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Vorbemerkungen und Literaturempfehlung

Die sph�arische Trigonometrie besch�aftigt sich mit Berechnungen auf der Ku-
gel und geh�ort zu den Disziplinen der elementaren Mathematik. Bedeutung
kommt ihr bei der Ausbildung von Geod�aten und Kartographen zu, da diese
Studierenden eine besondere Beziehung zu unserer Erde (hier als Kugel betrach-
tet) und auch zu den Vorg�angen am Himmel haben sollten. Es wird gezeigt, wie
sich mit relativ einfachen Rechnungen viele interessante Probleme auf der Erd-
ober
�ache oder an der Himmelskugel kl�aren lassen. Um das ohnehin schon sehr
gestra�te Manuskript nicht zus�atzlich zu belasten, wird an vielen Stellen auf ei-
ne ebenfalls vom Institut zusammengestellte Formelsammlung verwiesen. Durch
praktische Rechnung und L�osung angewandter Aufgaben in den �Ubungen wird
der gebotene Sto� vertieft und gefestigt. Nachdem die Probleme erkannt und
L�osungswege gefunden wurden, sollte man sich auch bem�uhen, Sicherheit in der
Zahlenrechnung zu erlangen.

F�ur Interessierte kann folgende Vertiefungsliteratur angegeben werden:

K.-G. Steinert: Sph�arische Trigonometrie. Kleine naturwissenschaftliche Biblio-
thek. Reihe Mathematik, Band 8, Teubner Verlagsgesellschaft, Leipzig, 1977

R. Sigl: Ebene und sph�arische Trigonometrie. Akademische Verlagsgesellschaft
Frankfurt am Main,1969 und Wichmann Verlag, Karlsruhe, 1977

H. D�orrie: Ebene und sph�arische Trigonometrie. Verlag von R. Oldenburg, M�unchen,
1950

In vielen Lehrb�uchern der Mathematik gibt es kurze Darstellungen der sph�ari-
schen Trigonometrie, ebenso in vielf�altigen Formelsammlungen.

1 Wiederholungen und Erg�anzungen aus der

Goniometrie und der ebenen Trigonometrie

1.1 Winkelma�e

1.1.1 Das Gradma�

Wird ein Kreis durch Radien in 360 gleiche Teile geteilt, so ist der Richtungs-
unterschied zweier benachbarter Radien die Ma�einheit 1Grad = 1Æ. F�ur die
Unterteilung dieser Einheit gilt 1Æ = 600 = 360000.

Ein rechter Winkel (1/4 Vollkreis) = 90Æ. Auch die dezimale Schreibweise
ist m�oglich, z.B. 10Æ1502700 = 10; 2575Æ.

Auf der Erdober
�ache wird de�niert: 10 = 1 sm (Seemeile). Bei Annahme
eines mittleren Erdradius von 6371 km ergibt sich eine Seemeile zu 1; 853 km.
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Bei Einteilung des Kreises in 400 gleiche Teile erh�alt der Richtungsunter-
schied zweier benachbarter Radien die Bezeichnung 1 Neugrad oder 1Gon (Zei-
chen gon oder g). 1Gon wird in 100Neuminuten (Zeichen c), eine Neuminute in
100Neusekunden (Zeichen cc) unterteilt:

1g = 100c = 10000cc:

Ein rechter Winkel (1/4 Vollkreis) = 100 gon. �Ublich ist auch die Bezeichnung

1 gon = 1000mgon(Milligon)

oder auch
10g11c12cc = 10; 1112g:

Auf der Erdober
�ache entspricht 0:01 gon= 1c einer Entfernung von 1 km.
Umrechnungen:

1Æ = 1; 11111 gon;

1g = 0; 9Æ = 540 = 324000:

1.1.2 Das Bogenma�

Die L�ange eines Kreisbogenst�uckes b ist eine Funktion des dazugeh�origen Zen-
triwinkels � und des Radius R des Kreises.

Als Bogenma� eines Winkels �
wird die L�ange des Kreisbogens b
bezeichnet, der zum Winkel �
geh�ort, wenn der Radius des Krei-
ses gleich 1 ist:

b = arc�:

Aus der Verh�altnisgleichung

�Æ

arc�
=

360Æ

2�

ergeben sich folgende Umrechnungen

�Æ = arc�
180Æ

�
;

bzw.
arc� = �Æ

�

180Æ
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oder

�g = arc�
200g

�
;

bzw.
arc� = �g

�

200g
:

Der Quotient 180Æ/� entspricht der Ma�einheit 1Radiant (1 rad):

1 rad = 57Æ1704500 = 63; 6620 gon;

1 rad = 20626500:

F�ur diesen Winkel ist die Bogenl�ange gleich dem Radius des Kreises.

1.1.3 Das Zeitma�

In der Geod�asie, besonders aber in der Astronomie, kommt es oft vor, da�Winkel
im Zeitma� angegeben werden. Der Zusammenhang wird durch die Rotation der
Erde um ihre Achse hergestellt. In 24 Stunden dreht sich die Erde einmal um
ihre Achse

24h =̂ 360Æ;

1h =̂ 15Æ; 1min =̂ 150; 1 s =̂ 1500;

1Æ =̂ 4min; 10 =̂ 4 s; 100 =̂ 0; 067 s:

1.2 Die Winkelfunktionen und ihre Periodizit�at

In einem rechtwinkligen Dreieck
sind die beiden Winkel eindeu-
tig durch die Seitenverh�altnisse
de�niert. Diese Seitenverh�altnis-
se bezeichnet man als trigonome-
trische Funktion

Sinus : sin� =
Gegenkathete

Hypothenuse
=

a

c
;

Kosinus : cos� =
Ankathete

Hypothenuse
=

b

c
;

entsprechend sin� = b=c und cos� = a=c.
Praktische Erfordernisse ergeben weitere von diesen zwei Grundde�nitionen

abgeleitete Formeln:

Tangens : tan� =
Gegenkathete

Ankathete
=

a

b
=

sin�

cos�
; tan� =

b

a
=

sin�

cos�
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und im folgenden nur f�ur den Winkel � aufgeschriebene Formen:

Kotangens : cot� =
1

tan�
;

Kosecans : cosec� =
1

sin�
;

Sekans : sec� =
1

cos�
:

Aus

a2

c2
+

b2

c2
=

a2 + b2

c2
= 1 mit a2 + b2 = c2 (Satz des Pythagoras)

ergibt sich:
sin2 �+ cos2 � = 1:

Mit Hilfe dieser Zusammenh�ange l�a�t sich jede trigonometrische Funktion
durch die anderen ausdr�ucken:

sin � cos � tan � cot �

sin � = { �
p
1� cos2 � tan�

�
p
1 + tan2 �

1

�
p
1 + cot2 �

cos � = �
p
1� sin2 � { 1

�
p
1 + tan2 �

cot�

�
p
1 + cot2 �

tan � = sin�

�
p
1� sin2 �

�
p
1� cos2 �
cos� { 1

cot�

cot� = �
p
1� sin2 �
sin�

cos�

�
p
1� cos2 �

1
tan� {

Die Vorzeichen der Wurzeln werden durch die folgenden Betrachtungen fest-
gelegt.
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Am Einheitskreis lassen sich die
Werte und Vorzeichen der einzel-
nen Funktionen ablesen

sin� = aP;

cos� = bP;

und es werden folgende Vorzeichen erhalten:

Quadrant

Winkelfunktion I II III IV

sin � + + � �

cos � + � � +

tan � + � + �

cot� + � + �

Die Darstellung der Funktionswerte in Abh�angigkeit vomWinkel ergibt folgende
Kurven:
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An diesen Kurven ist zu sehen, da� sich die Funktionen von beliebigen Win-
keln leicht auf den ersten Quadranten zur�uckf�uhren lassen.

z.B. II Quadrant:

sin(90Æ + �) = +cos�;

sin(180Æ � �) = + sin�;

III Quadrant:

sin(180Æ + �) = � sin�;

sin(270Æ � �) = � cos�;

IV Quadrant:

sin(270Æ + �) = � cos�;

sin(360Æ � �) = � sin�:

Im ersten Quadrant gilt au�erdem:

sin� = cos(90Æ � �) und cos� = sin(90Æ � �):

Ein Winkel (90Æ � �) wird als Komplementwinkel, ein Winkel (180Æ � �)
als Supplementwinkel und ein Winkel (360Æ � �) als Implementwinkel zu �
bezeichnet.

In einem gleichseitigen Dreieck (Seitenl�ange = 1) oder rechtwinklig gleich-
schenkligen Dreieck (Schenkell�ange = 1) lassen sich leicht Werte der trigonome-
trischen Funktionen f�ur die speziellen Werte 30Æ; 45Æ und 60Æ ermitteln.

Winkel

Funktion 0Æ = 0 30Æ = �=6 45Æ = �=4 60Æ = �=3 90Æ = �=2

sin � 0 1
2

1
2

p
2 1

2

p
3 1

cos � 1 1
2

p
3 1

2

p
2 1

2 0

tan � 0 1p
3

1
p
3 1

cot� 1
p
3 1 1p

3
0
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Die Berechnung der trigonometrischen Funktionswerte f�ur beliebige Winkel
erfolgt �uber Potenzreihen, z.B

sin x = x� x3

3!
+

x5

5!
� x7

7!
+ ::: (x im Bogenma�):

F�ur den Praktiker stehen die Werte schon im einfachsten Taschenrechner
meist mit gen�ugender Genauigkeit zur Verf�ugung, in EDV-Programmen mit
beliebiger Genauigkeit.

1.3 Additionstheoreme,Winkelverdopplung und Verwand-

lungsformeln

Mit Hilfe der Additionstheoreme lassen sich trigonometrische Funktionen von
Winkelsummen oder -di�erenzen in Ausdr�ucke verwandeln, die nur die Einzel-
winkel enthalten.

Aus nebenstehender Figur l�a�t
sich ablesen:

sin(�+�) = sin� cos�+cos� sin�;

cos(�+�) = cos� cos��sin� sin�:
Weitere Formen s. Formelsamm-
lung Teil A.1.

Beziehungen zwischen den Winkelfunktionen des einfachen und des doppel-
ten Winkels erh�alt man, indem in den Additionstheoremen � = � gesetzt wird:

sin 2� = 2 sin� cos�;

cos 2� = cos2 �� sin2 � = cos2 �� (1� cos2 �) = 2 cos2 �� 1 = 1� 2 sin2 �:

Mit den Verwandlungsformeln werden die Summen oder Di�erenzen der tri-
gonometrischen Funktionen zweier Winkel in Produkte von Funktionen der hal-
ben Summe bzw. Di�erenz dieser Winkel verwandelt.

Durch Addition bzw. Subtraktion der beiden Additionstheoreme

sin(�+ �) = sin� cos� + cos� sin�;

sin(�� �) = sin� cos� � cos� sin�;

ergibt sich:
sin(�+ �) + sin(�� �) = 2 sin� cos�
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und
sin(� + �)� sin(�� �) = 2 cos� sin�:

Nachdem gesetzt wird:
�+ � = x;

�� � = y;

folgt:

� =
x + y

2

und

� =
x� y

2
:

Und es werden die Verwandlungsformeln erhalten:

sin x + sin y = 2 sin
x + y

2
cos

x� y

2
;

sin x� sin y = 2 cos
x + y

2
sin

x� y

2

(Formelsammlung A.2.)

1.4 Grundformeln zur Berechnung ebener Dreiecke

Man zeichnet ein beliebiges Drei-
eck mit der H�ohe hc (Lot von C
auf c), die c in p und q unterteilt.
Leicht l�a�t sich ablesen

hc = b sin�

hc = a sin�

Nach dem Gleichsetzen erh�alt man den ebenen Sinussatz

b sin� = a sin�

oder
a

sin�
=

b

sin�
=

c

sin 

(Formelsammlung B:1:)

Setzt man a2 = h2
c
+ q2 (Satz des Pythagoras),

a2 = h2c + (c� p)2 = h2c + c2 � 2cp + p2;

so erh�alt man mit h2c + p2 = b2 und p = b cos� den ebenen Kosinussatz:

a2 = b2 + c2 � 2 b c cos� (Formelsammlung B:2:):
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Mit Sinussatz und Kosinussatz lassen sich alle St�ucke im ebenen Dreieck
berechnen, wenn 3 St�ucke gegeben sind. Mindestens eines von den 3 St�ucken
mu� eine Seite sein.

Auf die Tangentenformeln (Formelsammlung B.3.) sei an dieser Stelle hin-
gewiesen.

2 Sph�arische Trigonometrie

Die sph�arische Trigonometrie besch�aftigt sich mit der Berechnung von Dreiecken
auf der Kugelober
�ache. Die Seiten der Dreiecke k�onnen dabei keine geraden
Linien sein, da die Kugelober
�ache eine gekr�ummte Fl�ache ist. Die Seiten werden
durch den Winkel zwischen den Kugelradien nach den Eckpunkten der Dreiecke
ausgedr�uckt. Die Winkel der Dreiecke werden durch die Tangenten an die Seiten
in den Eckpunkten der Dreiecke gebildet.

2.1 Kreise und Winkel auf der Kugel

Wird eine Kugel von einer Ebene geschnitten, so ist die Schnittlinie an der
Kugelober
�ache stets ein Kreis.

a) Ist der Abstand der Schnittebene
vom Kugelmittelpunkt gleich 0, d.h.
der Kugelmittelpunkt liegt in der
Schnittebene, so ist die Schnittlinie
ein Gro�kreis. Der Radius des Gro�-
kreises ist gleich dem Kugelradius R.

b) Ist der Abstand der Schnittebene
vom Kugelmittelpunkt gr�o�er als 0
aber kleiner als R, so ist die Schnitt-
linie ein Kleinkreis mit dem Radius
r (r < R).

c) Ist der Abstand der Schnitt-
ebene vom Kugelmittelpunkt gleich
dem Kugelradius R, so wird die
Schnittebene zur Tangentialebene,
die Schnittlinie wird zum Tangenti-
alpunkt.

Die im Mittelpunkt auf einer Kreisebene K mit dem Radius r senkrecht
stehende Gerade tri�t die Kugelober
�ache in den Polen P (Nahpol) und P0

(Fernpol).

11



Die Abst�ande des Kreises K von
P bzw. P0 k�onnen auf zwei Arten
de�niert werden:
a) direkte Abst�ande x und y von
den Polen,
b) sph�arische Abst�ande � und �0

von den Polen. Aus den Abbil-
dungen kann abgelesen werden:

sin
�

2
=

x

2R
=

p

x
; daraus x2 = 2Rp; x =

p
2Rp bzw: y =

p
2Rq:

F�ur die auf der Kugelober
�ache gemessenen k�urzesten Abst�ande des Kreises
K von den Polen sind die Zentriwinkel � und �0 Ma�zahlen:

sin
�

2
=

x

2R
=

p
2Rp

2R
=

r
p

2R
;

bzw.

sin
�0

2
=

r
q

2R
:

Aus den letzten beiden Bildern ist der Radius des Kleinkreises direkt ablesbar:

r = R cos';

r = R sin �:

Der Gro�kreis (geod�atische Linie) ist die k�urzeste Verbindung zwischen zwei
Punkten auf der Kugelober
�ache.

F�ur die L�ange eines Gro�kreisbogens AB ergibt sich:

dAB = Rarc� = (�=180Æ) R�Æ;

wobei � der Winkel zwischen den Radien nach A und B im Zentrum der Kugel
sein soll.

F�ur die L�ange des Kleinkreisbogens AB gilt:

dAB = r arc�;

wobei � jetzt der Winkel ist, den die Kleinkreisradien nach A und B in der
Schnittebene des Kleinkreises einschlie�en.

12



Der Nachweis daf�ur, da� der
Gro�kreisbogen zwischen A und
B k�urzer ist als alle denkba-
ren Kleinkreisbogen, ist leicht zu
f�uhren, indem man die Klein-
kreisebene ABO' und die Gro�-
kreisebene ABO in der gleichen
Ebene zeichnet.

Auf der Erdkugel sind die Meridiane und der �Aquator Gro�kreise, die zum
�Aquator parallelen Breitenkreise sind Kleinkreise.

Zwei beliebige Kugelgro�kreise, deren Ebenen nicht zusammenfallen, teilen
die ganze Kugel in vier Kugelzweiecke.

a1; a2 = Gro�kreise;

A;A0 =Schnittpunkte der Gro�-
kreise, diese liegen auf einem Ku-
geldurchmesser,

Æ = Schnittwinkel:

Je zwei der vier Kugelzweiecke
sind gleich gro�.

F�ur die Fl�ache eines Kugelzweiecks mit den Winkeln Æ l�a�t sich folgende
Verh�altnisgleichung aufstellen:

Fl�ache Kugelzweieck

Fl�ache Kugel
=

FZ
FK

=
Æ

2�
:

Mit
FK = 4�R2

folgt:
FZ = 2Æ wenn R = 1;

bzw. FZ = (2Æ � �)=180Æ, wenn Æ in Grad gegeben ist.

2.2 Das sph�arische Dreieck und sein Polardreieck

Drei nicht zusammenfallende Ebenen, die alle den Kugelmittelpunkt enthalten,
schneiden die Ober
�ache der Kugel in 3 Gro�kreisen. Diese 3 Gro�kreise teilen
die Kugelober
�ache in 8 Dreiecke.
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Als Grunddreieck wollen wir das
Dreieck ABC mit den Winkeln
�; �; 
 bezeichnen.
Die Seiten des Dreiecks - die
B�ogen AB, BC, CA werden im
Winkelma� angegeben und ent-
sprechen den Winkeln zwischen
zwei Radien nach den Eckpunk-
ten (a, b, c).
Das Gegendreieck A0;B0;C0

stimmt in den Seiten und Win-
keln mit dem Grunddreieck �uber-
ein.

Desweiteren sind im Bild 3 Scheiteldreiecke AB0C0, BA0C0 und CA0B0 zu
erkennen. Diese haben mit dem Grunddreieck einen Winkel und mit dem Ge-
gendreieck eine Seite gemeinsam.

Die 3 Nebendreiecke ABC0, ACB0 und BCA0 haben mit dem Grunddreieck
eine Seite und mit dem Gegendreieck einen Winkel gemeinsam.

Wir betrachten das sph�arische Dreieck ABC, dessen Seiten a; b; c sich aus
den drei Grundkreisebenen ergeben. Die zugeh�origen Pole werden mit �A; �B; �C
bezeichnet.

Die Gro�kreisverbindungen zwi-
schen den Polen �A, �B, �C lassen
das sogenannte Polardreieck ent-
stehen. Es sind jeweils die Pole
zu benutzen, die dem Grunddrei-
eck am n�achsten stehen (links
von der Pfeilrichtung).
Zwischen den Seiten und Win-
keln des Grunddreiecks und de-
nen des Polardreiecks bestehen
folgende Beziehungen:

� Wird z.B. c in A um (���) gedreht, so wandert �C nach �B um den Winkel
�a. Es gilt: �a = � � � und entsprechend �b = � � �, �c = � � 
.

� Wird andererseits c in �A um � � �� gedreht, wandert C nach B um den
Winkel a. Es gilt a = � � �� und entsprechend b = � � ��; c = � � �
.

Die Seiten eines Polardreiecks sind gleich den Supplementen der Winkel des
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Grunddreiecks. Die Winkel des Polardreiecks sind gleich den Supplementen der
Seiten des Grunddreieckes.

Da jedes sph�arische Dreieck das Polardreieck seines Polardreiecks ist, gilt
der Satz auch umgekehrt.

�Ahnlich wie beim ebenen Dreieck gibt es auch beim sph�arischen Dreieck eine
Reihe von Sonderf�allen, die in der folgenden Tabelle zusammengestellt sind:

Bezeichnung des
sph�arischen Dreiecks

Seiten Winkel

1. gleichschenkliges Dreieck a = b; c � = �; 

2. gleichseitiges Dreieck a = b = c � = � = 

3. rechtwinkliges Dreieck a, b, c �; �; 
 = �=2
4. rechtseitiges Dreieck a, b, c = �=2 �; �; 

5. rechtwinklig-gleichschenkliges

Dreieck
a = b; c � = �; 
 = �=2

6. rechtseitig-gleichschenkliges
Dreieck

a = b; c = �=2 � = �; 


7. doppelrechtwinklig-
gleichschenkliges oder
doppelrechtseitig-
gleichschenkliges Dreieck

a, b = c = �=2 �; � = 
 = �=2

8. rechtwinklig-gleichseitiges
oder rechtseitig-gleich-
seitiges Dreieck (Kugeloktant)

a = b = c = �=2 � = � = 
 = �=2

Bemerkenswert in dieser Tabelle sind die F�alle 7 und 8. Hier ist zu sehen,
da� die Winkelsumme im sph�arischen Dreieck gr�o�er als � werden kann.

Bisher sind nur sph�arische Dreiecke betrachtet worden, deren Seiten und
Winkel� 180Æ waren. Das soll auch im folgenden so sein. Solche Dreiecke werden
als Eulersche Dreiecke bezeichnet.

2.3 Grundformeln zur Berechnung sph�arischer Dreiecke

Von O aus werden 3 Strahlen gezogen, die die Winkel a, b, c einschlie�en.
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Legt man ebenfalls um O eine
Kugel mit dem Radius 1, so ent-
steht ein Dreikant, welches an
der Kugelober
�ache das sph�ari-
sche Dreieck ABC aufspannt.
Nach Erg�anzung des Dreikan-
tes durch einige Hilfslinien kann
leicht der sp�arische Sinussatz ge-
funden werden.

Vom Punkt C wird das Lot auf die Ebene OAB bis Z gef�allt. Ebenfalls von
C werden die Lote auf die Kanten OA bis P und OB bis Q gef�allt. Schlie�lich
wird Z mit P und Q verbunden.

Es gilt:

OQ = cos a; CQ = sin a; OP = cos b; CP = sin b;

im Dreieck CPZ gilt

sin� =
CZ

CP
=

CZ

sin b
; daraus CZ = sin� sin b;

im Dreieck CQZ gilt:

sin� =
CZ

CQ
=

CZ

sin a
; daraus CZ = sin� sin a:

Nach Gleichsetzen der beiden Ausdr�ucke f�ur CZ wird der Sinussatz der
sph�arischen Trigonometrie erhalten:

sin�

sin a
=

sin�

sin b
(FormelsammlungC:1:):

Die weiteren Formen werden durch zyklische Vertauschung erhalten.
F�ur nachfolgende Betrachtungen kann au�erdem am Dreikant abgelesen wer-

den:
im Dreieck PCZ gilt:

cos� =
PZ

PC
=

PZ

sin b
;

PZ = cos� sin b;

im Dreieck QCZ gilt:

cos� =
QZ

QC
=

QZ

sin a
;

QZ = cos� sin a:
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Nach Abwicklung des Dreikantes
in die Ebene und Erg�anzung durch
weitere Hilfslinien PF, QF0, ZG
und ZG0 lassen sich weitere Bezie-
hungen herstellen:

OQ = OF + FQ = OF+GZ;

OQ = cos a;

OF = cos b cos c (Dreieck OFP);

GZ = PZ � sin c = cos� sin b sin c

(Dreieck GZP);

Also:

cos a = cos b cos c+sin b sin c cos�;

ebenso

OP = OF0 +PF0 = OF0 +G0Z;

cos b = cos a cos c + sin a sin c cos�:

Diese Ergebnisse sind 2 Formen des sph�arischen Seitenkosinussatzes (Formelsamm-
lung C.2.). Die 3. Gleichung wird durch zyklische Vertauschung erhalten.

Desweiteren kann aus der Figur abgelesen werden

GF = ZQ = PF� PG;

sin a cos� = cos b sin c� sin b cos c cos�:

Diese Gleichung ist eine Form der F�unfst�uckebeziehungen oder des Sinus - Ko-
sinussatzes. Weitere f�unf Formen werden durch zyklische Vertauschung erhalten
(Formelsammlung C.4., erster Teil).

L�ost man eine F�unfst�uckebeziehung nach dem cos-Produkt auf, so erh�alt
man eine Form des Kotangentensatzes:

cos c cos� =
cos b sin c

sin b
� sin a cos�

sin b
:

Mit
sin a

sin b
=

sin�

sin�

folgt:

cos c cos� = cot b sin c� sin� cot� (Formelsammlung C:5:):
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Der Kotangentensatz stellt eine Beziehung zwischen vier aufeinanderfolgen-
den St�ucken im sph�arischen Dreieck her.

Weitere Grundformeln zur Berechnung sph�arischer Dreiecke werden durch
Anwendung bisher bekannter Formeln auf das Polardreieck erhalten.

Die Anwendung des Seitenkosinussatzes auf das Polardreieck liefert den Win-
kelkosinussatz:

cos �a = cos �b cos�c + sin �b sin�c cos ��;

cos(� � �) = cos(� � �) cos(� � 
) + sin(� � �) sin(� � 
) cos(� � a);

� cos� = cos� cos 
 � sin� sin 
 cos a;

cos� = � cos� cos 
 + sin� sin 
 cos a

(Formelsammlung C.3.).
Der Winkelkosinussatz ist der polare Seitenkosinussatz. Die Anwendung der

F�unfst�uckebeziehungen auf das Polardreieck liefert 6 weitere Formen (Formelsamm-
lung C.4., zweiter Teil).

Sinussatz und Kotangentensatz sind zu sich selbst polar, sie liefern keine
neuen Formeln bei Anwendung auf das Polardreieck.

2.4 Abgeleitete Formeln zur Berechnung sph�arischer Drei-

ecke

Die abgeleiteten Formeln waren fr�uher sehr zweckm�a�ig bei logarithmischen
Rechnungen, da hier statt Summen und Di�erenzen von Winkelfunktionen nur
Produkte auftreten. Aber auch gegenw�artig werden die abgeleiteten Formeln
noch vorteilhaft benutzt.

Ausgehend vom Seitenkosinussatz

cos a = cos b cos c + sin b sin c cos�;

cos� =
cos a� cos b cos c

sin b sin c
;

wird auf beiden Seiten +1 addiert

1 + cos� =
cos a� cos b cos c

sin b sin c
+

sin b sin c

sin b sin c
;

1 + cos� =
cos a� (cos b cos c� sin b sin c)

sin b sin c
=

cos a� cos(b + c)

sin b sin c
:

Unter Anwendung der Verwandlungsformel (Formelsammlung A.2.)

cos x� cos y = �2 sin x + y

2
sin

x� y

2

auf den Z�ahler der rechten Seite (mit x = a; y = b + c) wird erhalten:

1 + cos� =
�2 sin a + b + c

2 sin a� b� c
2

sin b sin c
=

2 sin a + b + c
2 sin b + c� a

2
sin b sin c

;
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da

sin
b + c� a

2
= � sin

a� b� c

2
:

Mit
1 + cos� = 2 cos2

�

2
(FormelsammlungA:1:)

und

s =
(a + b + c)

2

ergibt sich:

2 cos2
�

2
= 2

sin s sin(s� a)

sin b sin c
;

cos
�

2
= �

r
sin s sin(s� a)

sin b sin c
:

Diese Formel wird als Halbwinkelformel bezeichnet. Werden beide Seiten der
Ausgangsgleichung von 1 subtrahiert, wird ein Ausdruck f�ur sin�=2 erhalten.
Ausgehend vom Winkelkosinussatz werden Halbseitenformeln abgeleitet.

Halbwinkel- und Halbseitenformeln sind unter dem Begri� "Halbst�ucksrela-
tionen" zusammengefa�t (Formelsammlung C.6.).

Die Tangentenformeln (Formelsammlung C.7.) gehen direkt aus den Halb-
st�ucksrelationen hervor :

tan
�

2
=

sin �
2

cos �2
:

Die Delambreschen Formelpaare (Formelsammlung C.8.) werden erhalten durch
Einsetzen der Halbst�ucksrelationen in die Additionstheoreme, z.B.:

cos(
�+ �

2
) = cos(

�

2
+

�

2
) = cos

�

2
cos

�

2
� sin

�

2
sin

�

2
:

Durch Division zweier Delambreschen Formeln ergeben sich die Neperschen Ana-
logien (Nepersche Tangentenformeln) (Formelsammlung C.9.).

Somit stehen zur Au
�osung des sph�arischen Dreiecks bisher 69 Formeln zur
Verf�ugung.

2.5 Berechnung allgemeiner und spezieller sph�arischer Drei-

ecke

2.5.1 Die sechs Grundaufgaben zur Berechnung allgemeiner sph�ari-

scher Dreiecke

Wenn in einem allgemeinen sph�arischen Dreieck drei St�ucke gegeben sind, ist
seine Berechnung m�oglich.

Sechs Grundaufgaben mit den im folgenden jeweils gegebenen drei St�ucken
sind zu unterscheiden:
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1. drei Seiten (a, b, c);

2. drei Winkel (�; �; 
);

3. zwei Seiten und der von ihnen eingeschlosseneWinkel (a; b; 
; b; c; �; c; a; �);

4. eine Seite und die beiden anliegenden Winkel (a; �; 
; b; 
; �; c; �; �);

5. zwei Seiten und der der einen gegen�uberliegende Winkel
(a; b; �; b; c; �; c; a; 
) oder (a; b; �; b; c; 
; c; a; �);

6. zwei Winkel und die dem einen gegen�uberliegende Seite
(�; �; a; �; 
; b; 
; �; c) oder (�; �; b; �; 
; c; 
; �; a).

Jede dieser sechs Grundaufgaben kann man mit dem System der Grundfor-
meln der sph�arischen Trigonometrie (Abschnitt 2.3.) oder mit dem System der
abgeleiteten Formeln (Abschnitt 2.4.) bzw. unter Verwendung von Formeln aus
beiden Systemen l�osen. Eine Zusammenstellung von L�osungsvorschl�agen f�ur die
unter 1. bis 6. jeweils an erster Stelle genannte Kombination von gegebenen drei
St�ucken ist in der Formelsammlung unter C.10. gegeben. Besondere Beachtung
verdienen hier die F�alle 5 und 6. In beiden F�allen mu� immer zuerst mit dem Si-
nussatz gerechnet werden. Der Sinussatz liefert aber im Bereich von 0 bis � zwei
L�osungen, so da� eine zweideutige L�osung f�ur das sph�arische Dreieck vorliegen
kann.

In nebenstehendem Fall 5 sind a,
b und � gegeben. Die M�oglich-
keit der Zweideutigkeit ist ge-
zeigt.
Nur eine L�osung wird es ge-
ben, wenn a > b. Die Entschei-
dung �uber den richtigen Winkel
� kommt erst in der weiteren
Rechnung.

In allen anderen F�allen sollte man die Rechnungen mit dem Sinussatz ver-
meiden, da andere trigonometrische Funktionen (cos; tan) zur Verf�ugung stehen,
die sich mittels des Vorzeichens eindeutig den Quadranten zuordnen lassen.

Die fehlenden Ausdr�ucke in einigen Formeln unter C.10. sollten selbst�andig
erg�anzt werden.
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2.5.2 Rechtwinklige und rechtseitige sph�arische Dreiecke

Rechtwinklige sph�arische Drei-
ecke haben mindestens einen
rechten Winkel. Ist 
 = 90Æ, so
sind a und b die Katheten, und c
ist die Hypothenuse.

Da die trigonometrischen Funktionen f�ur den Winkel 90Æ die speziellen Funk-
tionswerte sin 90Æ = 1; cos 90Æ = 0 besitzen gilt:

� Sinussatz: sin�

sin 

=

sin a

sin c
:

Mit sin 
 = 1 folgt:

sin� =
sin a

sin c
:

� Seitenkosinussatz: cos c = cos a cos b + sin a sin b cos 
:
Mit cos 
 = 0 folgt:

cos c = cos a cosb:

� Kotangentensatz: cos b cos� = sin b cot c� sin� cot 
:
Mit cot 
 = 0 folgt:

cos� =
tanb

tan c
oder

cos b cos 
 = sin b cot a� sin 
 cot�;

mit cos 
 = 0 und sin 
 = 1 folgt:

tan� =
tana

sin b
;

usw.

Die Verallgemeinerung der Ergebnisse kann in der Neperschen Regel zusammen-
gefa�t werden:

Die St�ucke eines rechtwinkli-
gen Dreieckes werden fortlaufend
gleichm�a�ig auf einen Kreis (Ne-
perscher Ring) geschrieben. Der
rechte Winkel wird dabei ausge-
lassen und die Katheten durch
die Komplemente ersetzt.
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Jetzt gilt die Regel: Der Kosinus eines St�uckes im Neperschen Ring ist gleich
dem Produkt der Kotangens der beiden anliegenden St�ucke oder gleich dem Pro-
dukt der Sinus der beiden nichtanliegenden St�ucke (Formelsammmlung C.11.).

Folgende Beziehungen sind im Fall (
 = 90Æ) ablesbar:

sin a = sin� sin c = tanb cot�;

sin b = sin� sin c = tan a cot�;

cos� = sin� cos a = tan b cot c;

cos c = cos a cos b = cot� cot�;

cos� = sin� cos b = tan a cot c:

Sind beispielsweise � und c gegeben, und es besteht die Aufgabe, �, a und
b jeweils nur mit den gegebenen St�ucken zu berechnen, dann sind die folgenden
Beziehungen zu benutzen:

cos c = cot� cot� daraus cot� = cos c tan�;

cos� = tan a cot c daraus tan a = cos� tan c

und
sin b = sin� sin c:

Diese Nepersche Regel gilt auch
f�ur das rechtseitige Dreieck, nur
wird hier auf dem Neperschen
Ring die rechte Seite ausgelassen
und zus�atzlich der der rechten
Seite gegen�uberliegende Winkel
durch den Supplementwinkel er-
setzt (Formelsammlung C.11).

2.6 Mehrdeutige L�osungen bei der Berechnung sph�ari-

scher Dreiecke

In den F�allen 5 und 6 zur Berechnung allgemeiner sph�arischer Dreiecke k�onnen
sich Mehrdeutigkeiten ergeben. Es sollen deshalb hier einige Regeln angegeben
werden, mit deren Hilfe auch bei Rechnung mit dem Sinussatz richtige L�osungen
gefunden werden k�onnen.

In Abschnitt 2.2. wurde schon gezeigt, da� die Winkelsumme im sph�arischen
Dreieck gr�o�er als 180Æ werden kann. Im folgenden wird gezeigt, da� die Win-
kelsumme im sph�arischen Dreieck immer gr�o�er als 180Æ ist.

Im Winkelkosinussatz

cos 
 = � cos� cos� + sin� sin� cos c
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wird gesetzt
� = 180Æ � Æ;

dann gilt:
cos 
 = cos Æ cos� + sin Æ sin� cos c

(cos c kann Werte zwischen �1 und +1 annehmen).
Setzt man cos c = +1, also c = 0, dann wird die rechte Seite gewi� zu gro�,

und es gilt:

cos 
 < cos Æ cos� + sin Æ sin�;

cos 
 < cos(Æ � �);


 > Æ � �;


 > 180Æ � �� �;

also
�+ � + 
 > 180Æ:

Der �Uberschu� der Winkelsumme im sph�arischen Dreieck wird als der sph�ari-
sche Exze� " bezeichnet. Im folgenden Abschnitt wird dazu mehr gesagt. Oftmals
hilft diese Winkelsummenbedingung, Mehrdeutigkeiten zu beseitigen.

Ohne weitere Beweise sollen noch einige Regeln angegeben werden, mit denen
L�osungen beurteilt werden k�onnen:

� Die Summe zweier Winkel im sph�arischen Dreieck ist kleiner als der um
� vergr�o�erte dritte Winkel (�+ � < � + 
).

� Jede Seite im sph�arischen Dreieck ist gr�o�er als die Di�erenz der beiden
anderen (a > b� c).

� Jede Summe zweier Seiten im sph�arischen Dreieck ist gr�o�er als die dritte
(a + b > c).

� Der Umfang eines sph�arischen Dreieckes ist kleiner als 360Æ

(360Æ > a + b + c):

� Im sph�arischen Dreieck liegt dem gr�o�eren von zwei Winkeln die gr�o�ere
Seite gegen�uber. Umgekehrt liegt der gr�o�eren Seite der gr�o�ere Winkel
gegen�uber (wenn b < a dann � < �).

Eine Erweiterung dieser Aussage f�uhrt (ohne Ableitung) zur Halbsummen-
regel:

� Die halbe Summe zweier Winkel im sph�arischen Dreieck und die halbe
Summe der diesen Winkeln gegen�uberliegenden Seiten ist jeweils entweder
ein stumpfer, ein rechter oder ein spitzer Winkel.
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Es sind bei der L�osung der Grundaufgaben 5 und 6 jeweils 2 F�alle zu unter-
scheiden.

Grundaufgabe 5.
1. Fall

a + b

2
>

�

2
) �+ �

2
>

�

2
;

� <
�

2
) � >

�

2
(geometrisch eindeutig);

� >
�

2
) � <

�

2
oder >

�

2
(geometrisch zweideutig):

2. Fall

a + b

2
<

�

2
) �+ �

2
<

�

2
;

� <
�

2
) � <

�

2
oder >

�

2
(geometrisch zweideutig);

� >
�

2
) � <

�

2
(geometrisch eindeutig):

Entsprechendes gilt f�ur die Grundaufgabe 6, wobei die Seiten durch die Win-
kel und die Winkel durch die Seiten zu ersetzen sind.

2.7 Der sph�arische Exze� und die Fl�ache des sph�arischen

Dreiecks

Im vorigen Abschnitt wurde der sph�arische Exze� " als �Uberschu� der Winkel-
summe �uber 180Æ de�niert.

Da in Eulerschen Dreiecken die Winkelsumme maximal 3� betragen darf,
gilt:

"max = 2�:

Ein solches Dreieck ist zu einer Halbkugel mit der Fl�ache I = 2�R2 (bzw.
I = 2� f�ur die Einheitskugel) entartet. Da die drei Winkel gestreckt sind, ver-
schwinden die Ecken. O�ensichtlich ist mit dem maximalen Exze� auch die ma-
ximal m�ogliche Fl�ache eines sph�arischen Dreieckes �uberhaupt verbunden. Ein
anderes sph�arisches Dreieck, dessen Ober
�ache

I =
1

2
�R2

betr�agt (das zugeh�orige Dreikant k�onnte der Kugeloktant sein), besitzt die Win-
kel

� = � = 
 =
�

2
:

Der sph�arische Exze� ist in diesem Fall

" =
�

2
:
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Aus dem Vergleich der Fl�achen und der Exzesse dieser beiden Dreiecke ist
ersichtlich, da� beide Gr�o�en miteinander zusammenh�angen.

Im folgenden soll dieser Zusammenhang untersucht werden.
Die Seiten des sph�arischen Dreiecks ABC wurden zu vollen Gro�kreisen

erg�anzt.

Jetzt zerf�allt die Ober
�ache der
Halbkugel in 4 sph�arische Drei-
ecke, deren Fl�achen mit Fi be-
zeichnet werden

O

2
= F1 + F2 + F3 + F4;

mit
F1 = ABC;

F2 = AB0C0;

F3 = AB0C;

F4 = ABC0:

Je zwei der genannten sph�arischen Dreiecke bilden zusammen ein sph�arisches
Zweieck, welches jeweils das Grunddreieck ABC enth�alt:

FAA0 = F1 + F2 =
O

360Æ
� �Æ;

FBB0 = F1 + F3 =
O

360Æ
� �Æ;

FCC0 = F1 + F4 =
O

360Æ
� 
Æ:

Die Summation dieser drei Gleichungen ergibt:

3F1 + F2 + F3 + F4 =
O(�+ � + 
)

360Æ

und mit F1 + F2 + F3 + F4 = O=2 folgt:

2F1 +
O

2
=

O(�+ � + 
)

360Æ
;

720 � F1 = O(�+ � + 
)� 180Æ �O;

I =
O(�+ � + 
 � 180Æ)

720
=

O � "
720

; (F1 = I):

Die Proportionalit�atskonstante zwischen dem Fl�acheninhalt I eines sph�ari-
schen Dreiecks und seinem Exze� ist der 720te Teil der Kugelober
�ache O.
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Mit O = 4�R2 wird erhalten

I =
4�R2 � "

4�
= R2 � "

und bei R = 1 folgt

I = arc " (Vgl: Formelsammlung C:12:)

Hier sind auch weitere Formeln zur Berechnung von " unter Einbeziehung der
Seiten des sph�arischen Dreieckes angegeben.

2.8 Di�erentialformeln f�ur das sph�arische Dreieck

Bei den Anwendungen der sph�arischen Trigonometrie ergeben sich oft Situa-
tionen, in denen zu berechnen ist, wie sich kleine �Anderungen oder Fehler der
gegebenen St�ucke auf die trigonometrisch berechneten Gr�o�en auswirken.

Nat�urlich kann man die gesuchten St�ucke mit ver�anderten Ausgangswerten
noch einmal nach den gleichen Formeln wie bei der ersten Rechnung bestimmen.
Einfacher gestaltet sich die Rechnung aber unter Verwendung einer Di�erential-
formel.

Die Herleitung einer Di�erentialformel (ohne weitere mathematische Be-
trachtungen) besteht in der partiellen Di�erentiation der Ausgangsgleichungen
nach allen Ver�anderlichen und Summation der mit den Ver�anderungsgr�o�en �
multiplizierten Di�erentiale.

Ableitung der Di�erentialformel f�ur den Kosinussatz

cos a� cos b cos c� sin b sin c cos� = 0;

es mu� gelten:

F(a; b; c; �) = 0 = F(a +�a; b +�b; c + �c; �+��):

Bildung der partiellen Di�erentialquotienten

ÆF

Æa
= � sin a;

ÆF

Æb
= + sin b cos c� cos b sin c cos�;

ÆF

Æc
= cos b sin c� sin b cos c cos�;

ÆF

Æ�
= sin b sin c sin�;

und mit
ÆF

Æa
��a +

ÆF

Æb
��b+

ÆF

Æc
��c +

ÆF

Æ�
��� = 0

wird erhalten:

� sin a�a + (sin b cos c� cos b sin c cos�)�b

+ (cos b sin c� sin b cos c cos�)�c

+ sin b sin c sin��� = 0:
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Mit den F�unfst�uckebeziehungen

sin b cos c� cos b sin c cos� = sin a cos 
;

cos b sin c� sin b cos c cos� = sin a cos�;

und dem Sinussatz
sin b sin� = sin a sin�;

und abschlie�ender Division der Gesamtgleichung durch sin a wird die endg�ultige
Di�erentialformel f�ur den Seitenkosinussatz erhalten:

��a+ cos 
�b + cos��c + sin c sin��� = 0:

Dieser Ausdruck kann nach einer beliebigen gesuchten Ver�anderung � auf-
gel�ost werden.

Die Di�erentialformel f�ur den Sinussatz (ohne Herleitung) lautet:

cot a�a + cot��� � cot b�b� cot��� = 0:

3 Anwendungen der sph�arischen Trigonometrie

3.1 Berechnungen auf der Erdkugel

3.1.1 Sph�arische Koordinaten eines Punktes auf der Erdober
�ache

F�ur die vorliegenden Betrachtungen wird die Erde als Kugel angesehen
(R = 6371km).

Die sph�arischen Koordinaten auf der Erdkugel werden als geographische Ko-
ordinaten bezeichnet.

Die Grundebene dieses Koordinatensystems ist der �Aquator (Gro�kreis).
Alle durch die Pole des Grundkreises (Nord- und S�udpol) laufenden und

senkrecht auf dem �Aquator stehenden Gro�kreise hei�en Meridiane. Der Schnitt-
punkt des Meridians von Greenwich mit der Grundebene ist nach internationaler
�Ubereinkunft der Nullpunkt des Koordinatensystems.

Alle zum �Aquator parallelen Kreise in Richtung der Pole (Kleinkreise) wer-
den als Breiten- oder Parallelkreise bezeichnet.

Die sph�arischen Koordinaten eines Ober
�achenpunktes sind die geographi-
schen Koordinaten L�ange � und Breite '. Die geographische L�ange � eines Ortes
ist der Winkel zwischen der Meridianebene von Greenwich und der Ortsmeri-
dianebene.
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Dieser Winkel entspricht dem
Gro�kreisbogen, den die beiden
Meridiane auf dem �Aquator be-
grenzen. Die geographische Brei-
te ' eines Ortes ist der sph�ari-
sche Abstand des Ortes vom
�Aquator, gemessen im Meridian.
Die geographische L�ange � wird
vom Greenwicher Meridian von
0Æ bis 180Æ in �ostlicher bzw. west-
licher Richtung gez�ahlt. Die geo-
graphische Breite ' z�ahlt man
vom �Aquator von 0Æ bis 90Æ je-
weils als n�ordliche oder s�udliche
Breite.

Sind die Koordinaten (�; ') von zwei Punkten auf der Erdober
�ache gege-
ben, l�a�t sich mit einem Erdpol ein sph�arisches Dreieck bilden. Das Dreieck
enth�alt die beiden Seiten (90Æ � '1) und (90Æ � '2) als Teile der Meridiane
und den Gro�kreisbogen zwischen P1 und P2. Der Winkel am Pol entspricht
der L�angendi�erenz �2 � �1. Die Winkel in P1 und P2 sind die sogenannten
Kurswinkel oder deren Supplemente. Kurswinkel werden wie Azimute in der
Geod�asie von Nord �uber Ost, S�ud, West gez�ahlt.

Sind mit '1; '2; �1 und �2 drei St�ucke (2 Seiten und der eingeschlossene
Winkel: Grundaufgabe 3) im Dreieck gegeben, so lassen sich die fehlenden St�ucke
problemlos berechnen. Die Gro�kreisentfernung s wird erhalten

cos s = cos(90Æ � '1) cos(90
Æ � '2) + sin(90Æ � '1) sin(90

Æ � '2) cos(�2 � �1);

cos s = sin'1 sin'2 + cos'1 cos'2 cos��;

(P1 und P2 haben hier beide �ostliche L�ange und n�ordliche Breite.)

3.1.2 Der Satz von Legendre - kleine sph�arische Dreiecke

Kleine sph�arische Dreiecke, deren Seiten < 1Æ sind, werden als Legendresche
Dreiecke bezeichnet. Ein Dreieck in der Ebene, dessen Seiten genauso lang sind
wie die Seiten des kleinen Kugeldreiecks bezeichnet man als das dazugeh�orige
Plandreieck.

Nach Legendre l�a�t sich ein kleines sph�arisches Dreieck als ebenes Dreieck
berechnen, wenn die Seiten im metrischen Ma� eingef�uhrt und die sph�arischen
Winkel um je "=3 vermindert werden.

Es soll sein
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� sph�arisches Dreieck: Winkel: �; �; 
; Seiten: a, b, c (in Grad bzw. Bo-
genma�);

� Plandreieck: Winkel: �0; �0; 
0; Seiten: a0; b0; c0, im linearen Ma�, z.B. km.

Behauptung:

�0 = �� "

3
; �0 = � � "

3
; 
0 = 
 � "

3
:

Beweis:

sin 


sin c
=

sin�

sin a
;

sin 
 sin a = sin� sin c;

sin 
 sin
a0

R
= sin� sin

c0

R

mit a = a0=R; c = c0=R (a und c im Bogenma�, a0; c0; R in km).
Unter Verwendung der Sinusreihe sin x = x� x3=3! kann bei Abbruch nach

dem zweiten Glied geschrieben werden:

sin 
 (
a0

R
� a03

6R3
) = sin� (

c0

R
� c03

6R3
):

Nach Multiplikation mit R und Ausklammern von a0 bzw. c0 wird erhalten

a0 (sin 
 � a02 sin 


6R2
) = c0 (sin�� c02 sin�

6R2
):

Desweiteren kann gesetzt
werden:

a0 sin 
0 = hb0 = c0 sin�0;

a0 = b0 cos 
0 + c0 cos�0

und

c0 = a0 cos�0 + b0 cos�0:

Diese Beziehungen sind leicht aus dem ebenen Dreieck mit den Seiten a0; b0; c0

und den Winkeln �0; �0; 
0 ablesbar.
Jetzt gilt, wenn in den Gliedern 2. Ordnung sin 
 = sin 
0 und sin� = sin�0

gesetzt wird:

a0 [ sin 
 � hb0

6R2
(b0 cos 
0 + c0 cos�0)] = c0 [sin�� hb0

6R2
(a0 cos�0 + b0 cos�0)]
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und anders geschrieben

a0 (sin 
� hb0b0 cos 


6R2
)� a0c0 hb0 cos�0

6R2
= c0 (sin�� hb0b0 cos�0

6R2
)� a0c0 hb0 cos�0

6R2
;

a0 (sin 
 � hb0b0 cos 
0

6R2
) = c0 (sin�� hb0b0 cos�0

6R2
):

In den Gliedern 2. Ordnung kann geschrieben werden

cos 
0 = cos 
 bzw: cos�0 = cos�:

Au�erdem kann in diesen Gliedern 2. Ordnung die Fl�ache I = (hb0b0)=2 in die
Formel " = I=R2 eingesetzt werden:

" =
h0b b

0

2R2
;

also

a0 (sin 
 � "

3
cos 
) = c0 (sin�� "

3
cos�);

a0 sin(
 � "

3
) = c0 sin(�� "

3
);

da

sin(
 � "

3
) = sin 
 cos

"

3
� cos 
 sin

"

3
= sin 
 � "

3
cos 


mit
cos

"

3
= 1 und sin

"

3
=

"

3
:

Mit der Behauptung,

�0 = �� "

3
und 
0 = 
 � "

3

ergibt sich
a0 sin 
0 = c0 sin�0

als Sinussatz der ebenen Trigonometrie.
Damit ist nachgewiesen, da� die Winkel des Plandreiecks um "=3 kleiner

sind als die Winkel des Legendreschen Dreiecks.

3.1.3 Die Loxodrome

Die Loxodrome ist eine Kurve, die alle Meridiane unter gleichem Winkel schnei-
det. Auf ihr kann man unter konstantem Kurswinkel von P1 nach P2 gelangen.
Bei einer Fahrt auf der Orthodrome �andert sich dagegen der Kurswinkel laufend.
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Praktisch ist es �ublich, die orthodromische Distanz in mehrere Loxodro-
menst�ucke aufzuteilen.

Sonderf�alle der Loxodromen sind die Meridiane und der �Aquator (diese sind
gleichzeitig Orthodromen) und die Breitenkreise (Kurswinkel 90Æ).

Betrachtet wird ein di�erentielles St�uck d�l zwischen zwei Punkten A und B
auf einer Loxodromen. A hat die Koordinaten ' und � und B die Koordinaten
'+�' und �+��.

Ein Parallelkreis durch A und
ein Meridian durch B schnei-
den sich in C. Dieses Dreieck ist
kein sph�arisches Dreieck, weil es
nur einen Gro�kreisbogen (BC)
enth�alt.

Wenn �' und �� gen�ugend klein gehalten werden, kann es als ebenes Drei-
eck angesehen werden und es gilt:

tan� =
Parallelkreisbogenst�uck

Meridianbogenst�uck
=

Rcos' d�

Rd'

und weiter

d� =
tan� d'

cos'
;

und nach Integration

�2 � �1 = tan� [ln tan(
'2
2

+
�

4
)� ln tan(

'1
2

+
�

4
)];

�� = tan� (q2 � q1) = tan��q

(q = isometrische Breite; q2 = ln tan(
'2
2

+
�

4
); q1 = ln tan(

'1
2

+
�

4
)):

Der Kurswinkel � der Loxodromen ist dann:

tan� =
��

�q
(�� im Bogenma�):

Au�erdem kann an der Figur abgelesen werden:

cos� =
Rd'

d�l
;

d�l =
Rd'

cos�
;
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und nach Integration wird die L�ange �l der Loxodromen erhalten:

�l =
R('2 � '1)

cos�
('2 � '1 im Bogenma�):

Diese Formel gibt f�ur den Parallelkreis einen unbestimmten Ausdruck, des-
halb gilt hier:

�l = �p = R cos'��:

3.2 Anwendungen aus der sph�arischen Astronomie

Wie auf der Erdkugel, so werden auch an der Himmelskugel Punkte durch zwei
Winkelangaben eindeutig festgelegt. Die Himmelskugel ist eine gedachte Kugel
mit dem Radius R = 1, deren Mittelpunkt im Beobachtungsort B auf der Erd-
kugel oder genauer im Erdmittelpunkt O liegt. Auf diese Himmelskugel werden
alle Gestirne von O aus projiziert.

3.2.1 Das Horizontalkoordinatensystem

Das einfachste sph�arische Koordinatensystem der Himmelskugel hat als Grund-
kreis den Horizont, der als Tangentialebene an die Erdkugel im Beobachtungsort
B zu denken ist.

Die Tangentialebene steht in B
senkrecht zur Lotrichtung und
schneidet die Himmelskugel in ei-
nem Gro�kreis, dem scheinbaren
Horizont. Der wahre Horizont
entsteht durch Parallelverschie-
bung der Tangentialebene in den
Erdmittelpunkt O. Die Richtun-
gen nach Fixsternen fallen von
B und von O aus wegen ihrer
gro�en Entfernungen zusammen.

Lediglich f�ur die K�orper unseres Sonnensystems ist die t�agliche Parallaxe,
wie man den Richtungsunterschied nach einem Himmelsk�orper von B und O aus
nennt, me�bar.

Es bedeuten

� Z: Zenit

� Z': Nadir

n
Pole zum Grundkreis
des wahren Horizontes.
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� Vertikalkreis
oder Vertikal:

Gro�kreis von Z durch das
Gestirn nach Z', steht senkrecht
auf dem Horizont.

� Meridian:

Vertikalkreis durch die
Himmelspole und Z, schneidet
den
Horizont im Nordpunkt N und
im S�udpunkt S.

Als Himmelspole seien hier die Schnittpunkte der verl�angerten Rotations-
achse der Erde mit der Himmelskugel angenommen.

I. Vertikal = Vertikal in Ost- West-Richtung.

Als Gestirnskoordinaten werden de�niert:

� a = Azimut, gemessen im Horizont als Bogen von Nord (N) �uber Ost,
S�ud (S), West von 0Æ bis 360Æ

oder als Winkel in Z im gleichen Sinn vom Nordmeridian bis zum Ge-
stirnsvertikal;

� z = Zenitdistanz, gemessen als Bogen vom Zenit im Gestirnsvertikal bis
zum Gestirn von 0Æ bis 180Æ

oder als Winkel im Kugelmittelpunkt zwischen der Zenitrichtung und der
Richtung zum Gestirn;

� h = H�ohenwinkel = 90Æ � z.

Alle Punkte mit gleicher Zenitdistanz z bzw. gleichem H�ohenwinkel h liegen auf
einem Almukantarat oder H�ohenkreis.

Das Horizontsystem hat den wesentlichen Vorteil, da� seine Koordinaten
Azimut und Zenitdistanz mit Instrumenten gemessen werden k�onnen, deren
Hauptachse durch geeignete Me�elemente (Libelle, mechanische Neigungskom-
pensation) unmittelbar an die Lotrichtung angeschlossen werden k�onnen.

W�ahrend das Azimut nur relativ erhalten wird, da der Nordpunkt in der
Natur nicht markiert ist, ist die Messung der Zenitdistanz bzw. des H�ohenwin-
kels wegen des direkten Anschlusses an die Lotrichtung absolut m�oglich. Die
erreichbaren Genauigkeiten bei der Messung der Koordinaten des Horizontsy-
stems liegen f�ur eine einzelne Messung mit den genauesten Instrumenten (Pr�azi-
sionstheodolit) bei wenigen Zehntel Bogensekunden.

Der Nachteil des Horizontsystems ist, da� durch die t�agliche Drehung der
Erde bzw. durch die scheinbare t�agliche Drehung der Himmelskugel Azimut und
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Zenitdistanz sich in jedem Augenblick �andern. Das bedeutet, da� alle Messun-
gen dieser Koordinaten nur dann verwertbar sind, wenn zugleich die genauen
Me�zeitpunkte festgehalten werden.

Au�erdem ist bei Angaben von a und z unbedingt anzumerken, f�ur welchen
Erdort ('; �) diese Werte G�ultigkeit haben, da die Lotrichtung als Nullpunkt der
z-Z�ahlung und als De�nition des Meridians f�ur die a- Z�ahlung dient. Andererseits
kann die Messung von a und z zur Bestimmung von ' und � benutzt werden,
wie bald noch gezeigt wird.

3.2.2 Die �Aquatorkoordinatensysteme

Da es eine Aufgabe der sph�arischen Astronomie ist, die Position von Fixsternen
in einem unver�anderlichen Koordinatensystem zu de�nieren, ist es notwendig,
zu einer anderen Grundebene �uberzugehen, gegen�uber der die relative Position
der Sterne nicht von der t�aglichen Drehung der Erde und auch nicht vom Erdort
abh�angt.

Eine solche Grundebene ist diejenige, die senkrecht auf der Rotationsachse
der Erde steht und durch den Erdmittelpunkt geht. Es ist die Ebene des Erd�aqua-
tors, die vergr�o�ert bis zum Schnitt mit der Himmelkugel an dieser den Him-
mels�aquator ausschneidet.

Die Pole des Himmels�aquators sind der Himmelsnordpol P und der Him-
melss�udpol P0.

Um im �Aquatorsystem Koordinaten festzulegen, wird ein Gro�kreis durch
die Pole und das Gestirn gelegt.

Auf diesem sogenannten Stun-

denkreis wird vom �Aquator aus
die Deklination Æ des Ster-
nes von 0 bis 90Æ nach Nor-
den und von 0 bis �90Æ nach
S�uden gez�ahlt. Die zweite Ko-
ordinate, der Stundenwinkel t,
wird als Bogen in der �Aqua-
torebene beginnend vom Schnitt-
punkt des s�udlichen Meridianbo-
gens mit dem Himmels�aquator in
Uhrzeigerrichtung von 0 bis 360Æ

oder von 0 bis 24Æ gez�ahlt. Der
Stundenwinkel t stellt sich am
Pol als Schnittwinkel der Tan-
genten an Meridian und Stun-
denkreis dar.
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Der Stundenwinkel eines Gestirns kann angesehen werden als die Zeit, die
seit der oberen Kulmination (Meridiandurchgang) dieses Gestirns vergangen
ist.

Da die Z�ahlung des Stundenwinkels t vom Meridian des Beobachtungsortes
abh�angt, ist er wegen der t�aglichen Erddrehung proportional zur Zeit ver�ander-
lich, w�ahrend die Deklination Æ von der t�aglichen Erddrehung nicht beein
u�t
wird.

Den Durchgang eines Gestirns durch den S�udmeridian nennt man die obe-
re Kulmination. Die untere Kulmination desselben Gestirns �ndet 12 Stunden
sp�ater beim Durchgang durch den Nordmeridian statt.

Die geographische Breite ' des Beobachtungsortes und die Deklination Æ des
Sternes bestimmen, ob die untere Kulmination �uber oder unter dem Horizont
statt�ndet. Sterne, bei denen die untere Kulmination �uber dem Horizont erfolgt,
werden als Zirkumpolarsterne bezeichnet.

Um auch in der Grundebene eine von der Erddrehung unabh�angige Koor-
dinate zu bekommen, verlegt man den Nullpunkt der Z�ahlung an den Stern-
himmel, und zwar in den Punkt, in dem zu Fr�uhlingsanfang die Sonne steht,
in den Fr�uhlingspunkt � (astronomisches Zeichen f�ur das Sternbild Widder).
Der Fr�uhlingspunkt ist der Schnittpunkt des Himmels�aquators mit der Ebene
der Erdbahn, der sogenannten Ekliptik. Diese neu eingef�uhrte Koordinate wird
vom Fr�uhlingspunkt aus im Gegenuhrzeigersinn von 0h bis 24h gez�ahlt und hei�t
Rektaszension �.

Alle Gestirne mit gleicher Deklination Æ liegen auf einem Parallelkreis, die-
jenigen mit gleichem Stundenwinkel t bzw. mit gleicher Rektaszension � auf
einem Stundenkreis.

Die sph�arischen Gestirnskoordinaten � und Æ sind unabh�angig vom Erdort
und der Zeit (Erddrehung).

Es werden also zwei �Aquatorkoordinatensysteme unterschieden:

� das �aquatoriale System erster Art mit den Koordinaten Stundenwinkel t
und der Deklination Æ;

� das �aquatoriale System zweiter Art mit der Rektaszension � und der De-
klination Æ (auch als siderisches System oder Stellarsystem bezeichnet).
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3.2.3 Das nautische Dreieck

Eine Kombination aus Horizont-
und �Aquatorsystem l�a�t das nau-
tische oder Polardreieck mit den
Ecken P, G, Z entstehen, des-
sen Seiten 90Æ � Æ; 90Æ�' und z
die Winkel t, -a und q einschlie-
�en. Der Winkel q am Gestirn G
wird als parallaktischer Winkel
bezeichnet. Die Seite 90Æ � ' ist
f�ur einen Beobachtungsort kon-
stant; die Seite 90Æ � Æ f�ur einen
Stern. Die �ubrigen St�ucke des
nautischen Dreiecks �andern sich
infolge der t�aglichen Drehung der
Erde.

Es sind zwei F�alle im nautischen Dreieck zu unterscheiden:

� G0 �ostlich vom Meridian;
t > 180Æ, die Zenitdistanz z wird bei der scheinbaren t�aglichen Bewegung
kleiner;

� Gw Gestirn westlich vom Meridian;
t < 180Æ, die Zenitdistanz wird bei der scheinbaren t�aglichen Bewegung
gr�o�er.

Ein Sonderfall des nautischen
Dreieckes tritt ein, wenn das Ge-
stirn kulminiert, also wenn es im
Meridian steht. Dann ist

a = 180Æ; t = 0Æ; q = 0Æ

und es gilt:

z + Æ = ':

In dem hier gezeigten Fall kulminiert das Gestirn zwischen Zenit und �Aqua-
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tor. Ebenso einfache Zusammenh�ange ergeben sich, wenn die Sternbahn zwi-
schen Zenit und Himmelspol verl�auft.

3.2.4 Koordinatentransformation mit Drehmatrix

Sph�arische Koordinaten lassen sich auch leicht durch rechtwinklige Koordinaten
ausdr�ucken.

Dazu wird ein rechtwinkliges
dreiachsiges Koordinatensystem
z.B. in das Horizontsystem ge-
legt. Der Ursprung des Koor-
dinatensystems liegt im Kugel-
mittelpunkt O. Die positive x11-
Achse zeigt in der Horizontebe-
ne in die Westrichtung, die x12-
Achse nach S�uden und die x13-
Achse zum Zenit.

Wird der Kugelradius gleich 1 gesetzt, kann der Vektor x1 durch die Kom-
ponenten x11; x12 und x13 ausgedr�uckt werden:

x1 =

0
@x11
x12
x13

1
A =

0
@� sin a sin z
� cos a sin z

cos z

1
A ;

cos z = x13;

tan a =
x11
x12;

Zeigt im �Aquatorsystem 1. Art die positive x21-Achse in der �Aquatorebene nach
Westen, die x22-Achse nach S�uden und die x23-Achse zum Himmelspol (senk-
recht auf der �Aquatorebene), kann geschrieben werden

x2 =

0
@ x21
x22
x23

1
A =

0
@ sin t cos Æ
cos t cos Æ
sin Æ

1
A ;

sin Æ = x23;

tan t =
x21
x22

:
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Im �Aquatorsystem 2. Art gilt:
x31 - liegt in der �Aquatorebene und zeigt zum Fr�uhlingspunkt;
x32 - steht in der �Aquatorebene senkrecht auf x31;
x33 - zeigt zum Himmelpol (= x23);

x3 =

0
@x31
x32
x33

1
A =

0
@ cos� cos Æ
sin� cos Æ

sin Æ

1
A ;

sin Æ = x33;

cot� =
x31
x32

:

Dreht man das Horizontsystem um die O-W-Achse um den Winkel (90Æ � '),
so geht das Horizontsystem in das �Aquatorsystem 1. Art �uber.

Die Koordinaten a und z lassen
sich mit Hilfe einer Rotations-
oder Drehmatrix als Funktion
von t und Æ darstellen. Der Vek-
tor x1 wird mit der Drehmatrix
D1(') multipiziert, und es wird
der Vektor x2 erhalten:

x2 = D1(')x1

mit

D1(') =

0
@ 1 0 0
0 + sin' +cos'
0 � cos' +sin'

1
A :

Damit gilt:0
@ 1 0 0
0 + sin' +cos'
0 � cos' +sin'

1
A
0
@� sin a sin z
� cos a sin z

cos z

1
A =

0
@ � sin a sin z
� sin' cos a sin z + cos' cos z
+ cos' cos a sin z + sin' cos z

1
A

=

0
@ x21
x22
x23

1
A =

0
@ sin t cos Æ
cos t cos Æ
sin Æ

1
A :

Es lassen sich folgende Gleichungen aufschreiben:

sin t cos Æ = � sin a sin z (Sinussatz);
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cos t cos Æ = cos z cos'� sin z sin' cos a (F�unfst�uckebeziehung);

sin Æ = cos z sin'+ sin z cos' cos a (Seitenkosinussatz):

Diese Zusammenh�ange (t bzw. Æ als Funktionen von a, z und ') lassen sich
auch �nden, wenn man die allgemeinen Formeln der sph�arischen Trigonometrie
auf das nautische Dreieck anwendet.

3.2.5 Einige Bemerkungen zu Zeitsystemen

Da bis vor wenigen Jahrzehnten die b�urgerliche Zeit aus astronomischen Vorg�an-
gen abgeleitet wurde, sollen hier einige wenige De�nitionen zu den bekanntesten
Zeitsystemen gegeben werden.

Man bezeichnet als wahre Sonnenzeit eines Ortes, auch wahre Ortszeit (WOZ)
genannt, diejenige Zeit, die seit der unteren Kulmination der wahren Sonne ver-
gangen ist. Es gilt also

WOZ = t� � 12h;

wobei t� der Stundenwinkel der wahren Sonne ist.
Da die Erde sich nach den Keplerschen Gesetzen auf einer Ellipsenbahn mit

einer Neigung von " = 23; 5Æ gegen die �Aquatorebene um die Sonne bewegt,
l�auft die wahre Sonnenzeit nicht gleichf�ormig ab. F�ur die praktischen Zwecke
der Zeitrechnung wird eine �ktive mittlere Sonne eingef�uhrt, die die Ableitung
einer mittleren (Orts-) Sonnenzeit oder einfach mittleren Ortszeit erlaubt.

Die Di�erenz zwischen wahrer und mittlerer Zeit - als Zeitgleichung bezeich-
net - kann etwas mehr als �15 Minuten betragen.

Beide genannten Zeiten, wie auch die im folgenden behandelte Sternzeit sind
Ortszeiten, da sie vom Meridian des Beobachtungsortes abh�angen.

Die De�nition der Sternzeit SZ ist einfach. Es gilt:

SZ = t�

wobei t� der Stundenwinkel des Fr�uhlingspunktes ist.

Aus dem Bild der �Aquatorsysteme erkennt man, da� die Summe aus Stun-
denwinkel plus Rektaszension eines Sterns zu einem bestimmten Zeitpunkt den
Stundenwinkel des Fr�uhlingspunktes, also die Sternzeit, angibt:

SZ = t + �:

Die durch Radiozeitzeichen bekanntgegebene Zeit wird heute nicht mehr direkt
aus der Erdrotation abgeleitet, da diese au�er den genannten noch weitere Unre-
gelm�a�igkeiten aufweist. Die amtliche Zeiteinheit, die sogenannte Atomsekunde
wird aus atomaren Vorg�angen (1010 Schwingungen zwischen zwei hyperfeinen
Energieniveaus des Caesiumatoms) abgeleitet und f�uhrt zur Atomzeit.

Die durch Radiosignale verbreitete koordinierte Weltzeit UTC (Universal
Time Coordinated) basiert auf der Atomzeit. Diese koordinierte Weltzeit wird,
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wenn n�otig, durch Sekundenspr�unge zur Jahresmitte oder am Jahresende der
mittleren Sonnenzeit Greenwich angen�ahert.

Aus vielen Gr�unden bilden Kugelzweiecke mit einer L�angendi�erenz von 15Æ

sogenannte Zeitzonen, deren Zeiten sich jeweils um ganze Stunden von der Welt-
zeit unterscheiden. Bestimmt wird dieser Unterschied durch den Mittelmeridian
dieser Zweiecke.

Z.B. Mitteleurop�aische Zeit MEZ = UTC +1h. Der 15Æ Meridian �ostlicher
L�ange ist hier der Mittelmeridian. Das Kugelzweieck wird von 7; 5Æ �o.L. und
22; 5Æ �o.L. begrenzt. In kleineren L�andern legt man sich immer nur auf eine
Zeitzone fest.

3.2.6 Auf- und Untergangsberechnungen - Berechnung der D�amme-

rung

Das nautische Dreieck f�ur den
Zeitpunkt des Auf- oder Un-
terganges eines Gestirns ergibt
sich als Sonderfall eines sph�ari-
schen Dreieckes, da die Seite
z den Wert �=2 annimmt. Es
liegt also ein rechtseitiges Drei-
eck vor, in dem f�ur einen gege-
benen Beobachtungsort und f�ur
ein bestimmtes Gestirn die Sei-
ten �=2� ' und �=2� Æ
bekannt sind.

Von Interesse sind nun der Zeitpunkt tAU und das Azimut aAU des Auf- oder
Unterganges eines Gestirns. F�ur tAU ergibt sich nach der Neperschen Regel oder
aus dem Seitenkosinussatz:

cos z = sin' sin Æ + cos' cos Æ cos t:

Mit cos z = 0 folgt:

cos tAU = � tan' tan Æ:

Das Ergebnis kann in allen vier Quadranten liegen, da f�ur das Aufgangsdreieck
und f�ur das Untergangsdreieck analoge Verh�altnisse vorliegen. Die Gr�o�e tAU
kann auch als halber Tagbogen des Gestirns bezeichnet werden, da sie die Zeit
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vom Aufgang bis zur Kulmination bzw. von der Kulmination bis zum Untergang
des Gestirns darstellt.

F�ur das Azimut gilt:

cos aAU =
sin Æ

cos'
:

Ein Gestirn mit Æ = 0Æ wird unter einem Stundenwinkel von t = �6 Stunden
genau im Osten (a = 90Æ) auf- und im Westen (a = 270Æ) untergehen (Sonne zu
Fr�uhlings- bzw. Herbstanfang). Bei der Sonne bezeichnet man die Abweichungen
des Aufgangs- bzw. Untergangsazimut vom Ost-West-Vertikal als Morgen- bzw.
Abendweite.

In Wirklichkeit sind jedoch die Verh�altnisse etwas schwieriger als hier dar-
gestellt. Man sieht einen Stern schon, ehe er �uber dem Horizont erscheint, und
man sieht ihn noch, wenn er schon unter dem Horizont steht. Ursache f�ur diese
Umst�ande ist die atmosph�arische Refraktion, die auf der Brechung des Lichtes
in der Erdatmosph�are beruht. Es mu� f�ur Auf- und Untergangsrechnungen f�ur
die Gestirne der Wert z = 90Æ350 gesetzt werden.

Desweiteren mu� bei Berechnungen mit der Sonne noch deren Radius be-
achtet werden. Die Koordinaten � und Æ haben f�ur den Mittelpunkt der Sonne
G�ultigkeit. Die Sonne geht aber f�ur uns auf oder unter, wenn der obere Rand
erscheint oder verschwindet. Ist dies der Fall, dann ist der Sonnenmittelpunkt
noch oder schon wieder um den Betrag des Radius unter dem Horizont.

Bei einem scheinbaren Sonnenradius von r = 160 sind deshalb alle Auf- und
Untergangsberechnungen mit der Sonne (a und t) mit z = 90Æ350+160 = 90Æ510

auszuf�uhren.
Ist z = 90Æ510, spricht man vom Beginn der D�ammerung, der entsprechende

Stundenwinkel sei t.
Ist z = 96Æ300, spricht man vom Ende der b�urgerlichen D�ammerung, der

Stundenwinkel der Sonne sei tb. Das menschliche Emp�nden besagt, da� es
jetzt dunkel ist. z = 108Æ de�niert das Ende der astronomischen D�ammerung.
Der Stundenwinkel der Sonne sei ta. Jetzt kann mit der Langzeitbelichtung einer
Photoplatte begonnen werden. Es gilt:
Db = tb � t ( Dauer der b�urgerlichen D�ammerung),
Da = ta � t ( Dauer der astronomischen D�ammerung)
mit

cos t =
� sin 510 � sin' sin Æ

cos' cos Æ
;

cos tb =
� sin 6Æ300 � sin' sin Æ

cos' cos Æ
;

cos ta =
� sin 18Æ � sin' sin Æ

cos' cos Æ
:
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3.2.7 Berechnung von Sonnenuhren

Die einzige Uhr, die die wahre Zeit anzeigt, ist die Sonnenuhr. Sonnenuhren wer-
den heute fast ausschlie�lich als Schmuckelemente an H�ausern, in G�arten oder
Parks verwendet. Die Konstruktion, d.h. die Berechnung der Lage des Schatten-
stabes und der Zi�erblatteinteilung l�a�t sich mit den Mitteln der sph�arischen
Trigonometrie durchf�uhren.
Die Einteilung der Sonnenuhren in

a) Horizontaluhren,
b) �Aquatorialuhren,
c) Vertikaluhren
bezieht sich auf die Lage der Zi�erblattebenen im Horizont, parallel zum

�Aquator oder in einer Vertikalebene (Hauswand).

a) Horizontaluhr mit senkrechtem Schattenstab = Gnomon.
Es ist leicht einzusehen, da� gilt:

aS = a� � 180Æ

mit

aS = Azimut des Schattens,
a� = Azimut der Sonne.
a� wird berechnet mit:

cot(�a�) =
cos' tan Æ� � sin' cos t�

sin t�
:

Diese Uhr ist sehr unpraktisch, da die Einteilung des Zi�erblattes im Lauf des
Jahres mit der Sonnendeklination ver�anderlich ist.

Zeigt bei einer Horizontaluhr der
Schattenstab dagegen zum Him-
melspol, gestalten sich die Ver-
h�altnisse bedeutend einfacher. In
dem rechtwinkligen sph�arischen
Dreieck NPS kann nach Neper
geschrieben werden:

tan aS = sin' tan t�:

Der Schatten des Stabes f�allt immer in die jeweilige Stundenkreisebene. Die
Zi�erblatteinteilung ist f�ur jede Jahreszeit g�ultig, da sie unabh�angig von der
Sonnendeklination ist.
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b) �Aquatorialuhr mit zum Pol gerichtetem Schattenstab.
Diese Uhr hat die einfachste Konstruktion.

Die Zi�erblattebene ist meist als
Halbring ausgebildet.
Darauf sind die Stundenmarken
in Abst�anden von 1=24tel des
Ringumfanges gleichm�a�ig ange-
ordnet.

c) Vertikaluhr mit zum Pol gerichtetem Schattenstab.
Die vertikale Sonnenuhr wird an einer Hauswand oder an einer sonstigen verti-
kalen ebenen Fl�ache angebracht.

Im Gegensatz zur Horizontaluhr
gibt es eine unendliche Vielfalt
von M�oglichkeiten f�ur eine Verti-
kaluhr, da die Zi�erblattebene in
beliebigem Azimut stehen kann.
In die Berechnung der Zi�er-
blatteinteilung geht als weiterer
Parameter noch das Azimut a
der Hauswand ein.
� = Winkel zwischen der Senk-
rechten im Befestigungspunkt
des Schattenstabes und der Zif-
ferblatteinteilung f�ur einen be-
stimmten Stundenwinkel.

Die Sonne ist im nebenstehenden Bild vor der Zeichenebene zu denken. Sie
be�ndet sich an der �ostlichen Himmelshalbkugel.

Im sph�arischen Dreieck ZHP wird im Punkt H der Hilfswinkel � eingef�uhrt.
Jetzt lassen sich Sinussatz und F�unfst�uckebeziehungen anwenden:

sin � sin� = � sin t� cos'

und
sin � cos� = cos t� sin a� sin t� cos a sin':
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Durch Division dieser beiden Gleichungen erh�alt man:

tan� =
sin t� cos'

sin t� cos a sin'� cos t� sin a

und damit den gesuchten Winkel �.
F�ur den Fall einer S�uduhr (a = 90Æ, Hauswand steht genau in Ost-West-

Richtung), ergibt sich sehr einfach:

tan�S = � tan t� cos':

Den Berechnungen zu Vertikaluhren mu� immer eine gen�ugend genaue Bestim-
mung des Azimutes der Vertikalebene vorausgehen.
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