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This paper summarizes the analysis of the consequences of the violation of the Local
Lorentz Invariance (LLI) on astrometric observations. We demonstrate that from the
point of view of the LLI astrometric observations represent an experiment of Michelson-
Morley type. The future high-accuracy astrometric projects (e.g., Gaia) will be used to
test the LLI.
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1. Introduction

Motivated by ideas about quantum gravity, a tremendous amount of efforts over

the past decade has gone into testing Local Lorentz Invariance (LLI) in various

regimes [5]. This paper summarizes the framework allowing one to test LLI using

high-accuracy astrometric observations. The basic idea is that the usual special-

relativistic aberrational formulas used in the corresponding relativistic models is a

direct consequence of the Lorentz transformations [1]. A generalization of that aber-

rational formula obtained with generalized Lorentz transformation contains param-

eters (similar to the Mansouri-Sexl ones) and can be directly used to test LLI [2].

Especially the future ESA mission Gaia [6] will provide a lot of high-accuracy as-

trometric data that will be used to make independent tests of LLI.

2. Parametrized coordinate transformations

The transformation between preferred coordinates (T, Xa) and non-preferred ones

(t, xi) read [4]:

c t = Λ0

0
c T + Λ0

a Xa, (1)

xi = Λi
0
c T + Λi

a Xa, (2)

where

Λ0

0
= a − b (ǫ · K) , (3)

Λ0

a = d ǫa + (b − d)
ǫ · K

K2
Ka , (4)

Λi
0
=−b Ki , (5)

Λi
a = dδia + (b − d)

Ka Ki

K2
. (6)

Here, K = V /c, V is the velocity of the origin of the system (t, xi) with respect to

(T, Xa), and a, b, d, and ǫ are arbitrary functions of K.
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3. Basic aberrational formulas

Let us consider the relation between directions of light propagation of a given light

ray in the preferred frame Sa and that in the non-preferred one si. Here we consider

the same light ray as seen by an observer at rest relative to (T, X i) and another

observer (co-located with the first one) at rest relative to (t, xi). Taking the differ-

entials along the light ray we have

Sa =
1

c

dXa

dT
, (7)

for the preferred frame (S · S = 1) and

pi =
1

c

dxi

dt
, (8)

si = pi/|p| (9)

for the non-preferred frame. The last normalization is needed since the light velocity

is not equal to c in the non-preferred frames and therefore vector pi is not an

Euclidean unit vector. Using the coordinate transformations between (T, Xa) and

(t, xi) given above we get the transformations between S and s in closed form:

s =
f S + (1 − f)

K (K · S)

K2
− K

(

f2 + K2 − 2 K · S + (1 − f2)
(K · S)2

K2

)1/2
, (10)

S = K +
(

(

f2 (K · s)2 + (1 − K2)
(

K2 − (K · s)2
))1/2

− f K (K · s)
)

×
K

K2 − (1 − f2) (K · s)2

(

s − (1 − f)
K (K · s)

K2

)

, (11)

where f = d/b. In the limit of special relativity one gets the normal special-

relativistic aberrational formulas. Note that the transformation between S and s

depends only on f and does not depend on a and ǫ. This demonstrates that the

aberrational formula tests the same properties of the Lorentz transformation as the

Michelson-Morley experiment, that is, the isotropy of light velocity.

4. Realistic aberrational formula

In practice the aberrational formula entering relativistic models [1] corrects for

aberration due to the velocity of the observer relative to the barycenter of the solar

system. The solar system barycentric reference system is not usually assumed to

be the preferred system in the sense of the LLI. Therefore, we have to consider

three reference systems: one preferred system (T, Xa), two non-preferred ones –

system (t, xi) attached to the barycenter of the solar system, and one more system

(t′, xi′) attached to the observer. The transformation between the preferred and non-

preferred coordinates are given above. The only parameter of the transformations
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is the velocity of the origin of the non-preferred coordinates in the preferred ones.

The velocity of the origin of (t, xi) relative to (T, Xa) is V . The velocity of the

origin of (t′, xi′) relative to (T, Xa) is V ′ and relative to (t, xi) is v. The relation

between these three velocities follows from the coordinate transformations and reads

(K ′ = V ′/c, k = v/c)

K ′ = K +
a

d
(1 − ǫ · k)

−1

(

k − (1 − f)
k · K

K2
K

)

. (12)

Finally, denoting s′ the direction of light relative to (t′, xi′), combining (10)–(11)

written for two non-preferred coordinate systems and using (12) one gets

s′ = P s′′, (13)

s′′ = s + (s · k) s − k −
1

2
(s · k)k −

1

2
k2 s + (s · k)

2
s

−η (s · K)k − η (s · k) (k + K) + η (s · k)2 s + 2η (s · k) (s · K) s

+O(c−3) , (14)

where P is an orthogonal matrix of the Thomas-like precession, and η = 1

2
− β + δ,

where β and δ are the usual Mansouri-Sexl parameters (f = d/b = 1+(η− 1

2
)K2 +

O(c−4), η = 0 in special relativity). The Thomas precession plays no role here since

pure rotation cannot be observed in astrometry (cannot be distinguish from the

local rotation of the observer) and the operational reference system attached to the

observer is chosen not to rotate with respect to the barycentric reference system.

Eq. (14) gives the generalized aberrational formula. In addition to the barycentric

velocity of the observer v = c k, this formula contains the parameter η and the

velocity of the solar system barycenter relative to the preferred frame V = c K.

Taking the value of V from the dipole of the cosmic microwave background, one

can determine η. Alternatively, both η and V can be determined from astrometric

observations. More details on the derivation and interpretation of this formula will

be given elsewhere [3].
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