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Abstract 

Reconstruction of a tree’s topological and geometrical structure from terrestrial laser scanner 

point clouds is a fundamental step in order to gain insight into plant processes like water 

interception or light absorption. We propose to utilize principal curves as a novel approach to 

retrieve skeletal structures from TLS data sets. A principal curve is a polygonal line that traces 

the shape of a 3D point cloud by minimizing the expected squared distance to the given data set. 

Experiments are conducted to assess the feasibility and benefit of applying principal curves to 

single tree data sets. A previous segmentation of each tree into its phyto-elements is necessary 

and has been performed manually for simplicity. However, instead of introducing an arbitrary 

neighborhood structure like a voxel grid or graph, we propose to exploit the implicit 

neighborhood structure provided by each single TLS scan to facilitate data processing. Our 

results show that principal curves are an excellent tool for the retrieval of skeletal structures 

from point clouds and a fully automatic preprocessing should be aimed at in the future.  

1. Introduction 

Terrestrial laser scanners (TLS) have proven to be invaluable for capturing plant geometry data 

as 3D point cloud in a very efficient and precise way. However, the diversity in tree vegetation 

geometry and appearance makes it difficult to derive general constraints for tree reconstruction. 

Further complicating factors are technique-related effects during scanning like data gaps caused 

by occlusions, especially self-occlusions of branches in the tree crown, and artifacts due to wind 

movements. Moreover, the number of measured 3D points has a significant impact on the 

processing performance and the quality of results. In essence, processing scanned 3D point 

clouds with the objective to retrieve a skeletal representation of a tree’s spatial structure is still a 

rather challenging task. 

A common approach to deal with unorganized 3D point sets is the utilization of a voxel space 

representation of the data. (Gorte and Pfeifer 2004; Gorte and Winterhalder 2004) employed 

connected component labeling and mathematical morphology to carve out the skeleton of a tree 

from a voxel space representation. In (Gorte 2006), the procedure was improved further by 

incorporating Dijkstra’s shortest path algorithm (Dijkstra 1959). A similar method was 

presented in (Gatziolis et al. 2010). A graph-reduction approach for skeleton extraction was 

introduced in (Bucksch 2011) mapping the point cloud onto an octree structure, which is then 

subjected to a set of fixed rules. However, the procedure tends to cause loops in the skeleton 

during graph processing and is computationally expensive. Recently, (Schilling et al. 2012) 

presented a method to retrieve a spatial tree representation utilizing Depth-First Search on the 

voxel representation of single tree point clouds. In general, voxel space approaches have the 

advantage of providing a fixed neighborhood structure that the raw 3D point cloud in most cases 

lacks. Nevertheless, methods based on voxel grids are usually hard to handle regarding the 

steering parameters and processing rules, and are computationally demanding. 

In contrast, the raw 3D point set was used in (Livny et al. 2010) to create a weighted graph from 

which skeletal structures were retrieved by Dijkstra’s algorithm. A similar approach was 

presented in (Côté et al. 2011), where intensity information was also taken into account, and 
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(Xu et al. 2007). In (Preuksakarn et al. 2010), the tree skeleton was retrieved by application of a 

point set contraction algorithm (Giannitrapani and Murino 1999). A probabilistic approach using 

general knowledge to guide a tree skeleton reconstruction process with iterative cylinder fitting 

was introduced in (Binney and Sukhatme 2009). In (Yan et al. 2009), an adjacency graph was 

built between point clusters previously established by repetitive k-means and fitting of 

minimum boundary cylinders. Furthermore, a method segmenting the range image of the point 

cloud based on local curvature estimates is detailed in (Dai et al. 2010). Subsequently, the 

skeleton is recovered from bins of clusters resulting from a previous region growing procedure. 

A similar approach utilizing principal curvature is presented in (Cheng et al. 2006). Since point 

clouds acquired by powerful TLS such as the Z+F Imager 5006i are rather large in size, 

computation of a nearest neighbor graph and application of graph algorithms becomes infeasible. 

Furthermore, the problem of occlusions, artifacts, and larger data gaps still remains.  

In this paper, we propose a novel approach to retrieve skeletal representations of trees from 3D 

point clouds on the basis of principal curves. A principal curve is a polygonal line that provides 

a compact summary of the point distribution of the 3D data and can be computed automatically. 

For this reason, principal curves are an obvious choice to trace point subsets representing tree 

branches; but to our knowledge, they have not been applied to TLS data before. Consequently, 

we present experiments that have been conducted in order to assess the feasibility of utilizing 

principal curves on TLS data. 

The paper is organized as follows: First, principal curves and their computation scheme is 

introduced. Second, the study site and data preprocessing are detailed. Subsequently, a 

discussion of the results is presented. The paper closes with a summary of the conducted work 

in the conclusion. 

2. Principal Curves 

A 3D point set measured by a terrestrial laser scanner is a noisy point sampling of the geometry 

of a real-world object. If information on the object’s geometry is available, its recovery from the 

3D point set becomes feasible. In case of a 3D point set representing a cylindrical object, fitting 

a 3D center line by means of principal component analysis (e.g. (Jolliffe 2002)) is a trivial task. 

However, if the object resembles a tube, as is commonly observed at tree branches, recovering 

the underlying space curve from the 3D point set is far more difficult. If a model for the 3D 

curve cannot be determined in advance, methods based on Ransac (Fischler and Bolles 1981) 

cannot be applied because they require a known curve model to assess the error of the data 

points during computation.  

In order to recover the underlying 3D curve from a 3D point set representing a tree branch or 

trunk, we propose the application of principal curves as defined in (Kégl et al. 2000): A 

principal curve is a polygonal line that traces the shape of a 3D point cloud by minimizing the 

expected squared distance to the given data set. In case of a 3D point set of a branch, it passes 

along the center of the branch. As detailed in (Kégl 1999; Kégl et al. 2000), the principal curve 

can be retrieved automatically from the 3D point set   with   denoting the number of data 

points. The first principal component of a subset of   is utilized as an initial line estimate. 

Successively, the algorithm alternates in an inner loop between a repartitioning of the data 

points according to their projections onto the curve, and an optimization computation of the 

curve vertices. After completing the inner loop, a new vertex is added to the curve and the inner 

loop is repeated. The computation terminates when a criterion            is fulfilled, which 

incorporates the number of curve segments   and an error measure       assessing the curve 

node positions in relation to their corresponding point subsets. The resulting polygonal line      

provides a compact description of the spatial distribution of the 3D point set  . Algorithm 1 

provides an outline of the computation scheme.
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Algorithm 1: Principal curves computation scheme based on (Kégl et al. 2000).   denotes a predefined 

threshold of relative change.  

3. Methods 

3.1 Study Site and Data Processing 

The study site comprises a plain birch stand (Betula pendula) on an area of ca. 1.3 ha (160 m × 

80 m) near Wilmsdorf, Germany. The birch stand has been scanned in leafless condition using 

the TLS Z+F Imager 5006i with a field of view of 360° in horizontal, 310°  in vertical 

direction and an angular resolution of 0.018°; for TLS specifications see (Zoller+Fröhlich 2009). 

For each independent scan, the data is provided similar to a range image. But here, each pixel of 

the image matrix represents a data tuple   in the form                 , offering the 3D 

coordinates               as well as the intensity value          in addition to each 

measured range     . If the measurement has failed at a particular pixel then an empty tuple 

                has been stored. Arranging all of one scan’s data in the same fashion as its range 

image makes each measured point readily accessible by its 2D coordinates in the image matrix. 

Hence, introducing an arbitrary neighborhood structure like a voxel grid or graph is not required. 
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The particular scan itself provides an implicit neighborhood structure, which can be directly 

exploited and facilitates general data processing as image processing methods can be applied to 

the 3D data as well. Another advantage is the possibility to visualize all data aspects of the scan 

within the image matrix, which provides a better and intuitive insight into the data set.  

From the obtained scans, a set of 10 trees has been selected in        to         distance from 

the scanner position and exported as follows: All pixels of the original image matrix are checked 

and those, which hold 3D coordinates that are further away from the predefined tree position in 

the XY plane than    , are replaced by empty tuples. Subsequently, the image matrix is clipped 

to the size of the 2D bounding box of the remaining non-empty tuples. For each tree, the result is 

a cutout of the original image matrix of the single-view scan, as shown in figure 1a. 

Since the result of the principle curve computation is a single polygonal line, each tree has to be 

segmented into disjoint point sets denoting branches and the trunk. The result of this 

preprocessing step is a new image matrix, where each tuple                     has an 

additional element        denoting the point subset it belongs to. If the pixel contains an 

empty tuple, the label     is assigned, which denotes background. 

  
a) b) 

Figure 1: a) Range image cropped to bounding box. b) Manually enhanced label image, each color 

denotes a connected component determined by connected component labeling on the range image. 

In order to assess the benefit of utilizing principle curves on TLS data, segmentation of 

phyto-elements has been performed manually on the basis of a previous connected component 

labeling step: For each of the obtained single tree images, the connected component labeling 

algorithm, as detailed in (Shapiro and Stockmann 2001), has been applied to the range values of 

the data tuples. Two neighboring pixels are defined to be close in 3D space and therefore 

connected pixels if the absolute difference of their range values does not exceed a predefined 

threshold  . For the experiments, a threshold of          has been applied. Components 

representing a fragment of more than one branch due to a junction are split manually into 

separate components and a unique label   is assigned to each of them. Furthermore, the same 

label is assigned to disjoint components if they are representing the same branch according to 
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visual inspection. Very small components, which could not be assigned to a specific branch, 

have been eliminated. In that way, a unique label is determined for each separate phyto-element 

and propagated to the tuples of the pixels constituting the affected components as is 

demonstrated in figure 1b. 

3.2 Experiment Setup 

The 10 selected tree data sets have been prepared as explained in the previous section. Each 

input data set is treated as follows: For each unique label present in the current data set, a 

principal curve is computed for the corresponding 3D point subset. The point subset is obtained 

by selecting the 3D coordinates of all tuples where the label element matches the current label. 

Consequently, the result is a set of disjoint principal curves for each tree input data set. Linking 

the end points of the principal curve to attain a skeletal tree representation, as shown in figure 

2b, could be performed automatically based on the segmented image (figure 1b), but has been 

conducted manually for simplicity. For the computation of the principal curves, an 

implementation in C++, which closely follows the prototype implementation provided in (Kégl 

2000), has been utilized.  

 

 
  

a) b) c) 

Figure 2: Resulting skeletal representations of tree ID 8. a) Tree skeleton with 3D points colored 

according to label. b) Skeleton of tree. c) Magnified crown with 3D points and skeleton. 

4. Results  

Figure 2 gives an impression of the retrieved skeletal structures with an overlay of the 

corresponding point sets. The result of the principal curve computation for each single tree trunk 

is presented in table 1. Retrieval of the trunk curve is most time intensive due to its comparably 

high number of involved points. Clearly, the number of 3D points has a great impact on the time 

necessary to compute the principal curve. In addition, more iterations are generally required by 

the algorithm if the number of outliers or the outlier’s distance error is large. The mean distance 

error denotes the average Euclidean distance of a 3D point to its corresponding node of the 

polygonal line; therefore, it should approximate the diameter of the trunk. 
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Table 1: Results of experiments for point subsets representing trunks. 

Tree ID 
Curve comp.  

time [s] 

Mean distance 

error [m] 

Number  

of points 

Distance from 

scanner [m] 

1  3.322 0.0667  82757 16.34 

2 32.262 0.0755 357058  7.89 

3 20.312 0.0721 332869  8.00 

4  7.784 0.0671 140413 12.92 

5 42.385 0.0699 361463  7.26 

6  5.086 0.0904 120028 14.13 

7 13.510 0.0710 184115 11.61 

8 17.144 0.0837 196224 12.47 

9  4.961 0.0798  84848 20.57 

10  5.070 0.0796  88623 19.11 

Computation results for branches are summarized for each tree in table 2. All branches are 

completed in less than       for point sets ranging from 20 to 13141 points in size. Again, the 

computation is quite robust to improperly segmented points, i.e. outliers to the targeted 3D point 

set representing the branch. For entire trees, the mean distance error denotes the average 

Euclidean distance of a 3D point to its corresponding node of the polygonal line over all 

branches in the crown. If the points have been segmented properly, the mean distance error of 

branch curves is less      on average. Curve segments exhibiting a larger error in comparison 

to pre- and succeeding segments indicate the presence of outliers, e.g. due to a new branch 

forking off or improper segmentation. In those cases, the mean distance error is significantly 

higher, i.e. in the magnitude of several decimeters. The shape of the principal curve is governed 

strongly by the point distribution and drawn to more dense clusters of 3D points. For this reason, 

if the number of outlier points is small, the principal curve can still be retrieved correctly with 

only little noise influence. As indicated in figure 2c, data gaps in a branch can be bridged as well. 

Although winding branches in the scans, caused by wind during data capture, cannot be traced 

in all detail, the general branch shape can still be retrieved. In fact, the resulting straight, 

unwinding principal curve is more plausible in those specific cases.  

Judged on visual inspection, the obtained tree structures trace the original spatial branching 

structure very well. Clearly, the quality of the results strongly depends on the prior segmentation 

of phyto-elements and correctly linking of computed principle curves.  

Table 2: Results of experiment for each tree, excluding their trunk subsets. 

Tree 

ID 

Number of 

curves 

Total 

Time [s] 

Mean 

distance 

error [m] 

Std.dev. of 

distance  

error [m]  

Total number of 

points in crown 

Number of 

points in 

largest subset 

1  52 1.132 0.0009 0.0025 37717 11707 

2  36 2.654 0.0007 0.0008 86473 12877 

3  45 3.450 0.0024 0.0018 127748  9528 

4  22 0.702 0.0084 0.0018 17468  2693 

5  29 2.558 0.0014 0.0024 74141 11800 

6  36 0.780 0.0074 0.0016 29003  6525 

7  54 1.996 0.0071 0.0013 73956 10890 

8 105 4.805 0.0042 0.0047 141898 13141 

9 102 2.013 0.0081 0.0017 66036  4069 

10  83 2.105 0.0074 0.0097 64142  7954 
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5. Conclusion 

In this paper, we have proposed a novel approach to retrieve skeletal structures from TLS data 

on the basis of principal curves. A principal curve is a compact summary of a point cloud’s 

distribution as polygonal line. To our knowledge, principal curves have not been applied to TLS 

data sets before. For this reason, we have conducted experiments on a set of 10 selected tree 

point clouds to assess the feasibility and benefit of employing principal curves on TLS data. 

Since each phyto-element of a tree has to be computed by a separate principal curve, a prior 

segmentation has been necessary. Rather than introducing an arbitrary neighborhood on the 3D 

point cloud in form of a graph or voxel grid, we have exploited the implicit neighborhood 

structure of the scan’s range image. A connected component labeling algorithm has been 

performed on the range data in the image matrix. Subsequently, this initial segmentation has 

been improved by splitting or joining components thus that a unique label has been assigned to 

each branch or trunk. For each label, a principle curve has been computed and the resulting 

polygonal lines of a single tree have been connected to a tree graph.  

Our results show that the principal curve computation is fast, robust to noise and can also deal 

with data gaps, which makes it well suited for application on 3D data sets. Furthermore, 

exploiting the implicit neighborhood structure of the range image matrix clearly facilitates 

general processing of 3D data from a single scan. In this way, well-known image processing 

methods can be adapted and applied to TLS data. Consequently, we strive to devise a fully 

automatic algorithm for retrieval of a complete and faithful tree model on the basis of principle 

curves in the future. 
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