the new correcting value for the voxel transparencies

can be estimated:

 i i /i
 (7)

If the resulting transparency value of an element is above a

chosen level, the voxel is assumed to be completely transparent

and excluded from the calculations of the following iterations.

The iterative process is terminated when all correcting values of

an iteration are below a certain threshold.

International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII, Part 5

Commission V Symposium, Newcastle upon Tyne, UK. 2010

590

Figure 8: Left: Alpha-matting original; Center: Raycasted image

of the initialized volume; Right: Raycasted image of

the converged volume after 4 iterations.

6. IMPLEMENTATION ON GPU

As mentioned earlier, for realization using CUDA, the

algorithm has to be implemented as a template for a single

thread that will be assigned to a multitude of threads during

runtime.

6.1 Initialization

For the initialization of the volume, it’s suitable to assign every

voxel to a thread of its own and thus, define a three dimensional

grid of threads that is distributed amongst the multiprocessors

of the GPU. As the number of threads in a 3D-grid is currently

limited to a maximum of 64 in direction of the z-axis, a two

dimensional array of threads is defined instead with one thread

for every x,y index of the volume that iterates over all voxels

along the respective z-axis (Figure 9).

Figure 9: CUDA thread-array for the initialization of the voxel

values.

The data-grid that represents the content of the volume is copied

directly as a whole grid onto the graphics-card, while the alpha-

mattings are loaded sequentially into and removed from the

GPU-memory after being processed. In this way, the amount of

memory required on the GPU is dramatically reduced, allowing

for larger grids to be computed at once. When an image is

loaded onto the GPU, the voxels are projected into the image

plane and the maximum transparency value is computed for

every voxel.

After the initialization is complete, the resulting volume data is

copied back into the computers main storage.

6.2 Iterative Solution

For the refinement of the voxel values, the volume is copied

onto the GPU as a CUDA 3D array. Together with the actual

volume data, additional arrays are allocated for σ and ω as well

as for an adjustment image.

Realizing the raycasting procedure on the GPU is easily done

by assigning an own thread to every pixel of the output image.

The resulting image is written back to the main storage and the

adjustment image is created as presented in 5.2.

Finally, the total deviation and weight can be computed on the

GPU using the same strategy as the one presented for the

initialization.

The new transparency values of the voxels are calculated on the

host computer and written back onto the GPU for the following

iteration.

6.3 Out of core solution for large volumes

Another limitation to the computation of large volumes on

GPUs is the amount of video memory available on today’s end-

user graphics-cards, which is small compared to the average

computer’s main-storage. The advantage of the introduced

algorithm is that it is easily segmentable, allowing the volume

to be split up into several smaller sub-volumes that can be

calculated independently.

For the volume initialization, the segmentation is done as the

voxels are independently projected onto the image planes of the

alpha mattings. The volume is directly split up in smaller sub-

volumes that fit onto the GPUs global memory. Every sub-

volume is then independently initialized and can be recombined

to a complete volume afterwards.

In contrast, the voxel values are largely dependent from each

other during the iterative correction. This is based on the fact

that the adjustment images are created from raycastings through

the complete volume and contain the required information for

the improvement of voxel values.

As taken from formula (2), all pixels of the raycasted images are

calculated from the sum of all sampled

log(i) values of each

ray. Consequently, the rays can also be split up into several

sections, containing partial results that can be added to the

complete solution:

log(p) log(i)
i1

n _ n

 log(i)
i1

n _1

 log(i)
i n _1

n _ 2

... log(i)
i n _ n1

n _ n

 log(p _1) log(p _ 2) ... log(p _ n)

 (8)

Transferred to the volumetric reconstruction, the raycasting of a

sub-volume corresponds to the calculation of such a section. By

adding the partial renderings the required image can be

calculated. The required adjustment image is obtained by:

diffp
log(p)

log(p _1) log(p _ 2) ... log(p _ n)

 (9)

and can be used for the iterative solution as presented in 6.2.

7. RESULTS

The GPU-based implementation was realized for a significant

boost of the computing time it takes to reconstruct a volume at

high resolutions. To examine the actual performance growth,

the volume initialization has been compared between GPU as

well as CPU. As for the implementation on the CPU, a single-

threaded solution was realized. Thus only one core was active

during the reconstruction. All o the following tests were carried

out by the same machine with the following specs:

CPU Intel Core 2 Duo

2.4 Ghz, 3MB L2

RAM 4GB DDR3

1067Mhz

GPU NVidia GeForce

9600M GT

VRAM 256MB

Table 1. System configuration of the test environment

For the evaluation, the ailanthus (Figure 2) was reconstructed at

different resolutions of the volume as well as of the input

matting images.

International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII, Part 5

Commission V Symposium, Newcastle upon Tyne, UK. 2010

591

The resulting data (Figure 10 and Figure 11) shows a

remarkable performance gain for the GPU implementation, of

up to 75 times the speed of the CPU.

Figure 10: Evaluation of the performance growth of the GPU-

based implementation. Used Dataset: Ailanthus,

image resolution: 2376x1584.

Figure 11: Evaluation of the performance growth of the GPU-

based implementation. Used Dataset: Ailanthus,

image resolution: 1188x792.

8. CONCLUDING REMARKS

In this paper, a new approach for the volumetric reconstruction

from natural images has been realized that allows the generation

of 3D tree models of within a short amount of time. The

presented algorithms and techniques make it possible to sub-

divide the process into many small independent tasks that can

be easily parallelized for outsourcing the computations onto

GPUs. At the same time, the maximum volume size is not

limited by the amount of available VRAM as the introduced

out-of-core solution splits the whole volume into swapable sub-

volumes.

Together with the precise calibration and orientation of the

images by the AICON 3D Studio and the detailed alpha-matting

generated by using the closed form matting algorithm (Levin et.

al 2008), high resolution volumes of detailed tree models are

possible and can be generated in a minimum amount of time.

Figure 12: Sample rendering of reconstructed trees. Left:

Ailanthus; Right: Rowan tree

9. REFERENCES

AICON 3D Systems. 2009.

http://www.aicon.de/content/index.php?option=com_content&t

ask=view&id=22&Itemid=37 (accessed 10 July 2009).

Chuang, Yung-Yu, Brian Curless, David H. Salesin, and

Richard Szeliski, 2001. „A Bayesian Approach to Digital

Matting.“ Proceedings of the 2001 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition.

Grady, Leo, Thomas Schiwietz, Shmuel Aharon, and Rüdiger

Westerman, 2005. „Random walks for interactive alpha-

matting.“ Proceedings of Visualization, Imaging and Image

Processing 05. 423-429.

Halfhill, Tom R., 2008. „Parallel Processing With CUDA.“

Microprocessor Report, January 2008.

Kak, Avinash C., and Malcolm Slaney, 1988. Principles of

Computerized Tomographic Imaging. IEEE Press, .

Levin, Anat, Dani Lischinski, and Yair Weiss, 2008. „A Closed

Form Solution to Natural Image Matting.“ IEEE Transaction on

Pattern Analysis and Machine intelligence 30, Nr. 2 : 228-242.

Luhmann, Thomas, 2003. Nahbereichsphotogrammetrie -

Grundlagen, Methoden, Anwendungen. Wichmann, ISBN: 978-

3879073986.

NVidia, 2009a. „CUDA Technical Training.“ Volume I:

Introduction to CUDA Programming. NVidia.

http://www.nvidia.com/docs/IO/47904/VolumeI.pdf. (accessed

12 July 2009)

NVidia, 2009b. „NVidia CUDA_Programming_GUIDE.“

http://developer.download.nvidia.com/compute/cuda/2_2/toolki

t/docs/NVIDIA_CUDA_Programming_Guide_2.2.pdf

(accessed 01 August 2009).

Patidar, Suryakant, and Shiben Bhattacharjee, 2007.

„Exploiting the Shader Model 4.0 Architecture.“ Center for

Visual Information Technology, International Institute of

Information Technology Hyderabad, Hyderabad.

Peters, Terry, 2002. „CT Image Reconstruction.“ American

Association of Physicists in Medicine - 44th Annual Meeting.

Reche, Alex, Ignacio Martin, and George Drettakis, 2004.

„Volumetric reconstruction and interactive rendering of trees

from photographs.“ ACM, 2004. 720-727.

Sun, Jian, Jiaya Jia, and Chi-Keung Tang, 2004. „Poisson

Matting.“ Proceedings of ACM SIGGRAPH 2004, ACM

Transactions on Graphics (TOG). ACM NY. 315-321.

Yamazaki, Shuntaro, Ryusuke Sagawa, Hiroshi Kawasaki,

Katsushi Ikeuchi, and Masao Sakauchi, 2002. „Microfacet

billboarding.“ ACM International Conference Proceeding

Series, 2002. 169-180.

http://www.aicon.de/content/index.php?option=com_content&task=view&id=22&Itemid=37
http://www.aicon.de/content/index.php?option=com_content&task=view&id=22&Itemid=37
http://www.nvidia.com/docs/IO/47904/VolumeI.pdf
http://developer.download.nvidia.com/compute/cuda/2_2/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.2.pdf
http://developer.download.nvidia.com/compute/cuda/2_2/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.2.pdf

