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Abstract  The paper presents a three-dimensional least squares matching approach applied to time-resolved 
volumetric particle image velocimetry data to determine 3-D velocity fields. It will introduce the functional 
and stochastic model of the tracking algorithm which includes the geometric concept, the parameterization of 
the transformation, the derivation of information on precision, determinability and reliability of the 
transformation parameters as well as the integration of additional constraints. The implementation of 3-D 
least squares matching has been validated with both simulated and real data. The accuracy potential as well 
as the reliability will be documented comparatively for all data sets. The parameterization for different flows 
and the percentage of significant parameters in accepted trajectories will be analyzed and a comparison 
between 3-D cross correlation and 3-D least squares matching is given. 
 
 

1. Introduction 
 
Photogrammetric 3-D motion analysis is a well-established field of close-range photogrammetry 
and allows the extraction of geometric information from images with high precision and reliability. 
In this context, least squares techniques such as least squares matching depict powerful, flexible and 
widely used tools for the computation of velocity vectors from 2-D or 3-D image sequences. 
 
Volumetric PIV generates a tomographic reconstruction of a particle constellation from a limited 
number of synchronized camera views by applying a feasible reconstruction algorithm like MART 
(Herman & Lent, 1976) or MinART (Maas et al., 2009). The advantage of PIV is the insensitivity to 
high seeding densities. This kind of tomographic reconstruction facilitates the implementation of a 
volume-based particle tracking technique rather than a discrete PTV (particle tracking velocimetry) 
approach, which may be prone to ambiguities at high seeding densities (Papantoniou & Dracos, 
1989). 
 
Volume-based tracking techniques deliver dense flow velocity field information by dividing time-
resolved volumetric velocimetry data into cuboids of a predefined size and tracking these cuboids 
through the reconstructed sequence of voxel spaces. Herein, 3-D cross correlation (3-D CC, Keane 
& Adrian, 1992) is a rather straightforward technique to determine 3-D displacement vectors 
between cuboids of two consecutive epochs with sub-voxel precision by calculating a 3-D cross 
correlation coefficient field and fitting a Gaussian function into it to obtain sub-voxel accuracy. An 
implementation of this approach is quite simple but limited to the determination of the shifts in each 
direction only. Thus, cuboids with significant deformations will not be tracked reliably. Scarano 
(2002) partially improves this by iterative image deformation methods, but at much larger 
computational efforts. Here, 3-D least squares matching (3-D LSM) offers the advantage of being 
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adaptive to cuboid deformation, rotation and shear, which makes it a rather interesting alternative to 
3-D CC.  
 
 
2. Principle 
 
3-D least squares matching (3-D LSM) is a volumetric matching technique (Maas et al., 1994). In 
analogy to 2-D least squares matching (Ackermann, 1984; Förstner, 1984; Grün, 1985), 3-D LSM 
utilizes an iterative geometric and radiometric transformation between two (or more) consecutive 
cuboids in a way that the sum of the squares of the gray value differences between the voxels of the 
cuboids reaches a minimum. The geometric transformation is a 3-D affine transformation with 12 
parameters, the optional radiometric adjustment may use a 2-parameters linear correction term (Fig. 
1). 
 

 
 
Fig 1. 3-D affine transformation of a cuboid. From left to right: translation, scale, rotation, shear.   
 
The essential advantage of these additional non-translational cuboid transformation parameters is 
the adaptivity to changes in scale, rotation or shear. If not considered, they may hamper the 
determination of velocity vectors or systematically deteriorate the quality or results. 
 
Compared to the 3-D cross correlation (3-D CC) method, cuboid tracking formulated as a least 
squares problem has the following implications: 
 

 The geometric transformation includes additional scale, shear and rotation parameters. 
These parameters allow adapting to linear deformations of cuboids. 

 The mathematical model can be extended by additional information or constraints. When 
applied to liquid flow data, an incompressibility constraint has to be introduced to force the 
volume of a cuboid to remain constant during the iterative transformation. 

 Assuming a correct mathematical model and sufficient contrast within the cuboids, 3-D 
LSM can achieve very high sub-voxel precision down to 1/100 of a voxel. 

 3-D LSM converges in a few iterations and may reduce the computational effort. 

 The observation equations are non-linear. The linearized equations requires initial values, 
usually obtained by pre-knowledge or by hierarchically applying the technique on a 
resolution pyramid. 

 The adjustment has a high redundancy, allowing for general acceptance decisions and the 
detection and elimination of outliers. 

 Accuracy estimates of the unknown parameters can be delivered. 
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3. Mathematical Model 
 
3.1 Functional Model 
 
Template cuboid g1 and search cuboid g2, taken from consecutive volume data sets ϒ1 and ϒ2, 
provide gray value observations for the adjustment at each position (x,y,z)1 resp. (x,y,z)2. The 
geometric and radiometric relations between those cuboids can be formulated as 
 
 ),,(),,(),,( 2101 zyxgrrzyxezyxg    (1) 

 
whereas r0 and r1 model changes in brightness and contrast, and e considers a small noise fraction. 
The geometric 3-D affine transformation model is given by  
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with (a0,b0,c0) being shifts, (a1,b2,c3) scales, and (a2,a3,b1,b3,c1,c2) rotations and shears. Within a 
Gauss-Markov Model (GMM), the parameters can be estimated by minimizing the sum of the 
squares of the gray value differences between g1 and g2. 
 
Suppose approximate values are available for all introduced parameters of the cuboid g2 at its initial 
position g2

0, Eq. 1 can be linearized as 
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With the gray value gradients in three coordinate directions 
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this leads to a linearized observation equation 
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Like all non-linear least squares approaches, the estimation of the unknowns takes place in an 
iterative way. They are updated after each iteration until a preset iteration criteria has been reached. 
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In general, the residual amounts are non-integer values and the gray values in the search cuboid will 
need to be determined by interpolation. 
 
For the special case of tracking particles in liquids, a cuboid, while changing its shape due to 
deformations, will have a constant volume. Consequentially, a volume constraint was implemented 
to consider the incompressibility of the liquid. The incompressibility constraint is formulated as 
 
 1321  cba   (7) 

 
and results in one additional linearized equation for the GMM: 
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3.2 Stochastic Model 
 
The stochastic model describes the variances and co-variances of the observations. In the present 
case, homogeneous data are available and all gray value observations are introduced with same a-
priori accuracy specifications in terms of equal variances resp. equal stochastic weights. 
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where s0 is the a-priori standard deviation of unit weight and si is the a-priori standard deviation of 
the observation k, k={1,2,...,n}. Due to independent and homogeneous observations, the weight 
matrix of the observations P will often be an identity matrix I (s0 = si ≡ 1). 
 
The incompressibility constraint (Eq. 7) is introduced with highest priority by setting its a-priori 
standard deviation to 'zero' (sΨ ≡ 0, PΨ ≡ 0). 
 
3.3 Gauss-Markov Model 
 
Each voxel i in a cuboid produces one observation equation Φi. For each consecutive pair of 
cuboids, c = 1 additional equation has to be set up, which considers the incompressibility constraint 
 . The complete equation system is solved in an extended Gauss-Markov Model (conditional least 
squares adjustment) to estimate u unknown transformation parameters by n gray value observations 
per cuboid: 
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Assuming normal distributed errors, the following conditions for the residuals v resp. the 
inconsistencies w results  
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   min,ˆ2 wxBkPvv T  
 
which leads to the extended normal system of equations solved for the vector of unknowns: 
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Herein, the Jacobian matrix A consists of the derivatives of Φ(pi) (Eq. 6) with respect to the 
unknowns and describes the functional relation between the parameters. In analogous way to the 
observation equations, B consists of the derivatives of Ψ(pi) (Eq. 8). 
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The vector l is denoted as the vector of the reduced observations: 
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The vector of Lagrangian multipliers k are not normally of interest. The vector of the unknowns 
contains the estimated parameters: 
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u
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4. Internal Quality Measures 
 
As a least squares adjustment method, 3-D least squares matching (3-D LSM) delivers information 
on the precision, determinability and reliability of the 12 affine transformation parameters. This 
includes the standard deviation of each of the parameters as well as the correlation between 
parameters. 
 
The a-posteriori standard deviation of unit weight is given by 
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with an redundancy .cunr   
 
The a-posteriori standard deviation of an estimated parameter i is given by 
 

 iii qss 0ˆˆ   (16) 

where qii is the ith diagonal element of the cofactor matrix   .
1
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Furthermore, the level of significance can be calculated for each parameter in each cuboid. To 
decide whether a transformation parameter is significant or not, the one-dimensional Student test 
function can be calculated for each introduced parameter pi . The parameters are significant, if 
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is fulfilled. The quantile q can be obtained by the inverse of the Student's t inverse cumulative 
distribution function using the degrees of freedom r and a given probability P that the parameters 
are significant. Non-significant parameters may be excluded from the estimation process (and set to 
zero) in order to improve the strength of the solution. Assuming at least one non-significant 
parameter in the introduced set of parameters pi , the least squares adjustment is repeated until all 
used parameters are significant. 
 
 
5. Some Results 
 
5.1 Simulated Data Set 
 
A simulated data set was generated by composing two consecutive voxel spaces ϒ1 resp. ϒ2 with a 
volume of (101 voxel)3. These volumetric reconstructions contain the flow of a vortex ring. The 
second state of the vortex was achieved by a defined translation and rotation of the first one. 
Further, some random noise was added to the gray values of both voxel spaces. 
 
The velocity field information were determined comparatively by 3-D cross correlation (3-D CC) 
and 3-D least squares matching (3-D LSM). A regular grid of 173 voxel cuboids was defined into 
ϒ1. For each grid position, the corresponding cuboids were determined either by calculation the 3-D 
cross correlation coefficients or by calculating the 3-D LSM affine transformation parameters. All 
tracking results were accepted. Neither a threshold for the cross correlation coefficient nor 3-D 
LSM outlier criteria were applied. 
 
For 3-D CC, the template cuboid g1 was shifted through the search volume ϒ2. At each position the 
normalized cross correlation coefficients between the gray values of the template g1 and the 
corresponding search cuboid g2 were calculated. A Gaussian function was fitted into the computed 
3-D cross correlation coefficient field to obtain sub-voxel accuracy. The position with the highest 
coefficient represents the location of g1 in ϒ2. For 3-D LSM, the 12 parameters of the 3-D affine 
transformation were computed as described in Sec. 3. Parameters were excluded from the 
transformation if they turned out insignificant in the significance test (Sec. 4). 
 
 



15th Int Symp on Applications of Laser Techniques to Fluid Mechanics 
Lisbon, Portugal, 05-08 July, 2010 

 

- 7 - 

 Vector lengths Nominal/actual variations 

3-D CC 

3-D LSM 

Fig 2. Cross sections of color-coded vector lengths (left) and nominal/actual variations (right) of 
a simulated vortex ring achieved by 3-D CC (top) and 3-D LSM (bottom). 

 
The results can be seen in Fig. 2 and Tab. 1. At first the cross sections of the resulting velocity 
vector fields looks similar for 3-D CC and 3-D LSM. Analyzing the variations between the nominal 
and actual particle positions show the great advantage of 3-D LSM. In contrast to 3-D CC, the 
trajectories were determined more precisely and reliability. Mainly in the center of the vortex, an 
improved precision by factor 2-6 can be achieved, which proves the relevance of determining not 
only translation parameters in cuboid tracking.  
  

 x y z

3-D CC 1.1182e-001 1.1566e-001 1.6526e-001 
3-D LSM 1.7027e-002 1.6948e-002 4.3520e-002 

 
Tab. 1 Standard deviations of actual/nominal variations in x, y and z (in voxel). 
 
 
5.2 Real Data Set 
 
The real data set originates from the following experimental setup: A vortex ring in a water tank is 
illuminated by a 3-D laser beam device. A rotating mirror generates parallel light sheet planes with 
a thickness of 10 mm. This volume of about (10×10×1) cm3 is recorded by a system of four 
synchronized high speed cameras (1024×1024 pixel, 1000 fps) equipped with telecentric lenses 
(Fig. 3 and 5). Neutrally buoyant seeding particles are injected into the center of a vortex generator. 
See (Kitzhofer et al., 2009) for detailed specifications of this experimental setup. 
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Fig. 3. Experimental setup with telecentric lenses 
(Kitzhofer et al., 2009). 

 

�

�
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Fig. 4. Voxel space of the volumetric reconstruction 
at one epoch (Westfeld & Maas, 2010). 

 
Fig. 5. Vortex ring imaged with four 

cameras at one epoch (Maas et 
al., 2009). 

 
The volumetric reconstruction (Fig. 4) results from improved reconstruction techniques presented in 
(Maas et al., 2009) and (Westfeld & Maas, 2010). The process bases on a multiple projective 
transformation of each camera view into each depth layer of a the voxel representation of the object 
space and a MinART (minstore algebraic reconstruction technique) to fill-up the voxel space with 
gray value information.  
 
The velocity field information can then be obtained by applying the presented 3-D LSM to the time-
resolved voxel space representation. Again, a regular grid of 253 cuboids was defined into the 
volumetric reconstruction of (2781112944) voxel3 and the 12 affine parameter were determined. 
The initial values for all parameters were computed automatically by applying 3-D LSM 
successively on a 2-level pyramid of the object space. If adequate initial values are available, 3-D 
LSM converges in a few iterations (Fig. 6 and 7). Non-significant parameters were excluded. 
Trajectories which do not fulfill the criteria of an outlier detection scheme were removed: 
 

 Affine transformation parameter standard deviation: The results of cuboids with standard 
deviations exceeding a preset threshold were deleted. 

 Convergence behavior: Cuboids with a diverging or oscillating solution were rejected. 

 Vector length: Translation vectors exceeding a preset threshold were eliminated. 

 Neighborhood correlation: The differences of the translation vector components between 
neighboring cuboids were analyzed. Vectors with deviations from their neighborhood 
exceeding a preset limit were eliminated. 
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Fig. 6. Template cuboid g1 and search cuboids 
g2 through seven iterations. 

Fig. 7. Convergence behavior of all 12 affine 
transformation parameters. 

 
 
The following figures visualize the 3-D LSM results. Fig. 8 shows the cross sections of color-coded 
velocity in voxel space. Fig. 9 shows the direction of the velocity vectors for one half of the vortex 
ring in frontal view. 
 

 

Fig. 8. Cross sections of color-coded velocity 
in voxel space (Maas et al., 2009). 

Fig. 9. Cross sections of color-coded velocity 
in voxel space (Maas et al., 2009). 

 
The standard deviation of unit weight was 2.5 gray values, avaraged over all accepted cuboids.  
Tab. 2 shows the average standard deviations of the 12 affine transformation parameters. As one 
can see, the internal precision of the cuboid translation parameters is in the order of 1/100 of a voxel. 
However, one has to consider that these internal precision figures are only realistic if the assumed 
functional and stochastic model is correct (3-D affine transformation and least squares adjustment 
assuming Gaussian error distribution). Furthermore, Tab. 2 gives an overview on the percentage of 
significant 3-D affine transformation parameters over all accepted cuboids. As the cuboid 
translation parameters (a0,b0,c0) were not excluded as a rule in the significance tests, they all have 
100% here. The scale parameters (a1,b2,c3), constrained by the incompressibility condition, were 
only significant in relatively few cuboids, while the rotation and shear parameters (a2,a3,b1,b3,c1,c2) 
were significant especially in the center of the vortex (Fig. 10). In total, about 20% of the cuboids 
showed at least one significant non-translation parameter, proving the adequateness of the 3-D LSM 
approach. Further, the gained 3-D LSM non-translation parameters can be used to estimate the 3-D 
deformation tensor as well as the 3-D rotational tensor directly (Kitzhofer et al., 2010). 
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 a0 b0 c0 
σi = [vx] 0.0132 0.0105 0.009 
Sig = [%] 100 100 100 

 

 a1 b2 c3 
σi = [vx] 2.4e-3 1.8e-3 1.6e-3 
Sig = [%] 1.95 2.68 3.75 

 

 a2 a3 b1 b3 c1 c2 
σi = [vx] 2.4e-3 2.3e-3 1.7e-3 1.8e-3 1.6e-3 1.6e-3 

Sig. = [%] 4.42 10.47 6.40 10.77 6.07 12.61 

 
Tab. 2 Average standard deviations of transformation parameters and percentage of significant 

parameters in accepted trajectories. 
 

 
 
Fig.10. Velocity vector display with vectors belonging to cuboids with at least one significant non-

translation 3-D affine transformation parameter coded in green (Maas et al., 2009). 
 
 
6. Outlook 
 
The paper presented a volume based tracking technique to compute Eulerian 3-D velocity field 
information from time-resolved voxel space representations. Mainly due to its adaptivity to cuboid 
deformation and rotation, 3-D least squares matching (3-D LSM) forms a rather interesting 
alternative to conventional 3-D cross correlation. It was shown that an increase in precision and 
reliability can be achieved, if scale, rotation and shear information were considered in the tracking 
process. Moreover, these parameters enable the determination of a shear tensor for each 
interrogation cube. 
 
Future work will concentrate on extension of the linear transformation model in 3-D LSM by 
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introducing higher order polynomials. The resolution of the velocity field may also be improved by 
identifying individual particles in voxel space and tracking those particles, using the results of the 
volume-based tracking as good approximation. 
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