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ABSTRACT: 
 
Flow measurement techniques determine velocity vector fields in liquid or gas flows. In fluid mechanics, many methods are based 
on seeding particles to visualize the flow imaged by an adequate camera system. The tomo-PIV (tomographic particle image 
velocimetry) technique presented in this paper generates time-resolved volumetric reconstructions of a particle constellation from a 
limited number of synchronized camera views. The advantage of tomo-PIV in contrast to the established 3-D PTV (particle tracking 
velocimetry) technique is its insensitivity to high seeding densities. While 3-D PTV comes with the necessity to detect, identify and 
match individual particles for establishing multi-image and multi-temporal correspondences, tomo-PIV facilitates volume-based 
tracking schemes applied to voxel cuboids filled with particles. The paper presents improved photogrammetric techniques for the 
determination of 3-D flow velocity fields. This includes a multi-camera system configuration and calibration, approaches for a full 
tomographic reconstruction in gas and liquid and 3-D least squares tracking for volume-based tracking in object space. 
 
 

1. INTRODUCTION 

Elsinga et al. (2005) have proposed an approach to 3-D PIV, 
which is based on a tomographic reconstruction of the 
observation volume and subsequent 3-D cross correlation in 
time-resolved voxel data. Tomographic PIV generates a 
tomographic reconstruction of a particle constellation from a 
limited number of camera views, for instance by applying 
Herman and Lent’s (1976) MART algorithm (multiplicative 
algebraic reconstruction technique). 3-D velocity field 
information can be obtained from time-resolved voxel data by 
dividing the data into cuboids of a pre-defined size and tracking 
these cuboids. Herein, 3-D cross correlation is a straightforward 
enhancement when advancing from 2-D PIV to 3-D PIV. 
Disadvantages of both, MART and 3-D cross correlation can be 
seen in the computational effort causing rather long processing 
times.  
 
Putze & Maas (2008) and Maas et al. (2009) have already 
introduced more efficient approaches on volumetric 
reconstruction and particle tracking. This article summarizes the 
efforts of our working group and presents results which prove 
the suitability of photogrammetric techniques in voxel data 
sequences analysis. 
 
 

2. SENSOR AND DATA 

The tomographic reconstruction methods and the cuboid 
tracking have been implemented and tested in two different 
experimental setups. First, a vortex ring in a water tank is 
illuminated by a 3-D laser beam device. A rotating mirror 
generates parallel light sheet planes with a thickness of 10 mm. 
This volume of about (10×10×1) cm3 is recorded by a system of 
four synchronized high speed cameras (1024×1024 pixel, 1000 
fps) equipped with telecentric lenses (Fig. 1 and 2). Neutrally 

buoyant seeding particles are injected into the center of a vortex 
generator. See (Kitzhofer et al., 2009) for detailed 
specifications of this experimental setup. 
 

  

  
Figure 1. Vortex ring at one epoch. 

 

 
Figure 2. Experimental setup with telecentric lenses (Kitzhofer 

et al., 2009). 
 
Using telecentric lenses results in a parallel projection for the 
observed volume. A consideration of multi-media geometries is 



 

not necessary for this special case, but the collinearity equations 
have to be adapted to a parallel projection in space: 
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where cc: Focal length 
 x’,y’: Image point 
 ppx,ppy: Principal point 
 Δx’, Δy’: Correction functions 

X0,Y0,Z0: Projection center 
X,Y,Z: Object point 
rr,c: Elements of a rotation matrix R 

 
The four-camera system was calibrated by taking image 
sequences of a target, which was moved through the 
observation volume by a 3-D translation stage. From these 
reference positions and their respective image coordinates, the 
orientation parameters of each camera were determined in a 
parallel projection telecentric optics camera model (Eq. 1). The 
transition of the optical paths from the camera through the plain 
glass interface into the water could be neglected due to the fact 
that the cameras were equipped with telecentric lenses 
warranting a parallel projection rather than central perspective 
projection.  
 
In a second experimental configuration, different particle 
constellations in a water basin are illuminated by a fiber optic 
light source and are captured by a four-camera-recording-
system (1000×1000 pixel; Fig. 3). Herein, the cameras are 
equipped with central perspective lenses and are able to capture 
images with an interval of a few microseconds between two 
images in a triggered double exposure mode.  
 

 
Figure 3: Experimental setup with central perspective lenses. 

 
If used in one medium only, the well-known collinearity 
equations describe the image ray paths: 
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This collinearity of the image point, the projection center and 
the object point is not given if particles are observed in liquids 
by central perspective lenses. To consider the multimedia 
geometry, two kinds of ray tracing approaches are 

implemented; a forward (FRT) and a backward ray tracing 
(BRT).  
 
For a spatial intersection, the complete image ray path has to be 
reconstructed (Fig. 4): (i) Intersect the image ray with the first 
interface Σ1 and calculate the piercing point P1. (ii) Calculate 
the angle of incidence α1 resp. the angle of refraction α2 in 
accordance to Snell’s law using the refraction indices of the 
media air and glass. (iii) Calculate the refracted direction vector 
using the incoming direction vector, the surface normal vector 
of P1 in Σ1 and the relative refractive index. (iv) Repeat i-iii for 
the second refraction at the following interface Σ2. (v) Finally, 
the coordinates of an object point X can be calculated by 
intersecting the reconstructed ray with a desired depth layer 
resp. with two (or more) other ray paths. For a spatial resection 
(BRT) the coordinates of the piercing points P1 resp. P2 have to 
be calculated sequentially in an iterative manner by solving a 
non-linear system of equations of conditions. These constraints 
are: (i) The piercing point P1,2 is located on the plane Σ1,2. (ii) 
Snell’s law has to be fulfilled. (iii) The normal vector of P1,2 in 
Σ1,2 as well as the incident and reflected ray are coplanar. A 
detailed mathematic description for FRT and BRT including all 
necessary equations is given in (Mulsow, 2010). 
 

 
Figure 4. Multimedia geometry. 

 
Mulsow’s (2010) flexible multimedia bundle approach is used 
to determine the interior and exterior camera parameters as well 
as the media and interface parameters. The latter, namely the 
refractive indices and the normal vectors of the planes, are 
necessary to reconstruct the image ray paths through the 
different media gas, glass and liquid as described above.  
 
 

3. VOLUMETRIC RECONSTRUCTION 

3.1 Principle 

Tomographic particle image velocimetry (Tomo-PIV, Elsinga et 
al., 2005) generates a tomographic reconstruction of a 3-D 
particle constellation from typically four camera views. and has 
the potential to solve the spatial resolution limit in 3-D PTV 
(particle tracking velocimetry), which is set by ambiguities 
occurring at high seeding densities. A reconstruction can be 
performed by a MART (multiplicative algebraic reconstruction 
technique; Herman & Lent, 1976): 

1. Project every voxel into the first image space, using the 
model equations 1 resp. 2. The voxel gets the gray value GV 
obtained by interpolation the gray value gv1 from the 
corresponding pixel. (Fig. 5, left) 
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2. Project every voxel into the second image space. Multiply 
the existing voxel gray value GV with the gray value gv2 of 
the corresponding pixel. (Fig. 5, right) 

3. Proceed with all other camera views j. 

Finally, the voxel space will contain multiplicatively 
accumulated image intensity information of the instantaneous 
particle constellation. It is obvious, that only voxels at valid 
particle positions will show high values. Repeating the MART 
for each epoch results in a time-resolved 3-D voxel space 
representation of the object space. Disadvantages of a pixel-
wise reconstruction and the final realization by the MART can 
be seen in the computational effort.  
 

 
Figure 5: Principle of a tomographic reconstruction (Putze & 

Maas, 2008) 
 
3.2 Improvements 

Improvements can be seen in the radiometric as well as 
geometric reconstruction process and will be presented and 
discussed in the following sub-sections. 
 
Algebraic Reconstruction Technique 
 
 To fill-up the voxel space with gray value information, Herman 
and Lent’s MART can be replaced by a MinART (minstore 
algebraic reconstruction technique; Maas et al., 2009) applying 
a minimum operator rather than a multiplication to the gray 
values of all camera pixels in each voxel. A 3-D particle 
constellation can then easily be obtained by a thresholding in 
voxel space. 
 
Volumetric Reconstruction in Gas 
 
For a volumetric reconstruction in gas, the process bases on a 
multiple projective transformation of each camera view into 
each depth layer of a voxel representation of the object space. 
Compared to pixel-wise line-of-sight based implementations, 
this approach saves plenty of computation time. After the 
initialization of the voxel space with an adequate resolution, the 
calculation of the corresponding image coordinates of each 
voxel of each depth layer i for each view j is performed by 
either using homogeneous coordinates as suggested by Putze & 
Maas (2008) or even more straightforward by utilizing the 
projective transformation directly: 
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In homogeneous coordinates, it is sufficient to go through the 
transformation for the corner voxels of a depth layer i only. All 
other image coordinates can be obtained by a bilinear 
interpolation. See (Putze & Maas, 2008) for a detailed 
mathematic description. 

In the second case, the projective transformation model can be 
solved directly by taking the four corner voxel of each depth 
layer i. All other image coordinates can be obtained by inserting 
the corresponding set of parameters into Eq. 3. 
 
A layer-wise reconstruction can be performed with orthographic 
projections, too. In comparison to the use of a projective 
transformation, the determination of correspondences between 
voxel and pixel for each camera view is even more 
straightforward. Again, only the corner voxel of a depth layer 
have to be transformed in a discrete way by using the according 
model equation 1. Due to orthographic projections, all other 
image coordinates can be obtained by a bilinear interpolation. 
 
Volumetric Reconstruction in Liquid 
 
For a volumetric reconstruction in liquid, the layer-wise 
rectification approaches are not feasible anymore. To avoid a 
throwback to a voxel-wise reconstruction from object to image 
space, the image rays originating in each pixel of each camera 
are intersected with each layer of the voxel space, taking into 
account the fact that each ray is twice broken at the air-glass 
and glass-water interfaces (Sec. 2). Though this solution is 
performed pixel-wise, it is quite fast. A huge improvement of 
the computation time can be achieved by thresholding the 
images before the voxel space transformation, performing the 
ray tracing only for pixels above the threshold. Obviously, the 
use of MinART is not feasible here because not every pixel will 
be projected into the voxel space. As an alternative, the MART 
can be used.  
 
Further, a volume-wise transformation of each image content 
into the voxel space can be performed by the determination of 
the parameters of a polynomial with three variates in X, Y and Z 
(Eq. 4). Consequently, the use of the improved MinART is 
feasible again to map the image content into the actual depth 
layer. 
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To solve the transformation model of Eq. 4, the image 
coordinates of a sufficient amount of control points are 
calculated directly using the collinearity equations 2 plus 
multimedia correction. The distribution of those control points 
can be seen in analogy to the distribution of ground control 
points of a set of aerial photographs for a block adjustment; 
namely a dense pattern along the edges of the voxel space and 
some single points in the center of each depth layer. The 
corresponding image coordinates of all other voxels can then be 
efficiently calculated by solving Eq. 4 using the set of 
parameters determined prior. 
 
3.3 Reconstruction Results 

The following Fig. 6 shows the reconstruction results at one 
epoch of a vortex ring in a water tank, illuminated by one of the 
10 thickened laser light sheets (Sec. 2). The volumetric 
representation is 278×1112×944 voxel. Each voxel corresponds 
to (90 µm)3.  
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Figure 6. Voxel space of the volumetric reconstruction of a 

vortex ring at one epoch.  
 
All voxels with gray values less than 15 were eliminated for a 
better visual representation. Further, the right of Fig. 6 is shows 
a reduced resolution of 10:1. The section in the left is at full 
resolution 1:1. 
 
The numeric results of the different geometric reconstruction 
methods do not differ, which means that the accuracy of the 
image ray path reconstruction only depends on the accuracy of 
the calibration routine.   
 
 

4. VOXEL SPACE TRACKING 

4.1 3-D Least Squares Tracking 

Eulerian 3-D velocity field information can be obtained by 
volume-based tracking techniques applied to time-resolved 
voxel space representations. Here, 3-D least squares tracking 
(3-D LST) forms a rather interesting alternative to conventional 
3-D cross correlation. 3-D LST is a volumetric tracking 
technique, which is adaptive to cuboid deformation and 
rotation. It minimizes the sum of the squares of voxel value 
differences by determining the coefficients of a 3-D affine 
transformation between cuboids at consecutive time steps. In 
addition to the three displacement vector components, the 12 
parameters of the 3-D affine transformation in 3-D LST contain 
scale, rotation and shear information. This allows for a higher 
precision and reliability in case of velocity gradients in the 
interrogation volume. Moreover, these parameters enable the 
determination of a shear tensor for each interrogation cube. 
When applied to liquid flow data, an incompressibility 
constraint is introduced to force the volume of a cuboid to 
remain constant during the iterative transformation. The result 
of 3-D LST applied to sequences of tomographically 
reconstructed voxel structures is a dense 3-D velocity vector 
field with additional shear tensor information. A more detailed 
description of the functional model of the 3-D LST can be 
found in (Maas et al., 1994). 
 
4.2 Tracking Results 

A regular grid of 253
 voxel cuboids was defined into the volu-

metric reconstruction gained form Sec. 3 to apply the 3-D LST. 
For each cuboid, the 12 parameters of the 3-D affine transfor-
mation were determined. Parameters, which turned out insigni-
ficant in the significance test, were excluded from the transfor-
mation. A volume constraint was applied to consider the in-
compressibility of the liquid. Outliers in the results were re-
moved in an outlier detection procedure based on the following 
criteria: 

 Affine transformation parameter standard deviation: The 
results of cuboids with standard deviations exceeding a pre-
set threshold were deleted. 

 Convergence behavior: Cuboids with a diverging or oscil-
lating solution were rejected. 

 Vector length: Translation vectors exceeding a preset thre-
shold were eliminated.  

 Neighborhood correlation: The differences of the translation 
vector components between neighboring cuboids were ana-
lyzed. Vectors with deviations from their neighborhood ex-
ceeding a preset limit were eliminated. 

The 3-D LST steering parameters were set on the basis of a-
priori knowledge on the flow and empirically on the basis of a 
series of program runs. The parameters controlling the outlier 
elimination process were set automatically following 3-sigma 
rules. Optionally, gaps in the vector field can be closed by 
neighborhood based interpolation. 
 

 
Figure 8. Cross sections of color-coded velocity in voxel space. 
 
Figure 8 shows a color-coded visualization of selected layers in 
the 3-D LST results. Figure 9 shows the translation vector 
lengths of one half of the vortex ring in a frontal view. As one 
can see, some velocity vectors in the center of the vortex were 
eliminated as potential outliers. This has to be attributed to the 
finite cuboid size and the fact that the 3-D affine transformation 
parameters can only recover linear cuboid deformations. The 
results might be improved by some parameter fine tuning or by 
a higher seeding density allowing for smaller cuboids. 
 
 

 
Figure 9. Color-coded vector lengths of one half of the vortex 

ring (frontal view, X=const.=13.14 mm). 
 
In the experiment described here, the standard deviation of unit 
weight produced by the least squared adjustment process, aver-
aged over all accepted cuboids, was 2.5 gray values. Tab. 1 



 

shows the average standard deviations of the 12 affine trans-
formation parameters. As one can see, the internal precision of 
the cuboid translation parameters is in the order of 1/100 of a 
voxel. However, one has to consider that these internal preci-
sion figures are only realistic if the assumed functional and 
stochastic model is correct (3-D affine transformation and least 
squares adjustment assuming Gaussian error distribution). Fur-
ther verification tests have to be performed to get a better esti-
mate of the real accuracy potential of the method. 
 

 a0 b0 c0 
σi = [vx] 0.0132 0.0105 0.009 
Sig = [%] 100 100 100 

 

 a1 b2 c3 
σi = [vx] 2.4e-3 1.8e-3 1.6e-3 
Sig = [%] 1.95 2.68 3.75 

 

 a2 a3 b1 b3 c1 c2 
σi = [vx] 2.4e-3 2.3e-3 1.7e-3 1.8e-3 1.6e-3 1.6e-3

Sig. = [%] 4.42 10.47 6.40 10.77 6.07 12.61 
Table 1 Average standard deviations of transformation 

parameters and percentage of significant parameters 
in accepted trajectories. 

 
Furthermore, Tab. 1 gives an overview on the percentage of 
significant 3-D affine transformation parameters over all 
accepted cuboids. As the cuboid translation parameters 
(a0,b0,c0) were not excluded as a rule in the significance tests, 
they all have 100% here. The scale parameters (a1,b2,c3), 
constrained by the incompressibility condition, were only 
significant in relatively few cuboids, while the rotation and 
shear parameters (a2,a3,b1,b3,c1,c2) were significant especially 
in the center of the vortex (Fig. 10). In total, about 20% of the 
cuboids showed at least one significant non-translation 
parameter, proving the adequateness of the 3-D LST approach. 
Further, the gained 3-D LST non-translation parameters can be 
used to estimate the 3-D deformation tensor as well as the 3-D 
rotational tensor directly (Kitzhofer et al., 2010). 
 

 
Figure 10. Velocity vector display with vectors belonging to 

cuboids with at least one significant non-translation 
3-D affine transformation parameter coded in green. 

 
 

5. SUMARY AND OUTLOOK 

The suggested approaches for volumetric reconstructions under 
different experimental setups and 3-D least squares tracking 
turned out to be efficient and accurate volumetric PIV 
techniques.  
 
The sequential projective transformation for volumetric 
reconstructions in gas, resp. in liquids if telecentric lenses are 
used, has the advantage of being fast and graphics card 
implementation friendly. For the more common case of a 
tomographic voxel space reconstruction in liquid using images 
captured with central perspective lenses, a fast pixel-wise 
technique and a polynomial approach were proposed. 3-D LST 
as a cuboid tracking technique has the great advantage of 
inherently determining 12 affine transformation parameters of 
each cuboid. These 12 parameters allow to adapt to linear 
deformations of cuboids, thus improving the precision and 
reliability of cuboid translation parameters. Moreover, they 
form a basis for the determination of a shear tensor for each 
tracked cuboid. The fact that about 20% of tracked cuboids in a 
vortex ring experiment showed at least one significant non-
translation parameter proves the relevance of determining not 
only transformation parameters in cuboid tracking. 
 
Future work will concentrate on a reliable implementation of 
the polynomial approach to reconstruct the whole voxel space 
using one set of higher order polynomial parameters only. 
Beyond, the linear transformation model in 3-D LST can be 
extended by introducing higher order polynomials. The 
resolution of the velocity field may also be improved by 
identifying individual particles in voxel space and tracking 
those particles, using the results of the volume-based tracking 
as good approximation.  
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