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Astrometric observations can, in principle, be used to detect gravitational waves. In this paper
we give a practical overview of the gravitational wave effects which can be expected specifically in
small-field astrometric data. Particular emphasis is placed on the differential effect between pairs of
sources within a finite field of view. We also present several general findings that are not restricted
to the small-field case. A detailed theoretical derivation of the general astrometric effect of a plane
gravitational wave is provided. Numerical simulations, which underline our theoretical findings, are
presented.

We find that small-field missions suffer from significant detrimental properties, largely because
their relatively small fields only allow the measurement of small differential effects which can be
expected to be almost totally absorbed by standard plate calibrations.
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I. INTRODUCTION

Over the past several years, we have witnessed a grow-
ing interest in designing space-based small-field astro-
metric telescopes of ultimate sub-µas accuracy and their
possible scientific applications (see e.g. [1–3]). Moreover,
the idea has emerged that even non-astrometric, imaging
space telescopes could be used to make high-precision as-
trometric measurements [4, 5]. On the other hand, space-
based global astrometry, like Gaia, has already shown
that it is able to deliver a remarkable observational ac-
curacy [6–8]. At the same time, with gravitational wave
(GW) astronomy now a routine reality [9–11], there is a
certain interest in also using astrometric measurements
to detect GW signals [12–15]. The effects of GWs on as-
trometric measurements have been known for a long time
[16–18].

While it has already been discussed in the literature
that all-sky astrometric missions like Gaia are, in prin-
ciple, sensitive to GWs [19, 20], a practical yet succinct
discussion for small-field missions is still lacking.

In this paper, we present a practical overview of the
GW effects that can be expected in small-field astrom-
etry. In Section II, we discuss various upper estimates
of the astrometric GW effect both for global astrome-
try and for small-field astrometry with a given field of
view (FoV) size. Section III contains the results from
numerical simulations which validate and illustrate the
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theoretical formulas. There, we also discuss the appear-
ance of the astrometric GW effects in a given small FoV.
A concluding discussion can be found in Section IV. Ap-
pendix A contains a concise theoretical derivation of the
astrometric GW effect from the basic principles. Several
important aspects of the effect are elucidated there.
In the whole paper, we will discuss GWs with an effec-

tively plane wavefront at the observer and at the observed
astrometric source. For all simulations, and discussions
of the maximum measurable signal, we use Eq. (A48), or,
if angles between sources are concerned, Eq. (A38). Fi-
nally, a note with respect to terminology: for the rest of
the paper, we will refer to the source of the gravitational
wave itself as “GW emitter(s)”, never as “source(s)”.
Conversely, the sources which we astrometrically observe
we refer to as “astrometric source(s)” or just “source(s)”.

II. MAXIMAL CHANGE OF THE ANGULAR
DISTANCE BETWEEN SOURCES DUE TO A

GW

In this Section, we use the theoretical formulation of
the astrometric GW effect given in Appendix A of [20]
to compute theoretical upper estimates of the magnitude
of the astrometric GW effect in various situations. Ap-
pendix A.1 of [20] gives the basic formulas for the effect,
while Appendix A.2 gives an alternative representation
of the formulas given in Appendix A.1, which is espe-
cially useful for the astrometric discussion of the effect.
Appendix A of this work contains a basic derivation of
the formulas from Appendix A.1 of [20].
Equation (A.11) of [20] gives an expression for the an-

gular variation of the observed position of a source due
to a GW. The components of the two-dimensional dis-
placement vector (δα∗, δδ) are given relative to the local
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coordinate system on the sphere attached to the undis-
turbed position of the source, represented by the local
dyad (eα, eδ).

One can show that the maximal change of the source
position √

(δα∗)2 + (δδ)2 ≤ ∆max sin θ, (1)

where θ is the angle between the source with coordinates
(α, δ) and the direction of GW propagation (αGW, δGW),

∆max = (2− e2)
−1/2

h/2 is the maximal astrometric ef-

fect, and h =
((
hc+

)2
+
(
hs+

)2
+
(
hc×

)2
+
(
hs×

)2)1/2

is

given by the strain and phase parameters of the GW as
in Eqs. (A.19)–(A.21) of [20]—see the reasoning in Ap-
pendix A.2 of [20]. Here, e is the eccentricity of the ellip-
tic astrometric signal caused by the GW. This parameter
is defined by Eq. (A.17) of [20] and depends only on the
strain and phase parameters of the GW. We note that
0 ≤ θ ≤ π and 0 ≤ sin θ ≤ 1. In all equations here, we
consider a linear model for the GW effect, so that terms
O(∆2

max) are always neglected.
The general discussion in [20] is relevant for abso-

lute astrometric observations like those of Gaia. How-
ever, for any kind of differential observations—that is,
observations of the angular distances between pairs of
sources—this discussion immediately gives an upper es-
timate of observable variations of the angular distance
due to a GW. We denote the undisturbed observable an-
gular distance between source A and source B as ψAB.
This is the angular distance in the absence of the GW
and can be computed from the unperturbed positions
(αi, δi), i = A,B, e.g. as cosψAB = sin δA sin δB +
cos δA cos δB cos(αB − αA). We denote the disturbed ob-
servable angular distance between these sources in the
presence of the GW as ψgw

AB. The observable change of
the angular distance, δψAB = ψgw

AB − ψAB, can obviously
be estimated as

|δψAB| ≤ ∆max (sin θA + sin θB) (2)

for a given GW with a known maximal astrometric effect
∆max and for any pair of sources. Here, θi are the angles
between the source i (i = A,B) and the direction of GW
propagation. This simply means that the differential ef-
fects cannot exceed the sum of the absolute effects for
the two involved sources. Equation (2) implies that

|δψAB| ≤ 2∆max , (3)

which gives the upper limit for the GW-induced changes
in angular separations of arbitrary pairs of sources.

While Eq. (2) is correct for any pair of sources, one
can derive a better estimate for source pairs with a max-
imal angular distance below a certain limit, ε, so that
ψAB ≤ ε. Here, we consider ε to be sufficiently small,
so that the effect of order ε2 can be neglected. Interest-
ingly, one can demonstrate that for arbitrarily small ε
the estimate given by Eq. (2) is almost reachable (this

happens when the center of the field of view coincides
with the direction of the GW propagation, or the oppo-
site direction). Nevertheless, Eq. (2) is, in most cases,
overly coarse and a considerably better estimate can be
derived.
The GW-disturbed positions read (αi + δαi, δi + δδi),

i = A,B, where δαi and δδi are given by Eq. (A.11) of
[20]. Using the standard formula for the angular distance
between two points and applying it to both the disturbed
and undisturbed source positions, we arrive at a first-
order approximation in ∆max (implying also first order
in δψAB):

δψAB = −(sinψAB)
−1

×
[
(cos δA sin δB − sin δA cos δB cos(αB − αA)) δδA

+ (sin δA cos δB − cos δA sin δB cos(αB − αA)) δδB

− cos δA cos δB sin(αB − αA) (δαB − δαA)
]
. (4)

Then, considering the variations to first order in ε, one
finds the upper estimate

|δψAB| ≤ ε∆max

×
[
1 +

√(
1− e2 sin2(2αr − ϕ)

)
(1− cos θr)

]
+O(ε2) .

(5)

Note that, since one has sinψAB = O(ε) in the denom-
inator of Eq. (4), the terms of second order in ε have
been considered in its numerator. Here, ϕ is the position
angle of the elliptic astrometric signal caused by the GW
defined by Eq. (A.18) of [20]. Furthermore, θr is the an-
gular distance between one of the sources, A or B, used
as the reference point with coordinates (αr, δr) and the
propagation direction of the GW

cos θr = sin δr sin δGW + cos δr cos δGW cos (αr − αGW)

(6)

and αr is the right ascension of the reference point in the
coordinate system in which the GW propagates toward
the north pole:cosαr cos δr

sinαr cos δr
sin δr

 = PT

cosαr cos δr
sinαr cos δr

sin δr

 , (7)

where PT is the transposed matrix P given by Eq. (A.10)
of [20]. Since Eq. (5) neglects terms quadratic in ε, the
reference point (αr, δr) can be formally taken as the co-
ordinates of the first source (αA, δA).
The upper estimate (5) cannot be improved for e = 0,

and e = 1, or when sin(2α − ϕ) = 0 for any value of e:
for a given GW with such parameters and for a given
(αA, δA) and ε, one can find a moment of time and a
position (αB, δB) for which |δψAB| is exactly given by
the right-hand side of Eq. (5). Expectedly, one can also
demonstrate that the estimate given by Eq. (5) is reached
for pairs with maximal allowed angular distance ψAB = ε.
For 0 < e < 1 and sin(2α − ϕ) ̸= 0, Eq. (5) cannot be

exactly attained and can, in principle, be improved. For
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the particular case of sin2(2α−ϕ) = 1 one can derive the
following reachable estimate:

|δψAB|sin2=1 ≤ ε∆max

√
1 + (e−2 − 1) (1− cos θr)2 ,

(8a)

and

|δψAB|sin2=1 ≤ ε∆max

√
1− e2 (2− cos θr), (8b)

where Eq. (8a) is valid in case of (e−2−1) (1−cos θr) ≤ 1,
while Eq. (8b) is valid otherwise. We note that Eqs. (8a)
and (8b) give exactly the same estimate for |δψAB| as
Eq. (5) for e = 0 and e = 1 (and sin2(2α − ϕ) = 1). A
combined analytical and numerical investigation shows
that Eq. (5) overestimates the real maximal value of
|δψAB| by at most a factor of 1.4. Even if a better general
estimate could be given as a complicated function of e,
cos θr as well as the sine and cosine of 2αr −ϕ, we prefer
to use Eq. (5) because of its simplicity.

We note that one can further simplify Eq. (5) as

|δψAB| ≤ ε∆max (2− cos θr) (9)

to make it valid for any eccentricity e (this is exactly
Eq. (5) for e = 0) and, finally, as

|δψAB| ≤ 3ε∆max . (10)

This gives the upper estimate of the GW-induced varia-
tion of the angular distance for any e and for any position
on the sky. Since ε is considered to be sufficiently small
(in principle, ε≪ 1) this latter estimate does not contra-
dict Eq. (3). Both Eq. (9) and Eq. (10) are reachable in
the respective parameter space.

Finally, we point out two interesting aspects of |δψAB|.
First, since the absolute astrometric effect of a GW is pro-
portional to sin θ (e.g. it is maximal at the angular dis-
tance of θ = π/2 from the GW propagation direction) one
could, naively, expect similar dependence of the differen-
tial effect δψAB also for source pairs with small angular
distance ε. The estimate given by Eq. (2) seems to sup-
port this expectation. However, we see from Eq. (9) that
the maximal value of |δψAB| is proportional to 2− cos θ.
This means that the maximal differential effect is, in fact,
minimal in the direction of the GW propagation, where
it reaches ε∆max. It then continuously increases up to
3ε∆max towards the direction of the GW source (θ = π).
This is also illustrated by Figure 2.

Another remarkable aspect of |δψAB| is the existence of
a flower-like pattern with four “petals” for GWs with e >
0, as one can see in Figure 1. This pattern is related to
the term in Eq. (5) that depends on αA. For four values
of αA for which sin(2αA−ϕ) = 0 the maximal differential
effect is given by Eq. (9), while for the other values of the
sine the maxima of |δψAB| for θ = π become shallower

and reach their minimal values ε∆max (1+2
√
1− e2) for

sin(2αA−ϕ) = ±1. We note that for e = 1 and sin(2αA−
ϕ) = ±1 one gets |δψAB| ≤ ε∆max independently of θ.

This four-petalled pattern in the differential astromet-
ric effect has an important consequence for the choice
of the reference point in Eq. (5). The linear approxi-
mation in ε used in Eq. (5) is sufficient when the ef-
fect is not changing much on the scale of ϵ across the
sky. However, if the sources are located close to the
GW source, the four-petalled pattern shown in the two
lower plots of Fig. 1 changes very quickly, and the factor(
1− e2 sin2(2α− ϕ)

)1/2
that is computed for the refer-

ence point (αr, δr) for r = A in Eq. (5) can be signifi-
cantly different when computed for the other point with
r = B. Our numerical studies show that in some ex-
treme cases, when the distances of both sources from the
GW source are comparable to ε, and if (αA, δA) is chosen
for (αr, δr) as discussed above, the estimate from Eq. (5)
can give a slightly lower value than the actual |δψAB|. To
cover these cases, the reference point (αr, δr) should be
chosen to be either (αA, δA) or (αB, δB), whichever gives

the smaller value of
(
1− e2 sin2(2α− ϕ)

)1/2
in Eq. (5).

Eq. (5) gives a reasonable upper estimate for pairs of
sources with maximal angular distance ε. For all possible
pairs of sources within a round field of view with angular
diameter ϱ, Eq. (5) remains valid for ε = ϱ. Similarly,
for all pairs of sources within a square field of view of
angular size ϱ× ϱ, Eq. (5) is valid for ε =

√
2 ϱ.

Overall, we conclude that the differential effect δψAB

in the angular distance between two sources remains, as
expected, of the same order of magnitude as the absolute
effect discussed e.g. by [12, 20]: |δψAB| ≤ 2∆max for
arbitrary pairs of stars. However, for limited FoVs the
differential effect is limited to |δψAB| ≤ 3ε∆max for any
pairs of sources at the angular distance of ε or lower.
The authors of [21] and [22] predicted an increasingly

large astrometric effect from GWs at small separations.
This is not confirmed by our analysis. The technical rea-
sons for the flaw in their work are described in the Ap-
pendix (see also [23], where this flaw is discussed as well).

III. NUMERICAL SIMULATIONS

In order to verify and visualize the findings from Sec-
tion II we conducted a series of numerical simulations in
which we explicitly compute the differential astrometric
GW effect δψAB between two stars A and B for specific
angular distances.
As the theoretical discussion above suggests, and our

numerical simulations confirm, the particular values of
the maximum possible angular separation, ε, of source
pairs, as well as the maximal GW amplitude, ∆max, can
be chosen arbitrarily as long as they remain sufficiently
small: the effects are always proportional to ε∆max. In
particular, this remains true unless we consider very large
ε of many degrees, for which the second-order effects ne-
glected in Section II become numerically important. To
be realistic for small-field astrometry, for all simulations,
we used ε = 0.1◦ and ∆max = 10mas ≈ 4.8× 10−8. The
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values are small enough that second-order effects can be
neglected, and at the same time, the magnitude of the
effect is large enough so that numerical noise is not an is-
sue. It is clear that in reality ∆max will certainly be much
smaller, most likely in the region of nano-arcseconds and
below.

All results presented below are given as a normalized
angular change, F = δψAB/(ε∆max). In the linear ap-
proximation, which we consider, the value of F is in-
dependent of ε and ∆max. Conversely, the correspond-
ing magnitude of the angular change can be restored as
δψAB = F ε∆max for a particular FoV size ε and a GW
with a maximal astrometric effect of ∆max.

A. Basic statistics of a typical differential signal

To get a first coarse overview, we computed some
statistics of F as one might expect from a random se-
lection of stars and GW parameters. This, in a way,
also reflects our lack of a priori knowledge about specific
GW emitters. To this end, we simulated 109 sets of ran-
domly selected GW parameters. After random selection,
the strain parameters were always scaled in such a way
that ∆max remained constant. For each GW, we selected
100 random source pairs across the celestial sphere; each
source pair had a randomly selected angular separation of
0 < ψAB ≤ ε and a random orientation. For each of the
pairs, we computed the change in angular distance due to
a GW at a random time. This gives 108 overall samples
of F , the basic statistics of which are given in Table I.
First, we see that our simulations confirm that |F| ≤ 3 as
suggested by Eq. (10). We also see that a typical value of
|F| is 0.18, which means that a typical value of |δψAB| in
the random small-field astrometric observations is about
0.18 ε∆max. For a FoV with, e.g., ε = 0.1◦, this implies
that a typical sensitivity of only 0.03% of the already mi-
nuscule ∆max would be necessary to detect such a typical
signal.

Table I. Statistics of normalized absolute angular changes F
from the simulated data using random star pairs and random
GW parameters. The values are, from top to bottom, the
mean, the standard deviation, and a series of quantiles: the
minimum, the 0.1, 0.5, and 0.9 quantiles and the maximum
of the absolute value of F .

Parameter Value

mean (|F|) 0.30

std (F) 0.46

min (|F|) 0.00

Q0.1 (|F|) 0.02

median (|F|) 0.18

Q0.9 (|F|) 0.76

max (|F|) 2.98

B. Spatial distribution of the differential
astrometric GW signal

Next, we consider the spatial distribution of the vari-
ations in angular distances |δψAB| for a given GW. The
spatial distribution of the signal is especially relevant for
small-field astrometry, given that only a limited number
of sky regions can typically be observed. If, for instance,
a GW emitter candidate is identified beforehand, obser-
vations might be optimally directed towards the area of
the sky with the highest probability of detecting the GW
from this emitter.
We note that the propagation direction of the GW can

be chosen arbitrarily, since any other GW direction is
equivalent to a different orientation of the coordinate
system. Since we are looking for the maximal values
of |δψAB| over an extended period of time, the GW fre-
quency can also be selected arbitrarily, provided that the
tested time interval covers at least one GW period. Thus,
only four strain parameters are important in this study.
As shown in the Appendix A of [20], the magnitude of
the astrometric GW effect can alternatively be described
by the maximal astrometric effect ∆max, the eccentricity
e, and the position angle ϕ of the ellipse representing the
astrometric GW signal.
One can show that a change of the position angle ϕ is

equivalent to a rotation of the reference system around
the propagation direction p of the GW.
∆max can also be fixed to a constant for the reasons

explained above, and it then remains to examine the dis-
tributions for various values of e.
To investigate this, we simulated the signals from three

GWs with eccentricities e equal to 0, 0.7, and 1. For
each GW, we generated 108 randomly selected and ori-
ented source pairs, each possessing a constant (unper-
turbed) angular separation ψAB = ε. We deliberately
chose ψAB to be the maximum pair separation, ε, since
we are mainly interested in the maximal angular change
observable in a given area of the sky. Subsequently, for
each source pair, we computed the change in angular sep-
aration δψAB induced by the GW at randomly selected
observation times (over a time span considerably larger
than the GW period). These data were then used to visu-
alize the sky distribution of the maximal value of |δψAB|,
and to validate the dependence of this quantity on θr and
αr as in Eqs. (5) and (9).
Figures 1 and 2 show the results of the simulations.

The sky maps in Fig. 1 show the maximal value of |F|
per HEALPix [24] on the sky, for all simulated source
pairs falling into the respective pixel. These maps clearly
illustrate the expected dependence on θr and αr, which
form the four-petalled pattern on the sky for e > 0. The
respective scatter plots of simulated angular changes over
αr in the right column of Fig. 1 further elucidate the
relationship with e. It is important to note that these
scatter plots also unambiguously demonstrate that the
actual measured angular change of the source pair can be
zero at any αr because the change in angular separation
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due to a GW depends on the orientation of the source
pair. The differential effect can be zero even at αr, where
a maximum in |F| is reached.

Figure 2 illustrates the dependence of the simulated
angular changes on θr, the angular distance to the GW
propagation direction. This result agrees with Eq. 9 for
the maximum values. We note that in this case, too,
the actual measured angular change depends on the ori-
entation of the source pair, and it can be zero for any
θr.

C. Differential astrometric GW signal inside a FoV

While considering the change in the angular distance
of individual pairs of sources is important, it provides
limited insight into the distribution of the differential as-
trometric GW signal over the area of a FoV. To eluci-
date that distribution, we simulated a GW signal using a
purely +-polarized GW, sampled at the time of maximal
magnitude inside a FoV for different points on the sky.
This GW configuration is also representative of the ×-
polarisation, although the specific examples would look
different, the conclusions are the same.

Figure 3 shows four examples of these simulations.
Each row of plots corresponds to a FoV area at a differ-
ent location on the sky. In this way, the variation of the
astrometric GW effect depending on the position can be
seen. The plots again show normalized values of both ab-
solute (right column) and differential (left column) GW
effect.

A number of effects can be seen in Fig. 3. Generally,
the absolute astrometric GW effect inside a FoV appears
basically uniform at first glance, as can be seen in the left
column. An exception is observed in the top-left panel of
Fig. 3, where the FoV is precisely directed towards the
GW emitter (α = 0◦; θ = 180◦).

At this specific location, the overall GW-induced ef-
fect is minimal (see e.g. Eq. 1), but lacks any dominant
overall shift. Consequently, the GW signal in this case
is entirely differential, as evident when compared to its
corresponding plot in the right column. A similar pic-
ture would be visible for the opposite point in the sky, in
the GW propagation direction (α = 0◦; θ = 0◦). Even a
modest 5◦ displacement of the FoV from the GW emitter,
as shown in the second row with (α = 0◦; θ = 175◦), re-
sults in all absolute positional changes being overwhelm-
ingly dominated by an average shift. The differential
effect, however, is strongest there, inside one of the four
petals of the patterns discussed before. At other areas on
the sky (two bottom rows) the overall shift changes di-
rection and the differential changes are generally weaker.
Notably, at the point (α = 90◦; θ = 90◦) (row 3 in
Fig. 3), where the absolute GW effect is maximal, the
differential GW effect is significantly smaller compared
to, e.g., the case of (α = 0◦; θ = 175◦) (row 2 in Fig. 3),
where the maximum absolute GW effect is only 8% of
the maximal possible for this GW. A further effect is dis-

cernible in the bottom row, with the randomly selected
center position of (α = 305.7◦; θ = 133.4◦), where the
differential GW effect in the FoV exhibits a significant
rotational component. This leads to an interesting conse-
quence that the angular changes compared to the center
are negligible (note the relatively large dark blue arrows).
Angular separation between the center and other sources
would only change in the two corners of the FoV, where a
linear component in the differential shifts is present. Such
rotation-like and shear-like, differential patterns exist at
many positions on the sky.
We stress that the differential GW effects shown in

the right column of Fig. 3 are computed with respect
to the central point of the FoV. If the reference point
is selected differently (e.g. in one of the FoV’s cor-
ners), the resulting plots can appear significantly dif-
ferent, and the maximum absolute normalized angular
change, max(|F|), may vary considerably.

0 30 60 90 120 150 180
r [deg]

0

1

2

3

|
|

Figure 2. The normalized changes of the angular distance
from the numerical simulations, |F|, as a function of θr. This
plot is valid for all eccentricities e. The differences between
the three cases shown in Fig. 1 are negligible. The black line
represents the value given by Eq. 9.

D. GW-induced astrometric signal and the plate
solutions for small-field astrometry

Standard plate corrections, like linear affine plate mod-
els (e.g. translation, rotation, scale, and shear) or poly-
nomial corrections, must certainly be applied for small-
field astrometric observations. For high-accuracy astro-
metric solutions, the correction parameters may even
need to be time dependent. Fig. 3 highlights a crucial
finding in this respect: the variation of the differential
effect over the FoV is very smooth, and even very sim-
ple plate corrections, like a quadratic correction in each
axis, would absorb most of the differential effect in the
FoV. In this way, the standard small-field calibrations
will most likely dramatically reduce the GW imprint on
the astrometric results.
To test this, we took the simulated differential GW

effects from Fig. 3 and applied a basic plate correction.
We fitted 2D bivariate Legendre polynomials up to or-
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Figure 1. Resulting normalized angular changes represented by |F| from numerical simulations using random star pairs and
three GWs with fixed parameters. The top row corresponds to a GW signal with an eccentricity of e = 0, the middle row to
e = 0.7, and the bottom row to e = 1. The left column presents sky maps showing the maximum absolute normalized change
of angular distance, max (|F|), per HEALPix of level 6. The small white dot in the sky maps marks the position of the GW
emitter. In the right column, all simulated normalized angular changes are displayed as a function of αr. A black line in these
plots marks the maximal achievable |F| according to Eq. (2). The sky maps use the Hammer-Aitoff projection in equatorial
coordinates, with α = δ = 0 at the center, north up, and α increasing from right to left.

der three for each component of the shift (separately in
both coordinates) and subtracted the result from the dif-
ferential effect shown in Fig. 3. The maximal differen-
tial effect for the example with the highest differential
magnitude, with (α = 0◦; θ = 175◦), decreased by a
factor of more than 20 000, leaving a completely neg-
ligible residual signal. For (α = 90◦; θ = 90◦) and
(α = 305.7◦; θ = 133.4◦) the differential GW signal is
virtually completely absorbed by the calibration polyno-
mials. Even in the exact direction of the GW emitter
(α = 0◦; θ = 180◦) a simple third-order correction at-
tenuates the differential signal by more than a factor of
2.

IV. CONCLUDING REMARKS

In this article, we investigated the effect of the as-
trometric GW signal in small-field astrometry. The as-
trometric effect generated by GWs will be tiny in any
case. A detection of even the strongest conceivable sig-
nals will require instruments at the absolute forefront of
technology. Practical detections of GWs with astrome-
try should hence rely on long series of observations and
a large number of observed sources. Given the relatively
small FoV (ε) and the correspondingly small number of
sources observed by such instruments, the prospects for
detecting GWs with small-field astrometry projects are
rather bleak. For realistic FoVs (e.g., up to some degrees
in extent), the measurable effects introduced by GWs are
tiny compared to the magnitude of absolute GW effects,
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Figure 3. Vector field visualizations of the absolute (left column) and differential (right column) astrometric GW effects within
an (ε× ε)-sized FoV, for different positions on the sky relative to the GW propagation direction, as indicated at the top of each
plot with the (α, θ) of the center. In the left column, the absolute GW effect is plotted, i.e., the displacement of every point
due to the GW, normalized to the maximum shift ∆max for this GW. The gray arrows in this column are scaled independently
to optimize visibility. At the top of each plot in this column, the maximum overall displacement, normalized to the maximal
GW effect

√
(δα∗)2 + (δδ)2 in terms of ∆max, is indicated. The right column shows the differential GW effect referenced

to the central point with (∆α∗,∆δ) = (0, 0). The arrow length in this column is determined by the difference between the
displacement at the point and the displacement at the center. The colors in the plots indicate the normalized angular change
|F| with respect to the center point. The asterisk in ∆α∗ means that the difference in right ascension is a true arc, thus:
∆α∗ ≡ (∆α) cos δ. All plots have been created using the gnomonic projection. It should be noted that all arrow lengths are
significantly exaggerated for illustrative purposes compared to typical GW signal magnitudes. A detailed discussion can be
found in the text.
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even over extended periods of time. This is the funda-
mental difference from global astrometry, such as Gaia
[25] and GaiaNIR [26], where angular changes of pairs
of stars separated by a large angle (e.g. the basic angle
of 106.5◦ for Gaia) are observed. With such a large an-
gular distance, a significant number of observations will
contain a signal equivalent to the full magnitude of the
absolute GW effect. Since global scanning astrometry
like Gaia observes the whole sky multiple times, billions
of observed objects and long duration of observations can
be used, increasing the chances of detecting GWs.
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APPENDICES

Appendix A: Theoretical derivation of astrometric
effects of a plane gravitational wave

In this Appendix, we provide a detailed theoretical dis-
cussion of the calculation of astrometric observable effects
that are influenced by a gravitational wave. As before, we
restrict the discussion to a plane monochromatic GW. In
line with the notation used in Sect. II we denote the ob-
servable angle between two incident light rays originating
from sources A and B in the presence of a GW as ψgw

AB.
As is well known, this angle can be computed in different
ways within the framework of linear gravity used here.
A standard way is to project the null tangent vectors to
the two light rays at the moment of observation into the
rest-space of the observer in a suitably chosen coordinate
system, with a well-defined space-time metric tensor em-
ployed to compute ψgw

AB by means of scalar products (see
below).

In the tetrad formalism, these null tangent vectors are
projected onto the co-moving tetrad system of the ob-
server by means of the full metric tensor, and ψgw

AB is
computed with the Euclidean metric in the observer’s
3-space.
If the observer has the possibility to operationally re-

alize such co-moving tetrads (e.g., by means of some me-
chanical structure), then astrometric observables involv-
ing a single light ray can be defined (e.g., [20]).
In addition, our derivations of the so-called source

terms as well as our treatment of a moving observer might
be of general interest. To the best of our knowledge, these
issues have not been considered elsewhere in such detail.
Below we use fairly standard notations. Greek indices

α, β, . . . running from 0 to 3 indicate all four space-time
components of the corresponding variable. Latin indices
a, b, . . . run from 1 to 3 and refer to three spatial compo-
nents of the corresponding variable. The Kronecker delta
is δij = diag(1, 1, 1). We use Einstein’s summation con-
vention for both types of indices, independent of the posi-
tion of repeated indices: e.g., xi xi ≡ (x1)2+(x2)2+(x3)2.
A dot over any quantity designates the total derivative
with respect to the coordinate time of the correspond-

ing reference system: e.g., ȧ =
da

dt
. The 3-dimensional

coordinate quantities (“3-vectors”) referred to the spa-
tial axes of the corresponding reference system are set
in boldface: a = ai. The absolute value (Euclidean
norm) of a “3-vector” a is denoted as |a| and can be
computed as |a| = (a1 a1 + a2 a2 + a3 a3)1/2. The scalar
product of any two “3-vectors” a and b with respect to
the Euclidean metric δij is denoted by a · b and can
be computed as a · b = δij a

i bj = ai bi. The vector
product of any two “3-vectors” a and b is denoted by

a×b and can be computed as (a× b)
i
= εijk a

j bk, where
εijk = (i − j)(j − k)(k − i)/2 is the fully antisymmetric
Levi-Civita symbol.

1. The metric tensor

The calculations will be performed in the framework
of linear gravity, using harmonic coordinates xµ =(
ct, x1, x2, x3

)
, where, in the space-time region of inter-

est, the metric tensor is of the form

gαβ = ηαβ + hαβ , with |hαβ | ≪ 1 , (A1)

ηαβ = diag (−1,+1,+1,+1) and terms of order |hαβ |2
will be neglected. In (harmonic) TT-coordinates, where
h00 = h0i = 0, hij is assumed to be of the form [19, 20]:

hij (t,x) = Cij cosΦ + Sij sinΦ , (A2)

with the phase

Φ =
2πν

c
(ct− p · x) , (A3)

where ν denotes the frequency of the GW and p the Eu-
clidean unit vector (pipi = 1) in the GW’s propagation
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direction. The tensorial coefficients in (A2) are given by
Cij = p+ijh

+
c + p×ijh

×
c and Sij = p+ijh

+
s + p×ijh

×
s , where h

+
c ,

h+s , h
×
c , h

×
s are four independent strain parameters. The

matrices p+ij and p×ij can be written in the form

p+ij =
(
Pe+ PT

)
ij

and p×ij =
(
Pe× PT

)
ij

(A4)

with

e+ij =

+1 0 0

0 −1 0

0 0 0

 and e×ij =

 0 +1 0

+1 0 0

0 0 0

 . (A5)

Here P is the rotational matrix between the reference
system in which the gravitational wave propagates in the
z-direction and the coordinate system in which the direc-
tion of gravitational wave propagation is p [19, 20]. The
+ and × parts of hij correspond to the two polarization
modes of the GW.

2. The geodesic equation and the null condition

In the following, we will first consider a single light ray
emitted at the event (t0,x0) by some light source (star).
The geodesic equation and the null condition (ds2 = 0)

for light rays in linear gravity have been given in the
literature, e.g., [28–31]. In TT-gauge, using coordinate
time t as parameter, they take the form

ẍi (t)

c2
= −hij,0 µj +

1

2
hjk,i µ

jµk − hij,k µ
jµk

+
1

2
hjk,0 µ

iµjµk , (A6)

|ẋ (t)|
c

= 1− 1

2
hij µ

iµj , (A7)

where the dot indicates the time derivative, a comma
indicates a partial derivative (f,i ≡ ∂f/∂xi and f,0 ≡
c−1 ∂f/∂t) and

µ =
ẋ (t)

|ẋ (t)|

∣∣∣∣∣
t=t0

(A8)

is an Euclidean unit vector (µiµi = 1) that points in
the spatial coordinate direction of the light ray at the
moment of emission.

The solution of the homogeneous equation, ẍi (t) = 0,
is given by the ’unperturbed light ray’ (e.g., Eq. (C24) in
[31]),

xN (t) = x0 + c (t− t0)µ . (A9)

Note, that the Euclidean ’tangent vector’ µ is a free
parameter so far. It will be chosen later so that the
perturbed light ray goes through the event of observa-
tion (t1,x1). Formally, this choice then shows first-order
terms explicitly

a. The first integration of geodesic equation

The function ẋi(t) is obtained by integrating the
geodesic equation (A6) over the time coordinate from t0
to t > t0 along the unperturbed light ray, i.e., by writ-
ing x = xN(t) in (A2) and in particular in the phase Φ,
which takes the form

Φ(t) = ΦN(t) = 2πν
(
t− c−1 p · xN(t)

)
= ΦN(t0) + 2πν (1− p · µ) (t− t0) . (A10)

In the special case where µ = p, the phase Φ(t) is con-
stant along the light ray, and the gravitational wave, due
to its transversal character, does not influence the prop-
agation of the light-ray. In the following, we will as-
sume that µ ̸= p, but the limit µ → p is discussed after
Eq. (A18) below. The integrands are then pure functions
of t and one gets

ẋi(t)

c
=
ẋi(t0)

c
+

∆ẋi(t, t0)

c
, (A11)

where

ẋi(t0)

c
= µi − 1

2
hjk(t0,x0)µ

j µk µi (A12)

that follows from the null condition (A7) and

∆ẋi(t, t0)

c
= c

t∫
t0

dt
ẍi (t)

c2

=
∆ẋi(t)

c
− ∆ẋi(t0)

c
(A13)

and (here and below xN = xN(t) with the corresponding
time argument)

∆ẋi(t)

c
= +

1

2
hjk(t,xN)µ

j µk µi − pi

1− p · µ
− hij(t,xN)µ

j .

(A14)

b. The second integration of geodesic equation

Considering the result (A11) and the initial condition
xi (t0) = xi0 the second integration leads to

xi (t) = xi0 + c (t− t0)µ
i

− 1

2
c (t− t0)hjk(t0,x0)µ

j µk µi +∆xi (t, t0) ,

(A15)

where

∆xi (t, t0) = c

t∫
t0

dt

(
∆ẋi (t)

c
− ∆ẋi(t0)

c

)

= ∆xi (t)−∆xi (t0)− c (t− t0)
∆ẋi (t0)

c
. (A16)
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The term ∆xi(t) can formally be written in the form

∆xi (t) = − λ

2π

1

1− p · µ

×
[
1

2
hjk(t,xN)µ

j µk µi − pi

1− p · µ
− hij(t,xN)µ

j

]
,

(A17)

hij(t,xN) = −Cij sinΦN + Sij cosΦN . (A18)

Here λ = c/ν is the wavelength of the GW. We note that,
by using Cijp

j = Sijp
j = 0, one can see that ∆ẋi(t) for

any t in Eq. (A14) tends to zero in the case µ → p even
though the denominator with 1 − p · µ itself tends to
zero. The situation is trickier for ∆xi (t) in Eq. (A17)
which diverges for µ → p. However, as one can see from
Eq. (A10) the phase difference ΦN(t)−ΦN(t0) for a given
2πν (t − t0) tends to zero when µ → p. This allows one
to see that ∆xi (t)−∆xi (t0) in Eq. (A16) tends to zero
when µ tends to p.

3. The boundary value problem

In the previous Sections, we have solved the initial
value problem for a single light ray that is emitted from
x0, at coordinate time t0, in a direction given by the
Euclidean 3-vector µ from (A8). Now we imagine an ob-
server that observes this light ray at coordinate position
x1 at some coordinate time t1:

x1 = x (t)

∣∣∣∣
t=t1

. (A19)

We note that while x1 can be chosen arbitrarily and,
given x0 and t0, defines µ, the moment of time t1 is
itself defined by x0, x1, µ, t0 and the metric tensor.
Inserting (A19) into the equation for the light trajec-

tory (A15), after some rewriting, leads to the relation

µ = k − 1

R
k ×

([
∆x(t1)−∆x(t0)

]
× k

)
+ k ×

(
∆ẋ(t0)

c
× k

)
, (A20)

where

k =
x1 − x0

|x1 − x0|
(A21)

is the Euclidean spatial unit vector (kiki = 1) that points
from the emission point to the point of observation, and
R = |x1−x0| is the Euclidean spatial coordinate distance
between the light source and the observer.

By inserting (A20) into (A11) one obtains

ẋ(t1)

c
= k +

∆ẋ(t1)

c
− 1

R
k ×

([
∆x(t1)−∆x(t0)

]
× k

)
.

(A22)

The part of the 1/R-term with ∆x(t0) depends on
the GW-field at the source and is often called “source

term”. Effectively, the terms with ∆x in Eq. (A22) are
proportional to λ/R. Considering GWs with periods
PGW = 1/ν < 30 years (see [20] for a discussion) we
have λ < 9.2 pc. Except for observations of the relatively
small number of nearby stars within a distance of e.g.
100 pc, we have λ/R <∼ 0.1.
We see two lines of argument for why the λ/R terms

can be neglected. First, normally we are interested in
the case where a large number of astrometric sources are
observed. In this case, the terms proportional to λ/R are
not correlated with each other for different stars. More-
over, for most of the stars these terms cannot be com-
puted with sufficient accuracy, because the distances are
not known so precisely, even in the Gaia era. There-
fore, as is also often argued in the literature, those terms
can be considered as an additional stochastic noise in the
data. The second line of argument is related to the mag-
nitude of the λ/R terms for individual observations. For
λ/R <∼ 0.1 one can see that the term ∆ẋ(t) dominates
the signal as soon as the overall GW effect is comparable
to ∆max introduced in [20]. The λ/R terms can become
comparable to, or even larger than, the effect of ∆ẋ(t)
only in cases where the overall GW effect is negligibly
small. However, if astrometric observations of nearby
stars such as the α Centauri system are used, the λ/R
term may be of interest.
In the following we will neglect this term and continue

with the following first-order expression:

ẋ (t1)

c
= k +

∆ẋ (t1)

c
, (A23)

where

∆ẋi (t1)

c
=

1

2
hjk (t1,x1) k

j kk
ki − pi

1− p · k
− hij (t1,x1) k

j .

(A24)

4. The worldline of an observer

In any realistic observational setup (like e.g., Gaia or
GaiaNIR) the observer (satellite) will undergo a com-
plex motion described by some ephemeris in a suitably
chosen coordinate system. Because of aberration, the
problem of a moving observer is by no means academic
for the central problem discussed here. Accordingly, we
consider an observer in TT coordinates with worldline
xµobs (τ), where τ is the observer’s proper time related
to the fundamental length element ds along their world-
line. For the construction of astrometric observables for
such an observer, one needs the observer’s (normalized)
four-velocity

uµ =
1

c

dxµobs(τ)

dτ
(A25)

with gµν u
µ uν = −1. Effects of the observer’s motion

will now be considered with v being the observer’s TT
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coordinate velocity. The normalized 4-velocity is then
given by

uα = γh (+1 , βi) , (A26)

where βi = vi/c, vi = dxiobs/dt is the coordinate velocity
of observer, and

γh = (1− β2 − hijβ
iβj)−1/2 . (A27)

5. The observed angle between two incident light
rays

The well-known formula for the angle ψgw
AB between two

incident light rays (A and B) as measured by an observer
reads:

cosψgw
AB = gαβ

l
α

A∣∣lA∣∣ l
β

B∣∣lB∣∣ , (A28)

where the quantities of the right-hand side refer to the
event of observation (t1,x1). l

α
is the tangent null vector

to the light trajectory A or B, projected into the rest-
space of the observer and∣∣ l ∣∣ = (

gµν l
µ
l
ν
)1/2

. (A29)

For our purposes it is sufficient to parametrize a light
trajectory with coordinate time t. Then, the null tangent
vector to a light ray takes the form

lα =
1

c

dxα

dt
=

(
1,

ẋ (t)

c

)
, (A30)

where ẋ (t) is given by (A23).

The projected tangent vector l
α
is then given by

l
α
= Pα

β l
β , (A31)

where

Pα
β = δαβ + gβγu

α uγ (A32)

projects vectors into the rest-space of the observer or-
thogonal to his four velocity uα. Then

l
α
= lα − E uα , (A33)

where

E = −gµν lµ uν = |lµ uµ| . (A34)

The four-vector in (A33) is space-like and one finds for
the norm∣∣ l ∣∣ = E = γh

(
1− k · β − 1

2
hjkk

jkk
β · k − β · p
1− p · k

)
.

(A35)

We finally obtain (η = 1/E)

l̄ α∣∣ l ∣∣ =
(
η − γh, η

ẋ

c
− γhβ

)
. (A36)

With this expression, applied to the two light rays, A
and B, and the scalar product taken with the space-time
metric as shown in Eq. (A28) one obtains cosψgw

AB as seen
by the observer with coordinate velocity vi and located
at x1 at t = t1. As we have neglected the source terms
in the right-hand side of (A28) is completely determined
by the event of observation.
To compare our formulation with those existing al-

ready in the literature we derive here the explicit formula
for the case of an observer at rest in our coordinate sys-
tem, where β = 0 and γh = 1, so that the observer’s
four-velocity reads uµ = (1, 0, 0, 0). For this special case
we get E = 1 and

l
i∣∣ l ∣∣ = ki +

1

2
hjk k

j kk
ki − pi

1− p · k
− hij k

j . (A37)

Note, that the time-component vanishes here (l
0
= 0).

By using this relation in Eq. (A28) for our two light rays
A and B, we get our final result for the observed angle
between these two light rays in the form:

cosψgw
AB = kA · kB

+
1

2
hjk

[
kjAk

k
A

kA · kB − kB · p
1− kA · p

+ kjBk
k
B

kA · kB − kA · p
1− kB · p

]
−hij kiA k

j
B , (A38)

where the right-hand side refers to the event of observa-
tion. From (A38) one sees that in the limit when two
sources A and B get closer and closer to each other one
has

lim
A→B

cosψgw
AB = lim

A→B
kA · kB = 1 (A39)

as one can expect from a continuous vector field of the
astrometric GW signal [12, 19, 20]. One can see that the
same limit holds true also for a moving observer.

6. The observed angle ψgw
AB in the tetrad formalism

The angle ψgw
AB in Eq. (A28) represents an observable

that, theoretically, is described by a scalar, i.e., a co-
ordinate independent quantity. The quantities on the
right-hand side of (A28) have been expressed in terms of
tensor components with respect to the TT coordinates
at the event of observation.
In the context of our problem, local proper coordinates

are often employed that have a direct physical mean-
ing. Such coordinates are usually constructed as tetrad-
induced quantities, e.g., [32–34]. These tetrads form a set
of four orthonormal basis vectors, eµ(α), that act as tan-

gent vectors to the local coordinate lines. The indices (α)
label the tetrad components, while the indices µ are ten-
sor indices. These tetrads are defined along the worldline
xµobs (τ) of the observer (defining the origin of local co-
ordinates), and obey the orthonormality condition (e.g.,
[28, 32, 35] and more specifically [36, 37]):

gµν e
µ
(α) e

ν
(β) = ηαβ . (A40)
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The zeroth time-like tetrad vector eµ(0) is chosen as nor-

malized 4-velocity of the observer

eµ(0) = uµ , (A41)

so that the vectors eµ(i), i = 1, 2, 3 span the 3-space of the

observer at a certain event on the worldline xµobs (τ) of
the observer.

For an arbitrary vector Aµ on the observer’s worldline,
we can then write

Aµ = A(α)eµ(α) (A42)

and

gµνA
µeν(β) = ηαβA

(α) . (A43)

Considering two such vectors Aµ and Bν one gets

gµνA
µBν = ηαβA

(α)B(β) . (A44)

We may assume that in high-precision astrometric satel-
lite missions the “observer” has the possibility to oper-
ationally realize such space-like basic vectors (by means
of “quasi-rigid” mechanical structures). The tetrad for-
malism can be used to compute the observables in as-
trometry in several different ways (see an overview in
[37]). Here, we prefer the following approach. For a
tangent vector to some light ray projected into the rest
space of an observer, l

α
as in Eq. (A31), its tetrad com-

ponents are l
(0)

= 0 and l
(i)

= l(i) (since l(i) lies in in
the observer’s instantaneous 3-space). The spatial com-
ponents l(i) can be considered as components of an Eu-
clidean 3-vector l with Euclidean norm | l | = (l(i)l(i))1/2.
We note also that | l | =

∣∣ l ∣∣, where
∣∣ l ∣∣ is defined by

Eqs. (A29) and (A35). Then the Cartesian components
l(i) of a (null) tangent vector lα to some incident light
ray are observable (coordinate-independent quantities).
The corresponding (negative) Euclidean unit vector

si = − l
(i)

| l |
(A45)

then has observable components that can be formulated
as directional angles (α, δ) of a single light ray towards
the astrometric source as seen by the observer, i.e.,
s = (cosα cos δ, sinα cos δ, sin δ) (e.g., [20]). The ob-
served angle between two incoming light rays (or equiv-
alently between two observed directions sA and sB) can
then be computed as

cosψgw
AB = δij

l
(i)
A l

(j)
B

| lA| | lB |
, (A46)

where the right-hand side has to be taken at the event of
observation. Eq. (A46) is equivalent to Eq. (A28), but is
written using the tetrad components of the corresponding
vectors.
For an observer at rest in TT coordinates, the tetrad

vectors are given by [28, 37]

e0(0) = 1 , ei(0) = 0 , e0(i) = 0 , ei(j) = δij −
1

2
hij (A47)

and one finds the components of si in the form

−si = l(i)

| l |
= ki +

1

2
hjk (t1,x1) k

j kk
ki − pi

1− p · k

− 1

2
hij (t1,x1) k

j . (A48)

This result is in agreement with Eq. (58) in [12] as well
as Eq. (A1) in [20]. Our final result (A38) for cosψgw

AB
can then be recovered by substituting Eq. (A48) into
Eq. (A46).
Eq. (A46) is valid for a moving observer as well. How-

ever, the tetrad for a moving observer is more compli-
cated and related to (A47) by a Lorentz boost, as dis-
cussed in [37].
We note that in [21, 22] obviously the tetrad compo-

nents of (A48) were used in expression (A28) instead of
(A46). This fatal flaw eventually leads to their incorrect
final result for cosψgw

AB. Another discussion of this flaw
can be found in [23].
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