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Vorbemerkungen und Literaturempfehlung

Die sphérische Trigonometrie beschéftigt sich mit Berechnungen auf der Ku-
gel und gehoért zu den Disziplinen der elementaren Mathematik. Bedeutung
kommt ihr bei der Ausbildung von Geodéten und Kartographen zu, da diese
Studierenden eine besondere Beziehung zu unserer Erde (hier als Kugel betrach-
tet) und auch zu den Vorgiingen am Himmel haben sollten. Es wird gezeigt, wie
sich mit relativ einfachen Rechnungen viele interessante Probleme auf der Erd-
oberfliche oder an der Himmelskugel kliren lassen. Um das ohnehin schon sehr
gestraffte Manuskript nicht zusétzlich zu belasten, wird an vielen Stellen auf ei-
ne ebenfalls vom Institut zusammengestellte Formelsammlung verwiesen. Durch
praktische Rechnung und Losung angewandter Aufgaben in den Ubungen wird
der gebotene Stoff vertieft und gefestigt. Nachdem die Probleme erkannt und
Losungswege gefunden wurden, sollte man sich auch bemiihen, Sicherheit in der
Zahlenrechnung zu erlangen.

Fiir Interessierte kann folgende Vertiefungsliteratur angegeben werden:

K.-G. Steinert: Sphérische Trigonometrie. Kleine naturwissenschaftliche Biblio-
thek. Reihe Mathematik, Band 8, Teubner Verlagsgesellschaft, Leipzig, 1977

R. Sigl: Ebene und sphirische Trigonometrie. Akademische Verlagsgesellschaft
Frankfurt am Main,1969 und Wichmann Verlag, Karlsruhe, 1977

H. Dérrie: Ebene und sphérische Trigonometrie. Verlag von R. Oldenburg, Miinchen,
1950

In vielen Lehrbiichern der Mathematik gibt es kurze Darstellungen der sphiri-
schen Trigonometrie, ebenso in vielfiltigen Formelsammlungen.

1 Wiederholungen und Erginzungen aus der
Goniometrie und der ebenen Trigonometrie

1.1 Winkelmafle
1.1.1 Das Gradmaf}

Wird ein Kreis durch Radien in 360 gleiche Teile geteilt, so ist der Richtungs-
unterschied zweier benachbarter Radien die Mafleinheit 1 Grad = 1°. Fiir die
Uunterteilung dieser Einheit gilt 1° = 60’ = 3600".

Ein rechter Winkel (1/4 Vollkreis) = 90°. Auch die dezimale Schreibweise
ist moglich, z.B. 10°15'27" = 10, 2575°.

Auf der Erdoberfliche wird definiert: 1’ = 1sm (Seemeile). Bei Annahme
eines mittleren Erdradius von 6371 km ergibt sich eine Seemeile zu 1,853 km.



Bei Einteilung des Kreises in 400 gleiche Teile erhélt der Richtungsunter-
schied zweier benachbarter Radien die Bezeichnung 1 Neugrad oder 1 Gon (Zei-
chen gon oder 8). 1 Gon wird in 100 Neuminuten (Zeichen ¢), eine Neuminute in
100 Neusekunden (Zeichen °°) unterteilt:

18 = 100¢ = 10000°°.
Ein rechter Winkel (1/4 Vollkreis) = 100 gon. Ublich ist auch die Bezeichnung

1 gon = 1000 mgon (Milligon)

oder auch
10811°12°¢ = 10, 11128.

Auf der Erdoberfliche entspricht 0.01 gon= 1°¢ einer Entfernung von 1km.
Umrechnungen:
1°=1,11111 gon,

18 =0,9° = 54' = 3240”".

1.1.2 Das Bogenmaf}

Die Lénge eines Kreisbogenstiickes b ist eine Funktion des dazugehorigen Zen-
triwinkels a und des Radius R des Kreises.

Als Bogenmaf eines Winkels «a
wird die Lénge des Kreisbogens b
bezeichnet, der zum Winkel «
gehort, wenn der Radius des Krei-
ses gleich 1 ist:

b = arca.
Aus der Verhéltnisgleichung
a®  360°
arca 27

ergeben sich folgende Umrechnungen

o 180°
a® = arca ,
T
bzw.
o T
arca = «
180°



oder

2008
af =arca——,
™
bzw.
arca = af il
2008 "

Der Quotient 180°/7 entspricht der Mafeinheit 1 Radiant (1rad):
lrad = 57°17'45" = 63,6620 gon,

1rad = 206265".
Fiir diesen Winkel ist die Bogenlénge gleich dem Radius des Kreises.

1.1.3 Das Zeitmaf}

In der Geodiisie, besonders aber in der Astronomie, kommt es oft vor, daf3 Winkel
im Zeitmafl angegeben werden. Der Zusammenhang wird durch die Rotation der
Erde um ihre Achse hergestellt. In 24 Stunden dreht sich die Erde einmal um
ihre Achse

24h =360°,

1h=15°, 1min =15, 1s=15",
1° =4 min, 1'£4s, 1" £0,067s.

1.2 Die Winkelfunktionen und ihre Periodizitit

In einem rechtwinkligen Dreieck

sind die beiden Winkel eindeu-

tig durch die Seitenverhéltnisse

definiert. Diese Seitenverhéltnis-

se bezeichnet man als trigonome- A
trische Funktion

Gegenkathete a
Hypothenuse ¢’

. Ankathete b
Kosinus: cosa = —— = —,
Hypothenuse ¢

Sinus: sina =

entsprechend sin # = b/c und cos f = a/c.
Praktische Erfordernisse ergeben weitere von diesen zwei Grunddefinitionen
abgeleitete Formeln:
Gegenkathete a  sina
Tangens: tana = —"——=— = ;

Ankathete b cosa’




und im folgenden nur fiir den Winkel a aufgeschriebene Formen:

Kotangens: cota = ;
tan «

1
Kosecans: coseca = ——;
sin «r
1
Sekans : seca = .
cos &

Aus

2 b2 2 b2
a_2 - = a4 t =1 mit a® +b? = ¢® (Satz des Pythagoras)
¢ ¢ c

ergibt sich:
sin? & + cos® a = 1.

Mit Hilfe dieser Zusammenhénge 148t sich jede trigonometrische Funktion
durch die anderen ausdriicken:

sin « cos « tan « cot «

sin o = - +v1 —cos? tan a 1

ﬁ:\/1+tan2a ﬂ:\/1+cot2a

cosa= +vV1-sgin’a _ 1 cot «v

+V1+tan2a  +V1+ cot? a

sin +V1—cos’a B 1

tan a =

j:\/l —sin? « cosa cot o
+v1—sina cos & 1
cota = . L _
sSin o ﬁ:\/l — cos? a tan o

Die Vorzeichen der Wurzeln werden durch die folgenden Betrachtungen fest-
gelegt.



+a

Am Einheitskreis lassen sich die

P
Werte und Vorzeichen der einzel- I [ 1
nen Funktionen ablesen R
.
. b o +b
sina = ap, br
cosa = bp, 1] \Y,

und es werden folgende Vorzeichen erhalten:

Quadrant

Winkelfunktion I II III IV

sin a + + - -
cos « + - - +
tan « + - + -
cot o + - + -

Die Darstellung der Funktionswerte in Abhéngigkeit vom Winkel ergibt folgende
Kurven:

tang
cot @
s o i
1
I% g 1
10 += [
\ \
\ \
sing \ \
cos@ \ \
+1 1 11 i \Y% ‘\ \
== & e K
\\ e /, \\ \\
\J90° 180° /72700 360°, . Jgo° 1809 \J270° 3B0°_
0 IN . T 3 27t 0 N T 3 \\ 277
: \\fz 7 N\ N
Sso _-7 3 \ \
-1 \ \\
v \



An diesen Kurven ist zu sehen, daf} sich die Funktionen von beliebigen Win-
keln leicht auf den ersten Quadranten zuriickfithren lassen.
z.B. II Quadrant:

sin(90° + a) = + cos a,
sin(180° — ) = +sina;

III Quadrant:
sin(180° + a) = —sina,
sin(270° — ) = — cos q;

IV Quadrant:
sin(270° + @) = — cos a,
sin(360° — @) = —sina.

Im ersten Quadrant gilt aulerdem:
sina = c0s(90° — a) und cosa = sin(90° — «).

Ein Winkel (90° — a) wird als Komplementwinkel, ein Winkel (180° — «)
als Supplementwinkel und ein Winkel (360° — «) als Implementwinkel zu «
bezeichnet.

In einem gleichseitigen Dreieck (Seitenlinge = 1) oder rechtwinklig gleich-
schenkligen Dreieck (Schenkelldinge = 1) lassen sich leicht Werte der trigonome-
trischen Funktionen fiir die speziellen Werte 30°,45° und 60° ermitteln.

Winkel

Funktion 0°=0 30°=7/6 45°=7x/4 60°=m/3 90°=m/2

: 1 1 1

sin « 0 3 7\/5 §\/§ 1
coS « 1 %\/5 %\/5 % 0
tan « 0 % 1 V3 00
cot o 00 V3 1 0

S




Die Berechnung der trigonometrischen Funktionswerte fiir beliebige Winkel
erfolgt iiber Potenzreihen, z.B

x* x° X7

sinx =x — 3l + Sl + ... (x im Bogenmaf).
Fiir den Praktiker stehen die Werte schon im einfachsten Taschenrechner
meist mit geniigender Genauigkeit zur Verfigung, in EDV-Programmen mit

beliebiger Genauigkeit.

1.3 Additionstheoreme, Winkelverdopplung und Verwand-
lungsformeln
Mit Hilfe der Additionstheoreme lassen sich trigonometrische Funktionen von

Winkelsummen oder -differenzen in Ausdriicke verwandeln, die nur die Einzel-
winkel enthalten.

sina sinf
Aus nebenstehender Figur 148t N g
. ) e
sich ablesen: RANGEE
EENE!
. . . Q -
sin(a+8) = sin a cos B+cos asin 3, 1 kS

cos(a+f) = cosa cos f—sin asin 3. 7 ¢

Q

Weitere Formen s. Formelsamm- p g
lung Teil A.1. %\ coswcosp |

cos(o+p) |

Beziehungen zwischen den Winkelfunktionen des einfachen und des doppel-
ten Winkels erhilt man, indem in den Additionstheoremen 8 = « gesetzt wird:

sin 2a = 2sina cos o,

cos2a = cos® a — sin @ = cos’ a — (1 — cos® @) = 2cos’ @ — 1 = 1 — 2sin’ a.

Mit den Verwandlungsformeln werden die Summen oder Differenzen der tri-
gonometrischen Funktionen zweier Winkel in Produkte von Funktionen der hal-
ben Summe bzw. Differenz dieser Winkel verwandelt.

Durch Addition bzw. Subtraktion der beiden Additionstheoreme

sin(a 4+ B) =sinacos f + cosasin 3,

sin(a — ) =sinacos f — cosasin 3,

ergibt sich:
sin(a + B) + sin(a — 8) = 2sina cos B



und
sin(a + ) — sin(a — 8) = 2cosasin .

Nachdem gesetzt wird:

a+B=x,
o — B =Y
folgt:
a=2 ty
2
und
_X—y
p=—
Und es werden die Verwandlungsformeln erhalten:
sinx +siny = 2sinX+y cosX;y,
. . Xty . X—y
sinx —siny = 2cos sin 5

(Formelsammlung A.2.)

1.4 Grundformeln zur Berechnung ebener Dreiecke

Man zeichnet ein beliebiges Drei-
eck mit der Hohe h. (Lot von C c
auf ¢), die ¢ in p und q unterteilt.
Leicht 148t sich ablesen

h, b sin a

he = asinf

Nach dem Gleichsetzen erhilt man den ebenen Sinussatz
bsina = asin 3

oder
a b c

= = F | | B.1.
sina sinfB sinvy (Formelsammlung )
Setzt man a? = h? + q? (Satz des Pythagoras),

a? =h? + (c —p)? = h? + ¢ — 2cp + p?,

so erhélt man mit h? 4+ p? = b% und p = bcosa den ebenen Kosinussatz:

a? =b? +c* —2bccosa (Formelsammlung B.2.).
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Mit Sinussatz und Kosinussatz lassen sich alle Stiicke im ebenen Dreieck
berechnen, wenn 3 Stiicke gegeben sind. Mindestens eines von den 3 Stiicken
muf eine Seite sein.

Auf die Tangentenformeln (Formelsammlung B.3.) sei an dieser Stelle hin-
gewiesen.

2 Sphiérische Trigonometrie

Die sphérische Trigonometrie beschiftigt sich mit der Berechnung von Dreiecken
auf der Kugeloberfliche. Die Seiten der Dreiecke konnen dabei keine geraden
Linien sein, da die Kugeloberfliche eine gekriimmte Fliche ist. Die Seiten werden
durch den Winkel zwischen den Kugelradien nach den Eckpunkten der Dreiecke
ausgedriickt. Die Winkel der Dreiecke werden durch die Tangenten an die Seiten
in den Eckpunkten der Dreiecke gebildet.

2.1 Kreise und Winkel auf der Kugel

Wird eine Kugel von einer Ebene geschnitten, so ist die Schnittlinie an der
Kugeloberfliche stets ein Kreis.

a) Ist der Abstand der Schnittebene
vom Kugelmittelpunkt gleich 0, d.h.
der Kugelmittelpunkt liegt in der
Schnittebene, so ist die Schnittlinie
ein GroBkreis. Der Radius des Grof3-
kreises ist gleich dem Kugelradius R.

b) Ist der Abstand der Schnittebene
vom Kugelmittelpunkt grofler als 0
aber kleiner als R, so ist die Schnitt-

linie ein Kleinkreis mit dem Radius
r (r <R).

c) Ist der Abstand der Schnitt-
ebene vom Kugelmittelpunkt gleich
dem Kugelradius R, so wird die
Schnittebene zur Tangentialebene,
die Schnittlinie wird zum Tangenti-
alpunkt.

Die im Mittelpunkt auf einer Kreisebene K mit dem Radius r senkrecht
stehende Gerade trifft die Kugeloberfliche in den Polen P (Nahpol) und P’
(Fernpol).
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Die Absténde des Kreises K von
P bzw. P’ kénnen auf zwei Arten
definiert werden:

a) direkte Absténde x und y von
den Polen,

b) sphérische Absténde p und p’
von den Polen. Aus den Abbil-
dungen kann abgelesen werden:

Fiir die auf der Kugeloberfliche gemessenen kiirzesten Abstéinde des Kreises
K von den Polen sind die Zentriwinkel p und p’ Mafizahlen:

p_ x _V2Rp p

Sin—:—: =

2 2R 2R, 2R’

!
sin2 = /L.
2 " V2R

Aus den letzten beiden Bildern ist der Radius des Kleinkreises direkt ablesbar:

bzw.

r Rcosp,

r = Rsinp.

Der Grofikreis (geodétische Linie) ist die kiirzeste Verbindung zwischen zwei
Punkten auf der Kugeloberfliche.
Fiir die Lénge eines Grofikreisbogens AB ergibt sich:

AB = Rarca = (w/180°) R a®,

wobei o der Winkel zwischen den Radien nach A und B im Zentrum der Kugel
sein soll.
Fiir die Linge des Kleinkreisbogens AB gilt:

AB =r arca,

wobel a jetzt der Winkel ist, den die Kleinkreisradien nach A und B in der
Schnittebene des Kleinkreises einschlieffen.
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Der Nachweis dafiir, dafl der
Grof3kreisbogen zwischen A und
B kiirzer ist als alle denkba-
ren Kleinkreisbogen, ist leicht zu
filhren, indem man die Klein-
kreisebene ABO’ und die Gro$-
kreisebene ABO in der gleichen
Ebene zeichnet.

 Auf der Erdkugel sind die Meridiane und der Aquator GroBkreise, die zum
Aquator parallelen Breitenkreise sind Kleinkreise.

Zwei beliebige Kugelgrofikreise, deren Ebenen nicht zusammenfallen, teilen
die ganze Kugel in vier Kugelzweiecke.

ap, a9 = Grofikreise,

A, A’ =Schnittpunkte der Grof}-
kreise, diese liegen auf einem Ku-
geldurchmesser,

6 = Schnittwinkel.

Je zwei der vier Kugelzweiecke
sind gleich grof}.

Fiir die Fliche eines Kugelzweiecks mit den Winkeln § 148t sich folgende
Verhiltnisgleichung aufstellen:

Flache Kugelzweieck  Fz )

Fliche Kugel T Fx o
Mit
Fk = 47R?

folgt:
Fz =20 wenn R=1,

bzw. Fz = (26 - w)/180°, wenn ¢ in Grad gegeben ist.

2.2 Das sphirische Dreieck und sein Polardreieck

Drei nicht zusammenfallende Ebenen, die alle den Kugelmittelpunkt enthalten,
schneiden die Oberfliche der Kugel in 3 Groflkreisen. Diese 3 Grofikreise teilen
die Kugeloberfliche in 8 Dreiecke.

13



Als Grunddreieck wollen wir das
Dreieck ABC mit den Winkeln
«, 3,7 bezeichnen.

Die Seiten des Dreiecks - die
Bogen AB, BC, CA werden im
Winkelma$l angegeben und ent-
sprechen den Winkeln zwischen
zwei Radien nach den Eckpunk-
ten (a, b, c).

Das  Gegendreieck A’ B’ ,C’
stimmt in den Seiten und Win-
keln mit dem Grunddreieck iiber-
ein.

Desweiteren sind im Bild 3 Scheiteldreiecke AB'C’, BA’C’ und CA'B’ zu
erkennen. Diese haben mit dem Grunddreieck einen Winkel und mit dem Ge-
gendreieck eine Seite gemeinsam.

Die 3 Nebendreiecke ABC', ACB’ und BCA’ haben mit dem Grunddreieck
eine Seite und mit dem Gegendreieck einen Winkel gemeinsam.

Wir betrachten das sphérische Dreieck ABC, dessen Seiten a, b, c sich aus
den drei Grundkreisebenen ergeben. Die zugehorigen Pole werden mit A, B, C
bezeichnet.

Die GroBkreisverbindungen zwi-
schen den Polen A, B, C lassen
das sogenannte Polardreieck ent-
stehen. Es sind jeweils die Pole
zu benutzen, die dem Grunddrei-
eck am nichsten stehen (links
von der Pfeilrichtung).

Zwischen den Seiten und Win-
keln des Grunddreiecks und de-
nen des Polardreiecks bestehen
folgende Beziehungen:

e Wird z.B. cin A um (7 —a) gedreht, so wandert C nach B um den Winkel
a. Es gilt: a = 7 — a und entsprechend b =7 — 3, =7 — .

e Wird andererseits ¢ in A um 7 — @ gedreht, wandert C nach B um den
Winkel a. Es gilt a = 7 — @ und entsprechend b =7 — g,c =7 — 7.

Die Seiten eines Polardreiecks sind gleich den Supplementen der Winkel des
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Grunddreiecks. Die Winkel des Polardreiecks sind gleich den Supplementen der
Seiten des Grunddreieckes.

Da jedes sphirische Dreieck das Polardreieck seines Polardreiecks ist, gilt
der Satz auch umgekehrt.

Ahnlich wie beim ebenen Dreieck gibt es auch beim sphérischen Dreieck eine
Reihe von Sonderfillen, die in der folgenden Tabelle zusammengestellt sind:

Bezeichnung des Seiten Winkel
sphérischen Dreiecks

1. gleichschenkliges Dreieck a=bh,c a=p8y

2. gleichseitiges Dreieck a=b=c a=p3=xv

3. rechtwinkliges Dreieck a, b, c a, B,y =m/2

4. rechtseitiges Dreieck a, b, c=m/2 a, B,y

5. rechtwinklig-gleichschenkliges a=b,c a=p,y=m/2
Dreieck

6. rechtseitig-gleichschenkliges a=b,c=m/2 a=p8y
Dreieck

7. doppelrechtwinklig- a,b=c=m7/2 a,f=y=m/2
gleichschenkliges oder
doppelrechtseitig-
gleichschenkliges Dreieck

8. rechtwinklig-gleichseitiges a=b=c=7/2 a=8=v=7n/2

oder rechtseitig-gleich-
seitiges Dreieck (Kugeloktant)

Bemerkenswert in dieser Tabelle sind die Fille 7 und 8. Hier ist zu sehen,
daf} die Winkelsumme im sphérischen Dreieck grofler als 7 werden kann.

Bisher sind nur sphérische Dreiecke betrachtet worden, deren Seiten und
Winkel < 180° waren. Das soll auch im folgenden so sein. Solche Dreiecke werden
als Eulersche Dreiecke bezeichnet.

2.3 Grundformeln zur Berechnung sphérischer Dreiecke

Von O aus werden 3 Strahlen gezogen, die die Winkel a, b, ¢ einschlieflen.

15



Legt man ebenfalls um O eine
Kugel mit dem Radius 1, so ent-
steht ein Dreikant, welches an
der Kugeloberfliche das sphiri-
sche Dreieck ABC aufspannt.
Nach Ergénzung des Dreikan-
tes durch einige Hilfslinien kann
leicht der spérische Sinussatz ge-
funden werden.

Vom Punkt C wird das Lot auf die Ebene OAB bis Z gefillt. Ebenfalls von
C werden die Lote auf die Kanten OA bis P und OB bis Q gefillt. Schliefilich
wird Z mit P und Q verbunden.

Es gilt:

0Q =cosa, CQ =sina, OP =cosb, CP =sinb;

im Dreieck CPZ gilt

. CZ CZ . .
sina = TP = snb’ daraus CZ = sina sinb;
im Dreieck CQZ gilt:
Cz 7
sinff = — = ——, daraus CZ = sin sina.
CQ sina

Nach Gleichsetzen der beiden Ausdriicke fiir CZ wird der Sinussatz der
sphérischen Trigonometrie erhalten:
sina sinf

S~ snh (FormelsammlungC.1.).

Die weiteren Formen werden durch zyklische Vertauschung erhalten.
Fiir nachfolgende Betrachtungen kann auflerdem am Dreikant abgelesen wer-
den:

im Dreieck PCZ gilt:
PZ PZ

COS Q¥ = —

PC ~ sinb’
PZ = cosasinb;

im Dreieck QCZ gilt:
Qz _ QZ

cos § = QC ~ sina’

QZ = cos B sin a.

16



Nach Abwicklung des Dreikantes
in die Ebene und Ergidnzung durch
weitere Hilfslinien PF, QF’, ZG
und ZG' lassen sich weitere Bezie-
hungen herstellen:

0Q = OF + FQ = OF + GZ,
0Q =cosa,
OF = cosbcosc (Dreieck OFP),

GZ =PZ -sinc =cosasinbsinc

(Dreieck GZP);

Also:

cosa = cosb cosc+sinbsinccos a,

ebenso

OP = OF' + PF' = OF' + G'Z,
cosb = cosacosc + sinasinccos 3.
Diese Ergebnisse sind 2 Formen des sphérischen Seitenkosinussatzes (Formelsamm-

lung C.2.). Die 3. Gleichung wird durch zyklische Vertauschung erhalten.
Desweiteren kann aus der Figur abgelesen werden

GF = ZQ = PF - PG,

sinacos § = cosbsinc — sin b cos c cos a.

Diese Gleichung ist eine Form der Fiinfstiickebeziehungen oder des Sinus - Ko-
sinussatzes. Weitere fiinf Formen werden durch zyklische Vertauschung erhalten
(Formelsammlung C.4., erster Teil).

Lost man eine Fiinfstiickebeziehung nach dem cos-Produkt auf, so erhilt
man eine Form des Kotangentensatzes:

cosbsinc  sinacosf

cosceosa = —_ — il
Mit . .

sina  sina

sinb  sinf
folgt:

cosccosa = cotbsinc —sinacot § (Formelsammlung C.5.).
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Der Kotangentensatz stellt eine Beziehung zwischen vier aufeinanderfolgen-
den Stiicken im sphérischen Dreieck her.

Weitere Grundformeln zur Berechnung sphérischer Dreiecke werden durch
Anwendung bisher bekannter Formeln auf das Polardreieck erhalten.

Die Anwendung des Seitenkosinussatzes auf das Polardreieck liefert den Win-
kelkosinussatz:

cosa = cosbcosc + sinbsinccosa,
cos(m —a) = cos(m — f)cos(m — 7y) + sin(m — B) sin(m — 7y) cos(w — a),
—cosa = cosfcosy — sinfsinycosa,
cosa = —cosfcosy+ sinfsinycosa

(Formelsammlung C.3.).

Der Winkelkosinussatz ist der polare Seitenkosinussatz. Die Anwendung der
Fiinfstiickebeziehungen auf das Polardreieck liefert 6 weitere Formen (Formelsamm-
lung C.4., zweiter Teil).

Sinussatz und Kotangentensatz sind zu sich selbst polar, sie liefern keine
neuen Formeln bei Anwendung auf das Polardreieck.

2.4 Abgeleitete Formeln zur Berechnung sphérischer Drei-
ecke

Die abgeleiteten Formeln waren frither sehr zweckmiilig bei logarithmischen
Rechnungen, da hier statt Summen und Differenzen von Winkelfunktionen nur
Produkte auftreten. Aber auch gegenwirtig werden die abgeleiteten Formeln
noch vorteilhaft benutzt.

Ausgehend vom Seitenkosinussatz

cosa = cosbcosc + sinbsinccosa,

cosa — cosbcosc
cosa = - - ,
sinbsinc

wird auf beiden Seiten +1 addiert

cosa —cosbcosc sinbsinc

l1+cosa = - - - )
sinbsinc sinbsinc

cosa — (cosbcosc —sinbsinc)  cosa — cos(b + c)

1+cosa = - - = - -
sinbsinc sinbsinc

Unter Anwendung der Verwandlungsformel (Formelsammlung A.2.)
X—Yy
2

auf den Zahler der rechten Seite (mit x = a, y = b + ¢) wird erhalten:

L XTY .
COSX — cOsy = —2sin sin

—2sina+'2°+c sina—‘g—c - 2sina+'2°+c sinb+§—a

1+cosa= ; - = ; ; )
sinb sinc sinbsinc
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da

sin M = —sin Lb_c.
2 2
Mit,
1+ cosa = 2cos? % (FormelsammlungA.1.)
und
_(a+b+c)
S
ergibt sich:
9e02® = 9 sins sin(s — a)
2 sinb sinc ’
a sins sin(s — a)
g = sinb sinc

Diese Formel wird als Halbwinkelformel bezeichnet. Werden beide Seiten der
Ausgangsgleichung von 1 subtrahiert, wird ein Ausdruck fiir sin a/2 erhalten.
Ausgehend vom Winkelkosinussatz werden Halbseitenformeln abgeleitet.

Halbwinkel- und Halbseitenformeln sind unter dem Begriff ” Halbstiicksrela-
tionen” zusammengefafit (Formelsammlung C.6.).

Die Tangentenformeln (Formelsammlung C.7.) gehen direkt aus den Halb-
stiicksrelationen hervor :

i Q
a singy
tan — = o
2 cos 5

Die Delambreschen Formelpaare (Formelsammlung C.8.) werden erhalten durch
Einsetzen der Halbstiicksrelationen in die Additionstheoreme, z.B.:
a+ﬂ) :cos(g + é) :cosgcosé —singsiné

2 2 2 2 2 2 2°
Durch Division zweier Delambreschen Formeln ergeben sich die Neperschen Ana-
logien (Nepersche Tangentenformeln) (Formelsammlung C.9.).

Somit stehen zur Auflésung des sphérischen Dreiecks bisher 69 Formeln zur

Verfiigung.

cos(

2.5 Berechnung allgemeiner und spezieller sphéirischer Drei-
ecke

2.5.1 Die sechs Grundaufgaben zur Berechnung allgemeiner sphiri-
scher Dreiecke

Wenn in einem allgemeinen sphirischen Dreieck drei Stiicke gegeben sind, ist
seine Berechnung moéglich.

Sechs Grundaufgaben mit den im folgenden jeweils gegebenen drei Stiicken
sind zu unterscheiden:
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1. drei Seiten (a, b, ¢);

2. drei Winkel (a, 8,7);

3. zwei Seiten und der von ihnen eingeschlossene Winkel (a, b, ~v; b, ¢, «; ¢, a, 8);
4. eine Seite und die beiden anliegenden Winkel (a, 8,v; b,v, a; ¢, a, §);

5. zwei Seiten und der der einen gegeniiberliegende Winkel
(a,b,a; b, ¢, B; ¢, a,7) oder (a,b, §; b, ¢, 7; ¢,a, a);

6. zwei Winkel und die dem einen gegeniiberliegende Seite
(a,B,3; B,7,b; v,,¢) oder (o, B,b; B,7,¢; 7, a,a).

Jede dieser sechs Grundaufgaben kann man mit dem System der Grundfor-
meln der sphirischen Trigonometrie (Abschnitt 2.3.) oder mit dem System der
abgeleiteten Formeln (Abschnitt 2.4.) bzw. unter Verwendung von Formeln aus
beiden Systemen l6sen. Eine Zusammenstellung von Losungsvorschligen fiir die
unter 1. bis 6. jeweils an erster Stelle genannte Kombination von gegebenen drei
Stiicken ist in der Formelsammlung unter C.10. gegeben. Besondere Beachtung
verdienen hier die Fille 5 und 6. In beiden Féllen mufl immer zuerst mit dem Si-
nussatz gerechnet werden. Der Sinussatz liefert aber im Bereich von 0 bis 7 zwei
Losungen, so daf} eine zweideutige Losung fiir das sphiirische Dreieck vorliegen
kann.

In nebenstehendem Fall 5 sind a, Q
b und a gegeben. Die Moglich- 3

keit der Zweideutigkeit ist ge-

zeigt. 0

Nur eine Losung wird es ge-
\i
o

ben, wenn a > b. Die Entschei-
dung iiber den richtigen Winkel
B kommt erst in der weiteren
Rechnung.
A

ﬁ

In allen anderen Fillen sollte man die Rechnungen mit dem Sinussatz ver-
meiden, da andere trigonometrische Funktionen (cos, tan) zur Verfiigung stehen,
die sich mittels des Vorzeichens eindeutig den Quadranten zuordnen lassen.

Die fehlenden Ausdriicke in einigen Formeln unter C.10. sollten selbstindig
ergédnzt werden.
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2.5.2 Rechtwinklige und rechtseitige sphirische Dreiecke

Rechtwinklige sphérische Drei-
ecke haben mindestens einen
rechten Winkel. Ist v = 90°, so
sind a und b die Katheten, und c
ist die Hypothenuse.

Da die trigonometrischen Funktionen fiir den Winkel 90° die speziellen Funk-
tionswerte sin 90° = 1, cos 90° = 0 besitzen gilt:

. sin o sin a
e Sinussatz: - =0
sin 7y sinc

Mit siny = 1 folgt:

. sin a
sina = ——.
sinc
e Seitenkosinussatz: cosc = cosacosb + sinasinb cos .

Mit cos~y = 0 folgt:
cosc = cosacosb.

e Kotangentensatz: cosbcosa = sinbcot ¢ — sin a cot .
Mit cot v = 0 folgt:
tanb
cosa =
tanc

oder
cos b cosy = sinb cot a — siny cot «;

mit cosy = 0 und siny =1 folgt:

usw.

Die Verallgemeinerung der Ergebnisse kann in der Neperschen Regel zusammen-
gefafit werden:

Die Stiicke eines rechtwinkli-
gen Dreieckes werden fortlaufend
gleichmiBig auf einen Kreis (Ne-
perscher Ring) geschrieben. Der
rechte Winkel wird dabei ausge-
lassen und die Katheten durch
die Komplemente ersetzt,.
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Jetzt gilt die Regel: Der Kosinus eines Stiickes im Neperschen Ring ist gleich
dem Produkt der Kotangens der beiden anliegenden Stiicke oder gleich dem Pro-
dukt der Sinus der beiden nichtanliegenden Stiicke (Formelsammmlung C.11.).

Folgende Beziehungen sind im Fall (v = 90°) ablesbar:

sin a
sinb
cos «
cosc

cos f3

sinasinc = tanb cot 3,
sin fsinc = tanacot «,
sin fcosa = tanb cot c,
cosacosb = cot a cot 3,

sin acosb = tan a cot c.

Sind beispielsweise § und ¢ gegeben, und es besteht die Aufgabe, «, a und
b jeweils nur mit den gegebenen Stiicken zu berechnen, dann sind die folgenden

Beziehungen zu benutzen:

cosc = cotacot f daraus cota = cosctan 3,

cos f =tanacotc daraus tana = cosfBtanc

und

Diese Nepersche Regel gilt auch
fiir das rechtseitige Dreieck, nur
wird hier auf dem Neperschen
Ring die rechte Seite ausgelassen
und zusétzlich der der rechten
Seite gegeniiberliegende Winkel
durch den Supplementwinkel er-
setzt (Formelsammlung C.11).

sinb = sin #sinc.

2.6 Mehrdeutige Losungen bei der Berechnung sphéri-

scher Dreiecke

In den Fillen 5 und 6 zur Berechnung allgemeiner sphérischer Dreiecke kdnnen
sich Mehrdeutigkeiten ergeben. Es sollen deshalb hier einige Regeln angegeben
werden, mit deren Hilfe auch bei Rechnung mit dem Sinussatz richtige Losungen

gefunden werden kénnen.

In Abschnitt 2.2. wurde schon gezeigt, daf3 die Winkelsumme im sphérischen
Dreieck grofier als 180° werden kann. Im folgenden wird gezeigt, da§ die Win-
kelsumme im sphirischen Dreieck immer grofler als 180° ist.

Im Winkelkosinussatz

cosy = —cosa cos 8 + sin asin 5 cosc
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wird gesetzt
a = 180° — ¢,

dann gilt:
cosy = cosd cos B + sind sin B cosc

(cosc kann Werte zwischen —1 und +1 annehmen).
Setzt man cosc = +1, also ¢ = 0, dann wird die rechte Seite gewifl zu gro8,
und es gilt:

cosy < cosdcosf + sindsin g,
cosy < cos(d —f),

Yy > 6-5,

v > 180° —a —§,

also
a+ [+ >180°.

Der Uberschufl der Winkelsumme im sphiirischen Dreieck wird als der sphiiri-
sche Exzef} € bezeichnet. Im folgenden Abschnitt wird dazu mehr gesagt. Oftmals
hilft diese Winkelsummenbedingung, Mehrdeutigkeiten zu beseitigen.

Ohne weitere Beweise sollen noch einige Regeln angegeben werden, mit denen
Losungen beurteilt werden kénnen:

e Die Summe zweier Winkel im sphérischen Dreieck ist kleiner als der um
m vergroflerte dritte Winkel (a + 8 < w4 7).

e Jede Seite im sphérischen Dreieck ist gréfer als die Differenz der beiden
anderen (a > b —c).

e Jede Summe zweier Seiten im sphérischen Dreieck ist grofier als die dritte
(a+b>c).

e Der Umfang eines sphérischen Dreieckes ist kleiner als 360°
(360° > a+b +c).

o Im sphirischen Dreieck liegt dem grofleren von zwei Winkeln die grofere
Seite gegeniiber. Umgekehrt liegt der grofieren Seite der grofere Winkel
gegeniiber (wenn b < a dann 8 < «).

Eine Erweiterung dieser Aussage fiihrt (ohne Ableitung) zur Halbsummen-
regel:

e Die halbe Summe zweier Winkel im sphérischen Dreieck und die halbe
Summe der diesen Winkeln gegeniiberliegenden Seiten ist jeweils entweder
ein stumpfer, ein rechter oder ein spitzer Winkel.
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Es sind bei der Lésung der Grundaufgaben 5 und 6 jeweils 2 Fille zu unter-
scheiden.
Grundaufgabe 5.

1. Fall
a+b m N a+f S T
2 2 2 2’
7r 7r . . .
a < 5= 8> 3 (geometrisch eindeutig),
7r 7r T . . .
a > 5= B8 < 3 oder > 3 (geometrisch zweideutig).
2. Fall
a+b < T a+p < T
2 2 2 2’
™ T T . . .
a < 5= B < 5 oder > 5 (geometrisch zweideutig),
a > g =< g (geometrisch eindeutig).

Entsprechendes gilt fiir die Grundaufgabe 6, wobei die Seiten durch die Win-
kel und die Winkel durch die Seiten zu ersetzen sind.

2.7 Der sphirische Exzefl und die Fliche des sphéirischen
Dreiecks

Im vorigen Abschnitt wurde der sphirische ExzeB € als Uberschufl der Winkel-
summe iiber 180° definiert.

Da in Eulerschen Dreiecken die Winkelsumme maximal 37 betragen darf,
gilt:

Emax = 2 7.

Ein solches Dreieck ist zu einer Halbkugel mit der Fliche I = 27R? (bzw.
I = 27 fiir die Einheitskugel) entartet. Da die drei Winkel gestreckt sind, ver-
schwinden die Ecken. Offensichtlich ist mit dem maximalen Exzef auch die ma-
ximal mdogliche Fliache eines sphérischen Dreieckes iiberhaupt verbunden. Ein
anderes sphérisches Dreieck, dessen Oberfliche

1
I= §7TR2

betréigt (das zugehorige Dreikant kénnte der Kugeloktant sein), besitzt die Win-
kel

T

a=pF=v= 5
Der sphérische Exzef} ist in diesem Fall
o
e=3-
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Aus dem Vergleich der Flichen und der Exzesse dieser beiden Dreiecke ist
ersichtlich, daf} beide Gréfen miteinander zusammenhéngen.

Im folgenden soll dieser Zusammenhang untersucht werden.

Die Seiten des sphiirischen Dreiecks ABC wurden zu vollen Grofkreisen
erganzt.

Jetzt zerfillt die Oberfliche der
Halbkugel in 4 sphérische Drei-
ecke, deren Flichen mit F; be-
zeichnet werden

%:F1+F2+F3+F4,
mit
F, = ABC,
F, = AB'C/,
F, = AB'C,
F, = ABC'.

Je zwei der genannten sphérischen Dreiecke bilden zusammen ein sphérisches
Zweieck, welches jeweils das Grunddreieck ABC enthiilt:

0)
Fanr = Fi+Fo=—-a°
AA 1+ b2 3600 %
F = Fi+F3= O B°
BBr = I 3= 3600 )
F = F1+Fs= O
cc = 1 1= 3600 v
Die Summation dieser drei Gleichungen ergibt;:
_O(a+8+7)
3F1 +F:+Fs+Fy = 360°
und mit Fy + Fy + F3 + F4 = O/2 folgt:
o, +Q = Qetb+y)
2 360°
720-F; = O(a+p8+7v)—180°-0,
Ola+p+~v—180°) O-¢
I = = F,=1).
720 00 =D

Die Proportionalititskonstante zwischen dem Flicheninhalt I eines sphéri-
schen Dreiecks und seinem Exzef ist der 720te Teil der Kugeloberfliche O.
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Mit O = 47R? wird erhalten

47R2 -
I:M:R2-5
47

und bei R =1 folgt
I =arce (Vgl. Formelsammlung C.12.)

Hier sind auch weitere Formeln zur Berechnung von ¢ unter Einbeziehung der
Seiten des sphérischen Dreieckes angegeben.

2.8 Differentialformeln fiir das sphérische Dreieck

Bei den Anwendungen der sphérischen Trigonometrie ergeben sich oft Situa-
tionen, in denen zu berechnen ist, wie sich kleine Anderungen oder Fehler der
gegebenen Stiicke auf die trigonometrisch berechneten Groflen auswirken.

Natiirlich kann man die gesuchten Stiicke mit veriinderten Ausgangswerten
noch einmal nach den gleichen Formeln wie bei der ersten Rechnung bestimmen.
Einfacher gestaltet sich die Rechnung aber unter Verwendung einer Differential-
formel.

Die Herleitung einer Differentialformel (ohne weitere mathematische Be-
trachtungen) besteht in der partiellen Differentiation der Ausgangsgleichungen
nach allen Verdnderlichen und Summation der mit den Veréinderungsgréfien A
multiplizierten Differentiale.

Ableitung der Differentialformel fiir den Kosinussatz

cosa —cosbcosc —sinbsinccosa =0,
es muf} gelten:
F(a,b,c,a) =0=F(a+ Aa,b+ Ab,c + Ac,a + Aa).

Bildung der partiellen Differentialquotienten

oF . oF +sinb b
5 = sina, —- = +sinbcosc —cosbsinccosa,
6—F = cosbsinc — sinbcosccosa, 6— = sin b sin ¢sin a,
oc Je
i mit oF 5F 5F 5F
E-Aaﬂ-%'Abﬂ-E'AC-F%'ACK:O

wird erhalten:

—sinaAa 4+ (sinbcosc — cosbsinccosa)Ab
+ (cosbsinc —sinbcosccosa)Ac
+ sinbsincsinaAa = 0.
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Mit den Fiinfstiickebeziehungen

sinbcosc — cosbsinccosaa = sinacos~y,

cosbsinc —sinbcosccosa = sinacos/,

und dem Sinussatz
sinb sin @ = sin a sin 3,

und abschlieBender Division der Gesamtgleichung durch sin a wird die endgiiltige
Differentialformel fiir den Seitenkosinussatz erhalten:

—Aa + cos yAb + cos fAc + sin ¢sin fAa = 0.

Dieser Ausdruck kann nach einer beliebigen gesuchten Verdnderung A auf-
gelost werden.
Die Differentialformel fiir den Sinussatz (ohne Herleitung) lautet:

cot aAa + cot BAS — cot bAb — cot aAa = 0.

3 Anwendungen der sphirischen Trigonometrie

3.1 Berechnungen auf der Erdkugel
3.1.1 Sphirische Koordinaten eines Punktes auf der Erdoberfliche

Fiir die vorliegenden Betrachtungen wird die Erde als Kugel angesehen
(R = 6371km).

Die sphirischen Koordinaten auf der Erdkugel werden als geographische Ko-
ordinaten bezeichnet.

Die Grundebene dieses Koordinatensystems ist der Aquator (GroBkreis).

Alle durch die Pole des Grundkreises (Nord- und Siidpol) laufenden und
senkrecht auf dem Aquator stehenden GroBkreise heiflen Meridiane. Der Schnitt-
punkt des Meridians von Greenwich mit der Grundebene ist nach internationaler
Ubereinkunft der Nullpunkt des Koordinatensystems.

Alle zum Aquator parallelen Kreise in Richtung der Pole (Kleinkreise) wer-
den als Breiten- oder Parallelkreise bezeichnet.

Die sphirischen Koordinaten eines Oberflichenpunktes sind die geographi-
schen Koordinaten Lénge A und Breite ¢. Die geographische Linge A eines Ortes
ist der Winkel zwischen der Meridianebene von Greenwich und der Ortsmeri-
dianebene.

27



Dieser Winkel entspricht dem
Grofikreisbogen, den die beiden
Meridiane auf dem Aquator be-
grenzen. Die geographische Brei-
te ¢ eines Ortes ist der sphéri-
sche Abstand des Ortes vom
Aquator, gemessen im Meridian.
Die geographische Linge A wird
vom Greenwicher Meridian von
0° bis 180° in 6stlicher bzw. west-
licher Richtung gezihlt. Die geo-
graphische Breite ¢ z#hlt man
vom Aquator von 0° bis 90° je-
weils als nordliche oder stidliche
Breite.

Sind die Koordinaten (), ) von zwei Punkten auf der Erdoberfliche gege-
ben, 18t sich mit einem Erdpol ein sphirisches Dreieck bilden. Das Dreieck
enthilt die beiden Seiten (90° — ¢;1) und (90° — ¢3) als Teile der Meridiane
und den Groflkreisbogen zwischen P; und P,. Der Winkel am Pol entspricht
der Langendifferenz Ay — A;. Die Winkel in P; und P> sind die sogenannten
Kurswinkel oder deren Supplemente. Kurswinkel werden wie Azimute in der
Geodisie von Nord iiber Ost, Siid, West gezihlt.

Sind mit 1,92, A1 und Ay drei Stiicke (2 Seiten und der eingeschlossene
Winkel: Grundaufgabe 3) im Dreieck gegeben, so lassen sich die fehlenden Stiicke
problemlos berechnen. Die Grofikreisentfernung s wird erhalten

coss = cos(90° — 1) cos(90° — ¢2) + sin(90° — ;) sin(90° — w3) cos(Az — A1),

cOoS s = sin (g sin g + €os Y1 €OS Py cos A,

(P; und P, haben hier beide 6stliche Linge und nérdliche Breite.)

3.1.2 Der Satz von Legendre - kleine sphirische Dreiecke

Kleine sphérische Dreiecke, deren Seiten < 1° sind, werden als Legendresche
Dreiecke bezeichnet. Ein Dreieck in der Ebene, dessen Seiten genauso lang sind
wie die Seiten des kleinen Kugeldreiecks bezeichnet man als das dazugehorige
Plandreieck.

Nach Legendre 148t sich ein kleines sphérisches Dreieck als ebenes Dreieck
berechnen, wenn die Seiten im metrischen Maf} eingefithrt und die sphérischen
Winkel um je £/3 vermindert werden.

Es soll sein
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e sphiirisches Dreieck: Winkel: a, 8,7; Seiten: a, b, ¢ (in Grad bzw. Bo-
genmaf);

e Plandreieck: Winkel: o/, 3',%'; Seiten: a’,b’, ¢’, im linearen Maf}, z.B. km.

Behauptung:
€ € €
! ! !
od=a—-—o, f=F-g,V=7—2.
3’ 3’ 3
Beweis:
sin vy sin v
sinc sina’
siny sina = sina sinc,
.ol . . c
siny sin— = sina sin—
R R

mit a =a’/R,c =¢'/R (a und ¢ im Bogenmaf, a', ¢/, R in km).

Unter Verwendung der Sinusreihe sinx = x — x*/3! kann bei Abbruch nach
dem zweiten Glied geschrieben werden:
al al3 CI CI3
R ore) =R 6

Nach Multiplikation mit R und Ausklammern von a’' bzw. ¢’ wird erhalten

).

sin y (

Zsiny L c?sina
)=c (sina —
6R?

a‘I

).

a' (siny —

6R?

Desweiteren kann gesetzt
werden:

a’siny’ = hy = ¢'sina’,
a' = b’ cosy’ +c' cos

und

¢’ =a'cosB' + b cosa’.
Diese Beziehungen sind leicht aus dem ebenen Dreieck mit den Seiten a’, b’, ¢/
und den Winkeln o/, 8’,~" ablesbar.

Jetzt gilt, wenn in den Gliedern 2. Ordnung siny = sinv’ und sin« = sina’
gesetzt wird:

hy

a' [siny — 6R? (b' cosy' + ¢’ cos B')] = ¢’ [sina — 6—;2 (a’ cos B’ +b' cosa')]
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und anders geschrieben

a' (siny— By b cos'y) _achycosp ¢ (sina— hy, b’ cos o’ )— a'c’hyr cos 3
7 6R2 6R2 - 6R2 6R2 )
hy b’ cos ' hy b’ cos o
a' (siny — bT(:;)M) =c (sina— ch;)sa)‘

In den Gliedern 2. Ordnung kann geschrieben werden

cosy =cosy bzw. cosa' = cosa.

Auflerdem kann in diesen Gliedern 2. Ordnung die Fliche I = (hy/b’)/2 in die
Formel ¢ = I/R? eingesetzt werden:

h{ b’
©= Rz
also
a' (siny — gcos'y) = ¢ (sina— %cosa),
a’ sin(y — g) = ¢ sin(a— %),
da
sin(y — %) = sinycos% — cosysing =siny — % cos
mit

cos% =1 und sing =3
Mit der Behauptung,

£ £
d=a—--undy =v- <
3 T Ty

ergibt sich
a'siny = ¢'sina’
als Sinussatz der ebenen Trigonometrie.

Damit ist nachgewiesen, dafl die Winkel des Plandreiecks um /3 kleiner
sind als die Winkel des Legendreschen Dreiecks.

3.1.3 Die Loxodrome

Die Loxodrome ist eine Kurve, die alle Meridiane unter gleichem Winkel schnei-
det. Auf ihr kann man unter konstantem Kurswinkel von P; nach Ps gelangen.
Bei einer Fahrt auf der Orthodrome &ndert sich dagegen der Kurswinkel laufend.
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Praktisch ist es iiblich, die orthodromische Distanz in mehrere Loxodro-
menstiicke aufzuteilen.

Sonderfille der Loxodromen sind die Meridiane und der Aquator (diese sind
gleichzeitig Orthodromen) und die Breitenkreise (Kurswinkel 90°).

Betrachtet wird ein differentielles Stiick doj zwischen zwei Punkten A und B
auf einer Loxodromen. A hat die Koordinaten ¢ und A und B die Koordinaten
@+ Ap und X+ AA.

Ein Parallelkreis durch A und
ein Meridian durch B schnei- o
den sich in C. Dieses Dreieck ist
kein sphirisches Dreieck, weil es
nur einen Groflkreisbogen (BC) o
enthilt. A

2

©)
S Rdd

R(cos ¢)dr C

Wenn Ay und AX geniigend klein gehalten werden, kann es als ebenes Drei-
eck angesehen werden und es gilt:

Parallelkreisbogenstiick R cospdA

t = =
ana Meridianbogenstiick Rdyp
und weiter . d
o = tenady
cos

und nach Integration

Ao — A =tana [lntan(% + %) - lntan(% + %)],
Al =tana(qz — q1) = tana Aq
(q = isometrische Breite, g2 = In tan(% + %); q =1In tan(% + %))

Der Kurswinkel o« der Loxodromen ist dann:

tana = 2—3 (AX im Bogenmaf).

Auflerdem kann an der Figur abgelesen werden:

cosox = Rd(p
- dO‘l ’

d
doy = R (10,
COs &
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und nach Integration wird die Linge o; der Loxodromen erhalten:

R -
o = Rp> —¢1) (p2 — 1 im Bogenma$).
cos
Diese Formel gibt fiir den Parallelkreis einen unbestimmten Ausdruck, des-
halb gilt hier:

oy =0p =R cosp AA.

3.2 Anwendungen aus der sphirischen Astronomie

Wie auf der Erdkugel, so werden auch an der Himmelskugel Punkte durch zwei
Winkelangaben eindeutig festgelegt. Die Himmelskugel ist eine gedachte Kugel
mit dem Radius R = 1, deren Mittelpunkt im Beobachtungsort B auf der Erd-
kugel oder genauer im Erdmittelpunkt O liegt. Auf diese Himmelskugel werden
alle Gestirne von O aus projiziert.

3.2.1 Das Horizontalkoordinatensystem

Das einfachste sphérische Koordinatensystem der Himmelskugel hat als Grund-
kreis den Horizont, der als Tangentialebene an die Erdkugel im Beobachtungsort
B zu denken ist.

. . . Meridlé
Die Tangentialebene steht in B S N
senkrecht zur Lotrichtung und z
schneidet die Himmelskugel in ei- Satm
nem Groflkreis, dem scheinbaren 7 -
Horizont. Der wahre Horizont h >
entsteht durch Parallelverschie- h S

bung der Tangentialebene in den
Erdmittelpunkt O. Die Richtun-
gen nach Fixsternen fallen von
B und von O aus wegen ihrer
groflen Entfernungen zusammen.

Vertikalkreis

Lediglich fiir die Korper unseres Sonnensystems ist die téigliche Parallaxe,
wie man den Richtungsunterschied nach einem Himmelskorper von B und O aus
nennt, meflbar.

Es bedeuten

Pole zum Grundkreis

e 7: Zenit
{ des wahren Horizontes.

e 7’: Nadir
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Groflkreis von Z durch das
Gestirn nach 7’, steht senkrecht
auf dem Horizont.

e Vertikalkreis
oder Vertikal:

Vertikalkreis durch die

Himmelspole und Z, schneidet
e Meridian: den

Horizont im Nordpunkt N und

im Siidpunkt S.

Als Himmelspole seien hier die Schnittpunkte der verldngerten Rotations-
achse der Erde mit der Himmelskugel angenommen.

I. Vertikal = Vertikal in Ost- West-Richtung.

Als Gestirnskoordinaten werden definiert:

e a = Azimut, gemessen im Horizont als Bogen von Nord (N) iiber Ost,
Siid (S), West von 0° bis 360°
oder als Winkel in Z im gleichen Sinn vom Nordmeridian bis zum Ge-
stirnsvertikal;

e z = Zenitdistanz, gemessen als Bogen vom Zenit im Gestirnsvertikal bis
zum Gestirn von 0° bis 180°
oder als Winkel im Kugelmittelpunkt zwischen der Zenitrichtung und der
Richtung zum Gestirn;

e h = H6henwinkel = 90° — z.

Alle Punkte mit gleicher Zenitdistanz z bzw. gleichem Hohenwinkel h liegen auf
einem Almukantarat oder Hohenkreis.

Das Horizontsystem hat den wesentlichen Vorteil, daf} seine Koordinaten
Azimut und Zenitdistanz mit Instrumenten gemessen werden kénnen, deren
Hauptachse durch geeignete Meflelemente (Libelle, mechanische Neigungskom-
pensation) unmittelbar an die Lotrichtung angeschlossen werden konnen.

Wihrend das Azimut nur relativ erhalten wird, da der Nordpunkt in der
Natur nicht markiert ist, ist die Messung der Zenitdistanz bzw. des Hohenwin-
kels wegen des direkten Anschlusses an die Lotrichtung absolut mdoglich. Die
erreichbaren Genauigkeiten bei der Messung der Koordinaten des Horizontsy-
stems liegen fiir eine einzelne Messung mit den genauesten Instrumenten (Prézi-
sionstheodolit) bei wenigen Zehntel Bogensekunden.

Der Nachteil des Horizontsystems ist, daf3 durch die tégliche Drehung der
Erde bzw. durch die scheinbare téigliche Drehung der Himmelskugel Azimut und
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Zenitdistanz sich in jedem Augenblick dndern. Das bedeutet, daf} alle Messun-
gen dieser Koordinaten nur dann verwertbar sind, wenn zugleich die genauen
Mef3zeitpunkte festgehalten werden.

Auflerdem ist bei Angaben von a und z unbedingt anzumerken, fiir welchen
Erdort (p, A) diese Werte Giiltigkeit haben, da die Lotrichtung als Nullpunkt der
z-Z3hlung und als Definition des Meridians fiir die a- Z&hlung dient. Andererseits
kann die Messung von a und z zur Bestimmung von ¢ und A benutzt werden,
wie bald noch gezeigt wird.

3.2.2 Die Aquatorkoordinatensysteme

Da es eine Aufgabe der sphérischen Astronomie ist, die Position von Fixsternen
in einem unverdnderlichen Koordinatensystem zu definieren, ist es notwendig,
zu einer anderen Grundebene iiberzugehen, gegeniiber der die relative Position
der Sterne nicht von der téglichen Drehung der Erde und auch nicht vom Erdort
abhingt.

Eine solche Grundebene ist diejenige, die senkrecht auf der Rotationsachse
der Erde steht und durch den Erdmittelpunkt geht. Es ist die Ebene des Erdédqua-
tors, die vergroflert bis zum Schnitt mit der Himmelkugel an dieser den Him-
melsiquator ausschneidet.

Die Pole des Himmelsdquators sind der Himmelsnordpol P und der Him-
melssiidpol P’.

Um im Aquatorsystem Koordinaten festzulegen, wird ein GroBkreis durch
die Pole und das Gestirn gelegt.

Auf diesem sogenannten Stun-
denkreis wird vom Aquator aus
die Deklination ¢ des Ster-
nes von 0 bis 90° nach Nor-
den und von 0 bis —90° nach
Stiden gez#hlt. Die zweite Ko-
ordinate, der Stundenwinkel t,
wird als Bogen in der Aqua-
torebene beginnend vom Schnitt-
punkt des siidlichen Meridianbo-
gens mit dem Himmelsédquator in
Uhrzeigerrichtung von 0 bis 360°
oder von 0 bis 24° gezdhlt. Der
Stundenwinkel t stellt sich am
Pol als Schnittwinkel der Tan-
genten an Meridian und Stun-
denkreis dar.
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Der Stundenwinkel eines Gestirns kann angesehen werden als die Zeit, die
seit der oberen Kulmination (Meridiandurchgang) dieses Gestirns vergangen
ist.

Da die Zahlung des Stundenwinkels t vom Meridian des Beobachtungsortes
abhingt, ist er wegen der téglichen Erddrehung proportional zur Zeit verdnder-
lich, wihrend die Deklination § von der téglichen Erddrehung nicht beeinfluflt
wird.

Den Durchgang eines Gestirns durch den Siidmeridian nennt man die obe-
re Kulmination. Die untere Kulmination desselben Gestirns findet 12 Stunden
spater beim Durchgang durch den Nordmeridian statt.

Die geographische Breite ¢ des Beobachtungsortes und die Deklination § des
Sternes bestimmen, ob die untere Kulmination iiber oder unter dem Horizont
stattfindet. Sterne, bei denen die untere Kulmination {iber dem Horizont erfolgt,
werden als Zirkumpolarsterne bezeichnet.

Um auch in der Grundebene eine von der Erddrehung unabhéngige Koor-
dinate zu bekommen, verlegt man den Nullpunkt der Z&hlung an den Stern-
himmel, und zwar in den Punkt, in dem zu Friihlingsanfang die Sonne steht,
in den Friihlingspunkt Y (astronomisches Zeichen fiir das Sternbild Widder).
Der Friihlingspunkt ist der Schnittpunkt des Himmelsdquators mit der Ebene
der Erdbahn, der sogenannten Ekliptik. Diese neu eingefiihrte Koordinate wird
vom Friihlingspunkt aus im Gegenuhrzeigersinn von 0" bis 24" geziihlt und heifit
Rektaszension a.

Alle Gestirne mit gleicher Deklination ¢ liegen auf einem Parallelkreis, die-
jenigen mit gleichem Stundenwinkel t bzw. mit gleicher Rektaszension « auf
einem Stundenkreis.

Die sphirischen Gestirnskoordinaten « und ¢ sind unabhingig vom Erdort
und der Zeit (Erddrehung).

Es werden also zwei Aquatorkoordinatensysteme unterschieden:

e das dquatoriale System erster Art mit den Koordinaten Stundenwinkel t
und der Deklination d;

e das dquatoriale System zweiter Art mit der Rektaszension « und der De-
klination § (auch als siderisches System oder Stellarsystem bezeichnet).
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3.2.3 Das nautische Dreieck

Eine Kombination aus Horizont-
und Aquatorsystem 1i8t das nau-
tische oder Polardreieck mit den
Ecken P, G, Z entstehen, des-
sen Seiten 90° — 4,90° — ¢ und z
die Winkel t, -a und q einschlie-
Ben. Der Winkel q am Gestirn G
wird als parallaktischer Winkel
bezeichnet. Die Seite 90° — ¢ ist
fiir einen Beobachtungsort kon-
stant; die Seite 90° — § fiir einen
Stern. Die iibrigen Stiicke des
nautischen Dreiecks &ndern sich
infolge der téglichen Drehung der
Erde.

Es sind zwei Fille im nautischen Dreieck zu unterscheiden:

e Gg ostlich vom Meridian;
t > 180°, die Zenitdistanz z wird bei der scheinbaren téglichen Bewegung
kleiner;

e Gy, Gestirn westlich vom Meridian;
t < 180°, die Zenitdistanz wird bei der scheinbaren téglichen Bewegung
grofler.

Ein Sonderfall des nautischen
Dreieckes tritt ein, wenn das Ge-
stirn kulminiert, also wenn es im
Meridian steht. Dann ist

a=180°,t = 0° q = 0°
und es gilt:
o = .
z+ ¥ S ||\/I\eridian
|
‘WLAquator

In dem hier gezeigten Fall kulminiert das Gestirn zwischen Zenit und Aqua-
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tor. Ebenso einfache Zusammenhinge ergeben sich, wenn die Sternbahn zwi-
schen Zenit und Himmelspol verlduft.

3.2.4 Koordinatentransformation mit Drehmatrix

Sphérische Koordinaten lassen sich auch leicht durch rechtwinklige Koordinaten

ausdriicken.

Dazu wird ein rechtwinkliges
dreiachsiges Koordinatensystem
z.B. in das Horizontsystem ge-
legt. Der Ursprung des Koor-
dinatensystems liegt im Kugel-
mittelpunkt O. Die positive x11-
Achse zeigt in der Horizontebe-
ne in die Westrichtung, die x;5-
Achse nach Siiden und die x3-
Achse zum Zenit.

Wird der Kugelradius gleich 1 gesetzt, kann der Vektor x; durch die Kom-
ponenten x31,x12 und x;3 ausgedriickt werden:

X11
X12
X13

COSZ

tana

—sinasinz
—cosasinz |,
COSZ

X13,
X11

X12,

Zeigt im Aquatorsystem 1. Art die positive xo1-Achse in der Aquatorebene nach
Westen, die x22-Achse nach Siiden und die x23-Achse zum Himmelspol (senk-
recht auf der Aquatorebene), kann geschrieben werden

X21
X22
X23

2 =

sin d

tant

37

sint cos
costcosd |,
sin

X23,
X21

X22



Im Aquatorsystem 2. Art gilt:

x31 - liegt in der Aquatorebene und zeigt zum Friihlingspunkt;
x32 - steht in der Aquatorebene senkrecht auf xs1:

X33 - zeigt zum Himmelpol (= xa3);

X31 COS (L COS 0
xg = | x32 | = | sinacoséd |,
X33 sin 0
sind = X33,
X31
cota = —.
X32

Dreht man das Horizontsystem um die O-W-Achse um den Winkel (90° — ¢),
so geht das Horizontsystem in das Aquatorsystem 1. Art iiber.

Die Koordinaten a und z lassen
sich mit Hilfe einer Rotations-
oder Drehmatrix als Funktion
von t und § darstellen. Der Vek-
tor x; wird mit der Drehmatrix
D;(¢) multipiziert, und es wird
der Vektor x» erhalten:

mit
1 0 0
Di(p) =10 +sinp +cose
0 —cosy +sing
Damit gilt:
1 0 0 —sinasinz —sinasinz
0 +sinp +cosep —cosasinz = — sin  cos asin z 4+ cos p oS z
0 —cosy +sing COS7Z + cos p cosasin z + sin ¢ cos z
X21 sint cos &
= | x99 = cost cosd
X923 sin

Es lassen sich folgende Gleichungen aufschreiben:

sintcosd = —sinasinz (Sinussatz);
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costcosd = coszcosyp —sinzsin pcosa (Fiinfstlickebeziehung);

sind = coszsiny +sinzcospcosa  (Seitenkosinussatz).

Diese Zusammenhinge (t bzw. § als Funktionen von a, z und ) lassen sich
auch finden, wenn man die allgemeinen Formeln der sphirischen Trigonometrie
auf das nautische Dreieck anwendet.

3.2.5 Einige Bemerkungen zu Zeitsystemen

Da bis vor wenigen Jahrzehnten die biirgerliche Zeit aus astronomischen Vorgin-
gen abgeleitet wurde, sollen hier einige wenige Definitionen zu den bekanntesten
Zeitsystemen gegeben werden.

Man bezeichnet als wahre Sonnenzeit eines Ortes, auch wahre Ortszeit (WOZ)
genannt, diejenige Zeit, die seit der unteren Kulmination der wahren Sonne ver-
gangen ist. Es gilt also

WOZ = tg £ 12h,

wobei tg der Stundenwinkel der wahren Sonne ist.

Da die Erde sich nach den Keplerschen Gesetzen auf einer Ellipsenbahn mit
einer Neigung von ¢ = 23,5° gegen die Aquatorebene um die Sonne bewegt,
lduft die wahre Sonnenzeit nicht gleichférmig ab. Fiir die praktischen Zwecke
der Zeitrechnung wird eine fiktive mittlere Sonne eingefiihrt, die die Ableitung
einer mittleren (Orts-) Sonnenzeit oder einfach mittleren Ortszeit erlaubt.

Die Differenz zwischen wahrer und mittlerer Zeit - als Zeitgleichung bezeich-
net - kann etwas mehr als £15 Minuten betragen.

Beide genannten Zeiten, wie auch die im folgenden behandelte Sternzeit sind
Ortszeiten, da sie vom Meridian des Beobachtungsortes abhéngen.

Die Definition der Sternzeit SZ ist einfach. Es gilt:

SZ:tT

wobei ty der Stundenwinkel des Friihlingspunktes ist.

Aus dem Bild der Aquatorsysteme erkennt man, da die Summe aus Stun-
denwinkel plus Rektaszension eines Sterns zu einem bestimmten Zeitpunkt den
Stundenwinkel des Friihlingspunktes, also die Sternzeit, angibt:

SZ =t+ a.

Die durch Radiozeitzeichen bekanntgegebene Zeit wird heute nicht mehr direkt
aus der Erdrotation abgeleitet, da diese auler den genannten noch weitere Unre-
gelmiBigkeiten aufweist. Die amtliche Zeiteinheit, die sogenannte Atomsekunde
wird aus atomaren Vorgingen (10'° Schwingungen zwischen zwei hyperfeinen
Energieniveaus des Caesiumatoms) abgeleitet und fithrt zur Atomzeit.

Die durch Radiosignale verbreitete koordinierte Weltzeit UTC (Universal
Time Coordinated) basiert auf der Atomzeit. Diese koordinierte Weltzeit wird,
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wenn notig, durch Sekundenspriinge zur Jahresmitte oder am Jahresende der
mittleren Sonnenzeit Greenwich angenihert.

Aus vielen Griinden bilden Kugelzweiecke mit einer Léngendifferenz von 15°
sogenannte Zeitzonen, deren Zeiten sich jeweils um ganze Stunden von der Welt-
zeit unterscheiden. Bestimmt wird dieser Unterschied durch den Mittelmeridian
dieser Zweiecke.

Z.B. Mitteleuropiische Zeit MEZ = UTC +1". Der 15° Meridian 6stlicher
Lange ist hier der Mittelmeridian. Das Kugelzweieck wird von 7,5° 6.L. und
22,5° 6.L. begrenzt. In kleineren Léndern legt man sich immer nur auf eine
Zeitzone fest.

3.2.6 Auf- und Untergangsberechnungen - Berechnung der Ddmme-
rung

z halber Tagesbogen
des Gestirns

. . . N,

Das nautische Dreieck fiir den AN

Zeitpunkt des Auf- oder Un- P
terganges eines Gestirns ergibt
sich als Sonderfall eines sphéri-
schen Dreieckes, da die Seite
z den Wert 7/2 annimmt. Es

liegt also ein rechtseitiges Drei-
eck vor, in dem fiir einen gege- \,\Of\lo“\
benen Beobachtungsort und fiir

ein bestimmtes Gestirn die Sei-
ten /2 — ¢ und 7/2 —§
bekannt sind.

Von Interesse sind nun der Zeitpunkt tau und das Azimut apy des Auf- oder
Unterganges eines Gestirns. Fiir tay ergibt sich nach der Neperschen Regel oder
aus dem Seitenkosinussatz:

cosz = singsind + cospcosdcost.

Mit cosz = 0 folgt:

costay = —tangtand.

Das Ergebnis kann in allen vier Quadranten liegen, da fiir das Aufgangsdreieck
und fiir das Untergangsdreieck analoge Verhéltnisse vorliegen. Die Grofle tay
kann auch als halber Tagbogen des Gestirns bezeichnet werden, da sie die Zeit
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vom Aufgang bis zur Kulmination bzw. von der Kulmination bis zum Untergang
des Gestirns darstellt.

Fiir das Azimut gilt:
sin §

COSaAy = .
cos

Ein Gestirn mit § = 0° wird unter einem Stundenwinkel von t = +6 Stunden
genau im Osten (a = 90°) auf- und im Westen (a = 270°) untergehen (Sonne zu
Friihlings- bzw. Herbstanfang). Bei der Sonne bezeichnet man die Abweichungen
des Aufgangs- bzw. Untergangsazimut vom Ost-West-Vertikal als Morgen- bzw.
Abendweite.

In Wirklichkeit sind jedoch die Verhéltnisse etwas schwieriger als hier dar-
gestellt. Man sieht einen Stern schon, ehe er iiber dem Horizont erscheint, und
man sieht ihn noch, wenn er schon unter dem Horizont steht. Ursache fiir diese
Umsténde ist die atmosphérische Refraktion, die auf der Brechung des Lichtes
in der Erdatmosphére beruht. Es muf} fiir Auf- und Untergangsrechnungen fiir
die Gestirne der Wert z = 90°35’ gesetzt werden.

Desweiteren mufl bei Berechnungen mit der Sonne noch deren Radius be-
achtet werden. Die Koordinaten a und § haben fiir den Mittelpunkt der Sonne
Giiltigkeit. Die Sonne geht aber fiir uns auf oder unter, wenn der obere Rand
erscheint oder verschwindet. Ist dies der Fall, dann ist der Sonnenmittelpunkt
noch oder schon wieder um den Betrag des Radius unter dem Horizont.

Bei einem scheinbaren Sonnenradius von r = 16’ sind deshalb alle Auf- und
Untergangsberechnungen mit der Sonne (a und t) mit z = 90°35' + 16’ = 90°51’
auszufiihren.

Ist z = 90°51’, spricht man vom Beginn der Ddmmerung, der entsprechende
Stundenwinkel sei t.

Ist z = 96°30’, spricht man vom Ende der biirgerlichen Dammerung, der
Stundenwinkel der Sonne sei t;,. Das menschliche Empfinden besagt, daf es
jetzt dunkel ist. z = 108° definiert das Ende der astronomischen Didmmerung.
Der Stundenwinkel der Sonne sei t,. Jetzt kann mit der Langzeitbelichtung einer
Photoplatte begonnen werden. Es gilt:

Db =t, —t ( Dauer der biirgerlichen Dédmmerung),
Da =t, —t ( Dauer der astronomischen Dimmerung)
mit

—sin 51" — sin psin §

cost =
COS p cos §
—sin 6°30" — sinpsin o
cost, = ,
COS  cos &
—sin 18° — sin psin d
cost, =

COS  cos &
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3.2.7 Berechnung von Sonnenuhren

Die einzige Uhr, die die wahre Zeit anzeigt, ist die Sonnenuhr. Sonnenuhren wer-
den heute fast ausschliellich als Schmuckelemente an Hiusern, in Gérten oder
Parks verwendet. Die Konstruktion, d.h. die Berechnung der Lage des Schatten-
stabes und der Zifferblatteinteilung 148t sich mit den Mitteln der sphérischen
Trigonometrie durchfiihren.
Die Einteilung der Sonnenuhren in

a) Horizontaluhren,

b) Aquatorialuhren,

¢) Vertikaluhren

bezieht sich auf die Lage der Zifferblattebenen im Horizont, parallel zum
Aquator oder in einer Vertikalebene (Hauswand).

a) Horizontaluhr mit senkrechtem Schattenstab = Gnomon.
Es ist leicht einzusehen, daf} gilt:

ag = ag £ 180°
mit
ag = Azimut des Schattens,

ae = Azimut der Sonne.
ap wird berechnet mit:

cos ptandg — sinp costg

t(— =
cot(~ao) sin tg,
Diese Uhr ist sehr unpraktisch, da die Einteilung des Zifferblattes im Lauf des
Jahres mit der Sonnendeklination veréinderlich ist.

Zeigt bei einer Horizontaluhr der
Schattenstab dagegen zum Him-
melspol, gestalten sich die Ver-
hiltnisse bedeutend einfacher. In
dem rechtwinkligen sphirischen
Dreieck NPS kann nach Neper

geschrieben werden: Schatten ~

¢

tanag = sinptantg.

horizontale
Zifferblattebene

Der Schatten des Stabes fillt immer in die jeweilige Stundenkreisebene. Die
Zifferblatteinteilung ist fiir jede Jahreszeit giiltig, da sie unabhéngig von der
Sonnendeklination ist.
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b) Aquatorialuhr mit zum Pol gerichtetem Schattenstab.
Diese Uhr hat die einfachste Konstruktion.

Himmels-

—:(::é nordpol

Die Zifferblattebene ist meist als
Halbring ausgebildet.

Darauf sind die Stundenmarken
in Abstinden von 1/24tel des
Ringumfanges gleichmiBig ange-
ordnet.

c¢) Vertikaluhr mit zum Pol gerichtetem Schattenstab.
Die vertikale Sonnenuhr wird an einer Hauswand oder an einer sonstigen verti-
kalen ebenen Fliche angebracht.

Im Gegensatz zur Horizontaluhr
gibt es eine unendliche Vielfalt
von Moglichkeiten fiir eine Verti-
kaluhr, da die Zifferblattebene in
beliebigem Azimut stehen kann.
In die Berechnung der Ziffer-
blatteinteilung geht als weiterer
Parameter noch das Azimut a
der Hauswand ein.

a = Winkel zwischen der Senk-
rechten im Befestigungspunkt
des Schattenstabes und der Zif-
ferblatteinteilung fiir einen be-
stimmten Stundenwinkel.

Stundenkreis
der Sonne

Zifferblatt

Schatten

Die Sonne ist im nebenstehenden Bild vor der Zeichenebene zu denken. Sie
befindet sich an der 6stlichen Himmelshalbkugel.

Im sphérischen Dreieck ZHP wird im Punkt H der Hilfswinkel 5 eingefiihrt.
Jetzt lassen sich Sinussatz und Fiinfstiickebeziehungen anwenden:

sinpsina = —sintg cosp

und
sinncosa = costg sina — sin tg cosasin .
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Durch Division dieser beiden Gleichungen erhélt man:

sin t cos

tan o = — : -
sintg cosasinp — coste sina

und damit den gesuchten Winkel a.
Fiir den Fall einer Siiduhr (a = 90°, Hauswand steht genau in Ost-West-
Richtung), ergibt sich sehr einfach:

tanag = —tantg cos .

Den Berechnungen zu Vertikaluhren muf} immer eine geniigend genaue Bestim-
mung des Azimutes der Vertikalebene vorausgehen.
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