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ABSTRACT

The �elds of application for 3d cameras are very di�erent, because high image frequency and determination of 3d
data. Often, 3d cameras are used for mobile robotic. They are used for obstacle detection or object recognition.
So they also are interesting for applications in agriculture, in combination with mobile robots. Here, in addition
to 3d data, there is often a necessity to get color information for each 3d point. Unfortunately, 3d cameras do not
capture any color information. Therefore, an additional sensor is necessary, such as RGB plus possibly NIR. To
combine data of two di�erent sensors a reference to each other, via calibration, is important. This paper presents
several calibration methods and discuss their accuracy potential. Based on a spatial resection, the algorithm
determines the translation and rotation between the two sensors and the inner orientation of the used sensor.
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1. INTRODUCTION

In applications such as mobile robotics, range cameras o�er many advantages compared to established devices
such as laser scanners or stereo-cameras. An important advantage is their mono-sensorial simultaneous of data
capture. The applied 3d camera has a frame rate of 25Hz and a spatial resolution of 204 × 204 pixel. These
speci�cs make this type of sensor suitable for observing dynamic processes in 3d or acquisition of data from
mobile platforms. Mobile robots may also be of interest in applications in agriculture, e.g. in precision farming.
In addition, color information for each 3d point, like RGB and possibly NIR, is often required for these tasks,
because it facilitates the segmentation and classi�cation of the images into plants and background. Furthermore,
it is also useful to distinguish plants into plants ,which are to be harvested, and obstacles, which need to be
circumvented.

Common 3d cameras are not able to capture color data. Therefore, it is necessary to combine a 3d camera
and a RGB-sensor to obtain to obtain colored 3d data. A rigorous system calibration is needed to be able to
determine the correct color for each 3d point. This paper will present four calibration methods and discusses their
potential accuracy. Based on a spatial resection and a bundle adjustment, the algorithms determine translation
and rotation parameters between the two sensors and the parameters of interior orientation of the employed
sensors. With the collinearity equation and the calculated orientation parameters, it is possible to compute the
2D-position on the RGB-sensor for each 3d point to assign the related color information.

The developed calibration principles can be divided into two categories. Type one works with the 3d camera
treated as passive. passive 3d camera means, only the 2D intensity data of 3d camera is used for calibration,
i.e. the 3d camera acquires no 3d points directly. In this case, the relative orientation parameters between the
two devices are determined in a bundle block adjustment with multiple images of the 3d camera and the RGB
camera. Type two makes more use of the capabilities of the 3d camera. The 3d camera is employed here in
an active way to obtain 3d data for calibration. Methods based on single 3d point or 3d object tracking are
developed to estimate calibration data. If a single 3d point is tracked, the target is identi�ed via an ellipse �t1

in two images. After �nding more than three corresponding points, the algorithm is able to estimate parameters
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of relative orientation (XT ,YT ,ZT ,ω,ϕ,κ). Further methods work with 3d objects to improve 3d point accuracy.
The advantage of them is to �t known 3d objects into a 3d point cloud and get an adjusted 3d position. In
comparison to a planar ellipse �t, 3d objects increase the depth accuracy of 3d points. High redundancy 3d
models achieve a better 3d point accuracy than single points or 2d adjustments. 3d objects can be spheres,
edges or corners because they can easily be found in images. For these objects, many single points of 3d camera
are used to estimate the parameters of it. For instance, you are able to calculate di�erent planes and intersect
them to receive an edge or a corner. Redundancy of a 3d model and the known geometry model of spheres and
planes can be used to �nd outliers and improve the accuracy of a 3d object the accuracy of calculated edges
and corners are often better than that of a single 3d point. Some problems of capturing planes are multi path
e�ects and scattering. Multi path e�ects occur when rays multi re�ected from plane surfaces.2 Scattering badly
in�uenced the distance measurements caused by multiple re�ections inside the camera device.3 So another type
of 3d object should be used to avoid these problems. Spheres also allow �nding corresponding points on two
sensors, and it is possible to interpolate the distance values of it. Errors such as multi-path or scattering are
smaller or not existing with this con�guration.

2. RELATED WORK

One of basic elements of this work is the 3d camera. Principle function and basics of 3d cameras are often illus-
trated and can be found at following sources: Kahlmann,4 Gut,2 and Weingarten.5 In addition to the principle,
there are discussed distance measurement problems caused by temperature, color, material and many more. It
o�ers useful hints to minimize distance errors. A camera calibration of 3d camera is required to improve the
captured 3d data. Authors, who discuss this topic are Westfeld6 and Kahlmann et al.7

The fusion of a RGB and a range sensor is the main task of this work. In summary a calibration for relative
orientation between these sensors is required. Papers of Ellikide et al.,8 El-Hakim et al.,9 Reulke,10 Prasad et
al.,11 and Guðmundsson et al.12 deliver approaches, but some of them are di�cult to use and very error-prone.
Most of them works with multiple images and bundle block adjustments without using 3d data of 3d camera for
calibration. Therefore, this paper present four various approaches for relative orientation of RGB camera and
range camera.

3. SENSOR AND DATA

In this experimental con�guration, two di�erent kinds of sensor are used. On the one hand, there is an ordinary
RGB camera with a Charged Coupled Device (CCD); it is capturing only color information. A Photon Mixed
Device (PMD), on the other hand, is used to determine 3d data.

3.1 3D CAMERA

PMD sensors, a main component of 3d cameras, are based on phase shift measurements of modulated light. As
a result, it su�ers from ambiguity problems. Because only one frequency is used, the solution has to be found
within the �rst wavelength and the range is limited to 7m.

The non-sequential data acquisition mode together with the high frame rate can be seen as the advantage of
3D-cameras over stereo camera systems and laser scanners. Range and intensity values for each pixel of 204×204
pixel sensor were saved simultaneously.

PMD Technology,13 a 3d camera producer, developed the employed 3d camera PMD CamCube 2.0 (Table
1).

3.2 RGB CAMERA

A low cost standard RGB camera (Logitech C200 Table 2) is used, in this experiment. The small resolution of
640x480 pixel is large enough for fusing with PMD. Because of low frame rate of PMD, 30 frames per second
are acceptable for applied RGB camera.



Table 1. Data sheet PMD CamCube 2.013

Parameter Value

Camara Type PMD CamCube 2.0

Measurement Range 0.3 to 7 m

Repeatability (1σ) <3 mm

Frame Rate (3d) 25 fps

Illumination Wavelength 870 nm

Sensor Size 204x204 pixel

Table 2. Speci�cations of Logitech C20014

Parameter Value
Camara Type Logitech C200
Frame Rate 30 fps
Sensor Size 640× 480pixel

4. METHODOLOGY

The result of this work will be a true color coded 3d point cloud. Therefore, a data fusion of CCD and PMD
sensor is essential. This paper deals with some approaches to estimate parameter of relative orientation. They
can be divided in two di�erent types. The �rst type, works with a 3d camera treated as simple 2d imaging
sensor; relative orientation is calculated by bundle block adjustment with multiple images of 3d camera and
RGB-camera. Herein, only the 2D-intensity images of 3d camera are used for calibration. Therefore, 3d data
for relative orientation are calculated by bundle block adjustment. Second type, is more interesting, because it
is using the capabilities of 3d camera. It is applied in an active way and 3d points of range camera are used
for calibration. Approaches, which are use this kind of type, obtain 3d points from 3d camera and estimate
calibration parameters (XT ,YT ,ZT ,ω,ϕ,κ) via spatial resection. Furthermore, there is the possibility to �t 3d
data to a 3d object. The large number of 3d points can be used to create a high redundancy model, such as
planes or spheres. In a adjustment, based on RANSAC15 and method of least squares, the single point accuracy
can be increased. As a result, the 3d position of a 3d object will be improved because of 3d point redundancy
and a following adjustment.

Figure 1. Sensor con�guration. PMD CamCube and RGB camera Logitech C200 on top.



4.1 CALIBRATION WITH PASSIVE 3D CAMERA

The �rst method, is a o�set calibration via bundle block adjustment which use multiple images of miscellaneous
point of views. It is often applied and there are various software packages, e.g. AICON,16 which facilitate com-
putation. In this method, as can be seen in Fig.2, a 3d camera is applied as simple 2D-camera and only intensity
images are used. A minimum number of observations is required, therefore there have to be a corresponding
number of images. A combination of spatial intersection and spatial resection allows to estimate 3d points, and
parameters of the interior and outer orientation of the 3d camera. As a last step, images from a RGB camera and
a 3d camera are capture simultaneously. Accordingly, it is possible to estimate parameters of relative orientation
between a RGB camera and a 3d camera, with spatial resection.
This kind of sensor calibration uses the 3d camera in a passive way because 3d point estimation is done by bundle
block adjustment with related 2d points in.

Figure 2. In method 'calibration with passive 3d camera', 3d points were calculated via bundle block adjustment with
intensity images of 3d camera.

4.2 CALIBRATION WITH ACTIVE 3D CAMERA

In contrast to approach one, as described in section 4.1, this method uses the 3d camera in an active way. It is
based only on a spatial resection, but it needs a calibrated 3d camera as a constraint. A calibrated 3d camera
is necessary because high accurate 3d points are needed. The procedure, shown in Fig. 3, is divided in three
steps. First, feature points in intensity image are found and their 3d points are estimated; second, corresponding
feature points in RGB image are search and found using descriptors of SURF;17 third, the parameters of relative
orientation between both cameras are determined via spatial resection.

4.3 CALIBRATION WITH PLANES

An alternative approach, in contrast to section 4.1 and section 4.2, is shown in the next two sections. Because
�t of 3d objects to noisy point cloud improve the accuracy of object position, it is better to work with 3d objects
instead 3d single points. Hence, there are present two approaches, which apply planes or spheres.

To use the approach with planes, planes have to be found �rstly in object space and edges in image space. The
developed method employs an approach presented in Guðmundsson,18 based on �nding planes and intersection
lines. First, small patches as planes are applied, such as 15×15pixel, of regular 3D point grid and normal vectors
are estimated of it. Second, Cartesian normal vectors are transformed in spherical coordinates (ϕ and θ) and
related vectors are merged. Merged normal vectors represent the largest and best detected planes. Third, planes



Figure 3. Method 'calibration with active 3d camera' use calculated 3d data of 3d camera. Sensor o�set calibration is
estimated by spatial resection.

with most probably normal vectors are detected by RANSAC15 in whole 3d point cloud. Fourth, identi�ed
planes are intersect by each other to obtain necessary intersection lines. In a further step, images lines and
object lines are referenced to each other. This step is very complex and at the moment only a part of future work
(sec. 6). The problem of correspondence can be solved by analyzing the pattern of edge points or an 2d interest
closing point algorithm. This assignment is the base for image orientation and a following relative oriention of
sensors. An approach of Meierhold and Schmich,19 which deals with 2D images and laser scanner data, shows
the coherence of 3d line parameters and 2d points between two sensors.

x = x0 − c ·
r11 · (X −X0) + r21 · (Y − Y0) + r31 · (Z − Z0)

r13 · (X −X0) + r23 · (Y − Y0) + r33 · (Z − Z0)
+ dx

y = y0 − c ·
r12 · (X −X0) + r22 · (Y − Y0) + r32 · (Z − Z0)

r13 · (X −X0) + r23 · (Y − Y0) + r33 · (Z − Z0)
+ dy

with

XY
Z

 =

Xs cosα cos θ − Ys sinα+ t cosα sin θ
Xs sinα cos θ + Ys cosα+ t sinα sin θ

−Xs sin θ + t cos θ


(1)

where rij : elements of rotation matrix
c,x0,y0: interior orientation
dx, dy: imaging errors
x,y: coordinates of image point
Xs,Ys: positional line parameters
α,θ: orientation line parameters

4.4 CALIBRATION WITH SPHERES

A further method to improve the 3d position of objects, such as is section 4.3, is a calibration using spheres.
There are some problems using planes for calibration and it is better to apply spheres. Planes evoke multi path
e�ects of radiated illumination on plane surfaces, therefore spheres are more suitable calibration objects. As a
result, distance errors occur in the data, which impede the following plane detection step and render an accurate
calibration impossible.



Figure 4. Sensor orientation in assistance with planes. Based on a plane detecting algorithm, intersection lines will
calculated. After a edge detection in RGB camera image, a line assignment between 2D and 3d data is necessary.

One possibility is to use spatial de�ned and spatial limited objects, like spheres. So it is possible to estimate
a 3d position for this object without further intersections or other calculations. Spheres have no plane areas;
accordingly there are no problems with multi path errors. Main task of this approach is to detect spheres in
object space, �nd circles in image space, and determine the reference from 3d camera to RGB camera.

Figure 5. Experimental con�guration for sensor calibration, with spheres. Finding spheres in range image and get position
of it, while using LSM. Furthermore, �nding circles in image space and get orientation between range camera and RGB
camera, using circle sphere a�liation.

5. RESULTS

In this paper, four approaches for calibration of a RGB camera and range camera have been presented. The
advantages and drawbacks of these approaches are discussed in this section.



5.1 CALIBRATION WITH PASSIVE 3D CAMERA

Using the 3d camera as a 2D-camera is one simple possibility to get 3d data via bundle block adjustment, but
it does not use the high potential of it. In spite of this fact is this approach a possible solution to estimate the
relative orientation of two sensors because of high accurate 3d point calculation. With this type of calibration,
a lot of convergent images are required. The minimum number of required images depends on the number of
unknowns. In case of 3d point estimation (XP ,YP ,ZP ) and camera calibration (X0,Y0,Z0,ω,ϕ,κ,c,xH ,yH , and
seven parameter of distortion), at least eight images are needed. If the camera is already calibrated, at least two
images for 3d data estimation are needed. Because of high redundancy, sub-pixel point measurement routines
and bundle block adjustment, there is a high accuracy of 3d points.As can be seen in table 3, the average standard
deviation of a single point is below 0.01mm

In a bundle block adjustment, a least squares method is applied to improve all 3d points and camera param-
eters. Estimated 3d points are the base for the calibration of relative orientation. Furthermore, the scene or test
�eld with 3d points is captured by a RGB camera. If the RGB-camera is already calibrated, there is only one
image necessary for o�set estimation, but it depends on the number of 3d points. If the interior orientation of
the RGB-camera needs to be calibrated as well, more images are required to determine the unknown of interior
orientation.

After the relation of the 3d points to the 2d points on the web cam image are determined, a spatial resection
adjustment can be computed to obtain the relative orientation. Based on the highly accurate 3D-points computed
by the bundle block adjustment, the resection results for translation parameters are below 1mm and less than
0.1◦ for rotation parameters (Tab. 4).The results of the resection are illustrated in �gure 6 as a correctly colored
point cloud. 3d points outside the overlapping area have no color information and painted white.

Table 3. Average standard deviation of single 3d point after bundle block adjustment
σ̄X [mm] σ̄Y [mm] σ̄Z [mm]
0.02 0.015 0.025

Table 4. Standard deviation of transformation for calibration with passive 3d camera
σX [mm] σY [mm] σZ [mm] σΩ[◦] σϕ[◦] σκ[◦]

0.7 0.6 0.3 0.03 0.04 0.01

Figure 6. True color coded 3d point cloud. 3d data of range camera with color information of oriented RGB camera.



5.2 CALIBRATION WITH ACTIVE 3D CAMERA

A crucial advantage of range cameras are pixel wise distance measurements on the sensor. Thus, a complex
con�guration, discussed in section 4.1, is actually unnecessary. Instead, sub-pixel image processing routines, e.g.
ellipse �tting, are used to compute the position of 3d points in a range image. But, the single point accuracy
of PMD is much higher than 1mm. Consequently it is higher than 'Calibration With Passive 3d Camera' (cp.
Tab. 3). Because of this fact, the results of spatial resection with this con�guration cannot be better than the
approach presented in section 5.1.

The standard deviation for range values of a single point (PMD CamCube 2.0) is around 5mm, after calibra-
tion. Without calibration, single points are not precise enough and the results of the resection are insu�cient
(Tab. 5).

First of all, z-coordinate is very inaccurate, because the range accuracy is insu�cient. To increase the accuracy
of single points and further the accuracy of the resection, methods such as plane �tting (Sec. 4.3) and sphere
�tting (Sec. 4.4) was developed.

Table 5. Standard deviation of transformation for calibration with active 3d camera
σX [mm] σY [mm] σZ [mm] σΩ[◦] σϕ[◦] σκ[◦]

3.0 4.9 15.8 0.46 0.22 0.57

5.3 CALIBRATION WITH PLANES

In our approach, the main aim is the improvement of the single point measurements captured by range camera.
Therefore, a geometric model, especially planes, with high redundancy is used. The geometric model of a plane
(Eq. 2) is described by three unknowns, the parameter of the normal vector (XN ,YN ,ZN ).

d =

XN

YN
ZN

 ·
XY
Z

 (2)

It requires at least three 3d points to compute this unknowns of a plane. If there are more than three 3d
points, a redundancy is given and an adjustment provides the best solution of unknowns. To avoid outliers and
following errors, a RANSAC15 algorithm is implemented to obtain the best parameters of plane.

As a �rst step, planes are searched in range image. An algorithm, based on an approach presented by Guð-
mundsson,18 was developed to detect planes. It calculates normal vectors of small user de�ned patches (e.g.
7 × 7 or 15 × 15 pixel). Because of noise in the range measurements, a RANSAC is used algorithm for robust

detecting of planes. Following, the Cartesian normal vectors (
−→
X = [X,Y, Z]) were transformed to spherical

coordinates ([φ, θ, r]). So, the variables of descriptive direction are reduced from three parameters of normal
vector (XN ,YN ,ZN ) to two parameters (φ,θ). Analyzing the behavior of φ and θ, the values of φ contain all
important information. As a result, it is possible to �nd all corresponding planes with only one parameter, φ.

Next, planes with similar φ directions within a tolerance of 10◦ were merged and all large planes of the image
are obtained. For detecting edges, planes have to intersect to each other. These intersection lines present all
identi�ed edges in object space and are assigned to their corresponding lines in the RGB image.

Detecting edges in object space and establishing correct line correspondence is a di�cult and error-prone
procedure. Finally, this method is only an approach to compute the relative orientation of two sensors. Problems
of unknown a�liation of edges in the range image and the RGB image are not solved at the moment and are parts
of future work. In spite of this fact, the described approach is a possibility to estimate the relative orientation
of two sensors.



Figure 7. Finding planes, while using RANSAC. On the left side, the color coded φ image with di�erent plane directions.
On the right side, edges of RGB camera image.

5.4 CALIBRATION WITH SPHERES

To avoid a complex con�guration and implementation, like in section 5.3, another approach was developed. As
mentioned in section 4.4, this type of calibration deals with spheres. They were used as geometric objects to
increase single point accuracy.

First, �nding ellipses in the range image and �tting spheres to the 3d point cloud. Based on RANSAC and
a following least squares algorithm, sphere are �tted in a certain position. The four unknown parameters of a
sphere are o�set from origin (XM ,YM ,ZM ) and the radius (r) (Eq. 3). At least four points are needed to obtain
a unique solution. If there are more than four points, a redundancy is given and an adjustment is necessary.

r2 = (X −XM )2 + (Y − YM )2 + (Z − ZM )2 (3)

As can be seen in table 6, the 3d position could be increased about 25 times, in comparison to 5mm single point
standard deviation. This improvement could be raise the accuracy of spatial resection, because it depends on
single point measurement accuracy. Following, ellipses in RGB image are connected to corresponding spheres of
object space. The problem of a�liation is mentioned in section 5.3 and is a part of future work yet. Identi�cation
of correct correspondence is the base for spatial resection. Therefore, related 3d coordinates of spheres and 2d
coordinates ellipses are needed.

Table 6. Average standard deviation of sphere center
σ̄X [mm] σ̄Y [mm] σ̄Z [mm]
0.19 0.18 0.28

6. CONCLUSION AND FUTURE WORK

In this paper four approaches for calibration of a range sensor and a RGB camera have been shown. The well
known method of bundle block adjustment delivers highly accurate results, but it is complex computation and
requires more than one convergent image. If the implementation of this adjustment is given, it is a simple
way to estimate parameters of relative orientation. Other developed con�gurations have their advantages and
disadvantages in con�guration and accuracy. Because of insu�cient single point accuracy of range measurements,
the calibration calculation is rendered impossible and yields no meaningful results (Sec. 5.2). The improvement



Figure 8. Finding sphere, while using RANSAC and least squares algorithm. On the left side, the range image of test
�eld with spheres. On the right side, valid points, invalid points, and �tted sphere.

of range accuracy via 3d objects can solve the described problems of inaccurate 3d point data. An experimental
con�guration with planes (Sec. 5.3) is one possibility to achieve a better 3d point accuracy. But, it is di�cult
to �nd corresponding lines or edges in image or object space. The results obtained by using spheres 3D-
calibration objects produced the most accurate results. Furthermore, spheres facilitate the detection because
of ellipse detecting in images and establishing of correspondences. The increased 3d point accuracy, using high
redundancy geometric models and adjustments, is the base for an accurate resection.
Future work be engaged with improvements of fourth approach (Sec. 4.4) because it has the most potential to
avoid a complex bundle block adjustment (Sec. 4.1) and achieves nearly same results. Further, a solution for
problems of a�liation between corresponding points in object space and image space have to be found. It is
possible to solve it by feature descriptors, like mentioned in SURF,17 or by an interest closest point algorithm.
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