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High-precision astrometry on sub-micro-arcsecond level in angular resolution requires accurate
determination of the trajectory of a light-signal from the celestial light source through the gravita-
tional field of the Solar system toward the observer. In this investigation the light trajectory in the
gravitational field of N moving bodies is determined in the 1.5 post-Newtonian approximation. In
the approach presented two specific issues of particular importance are accounted for:

(1) According to the recommendations of International Astronomical Union, the metric of the
Solar system is expressed in terms of intrinsic mass-multipoles and intrinsic spin-multipoles of the
massive bodies, allowing for arbitrary shape, inner structure and rotational motion of the massive
bodies of the Solar system.

(2) The Solar system bodies move along arbitrary worldlines which can later be specified by Solar
system ephemeris.

The presented analytical solution for light trajectory is a primary requirement for extremely high-
precision astrometry on sub-micro-arcsecond level of accuracy and associated massive computations
in astrometric data reduction. An estimation of the numerical magnitude for time delay and light
deflection of the leading multipoles is given.

I. INTRODUCTION

A substantial advancement in astrometric measure-
ments has been achieved by the astrometry mission
Hipparcos (launch: 8 August 1989) of European Space
Agency (ESA), which has reached an accuracy of a milli-
arcsecond (mas) in determining the angular positions of
about 105 stars [1, 2]. Meanwhile, the state-of-the-art
angular observations have finally arrived at the level of
a few micro-acrseconds (µas) [3, 4]. Especially, the stun-
ning progress in astrometry has proceeded with the ESA
mission Gaia [5] (launch: 19 December 2013) which aims
at an all-sky survey of more than 109 stars of our galaxy
and targets angular accuracy of up to a few µas for bright
stars in the final catalog scheduled for publication in
2022.

In view of these advancements it becomes obvious that
future astrometry is going to force into the exciting areas
of sub-µas or even nano-arcsecond (nas) level of accuracy.
To step up efforts toward sub-µas-astrometry is of funda-
mental importance in astronomy and astrophysics. For
example, an accuracy of about 10 nas in angular resolu-
tion would allow for direct measurement of trigonomet-
ric parallaxes of stars belonging to galaxies of the Local
Group which spans a diameter of about 107 light-years,
that means would enable to determine spatial distances of
extra-galactic objects independently of dynamical models
of the Universe. Moreover, also extremely high-precision
tests of relativity, detection of dark-matter distributions
within or outside of our galaxy, determination of stellar
and galactic kinematics, and finally even the discovery
of one-Earth-mass exoplanets in the habitable zone of
nearby Sun-like stars would be possible by means of sub-
µas-astrometry. Recently, there are several mission pro-
posals in this respect. For instance, the mission NEAT
[6, 7] has been proposed to ESA which intends to reach a

precision of about 50 nas in angular resolution for being
able to detect Earth-like exoplanets surrounding stars in
the stellar neighborhood of the Sun. Further space mis-
sions like ASTROD [8, 9], LATOR [10, 11], ODYSSEY
[12], SAGAS [13], or TIPO [14] have been proposed to
ESA which imply the determination of light trajectory
through the Solar system on sub-µas or even at nas
level of accuracy. Also earth-bound telescopes are under
consideration which aim at angular resolutions of about
10 nas [15].

But, although in view of the recent impressive achieve-
ments, the step from µas-astrometry toward sub-µas-
level or even nas-level of accuracy in angular resolution
will surely be a long-term goal in the astronomical sci-
ence. This is because the envisaged advancement toward
space-based nas-astrometry implies many subtle effects
and new kind of challenges which have not been encoun-
tered before: What kind of optical technology would al-
low for nas-astrometry? Is it technologically possible to
measure the velocity of spacecraft (observer) with suf-
ficient accuracy allowing for a precise determination of
aberrational effects? How accurate do we have to de-
termine the ephemeris of the Solar system bodies and
could such precise ephemeris be provided? Is it possi-
ble to model accurate enough the influence of interstel-
lar medium on light propagation? How strong is the ef-
fect of gravitational waves on light propagation on nano-
arcsecond level? How is it possible to account for the
gravitational light deflection caused by massive bodies
located outside the Solar system?

Each of these and many other problems have to be
clarified before nas-astrometry becomes feasible. But
certainly, the fundamental assignment in astrometry re-
mains to trace a lightray observed in the Solar system
back to the celestial light source. The importance of
this fact has also been underlined recently by the ESA-
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Senior-Survey-Committee (SSC) in response of the selec-
tion of science themes for the L2 and L3 launch opportu-
nities, where it has been stated that ”SSC recommends
that proper modeling tools, most notably the availability
of a General Relativistic framework able to model pho-
ton trajectories to the accuracy required should be given
the proper attention to prove feasibility” of high-precision
astrometry [16]. According to this, the primary effort
in any astrometrical framework concerns the precise de-
scription of the light trajectory, that is to say the de-
termination of the spatial coordinates of a light-signal
as function of coordinate time, x (t), in some global co-
ordinate system. Accordingly, the principal purpose of
this investigation is the determination of the trajectory
of a light-signal propagating through the Solar system.
In the following four subsections it will be enlightened
how one has to proceed in order to arrive that goal: (A)
the theory of light propagation, (B) the post-Newtonian
expansion, (C) the state-of-the-art, and (D) the primary
objective of this investigation.

A. Theory of light propagation

The determination of spatial coordinates of the light-
ray takes the most simple form in the flat Minkowskian
space-time and assuming a Cartesian coordinate system
which covers the entire space, implying the metric tensor
ηαβ = diag (−1,+1,+1,+1). Suppose the light-signal is
emitted at some initial time t0 by a light source located at
some space-point x0, then the light trajectory is simply
given by a straight line which is also called unperturbed
light trajectory,

xN (t) = x0 + c (t− t0)σ , (1)

where the unit-vector σ determines the direction of light-
propagation and the sublabel ”N” denotes Newtonian ap-
proximation.

In general relativity the four-dimensional space-time in
the presence of matter is curved, that means is described
by a semi-Riemannian manifold with non-vanishing cur-
vature tensor rather than a flat Minkowskian space-time,
and a light trajectory is no longer a straight line but
propagates along a so-called null geodesic, which gen-
eralizes the concept of a straight light trajectory. The
four-coordinates xα (λ) of a light trajectory depend on
some affine curve-parameter λ, and are determined by
the geodesic equation [17, 18],

d2xα (λ)

dλ2
+ Γαµν

dxµ (λ)

dλ

dxν (λ)

dλ
= 0 , (2a)

gαβ
dxα (λ)

dλ

dxβ (λ)

dλ
= 0 , (2b)

where (2a) represents the geodesic equation, while the
isotropic condition (2b) is an additional constraint for a

null geodesic, a term which refers to the fact that the
invariant line element vanishes, ds2 = dxα (λ) dxα (λ) =
0, at any point along the light trajectory. The Christoffel
symbols in (2a) are related to the metric of curved space-
time as follows:

Γαµν =
1

2
gαβ

(
∂gβµ
∂xν

+
∂gβν
∂xµ

− ∂gµν
∂xβ

)
, (3)

where gαβ and gαβ are the contravariant and covari-
ant components of the metric tensor, respectively, where
the metric signature (−,+,+,+). The geodesic equa-
tion (2a) represents a second-order differential equation,
hence an unique solution implies the need of two initial
values for the lightray:

xα (λ)

∣∣∣∣
λ=λ0

, (4)

dxα (λ)

dλ

∣∣∣∣
λ=λ0

. (5)

The equations in (2a) - (2b) are valid in any reference
system. But in practical astrometry one is necessarily
enforced to specify the reference systems for concrete ob-
servational data. In line with the recommendations of
the International Astronomical Union (IAU) [19, 20], the
Barycentric Celestial Reference System (BCRS) with co-
ordinates (ct,x) is the standard global chart to be used in
modern-day astrometry, where t is the BCRS coordinate-
time and x are Cartesian-like spatial coordinates from
the barycenter of the Solar system to some field-point.
Consequently, it becomes much preferable to exploit the
freedom in the choice of scalar curve-parameter λ and
to rewrite the affinely parametrized geodesic equation
(2a) and the isotropic condition (2b) in terms of BCRS
coordinate-time [17, 18, 21]:

d2xα (t)

c2dt2
+Γαµν

dxµ (t)

cdt

dxν (t)

cdt
= Γ0

µν

dxµ (t)

cdt

dxν (t)

cdt

dxα (t)

cdt
,

(6a)

gαβ
dxα (t)

cdt

dxβ (t)

cdt
= 0 . (6b)

The zeroth component in (6a) does not carry any new
information because it vanishes identically. In order
to determine the solution of (6a) it is advantageous to
transform the initial conditions in (4) - (5) into initial-
boundary conditions [18]:

x0 = x (t)

∣∣∣∣
t=t0

, (7)

σ =
dx (t)

dct

∣∣∣∣
t=−∞

, (8)

with (7) being the position of the light source at the mo-
ment t0 of emission of the light-signal and (8) being the
unit-direction of the lightray at past-null infinity. Then,
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the exact solution of (6a) for the light trajectory from
the light source through the Solar system toward the ob-
server can be written as follows,

x (t) = x0 + c (t− t0)σ + ∆x (t, t0) , (9)

where the term ∆x (t, t0) denotes gravitational correc-
tions to the unperturbed light trajectory (1).

B. Post-Newtonian expansion

The correction terms ∆x (t, t0) in Eq. (9) are highly
complicated expressions which cannot be determined ex-
actly and one has to resort on approximation schemes.
Such an approximation scheme is provided by the post-
Newtonian expansion of the metric of Solar system,
which represents an expansion in terms of inverse power
of the speed of light, up to terms of the order O

(
c−5
)

given by:

gαβ = ηαβ + h
(2)
αβ + h

(3)
αβ + h

(4)
αβ +O

(
c−5
)
, (10)

where h
(n)
αβ = O (c−n) with n = 2, 3, 4. The justifi-

cation of such an expansion is based on the fact that
the gravitational fields in the Solar system are weak,
(GMA) /

(
c2 PA

)
� 1, as well as the velocities of the

Solar system bodies are slow, vA/c � 1, where MA,
PA, and vA means mass, radius, and velocity, respec-
tively, of some massive body A. For these reasons the
post-Newtonian expansion is also called weak-field slow-
motion expansion. As outlined in [17, 21–23], such an
expansion is valid inside the near-zone of the Solar sys-
tem, |x| � λgr, where λgr ∼ 1017 meter is a characteristic
wavelength of gravitational waves emitted by the Solar
system. The near-zone of Solar system is so large that
it still contains all Solar system bodies and even encom-
passes the nearest stars of the stellar neighborhood of the
Sun.

Inserting the expansion (10) into (6a) yields the
geodesic equations for lightrays up to terms of the or-
der O

(
c−5
)
. Accordingly, the expansion of the metric in

(10) inherits a corresponding expansion of the lightray,
that means the corrections to the unperturbed lightray
can formally be written as follows:

∆x = ∆x1PN + ∆x1.5PN + ∆x2PN +O
(
c−5
)
,(11)

where ∆x1PN = O
(
c−2
)

are 1PN corrections, ∆x1.5PN =

O
(
c−3
)

are 1.5PN corrections, and ∆x2PN = O
(
c−4
)

are
2PN corrections to the unperturbed lightray. In view of
the fact that the post-Newtonian expansion of the metric
(10) is only valid within the near-zone of the Solar sys-
tem, the post-Newtonian expansion of the lightray (11)
allows for near-zone astrometry, in particular for reduc-
tion of astrometric observations of all Solar system ob-
jects. The unique interpretation of astrometrical data of
far objects, like stars or quasars, is the subject of far-
zone astrometry and necessitates the determination of

light trajectory outside the near-zone of the Solar sys-
tem. That especially means, the light trajectory in the
near-zone has to be aligned with the light trajectory in
the far-zone by means of a so-called matching procedure
as described in detail in [21, 24, 25] which, however, will
not be a topic of this investigation.

C. State-of-the-art in the theory of light
propagation

A brief survey about the present status in the theory
of light propagation in the gravitational field of massive
bodies has recently been presented [26]. Here we will
summarize and update that survey. In particular, we will
restrict our review on those investigations where the ex-
plicit time-dependence of the photon’s spatial coordinate,
x (t), has been determined, a prerequisite for interpreting
real astrometrical observations.

1. Monopoles at rest

The case of light propagation in the Schwarzschild met-
ric, i.e. in the gravitational field of one spherically sym-
metric massive body at rest,

xA (t) = xA , (12)

where xA = const is the constant position of the body,
is the most simple case and has been determined long
time ago in 1PN approximation, e.g. [18, 24, 26–28].
The solution for the light trajectory is given by Eq. (J7).
Besides its simplicity, the determination of the photon’s
spatial coordinate in the Schwarzschild-field is the initial
point in the theory of light propagation in astrometry.

2. Monopoles in motion

In reality, the bodies A = 1, ..., N of the Solar sys-
tem move along their time-like worldlines xA (t) and for
todays extremely high-precision in astrometric measure-
ments the gravitational field of some Solar system body
can not any longer be treated as static and spherically
symmetric. In a first approximation, the motion of one
massive body A can be considered as translational mo-
tion with constant velocity vA:

xA (t) = xA + vA (t− tA) , (13)

where xA = xA (tA) and vA = vA (tA) are the spa-
tial position and velocity of the body A at some ini-
tial time-moment tA. The light-trajectory in the field
of one massive body in translational motion has com-
pletely been solved in 1PN approximation in [29]. This
solution has later been rederived by means of a suitable
Lorentz transformation [34]. Following a suggestion in
[30], in the investigation [24] it has been shown that the
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free parameter tA in Eq. (13) should be chosen as the
time-moment of closest approach (given by Eqs. (B14)
and (B15)) between the massive body A and the pho-
ton in order to minimize the residual effects caused by
the approximation of the real motion by a translational
motion of the massive body. With the aid of advanced in-
tegration methods, originally introduced in [31] and fur-
ther developed in [32], a rigorous solution for the trajec-
tory of a light-signal through the gravitational field of
an arbitrarily moving body has thoroughly been solved
in [33] in the first post-Minkowskian approximation. The
first post-Minkowskian approximation takes into account
all terms proportional to the gravitational constant and
especially all terms to any power in vA/c, hence the
body can even be in ultra-relativistic motion and, there-
fore, the post-Minkowskian approximation is often called
weak-field approximation opposite to the post-Newtonian
approximation which is called weak-field slow-motion ap-
proximation. Comparing the solution in [33] with [29, 34],
it has been demonstrated in [35] that the simpler solution
for the light-trajectory in the field of a uniformly moving
body is actually sufficient for high-precision astrometry
on sub-µas-level provided the free parameter tA is chosen
either as time-moment of closest approach or as retarded
time-moment (given by Eq. (143)) between the photon
and the position of the massive body. All these results
agree with our investigation in [26] for the case of bodies
in slow-motion.

3. Spin-dipoles at rest

The light trajectory in the gravitational field of one
body at rest having spin-dipole SA = const has first been
solved in [36] and later confirmed in [24]. The magnitude
of light deflection due to the rotational motion of Solar
system bodies has been determined in [28, 36] and turns
out to be significant for astrometry on sub-µas-level of
accuracy.

4. Spin-dipoles in motion

In [37] an explicit solution for the light-trajectory in
the field of N uniformly moving bodies with intrinsic spin
has been obtained. A comprehensive solution in 1PM
approximation for the light-trajectory in the field of N
arbitrarily moving bodies with individual spin-structure
has been derived in [38] using the already mentioned
advanced integration methods originally developed in
[31, 32].

5. Mass-quadrupoles at rest

The solution for the light-trajectory in the field of
mass-quadrupoles at rest in 1PN approximation was
given in [36] and later in [24, 26, 28]. Especially, in [36]

the magnitude of light deflection caused by the mass-
quadrupole structure of Solar system bodies has been
determined, where it was figured out that astrometry on
µas-level of accuracy is able to detect this light deflection
effect. In fact, the light deflection due to the quadrupole-
structure of Jupiter is presently under investigation by
the ESA astrometry-mission Gaia [5].

6. Mass-quadrupoles in motion

The light trajectory in the field of N arbitrarily slowly-
moving bodies with quadrupole structure has been deter-
mined in [26]. Recently, the light-trajectory in the field of
N uniformly moving bodies with mass-quadrupole struc-
ture has also been obtained in [37] by integrating the
geodesic equations for the lightray. Another interesting
approach has been found in [42], which is based on the
Time Transfer Function (TTF) which avoids to solve the
geodesic equations and hence circumvents some of its in-
volved peculiarities.

7. Higher mass-multipoles and spin-multipoles at rest

A fruitful and systematic approach which allows to in-
tegrate analytically the geodesic equations in 1.5 approx-
imation in the field of one body at rest having full time-
independent mass-multipoles MA

L and spin-multipoles
SAL to any order in the multi-index L has been intro-
duced in [31].

The advanced integration method in [31] has been de-
veloped further in [32] for the case of time-dependent
mass-multipoles MA

L (t) and spin-multipoles SAL (t) in
1PM approximation. Using this advanced approach the
analytical solution in 1PM approximation for the light-
trajectory in the field of one massive body at rest with
the full set of time-dependent multipoles has been deter-
mined in [39, 40]. One comment should be in order at
this stage. Namely, it is of course possible to interpret
the Solar system just as one global massive body A which
consists of many individual small massive bodies. But
then the solution in [39, 40] has to be interpreted as still
expressed in terms of global multipoles mL (t) and sL (t)
which characterize the entire multipole structure of the
Solar system as a whole. However, physically meaning-
ful multipoles can only be defined in the local reference
system of each individual massive body. This important
issue will later be further considered in some more detail.

Another approach is based on the solution for the TTF
and its spatial derivative. A corresponding multipole de-
composition of the TTF has been applied in [41] in or-
der to determine the coordinate travel time and the light
deflection of a lightray in the gravitational field of one
axisymmetric body at rest expressed in terms of mass-
multipoles MA

L .
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8. Higher mass-multipoles in uniform motion

In [42] the TTF approach in 1PM approximation has
been applied for the case of light propagation in the field
of one axisymmetric body in uniform motion. Especially,
an expression for the TTF and its spatial derivative is
obtained for this case, which allows to determine astro-
metric observables like the coordinate travel time of the
lightray, the direction of an incident lightray, and the
gauge-invariant angle between the direction of two in-
coming photons. A similar investigation has been done
in [43], where the TTF approach has been used in order
to determine the coordinate travel time of a lightray in
the field of one slowly and uniformly moving extended
body with full mass-multipole and spin-multipole struc-
ture.

9. 2PN light propagation in the field of monopoles

Light propagation 2PN approximation is not on the
scope of the presented investigation, but for reasons of
completeness some results obtained in 2PN approxima-
tion will briefly be mentioned, not only because of its rel-
evance for future high-precision astrometry on sub-µas-
level of accuracy but also for its importance in todays
high-precision astrometry on µas-level.

An important progress has been made in [18, 27],
where an analytical solution of the light-trajectory in
2PN approximation has been determined with explicit
time-dependence of the photon’s spatial coordinates by
solving the null geodesic equations. This solution has
later been confirmed by several progressing and ongoing
investigations [24, 37, 44–46], and has also been deter-
mined in this investigation, see Eqs. (J8) - (J10). Fur-
thermore, in [46] the time-derivative of the light trajec-
tory in the field of two pointlike bodies at rest has been
obtained, allowing to determine the light deflection in
such a system. An important new result of this inves-
tigation is the fact that the 2PN two-body effect in the
Solar system is less than 0.1 nas which considerably sim-
plifies future analytical investigations for high-precision
astrometry on sub-µas-level of accuracy.

In [47–49] the general formalism of how to deter-
mine the TTF and its derivatives has been extended
up to the second post-Newtonian (2PN) and second
post-Minkowskian (2PM) order, that means including all
terms to order O

(
G2
)
. The formalism has finally been

specified for the case of light propagation in the gravi-
tational field of one spherically symmetric body at rest
where the 2PM and 2PN approximations become identi-
cally. Especially, explicit expressions for the coordinate
travel time of lightray, for the direction of the lightray,
and for the angular separation between two incident ligh-
trays have been obtained.

Finally, we also mention another approach which is
based on the eikonal concept [50], where the light trajec-
tory in 2PN approximation in the field of one spherically

symmetric body at rest has also been derived. The re-
sults of this work completely agree with [45].

D. Primary objective of this investigation

According to the survey given above about the present
situation in the theory of light propagation, thus far there
is no analytical solution available for the light trajec-
tory in the field of arbitrarily moving extended bodies in
1.5PN approximation which, however, is of decisive im-
portance in future high-precision astrometric measure-
ments on sub-µas-level of accuracy and its foreseen in-
volved massive computations, see also [26]. In respect
thereof, two important aspects must carefully be treated:

(1) The metric perturbations in the exterior of the
massive bodies can be decomposed in terms of global
mass-multipoles mL and global spin-multipoles sL [51–
54]:

h
(n)
αβ = h

(n)
αβ (mL, sL) , n = 2, 3, ... . (14)

These global mass and spin multipoles describe the grav-
itational field of the Solar system as a whole. How-
ever, from the theory of relativistic reference systems it
is clear that physically meaningful multipole moments of
a massive body A have to be defined in the body’s lo-
cal reference system (cTA,XA) tied to that body under
consideration. Such multipoles are called intrinsic mass-
multipoles MA

L and intrinsic spin-multipoles SAL . Then
the question arises about how to express the global BCRS
metric in terms of such intrinsic multipoles, that is to say
how to determine the global metric perturbations:

h
(n)
αβ = h

(n)
αβ

(
MA
L , S

A
L

)
, n = 2, 3, ... . (15)

Such a framework has been elaborated by the approach
of Damour-Soffel-Xu (DSX) [55–58] and within the
Brumberg-Kopeikin (BK) formalisms [18, 59–62], both of
which became a part of the IAU resolutions [19, 20].

(2) The second issue concerns the motion of the mas-
sive Solar system bodies. While in first approximation
these bodies orbit the barycenter of the Solar system
along ellipse-shaped trajectories, in reality their orbital
motion xA (t) is highly complicated due to the mutual in-
teractions among these bodies. The worldlines of all mas-
sive bodies can be concretized by Solar system ephemeris
[63] at any stage of the calculations. One might prefer to
series expand these worldlines as follows:

xA (t) = xA +
vA
1!

(t− tA) +
aA
2!

(t− tA)
2

+O (ȧA) ,

(16)

where xA = xA (tA), vA = vA (tA) and aA = aA (tA)
are the position, velocity and acceleration of body A at
some time-moment tA. However, such an approach is
problematic mainly for two reasons:
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(i) all terms of the infinite series expansion (16) con-
tribute on 1PN or 1.5PN level, because the expan-
sion in (16) is not performed with respect to the
inverse powers of the speed of light.

(ii) the time-moment tA remains an open parameter
as long as no additional arguments are introduced,
which would uniquely allow to identify that param-
eter with the time of closest approach or with the
retarded time.

These both aspects (1) and (2) enforce to determine the
light trajectory x (t) of a light-signal from the celestial
light source toward the observer as function of intrinsic
multipolesMA

L and SAL as well as function of the arbitrary
worldlines xA (t) of these massive Solar system bodies.

In a previous investigation [26] a solution for the light
trajectory in 1PN approximation in the gravitational
field of N massive bodies in arbitrary motion and ex-
pressed in terms of their intrinsic multipoles has been
obtained:

x (t) = x0 + c (t− t0)σ + ∆x1PN +O
(
c−3
)
. (17)

However, as outlined in more detail in [26], such 1PN so-
lution is not sufficient for astrometry on sub-µas-level of
accuracy. For instance, the rotational motion of the mas-
sive bodies cannot be taken into account in 1PN approx-
imation. However, the impact of the spin-dipole struc-
ture of the massive bodies on light deflection amounts
to be about 0.7 µas , 0.2 µas , and 0.04 µas for a graz-
ing lightray at Sun, Jupiter, and Saturn, respectively
[28, 36]. Moreover, also higher spin-multipoles have a
significant impact on sub-µas-level [26, 64]. Furthermore,
in 1PN approximation there are no terms proportional

to
vA
c
Mab where Mab is the mass-quadrupole term. Al-

ready a straightforward estimate reveals that such terms
become relevant on sub-µas-level of accuracy [26], see
also Table III. In order to scrutinize the impact of such
terms one is necessarily enforced to determine the 1.5PN
solution for the light trajectory.

In view of these facts, the primary goal of this investi-
gation is to determine a solution for the light trajectory
in 1.5PN approximation, which includes all terms up to
the order O

(
c−4
)
, where both of the important aspects

(1) and (2) addressed above are fully taken into account:

x (t) = x0 + c (t− t0)σ + ∆x1PN + ∆x1.5PN +O
(
c−4
)
.

(18)

Especially, the massive bodies of the Solar system are al-
lowed to move along arbitrary worldlines xA (t) and they
are having arbitrary shape and inner structure and rota-
tional motion, given in terms of time-dependent intrin-
sic mass-multipoles MA

L (t) and spin-multipoles SAL (t), in
accordance with the IAU recommendations [19, 20] and
the theory of relativistic reference systems [18, 55–62].
The given solution for the light trajectory is considered

as a further step towards a consistent model of general-
relativistic theory of light propagation in the gravita-
tional field of the Solar system, which finally aims at
accuracies on sub-µas-level and even on nas-level.

The article is organized as follows: In section II the
geodesic equation in 1.5PN approximation is considered.
A compendium of the DSX framework is presented in
section III. The transformation of geodesic equation in
terms of new variables, which are more efficient than the
standard parametrization, is given in section IV. The
first and second integration of geodesic equation is de-
termined in section V and section VI, respectively. The
important case of light-propagation in the gravitational
field of moving spin-dipoles is investigated in section VII.
Finally, the expressions for the observables of time delay
and light deflection are obtained in section VIII and IX.
Especially, numerical values for the impact of the leading
mass-multipoles and spin-multipoles on time delay and
light deflection are given in Table II and Table III, re-
spectively. A summary and outlook can be found in sec-
tion X. The used notations and conventions and further
details and several checks of the calculations are shifted
into appendix.

II. GEODESIC EQUATION IN 1.5PN
APPROXIMATION

The Solar system is composed of N arbitrarily shaped,
rotating and deformable massive bodies which move un-
der the influence of their mutual gravitational interaction
among their common barycenter. It is clear, that the
metric of such a highly complicated N -body system is
not known in its exact form and can only be determined
within an approximative scheme. In view of the weak
gravitational fields and slow motions of the bodies, the
metric tensor of the Solar system in the BCRS coordinate
system xµ = (ct,x) can be expanded in terms of inverse
powers in the light-velocity, called post-Newtonian ex-
pansion [17]:

gαβ (t,x) = ηαβ + h
(2)
αβ (t,x) + h

(3)
αβ (t,x) +O

(
c−4
)
,

(19)

where ηαβ is the metric tensor of flat Minkowski space-

time and the metric perturbations are of the order h
(2)
αβ =

O
(
c−2
)

and h
(3)
αβ = O

(
c−3
)
, cf. Eq. (10). Inserting (19)

into (6a) yields the geodesic equation in 1.5PN approx-
imation, which in terms of global coordinate time reads
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[18, 24, 32, 35, 39, 40]:

ẍi (t)

c2
=

1

2
h
(2)
00,i − h

(2)
00,j

ẋi (t)

c

ẋj (t)

c
− h(2)ij,k

ẋj (t)

c

ẋk (t)

c

+
1

2
h
(2)
jk,i

ẋj (t)

c

ẋk (t)

c
− 1

2
h
(2)
00,0

ẋi (t)

c
− h(2)ij,0

ẋj (t)

c

+
1

2
h
(2)
jk,0

ẋi (t)

c

ẋj (t)

c

ẋk (t)

c
− h(3)0i,j

ẋj (t)

c
+ h

(3)
0j,i

ẋj (t)

c

−h(3)0j,k

ẋi (t)

c

ẋj (t)

c

ẋk (t)

c
+O

(
c−4
)
, (20)

where a dot means total time-derivative. Note that the

constraint in (6b) results in
ẋ (t) · ẋ (t)

c2
= 1 + O

(
c−2
)
,

hence will not change the form of geodesic equation in
1.5PN approximation in (20).

In (20) we have taken into account that in general

h
(2)
0i = h

(3)
00 = h

(3)
ij = 0 and h

(3)
0i,0 = O

(
c−4
)
. The met-

ric perturbations in (19) are functions of the field-points
(t,x), while in the geodesic equation (20) the metric per-
turbations are of relevance at the coordinates of the pho-
ton x (t). Consequently, the derivatives in (20) are taken
along the lightray:

h
(n)
αβ,µ =

∂h
(n)
αβ (t,x)

∂xµ

∣∣∣∣∣
x=x(t)

, n = 2, 3 . (21)

In order to find an unique solution of the geodesic equa-
tion in (20), so-called mixed initial-boundary conditions
can be imposed, which have extensively been used in the
literature, e.g. [18, 24, 27, 31, 32, 39, 45]:

x0 = x (t0) , (22)

σ = lim
t→−∞

ẋ (t)

c
. (23)

The first condition (22) defines the spatial coordinates of
the photon at the moment t0 of emission of light. The sec-
ond condition (23) defines the unit-direction (σ · σ = 1)
of the lightray at past null infinity, that means the unit-
tangent vector along the light path in the infinite past
hence at infinite spatial distance from the origin of the
global coordinate system.

In the flat space-time there is no gravitational field,

h
(n)
αβ = 0, hence the geodesic equation (20) simplifies to

the form ẍ (t) = 0, having the solution

x (t) = x0 + c (t− t0)σ +O
(
c−2
)
, (24)

which is nothing else than just the unperturbed light tra-
jectory in Eq. (1).

The exact light trajectory x (t) in (9) deviates from
the Newtonian approximation in (24) by terms of the

order O
(
c−2
)
, that means x (t) = xN (t) +O

(
c−2
)
. Ac-

cordingly, in (20) we may replace ẋ (t) by its Newtonian
approximation, ẋN = cσ, and (20) simplifies as follows:

ẍi (t)

c2
=

1

2
h
(2)
00,i − h

(2)
00,j σ

i σj − h(2)ij,k σ
j σk

+
1

2
h
(2)
jk,i σ

j σk − 1

2
h
(2)
00,0 σ

i − h(2)ij,0 σ
j +

1

2
h
(2)
jk,0 σ

i σj σk

−h(3)0i,j σ
j + h

(3)
0j,i σ

j − h(3)0j,k σ
i σj σk +O

(
c−4
)
, (25)

which agrees with Eq. (3) in [32]; recall h
(3)
0i,0 = O

(
c−4
)
.

Furthermore, in 1.5PN approximation the metric pertur-
bations in (25) can be taken at the spatial coordinates
of the unperturbed lightray. That means, in (25) one
has first to perform the differentiations with respect to
BCRS coordinates xµ = (ct,x) and afterwards to insert
the unperturbed lightray:

h
(n)
αβ,µ =

∂h
(n)
αβ (t,x)

∂xµ

∣∣∣∣∣
x=xN(t)

. (26)

In this investigation we will determine the solution of the
geodesic equation (25) in 1.5PN approximation, which
can formally be written as follows (cf. Eq. (18)):

x (t) = x0 + cσ (t− t0)

+∆x1PN (t, t0) + ∆x1.5PN (t, t0) +O
(
c−4
)
. (27)

The 1PN corrections ∆x1PN (t, t0) in Eq. (27) are terms
of the order O

(
c−2
)

and have already been determined
in our recent analysis [26]. Here, the primary goal is the
determination of the 1.5PN corrections ∆x1.5PN (t, t0) in
Eq. (27) which are terms of the order O

(
c−3
)
.

III. COMPENDIUM OF DSX FRAMEWORK

The DSX framework represents a well-established for-
malism in the general-relativistic celestial mechanics of
a N -body system of arbitrarily shaped, rotating and de-
formable bodies, and has been introduced and thoroughly
formulated in [55–58]. The original intension of DSX was
the description of the dynamics of N massive bodies, that
is the equations of motion in celestial mechanics for N
extended bodies under the influence of their mutual grav-
itational interaction.

The basic assumption is to introduce N + 1 refer-
ence systems: one global chart (BCRS) with coordi-
nates xµ = (ct,x) having its origin of the spatial axes
at the barycenter of the Solar system, and N local charts
with coordinates Xα

A = (cTA,XA), one for each individ-
ual body A = 1, ..., N and having their origins at the
barycenter of these massive bodies and co-moving with
them. The local coordinate systems are tied to each indi-
vidual massive body and are defined very similar to the
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Geocentric Celestial Reference System (GCRS) which is
in use for the Earth and, therefore, they are called GCRS-
like reference systems. A central result of the DSX ap-
proach is the form of the global metric gµν of BCRS and
the form of the local metric GAαβ for each GCRS-like sys-
tem, and the coordinate transformation among all these
reference systems (ct,x) ↔ (cTA,XA). Another central
achievement in the DSX formalism is the decomposition
of the global metric in terms of intrinsic mass-multipoles
MA
L and intrinsic spin-multipoles SAL . In this section we

will present a compendium of the DSX theory, which has
become a basic part of IAU resolution B1.3 (2000) [19]
and which are of upmost relevance for our own consid-
erations aiming at applications of the DSX approach in
the astrometrical science.

A. BCRS

The harmonic BCRS coordinates are denoted by xµ =(
ct, xi

)
, where t = TCB is the BCRS coordinate time;

about a practical synchronization of a set of clocks dis-
tributed somewhere in the Solar system we refer to [65].
The origin of the spatial axes of BCRS is located at the
barycenter of the Solar system and cover the entire three-
dimensional space and can therefore be used to model
light trajectories from distant celestial objects to the ob-
server. The IAU Resolution B2 (2006) [20] recommends
the spatial axes of BCRS to be oriented according to
the spatial axes of the International Celestial Reference
System (ICRS) [66]. Furthermore, according to IAU res-
olution B1.3 (2000) [19] the Solar system is assumed to
be isolated and the space-time is asymptotically flat, that
means the BCRS metric gµν (t,x) at infinity reads:

lim
r→∞

gµν (t,x) = ηµν , (28)

where r = |x|. The BCRS is completely characterized by
the form of its metric tensor which, however, is not known
in its exact form. According to the geodesic equation in
1.5PN approximation (25), for our intentions the metric
is required to be known only up to terms of the order
O
(
c−4
)
, which are given by [19]:

g00 (t,x) = −1 +
2w (t,x)

c2
+O

(
c−4
)
, (29)

g0i (t,x) = −4wi (t,x)

c3
+O

(
c−5
)
, (30)

gij (t,x) =

(
1 +

2w (t,x)

c2

)
δij +O

(
c−4
)
. (31)

The gravitational potentials in (29) - (31) are given by
the integrals

w (t,x) =
G

c2

∫
d3x′

t00 (t,x′)

|x− x′|
+O

(
c−2
)
, (32)

wi (t,x) =
G

c

∫
d3x′

t0i (t,x′)

|x− x′|
+O

(
c−2
)
, (33)

where the integrals in (32) and (33) run over the entire
Solar system, and tµν is the energy-momentum tensor of
the Solar system in global BCRS coordinates; recall the
components of energy-momentum tensor scale as follows:
t00 = O

(
c2
)
, t0i = O

(
c1
)
, tij = O

(
c0
)
.

The global gravitational potentials in (32) - (33) ad-
mit an expansion in terms of global Blanchet-Damour
(BD) mass-multipoles and spin-multipoles, mL and sL,
[32, 51–53], which characterize the multipole structure of
the Solar system as a whole,

w (t,x) = G

∞∑
l=0

(−1)
l

l!
m〈L〉 (t) ∂〈L〉

1

r
+O

(
c−2
)
,(34)

wi (t,x) = −G
∞∑
l=2

(−1)
l

l!
ṁ〈iL−1〉 (t) ∂〈L−1〉

1

r

−G
∞∑
l=1

(−1)
l
l

(l + 1)!
εiab s〈bL−1〉 (t) ∂〈aL−1〉

1

r
+O

(
c−2
)
.

(35)

The global mass-multipoles and global spin-multipoles
in (34) - (35) are Cartesian symmetric and trace-free
(STF) tensors, and up to order O

(
c−2
)

given by (cf.
Eqs. (2.34a) and (2.34b) in [52]):

m〈L〉 (t) = STF
L

∫
d3xxL

t00 (t,x)

c2
, (36)

s〈L〉 (t) = STF
L

∫
d3x εabcl xaL−1

t0b (t,x)

c
, (37)

where m0 = const. is the mass of the entire Solar system,
the mass-dipole mi = 0 because the origin of BCRS is
located at the barycenter of the Solar system, and the
spin-dipole si = const describes the spin of the entire
Solar system which safely can be assumed to be time-
independent. The spatial derivative operator in (34) -
(35) is defined by

∂〈L〉 = STF
i1...il

∂

∂xi1
. . .

∂

∂xil
, (38)

and a dot means derivative with respect to global
coordinate-time. The expansion in (34) - (35) has two
specific features, which do not allow a straightforward
application in our investigations:

(1) The expansion in (34) - (35) is valid outside a
sphere which encloses the N -body system [51–54, 67].
It is quite obvious that for modeling of light propagation
through the Solar system we need to have a metric which
is valid in spatial domains between these N massive bod-
ies.

(2) It has already been underlined in the introductory
section that according to the theory of reference systems
[18, 19, 55–62] physically meaningful multipole moments
of some massive body A have to be defined in the local
reference system (cTA,XA) tied to that body and co-
moving with it.
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For these reasons, the global gravitational potentials in
(34) - (35) must have to be expressed by intrinsic mass-
multipoles MA

L and intrinsic spin-multipoles SAL , which
are defined in the local reference system (cTA,XA) of
each individual massive body A. The prototype of all
these GCRS-like coordinate systems is the GCRS espe-
cially designed for the Earth and which will be considered
now.

B. GCRS

For the description of physical problems nearby the
Earth the GCRS is the appropriate reference system.
The harmonic GCRS coordinates are denoted by Xα =(
cT,Xi

)
, where T = TCG is the GCRS coordinate time.

According to IAU resolution B1.3 (2000) [19], the origin
of the spatial axes of GCRS is located at the center-of-
mass of the Earth and co-moving with it. The spatial
axes of GCRS are kinematically non-rotating with re-
spect to the BCRS, that means the GCRS is a space-
fixed reference system and is not a local inertial system.
The GCRS is completely characterized by the form of its
metric tensor, up to order O

(
c−4
)

given by [19, 55, 56],

G00 (T,X) = −1 +
2W (T,X)

c2
+O

(
c−4
)
, (39)

G0i (T,X) = −4W i (T,X)

c3
+O

(
c−5
)
, (40)

Gij (T,X) =

(
1 +

2W (T,X)

c2

)
δij +O

(
c−4
)
.(41)

The gravitational potentials in (39) - (41) can uniquely
be separated into two components: a local component,(
Wloc,W

i
loc

)
which originates from the body A itself and

an external component,
(
Wext,W

i
ext

)
, which is associated

with inertial effects and tidal forces [19, 55, 56]:

W (T,X) = Wloc (T,X) +Wext (T,X) , (42)

W i (T,X) = W i
loc (T,X) +W i

ext (T,X) . (43)

Explicit expressions for the external potentials are given
in [55, 56], while the local potentials are defined by the
following integrals:

Wloc (T,X) =
G

c2

∫
VE

d3X ′
T 00

(
T,X ′

)∣∣X −X ′∣∣ +O
(
c−2
)
,

(44)

W i
loc (T,X) =

G

c

∫
VE

d3X ′
T 0i

(
T,X ′

)∣∣X −X ′∣∣ +O
(
c−2
)
,

(45)

where the integrations run over the entire volume of
the Earth, and where Tµν are the components of the

energy-momentum tensor in GCRS coordinates; recall
the components of energy-momentum tensor scale as fol-
lows: T 00 = O

(
c2
)
, T 0i = O

(
c1
)
, T ij = O

(
c0
)
. The

local potentials (44) - (45) generated by the Earth can
be expanded into a series of STF multipole moments,
ML and SL. In the harmonic skeletonized gauge they
are given by [19, 51–55]:

Wloc (T,X) = G

∞∑
l=0

(−1)
l

l!
M〈L〉 (T )D〈L〉

1

R
+O

(
c−2
)
,

(46)

W i
loc (T,X) = −G

∞∑
l=1

(−1)
l

l!
Ṁ〈iL−1〉 (T ) D〈L−1〉

1

R

−G
∞∑
l=1

(−1)
l
l

(l + 1)!
εiab S〈bL−1〉 (T )D〈aL−1〉

1

R
+O

(
c−2
)
,

(47)

where R = |X| is the spatial distance from the origin of
GCRS to some field point outside the Earth, and

D〈L〉 = STF
a1...al

∂

∂Xa1
. . .

∂

∂Xal
, (48)

and a dot in (47) denotes a derivative with respect to
GCRS coordinate time T .

The intrinsic STF multipoles in (46) and (47) can
be approximated by their Newtonian expressions, that
means up to terms of the order O

(
c−2
)

they are given
by:

M〈L〉 (T ) = STF
L

∫
VE

d3X XL
T 00 (T,X)

c2
, (49)

S〈L〉 (T ) = STF
L

∫
VE

d3XεabclXaL−1
T 0b (T,X)

c
,(50)

where the integration runs over the volume of the Earth,
and Tαβ is the energy-momentum tensor in the local sys-
tem of the Earth.

The intrinsic mass-monopole term M = const in (49)
is the Newtonian mass of the Earth. Actually, the
mass-dipole vanishes, Mi = 0, because the origin of the
GCRS is assumed to be located at the barycenter of the
Earth, but in real measurements of celestial mechanics
the center-of-mass of massive Solar system bodies can
not be determined exactly, so it is meaningful to keep
this term and to assume Mi = const. in general. The
spin-dipole Si (T ) of the Earth is not constant but time-
dependent due to inner forces of the Earth and due to the
gravitational interaction of the Earth with other massive
bodies.
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C. Metric of Solar system in terms of intrinsic
multipoles

In order to describe the light trajectory through the
Solar system, one needs to introduce one global chart
(BCRS) xµ = (ct,x) but expressed in terms of in-
trinsic multipoles, MA

L and SAL , of each massive body
A = 1, ..., N . For being able to define the multipole
structure of each individual body in a physically mean-
ingful manner, the DSX formalism [55, 56] introduces
N local GCRS-like reference systems Xα

A = (cTA,XA),
each one very similar to the GCRS in Eqs. (39) - (41).
TheseN+1 coordinate systems are linked with each other
via coordinate-transformations. The DSX theory [55–58]
provides the theoretical framework for such an approach,
and has originally been established for celestial mechan-
ics and for deriving the equations of motion of a system
of N massive bodies with full multipole structure. Con-
sequently, one central result of DSX theory are the co-
ordinate transformations among these reference systems,
which are given by

xµ = xµA (TA) + eµa (TA)Xa
A +O

(
c−2
)
, (51)

where xµA (TA) is the worldline of body A in BCRS co-
ordinates. The inverse coordinate transformations could
be found in [19], but is not of relevance here for our pur-
poses. The tetrads eµa along the worldline of this body
are explicitly given by (cf. Eqs. (2.16) in [55]):

e0a (TA) =
ẋaA (TA)

c
+O

(
c−3
)
, (52)

eia (TA) = δai +O
(
c−2
)
, (53)

where in (52) a dot means derivative with respect to the
local coordinate time of body A. That means, ẋA (TA)
is the three-velocity of body A in the global system and
given in terms of the body’s local coordinate time TA,
which could easily be transformed into terms of global
BCRS coordinate-time.

The contravariant components of the BCRS metric
tensor gµν (t,x) in Eqs. (29) - (31) and the contravari-
ant components of the metric tensor Gαβ (TA,XA) in
Eqs. (39) - (41) in the local GCRS-like coordinate system
of body A are related via the following transformation:

gµν (t,x) =
∂xµ

∂Xα
A

∂xν

∂Xβ
A

Gαβ (TA,XA) . (54)

Using (51) in virtue of (54), the global potentials
(
w,wi

)
in (32) - (33) can be expressed in terms of intrinsic STF

multipoles MA
L and SAL as follows [19, 55, 56]:

w (t,x) =

N∑
A=1

wA (t,x) , (55)

wA (t,x) = G

∞∑
l=0

(−1)
l

l!
MA
〈L〉 (TA) DA〈L〉

1

RA
+O

(
c−2
)
,

(56)

wi (t,x) =

N∑
A=1

wiA (t,x) , (57)

wiA (t,x) = −G
∞∑
l=1

(−1)
l

l!
ṀA
〈iL−1〉 (TA) DA〈L−1〉

1

RA

−G
∞∑
l=1

(−1)
l

l!

l

l + 1
εiab S

A
〈bL−1〉 (TA) DA〈aL−1〉

1

RA

+GviA (TA)

∞∑
l=0

(−1)
l

l!
MA
〈L〉 (TA) DA〈L〉

1

RA
+O

(
c−2
)
.

(58)

In (55) and (57) the sum runs over all bodies of the N -
body system, RA = |XA| is the spatial distance from
the origin of local coordinate system to some field point
located outside the massive body, and

DA〈L〉 = STF
a1...al

∂

∂Xa1
A

. . .
∂

∂Xal
A

. (59)

The local mass-multipoles and spin-multipoles of some
massive body A in Newtonian approximation, i.e. up to
terms of the order O

(
c−2
)
, are given by (cf. Eqs. (49) -

(50):

MA
〈L〉 (TA) = STF

L

∫
VA

d3XAX
A
L

T 00
A (TA,XA)

c2
, (60)

SA〈L〉 (TA) = STF
L

∫
VA

d3XA εabclX
A
aL−1

T 0b
A (TA,XA)

c
,

(61)

where the integration runs over the spatial volume of

massive body A, and TαβA is the energy-momentum tensor
of body A in the local coordinate system of that body.

Finally, using coordinate transformations (51), the
spatial derivatives in (56) and (58) must be transformed
into the BCRS, where they read as follows:

∂

∂cTA
=

∂

∂ct
+
vaA (TA)

c

∂

∂xa
+O

(
c−2
)
, (62)

∂

∂Xa
A

=
∂

∂xa
+
vaA (TA)

c

∂

∂ct
+O

(
c−2
)
, (63)
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where the second term in (62) as well as in (63) gen-
erate terms which are beyond the order of O

(
c−4
)

in
the global metric, that means these terms will actually
not contribute in the final results for the light trajectory.
From (51) follows the relation [19, 21, 55, 56]:

RA = |x− xA (t)|+O
(
c−2
)
, (64)

where we recall that some massive body A moves along
the arbitrary worldline xA (t), which can later be con-
cretized by Solar system ephemeris [63] at any stage of
the calculations. Because of the fact that the BCRS
coordinate-time and the coordinate time TA of local sys-
tem of body A are related as follows [19, 21, 55, 56],

TA = t+O
(
c−2
)
, (65)

we obtain for the time-dependence of the intrinsic multi-
poles the following relation:

MA
〈L〉 (TA) = MA

〈L〉 (t) +O
(
c−2
)
, (66)

SA〈L〉 (TA) = SA〈L〉 (t) +O
(
c−2
)
, (67)

that means the neglected terms in (66) and (67) are be-
yond 1.5PN approximation for lightrays.

Summarizing the conclusions in Eqs. (51) - (67), the
metric perturbation in the near-zone of the Solar system
and expressed in terms of local multipoles is given by:

h
(2)
00 (t,x) =

N∑
A=1

h
(2)A
00 (t,x) , (68)

h
(2)A
00 (t,x) =

2G

c2

∞∑
l=0

(−1)
l

l!
MA
〈L〉 (t) ∂〈L〉

1

rA (t)
, (69)

h
(2)
ij (t,x) = h

(2)
00 (t,x) δij , (70)

h
(3)
0i (t,x) =

N∑
A=1

h
(3)A
0i (t,x) , (71)

h
(3)A
0i (t,x) =

4G

c3

∞∑
l=1

(−1)
l

l!
ṀA
〈iL−1〉 (t) ∂〈L−1〉

1

rA (t)

+
4G

c3

∞∑
l=1

(−1)
l
l

(l + 1)!
εiab S

A
〈bL−1〉 (t) ∂〈aL−1〉

1

rA (t)

−4G

c3
viA (t)

∞∑
l=0

(−1)
l

l!
MA
〈L〉 (t) ∂〈L〉

1

rA (t)
, (72)

where the summation in (68) and (71) runs over all mas-
sive bodies of the Solar system, while the metric pertur-
bations caused by one individual body are given by (69)
and (72). The dot in the first term of expression (72)

means here derivative with respect to global BCRS coor-
dinate time, and the spatial derivatives in (68) - (72) are
derivatives in the global system and given by

∂〈L〉 = STF
i1...il

∂

∂xi1
...

∂

∂xil
, (73)

and

rA (t) = |x− xA (t)| , (74)

is the distance between some field-point with spatial coor-
dinate x and the spatial position xA (t) of massive body
A in the global reference system at BCRS time t. The
metric perturbations in (68) - (72) have to be imple-
mented into the geodesic equation in (20) and, therefore,
the field-point x in (74) will be identified with the pho-
tons position x (t) according to Eq. (21). In view of this
fact we will use the same notation for the distance in (74)
and for the absolute value of (B10).

Before going further, we underline the absence of terms

proportional to
v2A
c2
MA
L ,

vA
c
ṀA
L , and

vA
c
SAL or higher

time-derivatives of the multipoles like M̈A
L or ṠAL in the

DSX metric tensor (68) - (72). Such terms are of the
order O

(
c−4
)

in the metric, that means they are beyond
the 1.5PN approximation for lightrays.

IV. TRANSFORMATION OF GEODESIC
EQUATION

As it has been discussed above, instead of (20) we actu-
ally may consider the simpler form of geodesic equation
in (25), which is integrated along the unperturbed light
trajectory (1). That means, according to Eq. (26), the
field-point x in Eq. (74) can be approximated by the un-
perturbed photon-trajectory xN (t) in (1), so that we get
the following expression for the vector pointing from the
center of massive body A toward the spatial position of
the photon at time t:

rNA (t) = xN (t)− xA (t) , (75)

rNA (t) = |xN (t)− xA (t)| , (76)

where the unperturbed lightray is given by Eq. (1) or
Eq. (24). It especially means, that all derivatives in
geodesic equation (25) and in the metric perturbations
in (68) - (72) act on the unperturbed lightray. In view of
this important fact, it is highly effective to embark on a
strategy, where all expressions in the geodesic equation
(25) are expressed in terms of new parameters which fully
characterize the unperturbed light trajectory from the
very beginning of the integration procedure. This strat-
egy especially implies, that we will transform the spatial
derivatives in (73), the derivatives in the geodesic equa-
tion (25), the distance in (76) and the time-argument of
the multipoles in terms of these new parameters.
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FIG. 1: A geometrical representation of the light trajectory
through the Solar system (only one massive body A of the
N -body Solar system is depicted) in terms of the new vari-
ables ξ and τ . The impact vector ξ is defined by Eq. (78) and
points from the origin of global system to the point of closest
approach of the unperturbed lightray to that origin, and is
time-independent. The impact vector dA (τ + t∗) is defined
by Eq. (85) and points from the origin of local system of body
A toward the point of closest approach of unperturbed ligh-
tray to that origin, and is time-dependent due to the motion
of the body. Furthermore, x (τ + t∗) is the global spatial coor-
dinate of the photon of the light trajectory, while xN (τ + t∗)
is the unperturbed lightray. The worldline of massive body A
in the global system is given by xA (τ + t∗), and rA (τ + t∗)
points from the origin of local system toward the exact pho-
ton’s position, while rNA (τ + t∗) points from the origin of local
system toward the unperturbed lightray.

The problem and the need for introducing new vari-
ables is namely the following. The variables t and x are
field variables of the gravitational field and, therefore,
they are of course independent of each other. But since
the integration of geodesic equation proceeds along the
lightray (cf. Eq. (21)) these field variables have to be
replaced by the photon trajectory, x (t), and then these
variables become dependent on each other. A drasti-
cal simplification is achieved in view of Eq. (26) which
states that the geodesic equation in (25) can be inte-
grated along the unperturbed lightray. Therefore, we are
looking for new time-variable and spatial-variable, which
fully parametrize the unperturbed lightray and which are
independent on each other. In this way the integration of
geodesic equation becomes feasible. Just for that reason,
the following independent variables τ and ξ have been
introduced in [32, 39, 40]:

c τ = σ · xN (t) , c τ0 = σ · xN (t0) , (77)

ξi = P ij x
j
N (t) , (78)

where P ij is the operator of projection onto the plane
perpendicular to vector σ,

P ij = δij − σi σj , (79)

where the covariant and contravariant positions of spa-
tial indices is insignificant: P ij = Pij = P ij . According
to (78), the three-vector ξ is the impact vector of the
unperturbed lightray, see also Eq. (B2). Especially, ξ is
time-independent and directed from the origin of global
coordinate system toward the point of closest approach of
the unperturbed light trajectory and the absolute value
is denoted by d = |ξ|. For a graphical elucidation see
Fig. 1.

Another important parameter is the time of closest ap-
proach of unperturbed lightray to the origin of the global
coordinate system, defined by

t∗ = t0 −
σ · x0

c
, (80)

which differs from (B14) which is the time of closest ap-
proach of the lightray to the origin of the local coordinate
system of some massive body A. Notice that dt = dτ for
the total differentials, because t∗ is a constant for each
particular lightray, and τ = t − t∗ and τ0 = t0 − t∗.
With the aid of these new variables ξ and τ , the mixed
initial-boundary conditions (22) and (23) take the form

x0 = x (τ0 + t∗) , (81)

σ = lim
τ→−∞

ẋ (τ + t∗)

c
, (82)

where a dot means derivative with respect to variable τ .
In the new variables the interpretation of these initial-
boundary conditions remains the same: the first condi-
tion (81) defines the spatial coordinates of the photon at
the moment of emission of light, while the second condi-
tion (82) defines the unit-direction (σ ·σ = 1) at infinite
past and infinite distance from the origin of global co-
ordinate system, that means at the so-called past null
infinity.

The unperturbed lightray in (24) transforms as follows
[26, 32, 33, 39, 40]:

xN (τ + t∗) = ξ + c τ σ , (83)

while its derivative with respect to variable τ reads
ẋN (τ + t∗) = cσ. The vector pointing from the spa-
tial position of the arbitrarily moving body toward the
unperturbed lightray in these new variables transforms
as follows:

rNA (τ + t∗) = ξ + c τ σ − xA (τ + t∗) , (84)

with the absolute value rNA (τ + t∗) =
∣∣rNA (τ + t∗)

∣∣, and
the impact parameter in (B13) for arbitrarily moving
bodies in these new variables reads:

dA (τ + t∗) = σ ×
(
rNA (τ + t∗)× σ

)
, (85)

with the absolute value dA (τ + t∗) = |dA (τ + t∗)|.
In virtue of Eqs. (77) and (78) two new variables, τ

and ξ, have been introduced and in addition the auxiliary
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variable t∗ by Eq. (80). As next, the partial derivatives
with respect to space and time in the geodesic equation
(25) have to be expressed in terms of these new variables.
In the pioneering investigations in [32, 39, 40] it has been
shown by chain rule that these partial derivatives trans-
form in the following way:

∂h
(n)
αβ (t,x)

∂xi

∣∣∣∣∣
x=xN(t)

=

(
P ij

∂

∂ξj
+ σi

∂

∂c τ
− σi ∂

∂ct∗

)
h
(n)
αβ (τ + t∗, ξ + cτ σ) ,

(86)

∂h
(n)
αβ (t,x)

∂ct

∣∣∣∣∣
x=xN(t)

=
∂

∂ct∗
h
(n)
αβ (τ + t∗, ξ + cτ σ) . (87)

Two remarks are in order to interpret these relations cor-
rectly.

First, we notice that the explicit time-dependence of

the metric tensor, h
(n)
αβ (t,x), is caused by the time-

dependence of the multipoles MA
L (t) , SAL (t) as well as

by the motions of the massive bodies xA (t). Therefore,
the partial time-derivative on the l.h.s. in (87) acts on
the multipoles as well as on the worldlines of the mas-
sive bodies. For the same reason, the time-derivatives
on the r.h.s. in (86) and (87) act on the multipoles, the
worldlines of the massive bodies and on the unperturbed
lightray. The unperturbed lightray in (83) does, however,
not depend on variable t∗.

Second, it should be realized, that in the left-hand
side in (86) and (87) one has first to perform the dif-
ferentiations and afterwards the field-point x has to
be substituted by the unperturbed lightray xN (t) =
x0 + cσ (t− t0). Opposite, in the right-hand side in
(86) and (87) one has first to substitute t∗ + τ and
xN (τ + t∗) = ξ + c τ σ and afterwards to perform the
differentiations. By means of these relations (86) and
(87), the geodesic equation in 1.5PN approximation in
(25) transforms as follows:

ẍi (τ + t∗)

c2
= +

1

2
P ij

∂

∂ξj
h
(2)
00 −

1

2
σi

∂

∂cτ
h
(2)
00

+
1

2
σkσlP ij

∂

∂ξj
h
(2)
kl +

1

2
σiσjσk

∂

∂cτ
h
(2)
jk − σ

j ∂

∂cτ
h
(2)
ij

− ∂

∂cτ
h
(3)
0i + σjP ik

∂

∂ξk
h
(3)
0j +O

(
c−4
)
, (88)

which agrees with Eq. (36) in [32] and Eq. (19) in [33];
note that Pab σ

b = 0. The double-dot on the left-hand
side in (88) means twice of the total differential with
respect to the new variable τ . Subject to relation (70),
the geodesic equation in (88) simplifies further:

ẍi (τ + t∗)

c2
= P ij

∂h
(2)
00 (τ + t∗, ξ + cτσ)

∂ξj

−σi ∂h
(2)
00 (τ + t∗, ξ + cτσ)

∂cτ
− ∂h

(3)
0i (τ + t∗, ξ + cτσ)

∂cτ

+σjP ik
∂h

(3)
0j (τ + t∗, ξ + cτσ)

∂ξk
+O

(
c−4
)
. (89)

Let us note that the first two terms are of order O
(
c−2
)

and agree with Eq. (95) in [26], while the last two terms
are of order O

(
c−3
)
. This fact implies that if one inte-

grates the geodesic equation (89) then the first two terms
in (89) give rise to terms of the order O

(
c−2
)

as well as

to terms of order O
(
c−3
)
, while the last two terms gen-

erate only terms of the order O
(
c−3
)
. The mathematical

structure of (89) is considerably simpler than the origi-
nal form in (25), but of more decisive importance in the
integration procedure is the fact that the time-variable τ
and the space-variable ξ are independent of each other.

As final step in the transformation, the metric pertur-
bations in (68) - (72) have to be transformed in terms of
these new variables ξ and τ . One obtains

h
(2)
00 (τ + t∗, ξ + cτ σ) =

N∑
A=1

h
(2)A
00 (τ + t∗, ξ + cτσ) ,

(90)

with

h
(2)A
00 (τ + t∗, ξ + cτ σ) = +

2G

c2

∞∑
l=0

(−1)
l

l!
MA
〈L〉 (τ + t∗) ∂〈L〉

1

rNA (τ + t∗)
, (91)
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and

h
(3)
0i (τ + t∗, ξ + cτ σ) =

N∑
A=1

h
(3)A
0i (τ + t∗, ξ + cτσ) ,

(92)

with

h
(3)A
0i (τ + t∗, ξ + cτ σ) = +

4G

c3

∞∑
l=1

(−1)
l

l!
ṀA
〈iL−1〉 (τ + t∗) ∂〈L−1〉

1

rNA (τ + t∗)

+
4G

c3

∞∑
l=1

(−1)
l
l

(l + 1)!
εiab S

A
〈bL−1〉 (τ + t∗) ∂〈aL−1〉

1

rNA (τ + t∗)

−4G

c3
viA (τ + t∗)

∞∑
l=0

(−1)
l

l!
MA
〈L〉 (τ + t∗) ∂〈L〉

1

rNA (τ + t∗)
, (93)

where the sum in (90) and (92) runs over all massive
bodies of the Solar system. The expressions in Eqs. (91)
and (93) contain the STF spatial derivative operation
∂〈L〉, which also has to be expressed in terms of these new
variables. That issue is considered in detail in appendix
C and yields the following expression for the STF partial
derivative operation in Eqs. (91) and (93):

∂〈L〉 = STF
i1...il

l∑
p=0

l!

(l − p)! p!

p∑
q=0

(−1)
q p!

(p− q)! q!

× σi1 ... σip P ip+1 jp+1 ... P il jl

× ∂

∂ξjp+1
...

∂

∂ξjl

(
∂

∂c τ

)p−q (
∂

∂c t∗

)q
. (94)

These expressions in (90) - (94) have to be inserted

into the geodesic equation (89), which finally yields the
geodesic equation for lightrays which propagate in the
gravitational field of one arbitrarily moving body A in
terms of these new variables τ and ξ:

ẍ (τ + t∗)

c2
=

N∑
A=1

[
ẍMA (τ + t∗)

c2
+
ẍSA (τ + t∗)

c2

]

+O
(
c−4
)
, (95)

where the indicesM and S stand for mass-multipole and
spin-multipole component, respectively. That means, the
linearity of geodesic equation in 1.5PN approximation
allows simply to sum over all N arbitrarily moving bodies
just straight away. The contributions due to the mass-
multipole structure of one body A is given by
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ẍiMA (τ + t∗)

c2
= +

2G

c2
P ij

∂

∂ξj

∞∑
l=0

(−1)
l

l!
MA
〈L〉 (τ + t∗) ∂〈L〉

1

rNA (τ + t∗)

−2G

c2
σi

∂

∂cτ

∞∑
l=0

(−1)
l

l!
MA
〈L〉 (τ + t∗) ∂〈L〉

1

rNA (τ + t∗)

−4G

c3
∂

∂cτ

∞∑
l=1

(−1)
l

l!
ṀA
〈iL−1〉 (τ + t∗) ∂〈L−1〉

1

rNA (τ + t∗)

+
4G

c3
∂

∂cτ
viA (τ + t∗)

∞∑
l=0

(−1)
l

l!
MA
〈L〉 (τ + t∗) ∂〈L〉

1

rNA (τ + t∗)

+
4G

c3
σjP ik

∂

∂ξk

∞∑
l=1

(−1)
l

l!
ṀA
〈jL−1〉 (τ + t∗) ∂〈L−1〉

1

rNA (τ + t∗)

−4G

c3
σjP ik

∂

∂ξk
vjA (τ + t∗)

∞∑
l=0

(−1)
l

l!
MA
〈L〉 (τ + t∗) ∂〈L〉

1

rNA (τ + t∗)
, (96)

and the contribution due to the spin-multipole structure of one body A reads

ẍi SA (τ + t∗)

c2
= −4G

c3
∂

∂cτ

∞∑
l=1

(−1)
l
l

(l + 1)!
εiab S

A
〈bL−1〉 (τ + t∗) ∂〈aL−1〉

1

rNA (τ + t∗)

+
4G

c3
σjP ik

∂

∂ξk

∞∑
l=1

(−1)
l
l

(l + 1)!
εjab S

A
〈bL−1〉 (τ + t∗) ∂〈aL−1〉

1

rNA (τ + t∗)
, (97)

where the derivative operator is given by (94).
By Eqs. (95) - (97) the transformation of geodesic

equation in 1.5PN approximation in terms of these new
variables τ and ξ has been accomplished, which describes
the propagation of a light-signal through the field of N
massive bodies in arbitrary motion and having arbitrary
shape and inner structure and which can also rotate ar-
bitrarily. Before we proceed further, three comments
should be in order:

(i) First, let us note that the spatial derivative operator
in (94) depends on time-variables τ and t∗, but in such
a way that it does not act on time-dependent multipoles
or the velocity of the body, that means:

∂〈L〉M
A
〈L〉 (τ + t∗) = 0 , (98)

∂〈L〉 S
A
〈L〉 (τ + t∗) = 0 , (99)

∂〈L〉 vA (τ + t∗) = 0 , (100)

because the construction of the derivative operator in

(94) is such that the derivatives with respect to variable
τ cancel exactly the derivatives with respect to t∗ in all
those functions which depend on the combination τ + t∗.
But of course ∂〈L〉 r

N
A (τ + t∗) 6= 0.

(ii) Second, let us also remark that in (96) the STF no-
tation for the derivative operator has been kept. But we
recall the following relation, which is a specific example
of the more general relation Eq. (A1) in [68]:

MA
〈L〉 ∂〈L〉

1

rNA (τ + t∗)
= MA

〈L〉 ∂L
1

rNA (τ + t∗)
,(101)

MA
〈iL−1〉 ∂〈L−1〉

1

rNA (τ + t∗)
= MA

〈iL−1〉 ∂L−1
1

rNA (τ + t∗)
.

(102)

The relation in (101) has allowed to replace the STF
derivative operator ∂〈L〉 by ∂L in Eqs. (100) - (102) in
[26]. Here, in view of relation (101) and (102) we may
also replace the STF derivative operator ∂〈L〉 by ∂L in
all terms in (96), and correspondingly in the first integral
in (110) and (111), as well as in the second in (118) and
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(119). On the other side, such replacement is not possible
for the spin-multipole terms in (97), because of

SA〈bL−1〉∂〈aL−1〉
1

rNA (τ + t∗)
6= SA〈bL−1〉∂aL−1

1

rNA (τ + t∗)
.

(103)

(iii) Third, it should also be mentioned that in the
limit of one massive body at rest with the origin of the
coordinate-system located at the center-of-mass and with
time-independent multipoles then the geodesic equation
(95) - (97) agrees with the geodesic equation given in [31],
notice the comment in [69].

V. FIRST INTEGRATION OF GEODESIC
EQUATION

The coordinate velocity of the photon is determined
by the first integral of geodesic equation (89). In terms
of the new variables we may separate the first integral
of geodesic equation (89) into 1PN and 1.5PN terms as
follows:

ẋ1.5PN (τ + t∗)

c
= σ +

N∑
A=1

∆ẋA1PN (τ + t∗)

c

+

N∑
A=1

∆ẋA1.5PN (τ + t∗)

c
. (104)

That means, according to (95) we may consider the light-
propagation in the field of one arbitrarily moving body
A and finally we have to build the sum over all massive
bodies A = 1, ..., N in order to obtain the light trajectory
in the entire Solar system. Furthermore, according to
Eq. (95) we split these expressions into mass-multipole
terms and spin-multipole contributions as follows:

∆ẋA1PN (τ + t∗)

c
=

∆ẋAM1PN (τ + t∗)

c
, (105)

∆ẋA1.5PN (τ + t∗)

c
=

∆ẋAM1.5PN (τ + t∗)

c
+

∆ẋAS1.5PN (τ + t∗)

c
,

(106)

where we have taken into account that in (105) there are
no spin-multipoles because they are of the order O

(
c−3
)
,

hence they do appear only in (106). We shall consider
mass-multipole and spin-multipoles in the next both sub-
sections separately.

A. First integration for mass-multipoles

The first integral of geodesic equation (95) for the
mass-multipole component of one massive body A reads:

∆ẋAM1PN (τ + t∗)

c
+

∆ẋAM1.5PN (τ + t∗)

c

=

τ∫
−∞

dcτ ′
ẍMA (τ ′ + t∗)

c2
, (107)

where the integrand up to the required order is given by
Eq. (96). Let us underline that the integration of the first
expression on the r.h.s. in (96) yields terms of the order
O
(
c−2
)

as well as terms of the order O
(
c−3
)
. For that

reason, the integral in (107) is written as sum of 1PN
and 1.5PN terms. In particular, for the integration of
geodesic equation the following rules are important (cf.
Eqs. (4.9) and (4.10) in [39] or Eqs. (4.38) and (4.39) in
[40]):∫

dcτ ′
∂

∂cτ ′
F (τ ′, ξ) = F (τ ′, ξ) + C (ξ) , (108)∫

dcτ ′
∂

∂ξi
F (τ ′, ξ) =

∂

∂ξi

∫
dcτ ′ F (τ ′, ξ) ,(109)

where the function C (ξ) in (108) depends only on vari-
able ξ, thence disappears in case of definite integrals.
The rule in (108) and (109) are valid if one integrates
along the unperturbed light trajectory, where the deriva-
tive with respect to integration variable c τ ′ acts like a
total derivative; see also the first comment below Eq. (87)
and the corresponding explanations made by Eq. (1.19)
- (1.23) in [40].

The integration of the first expression on the r.h.s. in
(96) is shown in more detail in appendix E, while in view
of relation (108) the integrals of the second, third, and
fourth expression in (96) are straightforward. The fifth
term in (96) can be integrated by parts using relation
(D9) and is shown in more detail in appendix F, while
the integration of the sixth term goes very similar. Alto-
gether, for the 1PN terms one obtains:
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∆ẋiMA 1PN (τ + t∗)

c
= −2G

c2

∞∑
l=0

(−1)
l

l!
MA
〈L〉 (τ + t∗) ∂〈L〉

diA (τ + t∗)

rNA (τ + t∗)− σ · rNA (τ + t∗)

1

rNA (τ + t∗)

−2G

c2
σi
∞∑
l=0

(−1)
l

l!
MA
〈L〉 (τ + t∗) ∂〈L〉

1

rNA (τ + t∗)

+O
(vA
c
ṀA
L

)
+O

(
M̈A
L

)
+O

(
v2A
c2
MA
L

)
. (110)

In the first term on the r.h.s. in (110) we have used relation (D5). For the 1.5PN terms one obtains:

∆ẋiMA 1.5PN (τ + t∗)

c
= +

2G

c3

∞∑
l=1

(−1)
l

l!
ṀA
〈L〉 (τ + t∗) ∂〈L〉

diA (τ + t∗)

rNA (τ + t∗)− σ · rNA (τ + t∗)

+
2G

c3
σ · vA (τ + t∗)

∞∑
l=0

(−1)
l

l!
MA
〈L〉 (τ + t∗) ∂〈L〉

diA (τ + t∗)

rNA (τ + t∗)− σ · rNA (τ + t∗)

1

rNA (τ + t∗)

−2G

c3
P ij

∂

∂ξj

∞∑
l=0

(−1)
l

l!
MA
〈L〉 (τ + t∗) ∂〈L〉

vA (τ + t∗) · dA (τ + t∗)

rNA (τ + t∗)− σ · rNA (τ + t∗)

−4G

c3

∞∑
l=1

(−1)
l

l!
ṀA
〈iL−1〉 (τ + t∗) ∂〈L−1〉

1

rNA (τ + t∗)
+

4G

c3
viA (τ + t∗)

∞∑
l=0

(−1)
l

l!
MA
〈L〉 (τ + t∗) ∂〈L〉

1

rNA (τ + t∗)

−4G

c3
σj
∞∑
l=1

(−1)
l

l!
ṀA
〈jL−1〉 (τ + t∗) ∂〈L−1〉

diA (τ + t∗)

rNA (τ + t∗)− σ · rNA (τ + t∗)

1

rNA (τ + t∗)

+O
(vA
c
ṀA
L

)
+O

(
M̈A
L

)
+O

(
v2A
c2
MA
L

)
, (111)

where we recall ṀA = 0. In the second and sixth term
on the r.h.s. in (111) we have used (D5), while in the
first term on the r.h.s. in (111) we have used relation
(D6). For the third term in (111) one might want to
use relation (D7), but actually it does not simplify that
expression significantly. The derivative operator ∂〈L〉 in
(110) and (111) in terms of the new variables ξ, τ , t∗ is
given by (94).

Let us recall, that in 1PN approximation the derivative
operator in Eq. (94) can be replaced by the expression in
(C6), because the derivatives with respect to variable t∗

produce terms of the order O
(
c−3
)
; see also text below

Eq. (C5). Then, keeping in mind relation (101), one may
easily show that the 1PN expression in Eq. (110) agrees
with Eq. (111) in [26]. In [26] it has been demonstrated
that in case of bodies at rest (vA = 0) having time-
independent mass-multipoles and located at the origin of
coordinate system (xA = 0) our result in (110) agrees

with the time-derivative of Eqs. (33) and (36) in [31]. It
should also be noticed that the derivative of (111) with
respect to variable cτ yields the expression in (96).

B. First integration for spin-multipoles

The first integral of geodesic equation (95) for the spin-
multipole component of one massive body A reads:

∆ẋA S1.5PN (τ + t∗)

c
=

τ∫
−∞

dcτ ′
ẍSA (τ ′ + t∗)

c2
, (112)

where the integrand up to the required order is given
by Eq. (97). The integration in (112) can be performed
straightforward and one obtains:
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∆ẋi SA 1.5PN (τ + t∗)

c
= −4G

c3

∞∑
l=1

(−1)
l
l

(l + 1)!
εiab S

A
〈bL−1〉 (τ + t∗) ∂〈aL−1〉

1

rNA (τ + t∗)

−4G

c3
σj
∞∑
l=1

(−1)
l
l

(l + 1)!
εjab S

A
〈bL−1〉 (τ + t∗) ∂〈aL−1〉

diA (τ + t∗)

rNA (τ + t∗)− σ · rNA (τ + t∗)

1

rNA (τ + t∗)

+O
(
ṠAL

)
+O

(vA
c
SAL

)
. (113)

Let us remark that the second term in (113) is obtained
by integration by parts, using (D9) and afterwards mak-
ing use of relation (D5). Note that the derivative opera-
tor ∂〈L〉 in terms of the new variables ξ, τ , t∗ is given by
(94). In the appendix H it is shown that in the limit of
bodies at rest and stationary spin-multipoles our result
in (113) agrees with Eqs. (32) and (37) in [31], up to an
overall sign which has been clarified [69]. We also note
that the derivative of (113) with respect to variable cτ
yields the expression in (97).

Let us remark that neglecting terms of the order

O
(
M̈A
L

)
, O

(vA
c
ṀA
L

)
and O

(
v2A
c2
MA
L

)
in Eqs. (110)

and (111), and neglecting terms of the order O
(
ṠAL

)
and

O
(vA
c
SAL

)
in Eq. (113) is consistent with the fact that

the DSX metric in Eqs. (68) - (72) does also not contain
such terms because they are beyond 1.5PN approxima-
tion.

VI. SECOND INTEGRATION OF GEODESIC
EQUATION

The light trajectory of the photon is determined by the
second integration of geodesic equation (89), and can be
written as follows:

x1.5PN (τ + t∗) = ξ + cτσ +

N∑
A=1

∆xA1PN (τ + t∗, τ0 + t∗)

+

N∑
A=1

∆xA1.5PN (τ + t∗, τ0 + t∗) , (114)

where the sum runs over all massive bodies A = 1, ..., N
of the Solar system. Like in the case of first integration,
we split these expressions into mass-multipole terms and
spin-multipole contributions as follows:

∆xA1PN (τ + t∗, τ0 + t∗) = ∆xAM1PN (τ + t∗, τ0 + t∗) ,

(115)

∆xA1.5PN (τ + t∗, τ0 + t∗) = ∆xAM1.5PN (τ + t∗, τ0 + t∗)

+∆xAS1.5PN (τ + t∗, τ0 + t∗) , (116)

where in (115) there are no spin-multipoles because they
are terms of the order O

(
c−3
)

and consequently they
do appear only in (116). We will consider the mass-
multipole and the spin-multipole components separately.

A. Second integration for mass-multipoles

The mass-multipole terms in (115) and (116) read

∆xAM1PN (τ + t∗, τ0 + t∗) + ∆xAM1.5PN (τ + t∗, τ0 + t∗)

=

τ∫
τ0

dcτ ′

[
∆ẋAM1PN (τ ′ + t∗)

c
+

∆ẋAM1.5PN (τ ′ + t∗)

c

]
,

(117)

where the first and second integrand on the r.h.s. in
(117) is given by Eq. (110) and (111), respectively. Let
us underline, that the integration of the first integrand
yields terms of the order O

(
c−2
)

as well as of the order

O
(
c−3
)
. Therefore, the integral in (117) is written as

sum of 1PN and 1.5PN terms, while after the integration
one may separate the 1PN and 1.5PN terms. Inserting
(110) and (111) into (117) yields all in all 8 integrals
I3 ... I10. In favor of clear arrangement, each of these
integrals is considered separately in the appendix G, and
their solutions are given by Eqs. (G5), (G7), (G9), (G11),
(G13), (G15), (G17), (G19). Altogether, for the mass-
multipole terms to order O

(
c−2
)

we obtain:
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∆xAM1PN (τ + t∗, τ0 + t∗) = ∆xAM1PN (τ + t∗)−∆xAM1PN (τ0 + t∗) ,

∆xiMA 1PN (τ + t∗) = −2G

c2

∞∑
l=0

(−1)
l

l!
MA
〈L〉 (τ + t∗) ∂〈L〉

diA (τ + t∗)

rNA (τ + t∗)− σ · rNA (τ + t∗)

+
2G

c2
σi

∞∑
l=0

(−1)
l

l!
MA
〈L〉 (τ + t∗) ∂〈L〉 ln

[
rNA (τ + t∗)− σ · rNA (τ + t∗)

]
+O

(vA
c
ṀA
L

)
+O

(
M̈A
L

)
+O

(
v2A
c2
MA
L

)
. (118)

For the mass-multipole terms to order O
(
c−3
)

one ob- tains:
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∆xAM1.5PN (τ + t∗, τ0 + t∗) = ∆xAM1.5PN (τ + t∗)−∆xAM1.5PN (τ0 + t∗) ,

∆xiMA 1.5PN (τ + t∗) = +
2G

c3

∞∑
l=1

(−1)
l

l!
ṀA
〈L〉 (τ + t∗) ∂〈L〉 d

i
A (τ + t∗)

σ · rNA (τ + t∗)

rNA (τ + t∗)− σ · rNA (τ + t∗)

−2G

c3

∞∑
l=1

(−1)
l

l!
ṀA
〈L〉 (τ + t∗) ∂〈L〉 d

i
A (τ + t∗) ln

[
rNA (τ + t∗)− σ · rNA (τ + t∗)

]
−2G

c3
P ij

∂

∂ξj

∞∑
l=0

(−1)
l

l!
MA
〈L〉 (τ + t∗) ∂〈L〉 vA (τ + t∗) · dA (τ + t∗)

σ · rNA (τ + t∗)

rNA (τ + t∗)− σ · rNA (τ + t∗)

+
2G

c3
P ij

∂

∂ξj

∞∑
l=0

(−1)
l

l!
MA
〈L〉 (τ + t∗) ∂〈L〉 vA (τ + t∗) · dA (τ + t∗) ln

[
rNA (τ + t∗)− σ · rNA (τ + t∗)

]
−2G

c3
σi
∞∑
l=1

(−1)
l

l!
ṀA
〈L〉 (τ + t∗) ∂〈L〉

[
rNA (τ + t∗) + σ · rNA (τ + t∗) ln

[
rNA (τ + t∗)− σ · rNA (τ + t∗)

] ]

+
2G

c3
σi σ · vA (τ + t∗)

∞∑
l=0

(−1)
l

l!
MA
〈L〉 (τ + t∗) ∂〈L〉 ln

[
rNA (τ + t∗)− σ · rNA (τ + t∗)

]
+

2G

c3
σi

∞∑
l=0

(−1)
l

l!
MA
〈L〉 (τ + t∗) ∂〈L〉

vA (τ + t∗) · dA (τ + t∗)

rNA (τ + t∗)− σ · rNA (τ + t∗)

+
4G

c3

∞∑
l=1

(−1)
l

l!
ṀA
〈iL−1〉 (τ + t∗) ∂〈L−1〉 ln

[
rNA (τ + t∗)− σ · rNA (τ + t∗)

]
−4G

c3
viA (τ + t∗)

∞∑
l=0

(−1)
l

l!
MA
〈L〉 (τ + t∗) ∂〈L〉 ln

[
rNA (τ + t∗)− σ · rNA (τ + t∗)

]
−4G

c3
σj

∞∑
l=1

(−1)
l

l!
ṀA
〈jL−1〉 (τ + t∗) ∂〈L−1〉

diA (τ + t∗)

rNA (τ + t∗)− σ · rNA (τ + t∗)

+O
(vA
c
ṀA
L

)
+O

(
M̈A
L

)
+O

(
v2A
c2
MA
L

)
. (119)

Notice, that the derivative operator ∂〈L〉 in (118) and
(119) in terms of the new variables ξ, τ , t∗ is given by
(94). One may demonstrate, that (118) and (119) are
consistent with (110) and (111). That means, the deriva-
tive of (118) and (119) with respect to variable τ coincides
with the expressions in (110) and (111) up to terms of
the order O

(
c−4
)
. For such a proof one has to use the

relations (D9) and (D12) and one must take into account
(G3) and (G4).

The 1PN solution in Eq. (118) coincides with Eq. (137)
in [26]. Recall that in 1PN approximation the derivative
operator in Eq. (94) can be replaced by the simplified
expression in Eq. (C6) (cf. Eq. (101) in [26]), because
derivatives with respect to variable t∗ generate terms of
the order O

(
c−3
)
; see also comments below Eq. (C5).

Furthermore, in [26] it has already been shown that in
case of bodies at rest and located at the origin of coor-
dinate system our result in (118) agrees with Eqs. (33)
and (36) in [31].

B. Second integration for spin-multipoles

The spin-multipole terms in (116) read

∆xAS1.5PN (τ + t∗, τ0 + t∗) =

τ∫
τ0

dcτ ′
∆ẋSA (τ ′ + t∗)

c
,

(120)

where the integrand in (120) is given by the expressions
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in Eq. (113). The second expression on the r.h.s. in
Eq. (113) is rewritten by means of relation (D5) and then,

by means of relations (D10) and (D11), we may integrate
by parts. We obtain the following solution:

∆xAS1.5PN (τ + t∗, τ0 + t∗) = ∆xAS1.5PN (τ + t∗)−∆xAS1.5PN (τ0 + t∗) ,

∆xiSA 1.5PN (τ + t∗) = +
4G

c3

∞∑
l=1

(−1)
l
l

(l + 1)!
εiab S

A
〈bL−1〉 (τ + t∗) ∂〈aL−1〉 ln

[
rNA (τ + t∗)− σ · rNA (τ + t∗)

]
−4G

c3
σj
∞∑
l=1

(−1)
l
l

(l + 1)!
εjab S

A
〈bL−1〉 (τ + t∗) ∂〈aL−1〉

diA (τ + t∗)

rNA (τ + t∗)− σ · rNA (τ + t∗)

+O
(
ṠAL

)
+O

(vA
c
SAL

)
, (121)

where for the second expression we also have used relation
(D6). The derivative operator ∂〈L〉 in terms of the new
variables ξ, τ , t∗ is given by (94). One may easily check,
that (121) is consistent with (113), in the sense that the
derivative of (121) with respect to variable τ just yields
the expression in (113) up to terms of the order O

(
c−4
)
.

For that proof simply apply the relations (D9) and (D12)
and take into account (G3). Furthermore, in appendix H
it is shown that in the limit of bodies at rest and time-
independent spin-multipoles our result in (121) agrees
with Eqs. (33) and (38) in [31], up to an overall sign
which has been clarified [69].

We underline again that neglecting terms of the order

O
(
M̈A
L

)
, O

(vA
c
ṀA
L

)
and O

(
v2A
c2
MA
L

)
in Eqs. (118)

and (119), and the neglecting terms of the order O
(
ṠAL

)
and O

(vA
c
SAL

)
in Eq. (121) is in coincidence with the

DSX metric in Eqs. (68) - (72) where such terms do not
occur because they are beyond 1.5PN approximation.

VII. LIGHT TRAJECTORY IN THE FIELD OF
SPIN-DIPOLES

In our previous investigation [26] the light trajectory in
the field of N arbitrarily moving mass-monopoles, mass-
dipoles, and mass-quadrupoles has been considered as
specific examples of the general solution, see Eqs. (139),
(140), and (143) - (148) in [26], respectively. Here we will
consider the light trajectory in the field of N arbitrarily
moving spin-dipoles as specific example of the general so-
lution. It may also serve as a further instructive example
about how the presented approach runs.

A. Light trajectory in the field of N arbitrarily
moving spin-dipoles

The rotational motion of a real body like the Sun,
Earth, or Jupiter, is a highly complicated physical sub-
ject, because these bodies are not rigid monopoles and
the rotational motion can therefore not be described
by a simple spin-dipole, but must be expressed by the
full set of time-dependent spin-multipoles SAL (t) with
l = 1, 2, 3, .... On the other side, the main impact among
all spin-multipoles on light deflection is of course given
by the first summand in (121) which is proportional to
the intrinsic spin vector SA (t) of body A and which is
called spin-dipole. It is also well-known that for sub-
micro-arcsecond astrometry the light trajectory in the
field of a spin-dipole is of specific importance, because
the light deflection caused by the spin-dipole of a body
at rest amounts to be 0.7µas for grazing rays at the Sun,
0.2µas for grazing rays at Jupiter, and 0.04µas for graz-
ing rays at Saturn [28, 36]. Therefore, we will consider
the light trajectory in the field of one arbitrarily moving
body with time-dependent spin-dipole in more detail in
this section.

According to Eq. (114) with (120) and (121), the
light trajectory in the field of N arbitrarily moving spin-
dipoles reads:

xS (τ + t∗) = ξ + c τ σ

+

N∑
A=1

(
∆xS

A (τ + t∗)−∆xS
A (τ0 + t∗)

)
, (122)

where
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∆xi SA (τ + t∗) = −2G

c3
εiab S

A
b (τ + t∗) ∂a ln

[
rNA (τ + t∗)− σ · rNA (τ + t∗)

]
+

2G

c3
σj εjab S

A
b (τ + t∗) ∂a

diA (τ + t∗)

rNA (τ + t∗)− σ · rNA (τ + t∗)
. (123)

The derivative operator in terms of the variables ξ, τ, t∗

is given by (94), which for one index reads:

∂a = P ak
∂

∂ξk
+ σa

∂

∂cτ
− σa ∂

∂ct∗
. (124)

By inserting (124) into (123), we encounter the following
individual terms:

P ak
∂

∂ξk
ln
[
rNA (τ + t∗)− σ · rNA (τ + t∗)

]
=
daA (τ + t∗)

rNA (τ + t∗)

1

rNA (τ + t∗)− σ · rNA (τ + t∗)
,(125)

and

σa
(

∂

∂cτ
− ∂

∂ct∗

)
ln
[
rNA (τ + t∗)− σ · rNA (τ + t∗)

]
= − σa

rNA (τ + t∗)
, (126)

and

P ak
∂

∂ξk
diA (τ + t∗)

rNA (τ + t∗)− σ · rNA (τ + t∗)

= − daA (τ + t∗) diA (τ + t∗)(
rNA (τ + t∗)− σ · rNA (τ + t∗)

)2 1

rNA (τ + t∗)

+
P ai

rNA (τ + t∗)− σ · rNA (τ + t∗)
, (127)

and we recall εjab σ
a σj = 0. Inserting (125) - (127) into

(123) yields

∆xS
A (τ + t∗) = +

2G

c3
SA (τ + t∗)× dA (τ + t∗)

rNA (τ + t∗)− σ · rNA (τ + t∗)

1

rNA (τ + t∗)
+

2G

c3
σ × SA (τ + t∗)

rNA (τ + t∗)

−2G

c3
σ · (dA (τ + t∗)× SA (τ + t∗))(
rNA (τ + t∗)− σ · rNA (τ + t∗)

)2 dA (τ + t∗)

rNA (τ + t∗)
− 2G

c3
σ × SA (τ + t∗)

rNA (τ + t∗)− σ · rNA (τ + t∗)
, (128)

where the notation εijk aj bk = (a× b)i has been used.
The complete expression for the light trajectory in 1.5PN
approximation in the field of N arbitrarily moving and
time-dependent intrinsic spin-dipoles is finally obtained
by inserting (128) into (122).

As mentioned in the introductory section, in [38] the
light trajectory in post-Minkowskian approximation in
the field of N arbitrarily moving pointlike spin-dipoles
has been determined. That means, the pointlike objects
in [38] may even be in ultra-relativistic motion, while our
1.5PN solution in (128) is valid for extended bodies with
spin-dipole but in slow-motion along arbitrary worldlines.
In appendix I it is shown that our result in (128) agrees
with the results in [38] for the light trajectory up to terms
of the order O

(
c−4
)
. One may also verify that in the

limit of time-independent spin-dipoles, SA = const, and
in the limit of uniform motion, vA = const, our result in
(128) agrees with Eq. (26) in [37] in GR, noticing that
constant terms cancel each other according to Eq. (122).

B. Light trajectory in the field of N bodies at rest
with spin-dipole

In this section we will consider the case of light prop-
agation in the field of N spin-dipoles at rest and com-
pare with results in the literature. For time-independent
spin-dipole SA = const. and for one body at rest located
at xA = const. in the global reference system we have
rNA (τ + t∗) → rNA = ξ + c τ σ − xA and dA (τ + t∗) →
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dA = rNA −σ
(
σ · rNA

)
where dA is the time-independent

impact vector defined by Eq. (B2). From (122) we obtain
the light trajectory in the field of N bodies at rest with
time-independent spin-dipoles:

xS (τ + t∗) = ξ + c τ σ +

N∑
A=1

(
∆xS

A (τ)−∆xS
A (τ0)

)
,

(129)

where from (128) we obtain the following expression for
the correction-term:

∆xS
A (τ) =

2G

c3
SA × dA

d2A

σ · rNA
rNA

+
2G

c3
σ × SA
rNA

−2G

c3
σ · (dA × SA)

dA
d4A

(
rNA + σ · rNA

)2
rNA

−2G

c3
σ × SA

rNA + σ · rNA
d2A

, (130)

where a time-independent term
2G

c3
SA × dA

d2A
= const.

has been omitted because this term will be cancelled
in view of (129). The time-dependence of (129) and
(130) is solely caused by the time-dependence of the
unperturbed lightray in (83). In order to obtain the
form of the expression in (130) we have also used d2A =(
rNA − σ · rNA

) (
rNA + σ · rNA

)
. The expression in (129) -

(130) agrees with the solution in Eq. (56) in [36], where
the trajectory of a photon as function of time has been
determined in the field of N bodies at rest in post-
Newtonian approximation for the lightrays. It is straight-
forward to show that the time-derivative ∂c τ∆xS

A (τ) co-
incides with Eq. (59) in [36].

VIII. TIME-DELAY

In the previous sections we have determined the light
trajectory of a light-signal which propagates through the
metric field of the Solar system, that means through
the gravitational field of N arbitrarily moving massive
bodies. However, the light trajectory is not an observ-
able at all. In real astrometric measurements one of the
most important observable quantity concerns the time
delay of some light-signal propagating in the Solar sys-
tem. The considerations here are similar to what has
been discussed in [26] about observable effects, but with
the extension to 1.5PN approximation. Especially, we
will assume that the light source is located at x0 = x (t0)
where t0 is the moment of emission of the light-signal,
and the observer is located at x1 = x (t1) where t1 is the
moment of reception of the light-signal by the observer.
Furthermore, both the light source and the observer are
assumed to be at rest with respect to the global reference
system.

In the pioneering work [70], Shapiro has considered the
general-relativistic effect of time delay of a light-signal
which propagates through the gravitational field of a
static and spherically symmetric massive body. Espe-
cially, Shapiro has drawn the attention to the fact about
the measurability of that additional test of relativity by
radar technology. In fact, the Shapiro time delay was
discovered soon afterwards [71]. It might be useful to re-
alize that the reason for the time delay is not only laying
upon the fact that the light-trajectory is curved but also
because the speed of a photon is decelerated in the grav-
itational field of a monopole at rest. While the classical
Shapiro effect is originally related to a time delay of a
light-signal in the monopole-field, it became a matter of
common knowledge to call the time delay of a light-signal
in any gravitational field just Shapiro effect.

For describing the Shapiro-effect, we introduce a vector
pointing from the light source at the moment of emission
toward the observer at the moment of reception, which
in terms of the new variables reads

R = x (τ1 + t∗)− x (τ0 + t∗) , (131)

k =
R

R
, (132)

where k is just the corresponding unit vector with R =
|R| being the absolute value of R. Using very similar
steps as in [32], we obtain from Eq. (114) the following
expression for the time delay in the gravitational field of
N arbitrarily moving massive bodies in 1.5PN approxi-
mation that means up to terms of the order O

(
c−4
)
:

c (τ1 − τ0) = R+ ∆cτ1PN + ∆cτ1.5PN , (133)

∆cτ1PN = −
N∑
A=1

k ·
[
∆xA1PN (τ1 + t∗, τ0 + t∗)

]
,

(134)

∆cτ1.5PN = −
N∑
A=1

k ·
[
∆xA1.5PN (τ1 + t∗, τ0 + t∗)

]
,

(135)

where the sum runs over all massive bodies and the ex-
pressions for ∆xA1PN and ∆xA1.5PN are given by Eqs. (115)
and (116) with (118), (119) and (121), respectively. The
1.5PN relation (133) generalizes the 1PN relation (154)
in [26].

We will consider the time delay in (133) of a light-signal
caused by N arbitrarily moving bodies in some more de-
tail, but will restrict ourselves on the case of N mov-
ing bodies with monopole-structure (M) , quadrupole-
structure (J2), and spin-dipole-structure (S). Higher mul-
tipoles are so tiny that they are negligible in the time de-
lay effect. These first terms in the general formula (133)
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read

c (t1 − t0) = R+ ∆ ctM1PN + ∆ ctJ21PN

+∆ ctM1.5PN + ∆ ctS1.5PN , (136)

which are instructive examples and do allow for a cross-
check with known results in the literature.

Furthermore, as mentioned in the introductory sec-
tion, there are several proposals to ESA for future space-
based missions, like ASTROD [8, 9], LATOR [10, 11],
ODYSSEY [12], SAGAS [13], TIPO [14], which aim at
time-transfer accuracies of two separated clocks within
the Solar system of up to 10 ps. The question arises
about the ability of such extremely-precise astrometry
missions, especially designed for tests of relativity in the
Solar system, to detect some 1.5PN terms in the Shapiro
effect which will be discussed in this section.

In general, the light-signal will be assumed to be emit-
ted at a space-time point with BCRS coordinates x0, t0
and received by an observer at a space-time point with
BCRS coordinates x1, t1. We also introduce the follow-
ing notations: r 0

A = x0 − xA (t0), r 1
A = x1 − xA (t1),

R = |x0 − x1|, v 0
A = vA (t0), v 1

A = vA (t1), d 0
A =

dA (t0), d 1
A = dA (t1). Furthermore, we notice that

σ = k + O
(
c−2
)

according to Eq. (167) given below,
that means we may replace the vector σ in favor of vec-
tor k whenever it is reasonable.

A. Moving mass-monopole

We will consider the time delay in (133) of a light-signal
caused by an arbitrarily moving monopole.

1. In terms of coordinate time

From Eqs. (118) and (119) we obtain in the field
of arbitrary-moving monopoles (l = 0) the expres-
sions ∆xAM

1PN and ∆xAM
1.5PN, respectively. According to

Eqs. (133) - (135) and using t0 = τ0 + t∗ and t1 = τ1 + t∗

we obtain up to terms of the order O
(
c−4
)
:

∆ ctM = ∆ ctM1PN + ∆ ctM1.5PN , (137)

∆ ctM1PN = −
N∑
A=1

k ·∆xAM
1PN (t1, t0)

= −
N∑
A=1

2GMA

c2
ln
r 1
A − σ · r 1

A

r 0
A − σ · r 0

A

, (138)

∆ ctM1.5PN = −
N∑
A=1

k ·∆xAM
1.5PN (t1, t0)

= +

N∑
A=1

2GMA

c3
(
σ · v 1

A

)
ln
(
r 1
A − σ · r 1

A

)

−
N∑
A=1

2GMA

c3
(
σ · v 0

A

)
ln
(
r 0
A − σ · r 0

A

)

−
N∑
A=1

2GMA

c3

(
v 1
A · d

1
A

r 1
A − σ · r 1

A

− v 0
A · d

0
A

r 0
A − σ · r 0

A

)
. (139)

In the limit of monopoles at rest only the term in
Eq. (138) remains which then represents the well-known
classical Shapiro effect [17, 18, 21, 22] which is growing
logarithmically with R, while in our result (139) the ar-
gument of the logarithm depends on the worldline of the
arbitrary-moving body xA (t).

One may verify that our result for the Shapiro delay
for arbitrarily moving monopoles in Eq. (138) - (139),
agrees in the limit of uniform motion with Eq. (20) in
[72], with Eq. (45) in [42], and with Eq. (33) in [43] up
to terms of the order O

(
c−4
)
. In this respect we recall

that the term in the last line in (139) can be written as
follows:

v 1
A · d

1
A

r 1
A − σ · r 1

A

− v 0
A · d

0
A

r 0
A − σ · r 0

A

=
v 1
A · r 1

A − r 1
A

(
σ · v 1

A

)
r 1
A − σ · r 1

A

−
v 0
A · r 0

A − r 0
A

(
σ · v 0

A

)
r 0
A − σ · r 0

A

+σ ·
(
v 1
A − v 0

A

)
, (140)

where the term in the last line is proportional to the ac-
celeration of the massive body A and vanishes in case of
uniform motion. The neglect of this term, as suggested
in [33], is well-justified because a simple estimate reveals
that such terms are extremely small and far out of de-
tectability even for future astrometry missions. An esti-
mate of the absolute value of the 1PN time delay formula
in Eq. (138) for one body A and assuming an astrometric
configuration with σ ·r 0

A ' −r 0
A and σ ·r 1

A ' r 1
A, is given
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by [22]:

∣∣∆ tM1PN

∣∣ ≤ 2GMA

c3
ln

4 r 1
A r

0
A

(d1A)
2 . (141)

A very similar estimate of the absolute value of the 1.5PN
correction in Eq. (139) for one body A and same config-
uration yields

∣∣∆ tM1.5PN

∣∣ ≤ vA
c

∣∣∆ tM1PN

∣∣+
4GMA

c3
vA
c

r 1
A

d1A
. (142)

The second term in (142) is proportional to ∼ r 1
A/d

1
A,

which for grazing rays becomes a large quantity. For
instance, for Jupiter we would get r 1

A/d
1
A ∼ 104 which

spoils the effect of the tiny factor vA/c ∼ 10−5 which is
typical for 1.5PN corrections. This large term is solely
caused by the term in the last line in Eq. (139). Below,
we will consider the expressions for light deflection where
we will encounter this large term again, cf. text below
Eq. (34) in [28]. As we will show in the next subsection,
this large factor r 1

A/d
1
A is related to the retardation of

gravitational action.

2. In terms of retarded time

Gravitational action travels with the finite speed of
light and this effect cannot be ignored in high-precision
astrometry, as it has been outlined long time ago [28,
30, 33, 35, 38]. In order to take account for that ef-
fect we follow the arguments of the investigations in
[28, 33, 35, 38, 73], which have shown that the position
of the massive body must not be taken at the time of
observation, xA (t1), but at the retarded time-moment,
xA (tret1 ). In general, the retarded time is defined by an
implicit relation,

tret = t− |x (t)− xA (tret)|
c

, (143)

where t is the coordinate time. For the special case where
t is the time of emission t0 or the time of reception t1 see
Eq. (149). Actually, the retarded time is a function of
the position of body under consideration and, therefore,
an index A should also be attached at tret but for simpler
notation such label is omitted. According to Eqs. (47) -
(48) in [74], the retarded position can be series-expanded
and leads to the following relations for any instant of
time:

rA
(
tret
)

= rA (t) + rA (t)
vA (t)

c
+O

(
c−2
)
, (144)

rA
(
tret
)

= rA (t) +
rA (t) · vA (t)

c
+O

(
c−2
)
.(145)

These relations allow one to rewrite identically the ex-
pressions in (137) - (139) into the following form up to

terms of the order O
(
c−4
)
:

∆ ctM = ∆ ctM1PN + ∆ ctM1.5PN , (146)

∆ ctM1PN = −
N∑
A=1

2GMA

c2
ln
rA (tret1 )− σ · rA (tret1 )

rA (tret0 )− σ · rA (tret0 )
,

(147)

∆ ctM1.5PN = +

N∑
A=1

2GMA

c3

×
(
σ · vA

(
tret1

))
ln
(
rA
(
tret1

)
− σ · rA

(
tret1

))
−

N∑
A=1

2GMA

c3

×
(
σ · vA

(
tret0

))
ln
(
rA
(
tret0

)
− σ · rA

(
tret0

))
,

(148)

where (cf. Eq. (143)):

tretn = tn −
|rA (tretn )|

c
, n = 0, 1 . (149)

The solution for the time delay in (146) - (148) agrees
with Eq. (51) in [33]. Especially, we notice that the term
in the last line of Eq. (139) has been absorbed in (147).
Consequently, if one uses the expression for the time de-
lay in terms of retarded time, Eqs. (146) - (148), then
one obtains the following correct estimate for the time
delay in 1.5PN approximation:

∣∣∆ tM1PN

∣∣ ≤ 2GMA

c3
ln

4 rA (tret0 ) rA (tret1 )

d2A (tret1 )
, (150)

∣∣∆ tM1.5PN

∣∣ ≤ vA
c

∣∣∆ tM1PN

∣∣ . (151)

For numerical values of the upper bound in Eq. (150) and
Eq. (151) see Table II.

B. Moving spin-dipole

Now let us consider the time delay in (133) of a light-
signal caused by N arbitrarily moving spin-dipoles.

1. In terms of coordinate time

From (121) we obtain in the field of arbitrary-moving
spin-dipoles (l = 1) the expression for ∆xA S

1.5PN, as given
by Eq. (128). According to Eq. (135) we obtain for the
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Parameter Sun Jupiter Saturn

GMA/c
2 [m] 1476 1.4 0.4

PA [m] 696 × 106 71.5 × 106 60.3 × 106

JA
2 2 × 10−7 14.696 × 10−3 16.291 × 10−3

JA
4 − −0.587 × 10−3 −0.936 × 10−3

JA
6 − 0.034 × 10−3 0.086 × 10−3

JA
8 − −2.5 × 10−6 −10.0 × 10−6

JA
10 − 0.21 × 10−6 2.0 × 10−6

SA [kg m2/ s] 1.64 × 1041 4.15 × 1038 7.13 × 1037

r1A [m] 0.147 × 1012 0.59 × 1012 1.20 × 1012

vA/c 4 × 10−8 4.4 × 10−5 3.2 × 10−5

TABLE I: Numerical parameters for mass MA, radius PA,
actual coefficients of zonal harmonics JA

n , distance between
observer and body r1A, orbital velocity vA of Sun, Jupiter and
Saturn [63]. The value for JA

2 for the Sun is taken from [75],
while JA

n with n = 2, 4, 6 for Jupiter and Saturn are taken
from [76], while JA

n with n = 8, 10 for Jupiter and Saturn
are taken from [77] and [78], respectively. The spin angular
momenta SA are determined from the moment of inertia IA

with the ratio
IA

MAP 2
A

= 0.059, 0.254, 0.210 for Sun, Jupiter,

Saturn, respectively from NASA planetary fact sheets. For
the distance between light-source and body we assume r0A =
1013 m so that the light-source is within the near-zone of the
Solar system, while r1A is computed under assumption that
the observer (spacecraft) is located at Lagrange point L2, i.e.
1.5 × 109 m from the Earth’s orbit.

Shapiro-delay the following expression up to terms of the
order O

(
c−4
)
:

∆ ctS1.5PN = −
N∑
A=1

k ·∆xA S
1.5PN (t1, t0)

= −2G

c3

×
N∑
A=1

[
σ ·
(
S 1
A × d

1
A

)
(d 1
A)

2

σ · r 1
A

r 1
A

−
σ ·
(
S 0
A × d

0
A

)
(d 0
A)

2

σ · r 0
A

r 0
A

]
,

(152)

where S 1
A = SA (t1) and S 0

A = SA (t0) are the spin-
dipoles of body A at time observation-time t1 and at
emission-time t0 respectively. It can be checked that in
the limit of bodies at rest our result in (152) agrees with
Eq. (72) in [36]. Furthermore, by very similar steps as
used in appendix I one may verify an agreement of our
solution in Eq. (152) with Eqs. (48) - (50) in [38] in case
of slow motion; note that the global spin-tensor in [38]
has to be reexpressed in terms of intrinsic spin-dipole, for
instance by means of the relations Eqs. (B.8) and (C.10)
in [74] and the retarded time has to be series-expanded

in terms of global coordinate-time. An estimate of the
upper bound of Eq. (152) yields

∣∣∆ tS1.5PN

∣∣ ≤ 4G

c4
S1
A

d1A
, (153)

which agrees with the estimate in Eq. (75) in [36] for
grazing rays and spin-dipoles at rest.

2. In terms of retarded time

In view of relations (144) - (145) and up to terms of
the order O

(
c−4
)

one may perform the following replace-
ments in Eq. (152):

rnA → rA
(
tretn
)
, n = 0, 1 , (154)

SnA → SA
(
tretn
)
, n = 0, 1 , (155)

dnA → dA
(
tretn
)
, n = 0, 1 . (156)

The upper bound is then given by

∣∣∆ tS1.5PN

∣∣ ≤ 4G

c4
SA (tret1 )

dA (tret1 )
. (157)

For numerical values of the upper bound in Eq. (157) see
Table II.

Term Sun Jupiter Saturn

∆tM1PN 160µs 0.2µs 0.06µs

∆tJ2
1PN 3.3 × 10−3 ns 0.2 ns 0.07 ns

∆tM1.5PN 6 × 10−3 ns 9 × 10−3 ns 2 × 10−3 ns

∆tS1.5PN 8 × 10−3 ns 2 × 10−4 ns 4 × 10−5 ns

TABLE II: The numerical magnitude for time delay in the
field of one Solar system body (either Sun, Jupiter or Sat-
urn) according to the upper limits given by Eqs. (150), (151),
(157), and (163). The parameters for Sun and giant planets
Jupiter and Saturn are summarized in Table I. The given
numerical values are determined for grazing lightrays, that
means the impact parameter equals the radius of the mas-
sive body: dA = PA. The given magnitude for time delay
should be compared with the aimed accuracies of future as-
trometry missions proposed to ESA like ASTROD [8, 9], LA-
TOR [10, 11], ODYSSEY [12], SAGAS [13], or TIPO [14],
which aim at an accuracy in the determination of time de-
lay for a light-signal better than ∆t ∼ 0.1 ns. Accordingly,
1.5PN effects in time delay will surely not be detectable even
within the very next generation of high-precision space-based
astrometry missions.
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C. Time-delay for moving mass-quadrupole

1. In terms of coordinate time

From Eqs. (118) and (119) we obtain in the field of
arbitrary-moving quadrupoles (l = 2) the expressions

∆xAJ21PN and ∆xAJ21.5PN, respectively. Then, according to
Eqs. (133) - (135) we obtain for the time delay:

∆ ctJ2 = ∆ ctJ21PN + ∆ ctJ21.5PN , (158)

∆ ctJ21PN = −
N∑
A=1

k ·∆xAJ21PN (t1, t0) , (159)

∆ ctJ21.5PN = −
N∑
A=1

k ·∆xAJ21.5PN (t1, t0) . (160)

Actually, the expression ∆xJ21PN has already been pre-
sented in its explicit form by Eq. (144) in [26]. In view

of their involved structure, ∆xJ21PN as well as ∆xJ21.5PN
will not be given here. The estimate of (159) and (160)
proceeds very similar to what has been done in detail in
[79]. For an axisymmetric body one obtains after some
amount of algebra:∣∣∣∆ tJ21PN

∣∣∣ ≤ 3
∣∣JA2 ∣∣ GMA

c3
, (161)

∣∣∣∆ tJ21.5PN

∣∣∣ ≤ vA
c

∣∣∣∆ tJ21PN

∣∣∣+ 6
∣∣JA2 ∣∣ GMA

c3
vA
c

r1A
d1A

,

(162)

where J2 is the actual coefficient of second zonal harmon-
ics. The estimate in (161) agrees with the estimate for
quadrupoles at rest, cf. Eq. (26) in [79]. Like in (142),
we encounter in (162) we encounter a large term which
is proportional to ∼ r1A/d1A.

2. In terms of retarded time

With the aid of relations (144) - (145) one

rewrites ∆xJ21PN (t) and ∆xJ21.5PN (t) in terms of retarded
time. Formally, one may also replace MA

ab (tn) by
MA
ab (tretn ) , n = 0, 1, but the impact of such replace-

ment on time delay is negligible. Then, after considerable
amount of algebra, one obtains the correct estimates in
1.5PN correction, which are given by:∣∣∣∆ tJ21PN

∣∣∣ ≤ 3
∣∣JA2 ∣∣ GMA

c3
, (163)

∣∣∣∆ tJ21.5PN

∣∣∣ ≤ vA (tret1 )

c

∣∣∣∆ tJ21PN

∣∣∣ . (164)

The numerical magnitude of the 1PN correction in (163)
is given in Table II, while the 1.5PN correction in (164) is

by far much below the detectability of future astrometry
missions and will not be given in Table II.

In view of the tininess of ∆ tJ21PN it becomes obvious
that higher multipole terms are negligible in the time
delay and, therefore, will not be considered here.

IX. LIGHT-DEFLECTION

The light deflection is of fundamental importance in
astrometric measurements. Like in the previous section,
we assume the light source to be located at x0 = x (t0)
where t0 is the moment of emission of the light-signal,
and the observer is located at x1 = x (t1) where t1 is the
moment of reception of the light-signal by the observer.
Both the light source and the observer are assumed to be
at rest with respect to the global reference system.

The light deflection is defined by the angle ϕ between
unit vector k and the unit tangent vector n of the ligh-
tray at the observers position: ϕ = arcsin |k × n| [28].
In 1.5PN approximation the unit tangent vector at the
observer is given by

n1.5PN (τ1 + t∗) =
ẋ1.5PN (τ1 + t∗)

|ẋ1.5PN (τ1 + t∗)|
. (165)

By inserting Eq. (104) into (165), we obtain

n1.5PN (τ1 + t∗) = σ +

N∑
A=1

σ ×

(
∆ẋA1PN (τ1 + t∗)

c
× σ

)

+

N∑
A=1

σ ×

(
∆ẋA1.5PN (τ1 + t∗)

c
× σ

)
, (166)

where ∆ẋA1PN and ∆ẋA1.5PN are given by (105) and (106),
respectively, with the expressions in Eqs. (110), (111)
and (113). The 1.5PN relation (166) generalizes the 1PN
relation (156) in [26].

The expression in (166) for the unit tangent vector
along the light trajectory at observers position is valid in
case of stars, which means in case of light sources which
are at far distances from the observer. For astrometry
within the Solar system we need to obtain an expression
which is valid for light sources at finite distances from
the observer. In order to obtain such an expression we
use the following relation among the vectors k and σ,

σ = k − 1

R

N∑
A=1

[
k ×

(
∆xA1PN (τ1 + t∗, τ0 + t∗)× k

)]

− 1

R

N∑
A=1

[
k ×

(
∆xA1.5PN (τ1 + t∗, τ0 + t∗)× k

)]
,(167)

where ∆xA1PN and ∆xA1.5PN are given by Eqs. (115) and
(116), respectively, with the expressions in Eqs. (118),
(119) and (121).
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The relation follows from the definitions (131) and
(132) and with the aid of the expression for the light
trajectory in (114) and for the Shapiro effect in (133).
The 1.5PN expression in (167) generalizes the 1PN re-
lation (157) in [26]. We also notice that the first line in
(167) agrees with Eq. (66) in [28]. By inserting (167) into
(166) we finally arrive at the following expression for the
unit tangent vector at the observers position:

n1.5PN (τ1 + t∗) = k

− 1

R

N∑
A=1

[
k ×

(
∆xA1PN (τ1 + t∗, τ0 + t∗)× k

)]

+

N∑
A=1

k ×

(
∆ẋA1PN (τ1 + t∗)

c
× k

)

− 1

R

N∑
A=1

[
k ×

(
∆xA1.5PN (τ1 + t∗, τ0 + t∗)× k

)]

+

N∑
A=1

k ×

(
∆ẋA1.5PN (τ1 + t∗)

c
× k

)
. (168)

The 1.5PN relation in (168) generalizes the 1PN relation
(158) in [26]. The formula (168) is valid for light sources
at finite distance. In the limit of infinite spatial distances,
R → ∞, the relation (168) changes into the expression
in (166).

In summary of this section, the expression for the time
delay in (133) and for the unit tangent vector in (168) are
valid for a light-signal which has been emitted by a source
located at finite spatial distances, and which propagates
through the Solar system, that means through the grav-
itational field of N arbitrarily moving bodies and having
arbitrary shape and inner structure and which can be in
arbitrary rotational motion.

If the light-source is located at infinity, i.e. R → ∞
and in a good approximation realized by stars or quasars,
then the light deflection angle of a light-signal in the field
of N arbitrarily moving bodies in 1.5PN approximation
is determined by

ϕ = |σ × n1.5PN| , (169)

where n1.5PN is given by Eq. (166). If the light-source is
located at finite distance, i.e. R is finite and in a good
approximation realized by Solar system objects, then the
light deflection angle of a light-signal in the field of N
arbitrarily moving bodies in 1.5PN approximation is de-
fined by

ϕ = |k × n1.5PN| , (170)

where n1.5PN is given by Eq. (168). The relation (169) is
of simpler structure than (170), but which equation can
be utilized depends on how far the light-source is. For
our preliminary considerations here it will be sufficient

to consider light-source at infinity, that means to apply
just relation (169). Like in case of Shapiro delay, we
will consider the light deflection caused by N arbitrarily
moving bodies in some more detail, by considering bodies
with mass-multipole structure and spin-dipole-structure.
An estimate is also given for spin-octupole. The terms
which are of relevance for nas-accuracy read

ϕ = ϕM
1PN +

10∑
n=2

ϕJn

1PN

+ϕM
1.5PN + ϕJ2

1.5PN + ϕS
1.5PN + ϕSO

1.5PN . (171)

In what follows we will consider these terms in some de-
tail and give some estimates of their magnitude.

A. Light deflection for moving mass-monopole

1. In terms of coordinate time

From (110) and (111) we obtain for the coordinate ve-
locity of the photon in the field of N arbitrarily moving
monopoles:

∆ẋM
1PN (t1)

c
= −2G

c2

N∑
A=1

MA

r 1
A

[
d 1
A

r 1
A − σ · r 1

A

+ σ

]
,

(172)

∆ẋM
1.5PN (t1)

c
= +

2G

c2

N∑
A=1

MA

r 1
A

σ · v 1
A

c

d 1
A

r 1
A − σ · r 1

A

+
4G

c2

N∑
A=1

MA

r 1
A

v 1
A

c
− 2G

c2

N∑
A=1

MA

r 1
A − σ · r 1

A

σ ×
(
v 1
A × σ

)
c

+
2G

c2

N∑
A=1

MA

(r 1
A − σ · r 1

A)
2

d 1
A · v 1

A

c

d 1
A

r 1
A

. (173)

In the limit of uniformly moving bodies our result in (172)
- (173) agrees with Eq. (6.3) and (6.5) in [24] and with
Eq. (20) in [37] up to terms of the order O

(
v2A/c

2
)
. By

inserting (172) - (173) into (165) and then into (169) we
obtain the light deflection angle, which for one massive
body A can be estimated as follows:

ϕM
1PN =

∣∣∣∣∣σ × ∆ẋM
1PN (t1)

c

∣∣∣∣∣ ≤ 4GMA

c2d1A
, (174)

ϕM
1.5PN =

∣∣∣∣∣σ × ∆ẋM
1.5PN (t1)

c

∣∣∣∣∣
≤ ϕM

1PN

vA
c

+
8GMA

c2dA

vA
c

r1A
d1A

. (175)
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Like in Eqs. (142) and (162), we encounter again the
typical large term in (175) which is proportional to ∼
r1A/d

1
A and originates from the last two terms in (173).

This large term is solely caused by the retardation of
gravitational action. That means, the use of the time-
moment of reception at the body’s position, xA (t1) in
Eq. (172) causes a significant error in the determination
of light deflection for moving bodies. This peculiarity has
been recognized long time ago, for instance see text below
Eq. (34) in [28]. Especially, this issue has thoroughly
and comprehensively been solved for moving pointlike
bodies in the investigations [28, 33, 35, 38]. In the next
subsection we will further elucidate this fact.

2. In terms of retarded time

From the physical point of view, it is obvious that in-
stead of t1 one has to use the retarded time-moment for
the position of the massive body in (172). That means,
with the aid of relations (144) - (145) one may show that
Eqs. (172) - (173) can be rewritten as follows:

∆ẋM
1PN (t1)

c
= −2G

c2

N∑
A=1

MA

rA (tret1 )

×
[

dA (tret1 )

rA (tret1 )− σ · rA (tret1 )
+ σ

]
,(176)

∆ẋM
1.5PN (t1)

c
= +

2G

c3

N∑
A=1

MA

rA (tret1 )
σ · vA

(
tret1

)
× dA (tret1 )

rA (tret1 )− σ · rA (tret1 )

+
4G

c3

N∑
A=1

MA

rA (tret1 )
vA
(
tret1

)

+
2G

c3

N∑
A=1

MA

rA (tret1 )

dA (tret1 )

rA (tret1 )
σ · vA

(
tret1

)

−2G

c3
σ

N∑
A=1

MA

rA (tret1 )

rA (tret1 ) · vA (tret1 )

rA (tret1 )

−2G

c3

N∑
A=1

MA

rA (tret1 )

dA (tret1 )

rA (tret1 )− σ · rA (tret1 )

×vA (tret1 ) · dA (tret1 )

rA (tret1 )
. (177)

The last two terms in (173) do not explicitly appear in
(177), because they are absorbed in (176). Accordingly,
instead of (175) we obtain the following correct estimates
for the 1PN and 1.5PN corrections in (176) and (177),

respectively:

ϕM
1PN ≤

4GMA

c2dA (tret1 )
, (178)

ϕM
1.5PN ≤ ϕM

1PN

vA (tret1 )

c
. (179)

The given upper limit in (179) agrees with Eq. (42) and
(46) in [73], and with the results in [28]. For numerical
values of the upper bound in Eq. (178) and (179) see
Table III.

B. Light deflection for moving spin-dipole

1. In terms of coordinate time

The coordinate velocity of a light-signal propagating
in the field of arbitrarily moving spin-dipoles can either
be obtained from (113) using (124), or simply by time-
differentiation of Eq. (128), and reads:

∆ẋS
1.5PN (t1)

c
= −2G

c3

N∑
A=1

σ × S1
A

(r1A)
3

(
σ · r1A

)

+
2G

c3

N∑
A=1

S1
A × d

1
A

(r1A)
2

1

r1A − σ · r1A

(
1− σ · r

1
A

r1A

)

+
2G

c3

N∑
A=1

d1A
[
σ ·
(
d1A × S

1
A

)] σ · r1A
(r1A)

3

1

(r1A − σ · r1A)
2

−4G

c3

N∑
A=1

d1A
[
σ ·
(
d1A × S

1
A

)] 1

(r1A)
2

1

(r1A − σ · r1A)
2

−2G

c3

N∑
A=1

σ × S1
A

r1A

1

r1A − σ · r1A
. (180)

One may verify that in the limit of bodies at rest our
result agrees with Eq. (59) in [36]. An upper bound for
the magnitude of the light deflection is given by

ϕS
1.5PN =

∣∣∣∣∣σ × ∆ẋS
1.5PN (t1)

c

∣∣∣∣∣ ≤ 4GS1
A

c3 (d1A)
2 , (181)

in agreement with the estimate given by Eq. (65) in [36]
for lightrays which propagate in the equatorial plane of
a rotating body at rest.

2. In terms of retarded time

Following the same arguments as in the above consid-
erations, we may replace all expression in (180) by their
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retarded expressions according to Eqs. (154) - (156) for
n = 1. Then the estimate of light deflections yields:

ϕS
1.5PN ≤

4GSA (tret1 )

c3 (dA (tret1 ))
2 , (182)

which formally agrees with the estimate in Eq. (181).
For numerical values of the upper bound in Eq. (182) see
Table III.

Term Sun [µas] Jupiter [µas] Saturn [µas]

ϕM
1PN 1.75 × 106 16.3 × 103 5.8 × 103

ϕJ2
1PN 1 240 95

ϕJ4
1PN − 9.6 5.46

ϕJ6
1PN − 0.56 0.50

ϕJ8
1PN − 0.04 0.06

ϕJ10
1PN − 0.003 0.01

ϕM
1.5PN 0.1 0.8 0.2

ϕJ2
1.5PN − 0.011 0.003

ϕS
1.5PN 0.7 0.2 0.04

ϕSO
1.5PN − 0.015 0.006

TABLE III: The numerical magnitude for light deflection in
the field of one Solar system body (either Sun, Jupiter or Sat-
urn) according to the upper limits given by Eqs. (178), (179),
(182), (185), (186) and (187). The parameters for Sun and
giant planets Jupiter and Saturn are summarized in Table I.
The given numerical values are determined for grazing ligh-
trays, that means the impact parameter equals the radius of
the massive body: dA = PA. For the light deflection in the
field of spin-octupole, ϕSO

1.5PN, we take the results of Ref. [64]
where the light deflection in the field of one rotating body at
rest and having constant mass density has been determined.
Blank entries indicate that the effect is smaller than 1 nas. In
view of the fact that astrometry on sub-µas-level implies an
accuracy for ϕ at least better than 0.1µas, the 1.5PN effects
in light deflection become detectable within the very next gen-
eration of high-precision space-based astrometry missions.

C. Light deflection for moving mass-quadrupole

1. In terms of coordinate time

The 1PN correction to the coordinate velocity of the
lightray in the field N arbitrarily-moving bodies with
quadrupole structure, ∆ẋJ21PN (t), has already been given
Eq. (117) in [26] and can also be deduced from Eq. (110),

while the 1.5PN correction ∆ẋJ21.5PN (t) from Eq. (111).
In view of the complexity of these terms, we will not
present these expressions in their explicit form. We just
mention that the estimation of these terms proceeds sim-

ilar to the procedure performed in [79]. After some con-
siderable amount of algebra one obtains:

ϕJ21PN =

∣∣∣∣∣σ × ∆ẋJ21PN (t1)

c

∣∣∣∣∣ ≤ 4GMA

c2
∣∣JA2 ∣∣ (PA)

2

(d1A)
3 ,

(183)

ϕJ21.5PN =

∣∣∣∣∣σ × ∆ẋJ21.5PN (t1)

c

∣∣∣∣∣
≤ ϕJ21PN

vA
c

+
8GMA

c2
∣∣JA2 ∣∣ vAc (PA)

2

(d1A)
3

r1A
d1A

.

(184)

The estimate of the 1PN quadrupole term in (183) is
equal to the much simpler case of quadrupoles at rest, cf.
Eq. (41) in [36] and Eq. (13) in [79]. The second term in
(184) is proportional to ∼ r1A/d

1
A which for grazing rays

becomes large. Like in Eqs. (142), (162), and (175), this
term is caused by the finite speed of gravitational action.

2. In terms of retarded time

One may rewrite the expression for ∆ẋJ21PN (t) and

∆ẋJ21.5PN (t) in terms of retarded time by means of
Eqs. (144) - (145), and formally one may also replace
Mab (t1) → Mab (tret1 ). Then the estimation of the 1PN
and 1.5PN correction terms in the quadrupole light de-
flection becomes

ϕJ21PN ≤
4GMA

c2
∣∣JA2 ∣∣ (PA)

2

(dA (tret1 ))
3 , (185)

ϕJ21.5PN ≤ ϕJ21PN

vA (tret1 )

c
, (186)

which agrees with Eqs. (44) and (46) in [73]. The numer-
ical magnitude of these upper bounds (185) and (186)
can be found in Table III.

D. Light deflection for higher mass-multipoles

The 1PN solution (110) and the 1.5PN solution (111)
for moving bodies with full mass-multipole structure al-
low to determine the light deflection in the field of moving
mass-multipoles to any order in l. However, the expres-
sions for ∆ẋJn1PN and ∆ẋJn1.5PN (Jn are the actual zonal
harmonic coefficients of the massive body) become more
and more involved the higher the order of the mass-
multipoles are and imply a considerable amount of alge-
bra. The investigation of these terms will be postponed
for awhile. In meanwhile let us consider an educated
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guess that the light deflection in the field of higher mass-
multipoles is determined by the following relation:

ϕJn1PN =

∣∣∣∣∣σ × ∆ẋJn

1PN (t1)

c

∣∣∣∣∣ ≤ 4GMA

c2

∣∣JAn ∣∣ (PA)
n

(dA (tret1 ))
n+1 ,

(187)

ϕJn1.5PN =

∣∣∣∣∣σ × ∆ẋJn

1.5PN (t1)

c

∣∣∣∣∣ ≤ ϕJn1PN

vA (tret1 )

c
, (188)

which in case of n = 2 agrees with Eqs. (185) - (186).
The suggestion in Eqs. (187) - (188) is based on the con-
siderations above and triggered by the fact that in the
limit of bodies at rest formula (187) agrees with the re-
sults in [41]. Numerical values for (187) are presented in
Table III, while (188) yields values below 1 nas for n ≥ 3.
A detailed proof of (187) and (188) and a comparison of
formula (188) with [42] will be presented in a subsequent
investigation.

X. SUMMARY AND OUTLOOK

During the last 25 years, astrometric measurements
have made an impressive advancement from milli-
arcsecond level of accuracy by the ESA astrometry mis-
sion Hipparchos [1, 2] toward micro-arcsecond level of
accuracy by the ESA astrometry mission Gaia [5]. Ever
since, applied relativity has evolved into one of the ba-
sic components of modern astrometry, the branch of sci-
ence which includes the whole machinery of advanced
astrometric measurements, especially: (1) theory of ref-
erence systems, (2) precise description of light trajectory
from the celestial light source toward the observer, (3)
relativistic modeling of real observations, (4) determina-
tion of the metric of the Solar system in post-Newtonian
approximation (weak-field slow-motion approximation)
or post-Minkowskian approximation (weak-field approx-
imation) and beyond, (5) multipole expansion of met-
ric tensor of Solar system, (6) relativistic data reduction
of astrometric measurements, and (7) determination of
ephemeris of the Solar system bodies and of the observer
accurate enough for a given accuracy.

But for all that stunning progress, the step from micro-
arcsecond toward nano-arsecond astrometry will be a
long-term ambition, which implies many challenges on
theoretical as well as technological side. While a few of
these issues have been mentioned in the introductory sec-
tion, most of these challenges and especially their elabo-
rated details cannot be foreseen at present. But for any
actual ambitions about sub-micro-arcsecond astrometry
two of these problems are of decisive importance: first to
establish a set of accurate reference systems and refer-
ence frames for exact data reduction, and second to pro-
vide an accurate modeling of light trajectory from the
celestial light source through the Solar system toward

the observer. As it has been mentioned in the introduc-
tory section, especially these two highly important issues
have also been emphasized by the ESA-Senior-Survey-
Committee (SSC) in response of the selection of science
themes for future space-based astrometry missions [16].
The presented investigation is mainly devoted to these
two specific subjects. Especially, in order to arrive at a
precise modeling of light-propagation through the Solar
system, two difficult aspects have carefully to be treated:

(1) First, in compliance with the requirements of the
IAU recommendations [19, 20], one has to introduce one
global reference system (BCRS) and N local reference
systems (GCRS-like), one for each massive body, which
allow to describe the global metric of the Solar system
in terms of intrinsic mass-multipoles and intrinsic spin-
multipoles the massive bodies, that means for the metric
perturbations hαβ

(
MA
L , S

A
L

)
, as mentioned by Eq. (15).

(2) Second, for sub-micro-arcsecond or even nano-
arcsecond-astrometry one has to describe the light tra-
jectory in the field of arbitrarily moving massive bodies,
that means as a function of their worldlines xA (t), be-
cause a series expansion like in Eq. (16) is unsuitable for
several reasons discussed in the introductory section. The
worldlines can be concretized by Solar system ephemeris
[63] at any stage of the calculations.

In a previous investigation [26] we have obtained a
solution in 1PN approximation for the light trajectory
through the Solar system in full agreement with these
both requirements (1) and (2). As outlined in more detail
in [26] and also mentioned in the introductory section, for
high-precision astrometry on sub-µas-level or nas-level of
accuracy the 1PN approximation is not sufficient at all.
Instead, it is inevitable to determine the light trajectory
through the Solar system in 1.5PN approximation and
to reconcile the entire approach with the important re-
quirements (1) and (2). Such an approach has been de-
veloped here in the presented investigation. Accordingly,
the main results of our investigation are given by the first
integration of geodesic equation in Eq. (104) and by the
second integration of geodesic equation in Eq. (114):

ẋ1.5PN = cσ + ∆ẋ1PN + ∆ẋ1.5PN , (189)

x1.5PN = ξ + cτσ + ∆x1PN + ∆x1.5PN , (190)

where the time-argument τ + t∗ have been omitted here
for simpler notation. The terms in (189) for one body A
are given by Eqs. (110), (111), and (113), respectively,
and the terms in (190) for one body A are given by
Eqs. (118), (119), and (121), respectively.

In view of the complexity of the solution in (189) and
(190), several cross-checks have been performed:

• time-derivative of (104) yields (95).

• time-derivative of (114) yields (104).

• our results agree with [31] for bodies at rest and
time-independent mass-multipoles in 1PN approx-
imation.



32

• our results agree with [31] for bodies at rest and
time-independent spin-multipoles in 1.5PN approx-
imation.

• our results agree with [38] for arbitrarily moving
bodies with spin-dipole in 1.5PN approximation.

• our results agree with [36] for bodies at rest with
spin-dipole.

Further cross-checks in 1PN approximation have al-
ready been done in [26] for the case of light-propagation
in the field of bodies with mass-monopole, mass-dipole,
mass-quadrupole structure and bodies at rest with full
mass-multipole structure.

The numerical magnitude about the impact of mass-
multipoles and spin-multipoles on light deflection, pre-
sented in Table III, reveal that the first mass-multipoles
up to order l = 10 and the first spin-multipoles up to
order l = 3 have to be taken into account for astrometry
on nano-arcsecond level of accuracy. This fact is impor-
tant in view of the complexity of the 1.5PN solution for
the light trajectory, because it allows to simplify that
solution considerably. However, more detailed investiga-
tions are very necessary in order to simplify the massive
computations in astrometric data reduction as much as
possible.

The approach presented has further to be developed
into several directions before the conditions are complied
for a complete modeling of light-propagation through the
Solar system on sub-µas or nas-level of accuracy. In par-
ticular, the following issues may serve as minimal sup-
plement to the list of aspects which have already been
mentioned in the introductory section:

A. The model for the light trajectory has to implement
some terms in 2PN approximation, which can formally be
written as follows:

ẋ2PN = cσ + ∆ẋ1PN + ∆ẋ1.5PN + ∆ẋ2PN , (191)

x2PN = ξ + c τσ + ∆x1PN + ∆x1.5PN + ∆x2PN ,

(192)

where (191) and (192) represents the coordinate velocity
and the trajectory of the light-signal, respectively. The
2PN corrections have been determined for the case of
monopoles at rest [18, 27] and later recalculated in pro-
gressing investigations in [24, 45, 46] and also within this
work, see appendix J. It is clear that for a comprehen-
sive theory of light propagation aiming at sub-µas-level of
accuracy it needs carefully to be scrutinized which 2PN
corrections beyond the monopole part are of relevance
for such extremely-precise astrometry.

B. A fundamental prerequisite in order to gain fur-
ther progress in the theory of light propagation in 2PN
approximation, one necessarily needs to determine the
space-space part of the BCRS as well as of the GCRS
metric tensor including all terms of the order O

(
c−4
)
.

However, an extension of these global and local reference

systems to the post-post-Newtonian order is a highly in-
volved assignment of a task and is presently an active
field of research [80–83] and far from being completed.

C. In the first instance, the post-Newtonian approach
of the DSX formalism allows for astrometry in the near-
zone of the Solar system. However, astrometric mea-
surements of stars or extragalactic celestial objects are
subject to far-zone astrometry, which requires a match-
ing procedure of two asymptotic solutions: the near-zone
solution and the far-zone solution for the light trajec-
tory [21]. Such matching approach has been proposed in
[24, 25], which has to be further developed in such a way
to be in line with the requirements of nas-astrometry.

D. The unique interpretation of observational data im-
plies a hierarchy of several reference systems [18, 21]:

a) BCRS
(
x0, x1, x2, x3

)
for description of the light

trajectory in the Solar system,

b) GCRS-like
(
X0
A, X

1
A, X

2
A, X

3
A

)
, one for each body

A = 1, ..., N of the Solar system in order to define
the intrinsic multipoles,

c) CoMRS
(
X 0,X 1,X 2,X 3

)
which is co-moving with

the observer,

d) ToRS
(
z0a, z

1
a, z

2
a, z

3
a

)
, one for each ground-station

a = 1, ..., n on Earth which are involved in data
reduction,

where CoMRS stands for co-moving reference system and
ToRS denotes topocentric reference system. The light tra-
jectory in our investigation is given in the BCRS, but that
is of course not sufficient for a comprehensive astrometric
model of light propagation. In particular, the presented
solution has to be transformed into the reference system
which is co-moving with a free-falling observer (CoMRS)
[84]. This transformation takes account for aberrational
effects. Especially, it has to be clarified whether or not
the CoMRS in [84], which was primarily intended for the
Gaia mission, is also sufficient for the requirements on
nas-level of accuracy.

E. The basic assumption of post-Newtonian expansion
is that all retardations of the gravitational actions are
small. In the model presented the effect of retardation
has been implemented in a more or less heuristic manner,
in order to provide a proper estimation for the upper limit
of time delay and light deflection. This procedure needs
to be scrutinized in considerably more detail. Especially,
it has to be clarified how the retardation of gravitational
action has to be implemented based on clear theoretical
foundation in the entire approach. The solution of this
problem is related to the far-zone astrometry about how
the presented solution in the near-zone can be matched
with the solution for the lightray in the far-zone of the
Solar system [21, 24].

In summary, a precise determination of light trajectory
up to a given accuracy is of fundamental importance in
the theory of any astrometric measurements. Besides
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considerable effort which has still to be done in near fu-
ture, we come to the conclusion that a complete modeling
of light trajectory from celestial light sources through the
Solar system toward the observer is accomplishable also
for extremely high-precision astrometry on sub-µas and
even on nano-arcsecond level of accuracy.
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APPENDIX A: NOTATIONS

Throughout the article the following notations are in
use:

• G is the Newtonian constant of gravitation.

• c is the vacuum speed of light in flat Minkowski
space.

• Lower case Latin indices a, b, . . . , i, j, . . . take val-
ues 1,2,3.

• Lower case Greek indices α, β, . . . , µ, ν, . . . take
values 0,1,2,3.

• δij = δij = diag (+1,+1,+1) is Kronecker delta.

• The three-dimensional coordinate quantities
(”three-vectors”) referred to the spatial axes of the
corresponding reference system are set in boldface:
a.

• The contravariant components of ”three-vectors”
are ai =

(
a1, a2, a3

)
.

• The contravariant components of ”four-vectors” are
aµ =

(
a0, a1, a2, a3

)
.

• Repeated indices imply the Einstein’s summation
irrespective of their positions (e.g. ai bi = a1 b1 +
a2 b2+a3 b3 and aα bα = a0 b0+a1 b1+a2 b2+a3 b3).

• The absolute value (Euclidean norm) of a ”three-
vector” a is denoted as |a| or, simply, a and can be
computed as a = |a| = (a1 a1 + a2 a2 + a3 a3)1/2.

• The scalar product of any two ”three-vectors” a
and b with respect to the Euclidean metric δij is
denoted by a · b and can be computed as a · b =
δij a

i bj = ai bi.

• The vector product of any two ”three-vectors” a
and b is designated by a× b and can be computed

as (a× b)i = εijk a
j bk, where εijk = (i − j)(j −

k)(k − i)/2 is the fully antisymmetric Levi-Civita
symbol.

• The global coordinate system is denoted by lower-
case letters: (ct,x).

• The local coordinate system of a massive body A
is denoted by upper-case letters: (cTA,XA).

• The photon trajectory is denoted by x (t). In order
to distinguish the photon’s spatial coordinate x (t)
from the spatial coordinate x of the global system,
the time-dependence of photon’s spatial coordinate
will everywhere be shown explicitly throughout the
article.

• The worldline of massive body A is denoted by
xA (t) or xA (TA).

• Partial derivatives in the global coordinate system:

∂µ =
∂

∂xµ
or ∂i =

∂

∂xi
.

• Partial derivatives in the local coordinate system of

body A: DAα =
∂

∂Xα
A

or DAa =
∂

∂Xa
A

.

• n! = n (n− 1) (n− 2) · · · 2 · 1 is the faculty for
positive integer; 0! = 1.

• L = i1i2...il is a Cartesian multi-index of a given
tensor T , that means TL ≡ Ti1i2 . . . il , and each in-
dex i1, i2, ..., il runs from 1 to 3 (i.e. over the Carte-
sian coordinate label).

• Two identical multi-indices imply summation, e.g.:
∂L TL ≡

∑
i1 . . . il

∂i1 . . . il Ti1 . . . il .

• The symmetric tracefree (STF) part of a tensor TL
is defined by Eq. (A2) in [26] and denoted by T〈L〉.

APPENDIX B: NOTATION OF IMPACT
VECTORS:

Before we distinguish between the case of massive bod-
ies at rest and massive bodies in motion, we consider
the unperturbed lightray in flat Minkowskian space-time,
which in Cartesian coordinates is given by the expression
in (1),

xN (t) = x0 + c (t− t0)σ , (B1)

which describes a straight line and where the subscript
N stands for Newtonian limit. By Eq. (78) we have in-
troduced the following impact vector:

ξ = σ × (xN (t)× σ) = σ × (x0 × σ) , (B2)

d = |ξ| . (B3)

The impact vector in (B2) points from the origin of the
global system (BCRS) toward the point of closest ap-
proach of the unperturbed lightray to that origin. The
impact vector in (B2) is time-independent, both in case
of massive bodies at rest as well as in case of massive
bodies in motion.
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1. Massive bodies at rest:

Massive bodies at rest means their positions remain
constant with respect to the global reference system:
xA = const. We will make use of the following nota-
tion for the vector from the massive body at rest toward
the photon propagating along the exact light trajectory:

rA = x (t)− xA , (B4)

with the absolute value rA = |rA|. The vector from
the massive body at rest toward the photon along the
unperturbed light trajectory reads:

rNA = xN (t)− xA
= x0 + c (t− t0)σ − xA , (B5)

with the absolute value rNA =
∣∣rNA∣∣, and obviously rA =

rNA +O
(
c−2
)
. We also need the vector from the massive

body at rest toward the photon at the moment of signal-
emission:

r0A = x0 − xA , (B6)

with the absolute value r0A =
∣∣r0A∣∣. Note that in case

of massive bodies at rest there will be no time-argument
in rA and rNA, irrespective of the fact that the distance
between the photon and the body actually depends on
time due to the propagation of the photon. In case of
massive bodies at rest we introduce the following impact-
vector:

dA = σ ×
(
rNA × σ

)
, dA = |dA| . (B7)

The impact-vector in (B7) is time-independent, ḋA = 0,
and points from the origin of local coordinate system of
massive body A toward the unperturbed lightray at the
time of closest approach to that origin, defined by

t∗A = t0 −
σ · (x0 − xA)

c
+O

(
c−2
)
, (B8)

= t1 −
σ · (x1 − xA)

c
+O

(
c−2
)
. (B9)

Notice that the term weak gravitational field implies

dA �
GMA

c2
.

2. Massive bodies in motion:

In case of massive bodies in motion, their positions
become time-dependent: xA (t). Then we will make use
of the following notation for the vector from the mas-
sive body toward the photon propagating along the exact
light trajectory:

rA (t) = x (t)− xA (t) , (B10)

with the absolute value rA (t) = |rA (t)|. The vector from
the massive body in motion toward the photon along the
unperturbed light trajectory reads:

rNA (t) = xN (t)− xA (t)

= x0 + c (t− t0)σ − xA (t) , (B11)

with the absolute value rNA (t) =
∣∣rNA (t)

∣∣ and obviously

rA (t) = rNA (t) + O
(
c−2
)
. We also will need the vector

from the massive body toward the photon at the time-
moment of emission of the light-signal, given by

rNA (t0) = x0 − xA (t0) , (B12)

with the absolute value rNA (t0) =
∣∣rNA (t0)

∣∣. In case of
massive bodies in motion we introduce the following im-
pact vector:

dA (t) = σ ×
(
rNA (t)× σ

)
, (B13)

with the absolute value dA (t) = |dA (t)|. The impact-

vector in (B13) is time-dependent, ḋA 6= 0, and points
from the origin of local coordinate system of massive
body A toward the unperturbed lightray at the time of
closest approach to that origin. The time-dependence of
the impact-vector in (B13) is solely caused by the mo-
tion of the massive body, that means a time-derivative of
(B13) is proportional to the orbital velocity of this body,

ḋA (t) = σ × (σ × vA (t)). The term weak gravitational

field implies dA (t∗A)� GMA

c2
for the time of closest ap-

proach of the lightray to the massive body, which are
given by

t∗A = t0 −
σ · (x0 − xA (t∗A))

c
+O

(
c−2
)
, (B14)

= t1 −
σ · (x1 − xA (t∗A))

c
+O

(
c−2
)
, (B15)

and which slightly differ from the expressions (B8) and
(B9) by the time-argument of the spatial coordinates of
the massive body.

APPENDIX C: PARTIAL DERIVATIVE
OPERATOR

The spatial derivative in terms of the new variables τ
and ξ has been given by relation (86) which is valid for
any smooth function F (t,x), that means

∂F (t,x)

∂xi

∣∣∣∣∣
x=xN(t)

=

(
P ij

∂

∂ξj
+ σi

∂

∂c τ
− σi ∂

∂ct∗

)
F (t∗ + τ, ξ + cτ σ) .

(C1)
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According to the metric perturbations in (68) - (72) we
have to consider the STF partial derivative operation in
Eq. (73), which reads

∂〈L〉 = STF
i1...il

∂

∂xi1
...

∂

∂xil
. (C2)

In order to express the spatial derivative operation in
(C2) in terms of these new variables, we apply the bino-
mial theorem:

(a+ b+ c)
l

=

l∑
p=0

(
l

p

)
al−p

p∑
q=0

(
p

q

)
bp−q cq ,

(C3)

where the binomial coefficients are defined by(
l

p

)
=

l!

(l − p)! p!
,

(
p

q

)
=

p!

(p− q)! q!
. (C4)

In virtue of the binomial theorem in (C3), we obtain for
the STF partial derivative operator in (C2) in terms of
the new variables τ and ξ the following expression:

∂〈L〉 = STF
i1...il

l∑
p=0

l!

(l − p)! p!

p∑
q=0

(−1)
q p!

(p− q)! q!

×σi1 ... σip P ip+1 jp+1 ... P il jl
∂

∂ξjp+1
...

∂

∂ξjl

×
(

∂

∂c τ

)p−q (
∂

∂c t∗

)q
. (C5)

The same expression for ∂〈L〉 has been used in [40] (cf.
Eqs. (4.42) - (4.43) ibid.); note the symmetry p− q ↔ q
of the expression in (C5). The derivatives with respect
to variable c t∗ act only on MA

L (τ + t∗) and xA (τ + t∗),

hence the partial derivatives

(
∂

∂c t∗

)q
produce terms of

the order O (c−q). For that reason it was possible to
neglect all derivatives with respect to variable c t∗ in 1PN
approximation which has been investigated in [26]. If one
neglects such derivatives (i.e. take only the terms with
q = 0 in Eq. (C5)), then we would obtain the simpler
derivative operator:

∂q=0
〈L〉 = STF

i1...il

l∑
p=0

l!

(l − p)! p!
σi1 ... σip P ip+1 jp+1 ... P il jl

× ∂

∂ξjp+1
...

∂

∂ξjl

(
∂

∂cτ

)p
, (C6)

which coincides with the expression as given by Eq. (24)
in [31] or by Eq. (101) in [26] where it was allowed to
omit the STF operation because of relation (101).

APPENDIX D: DERIVATIVES

In this appendix we will summarize some useful
spatial-derivatives and time-derivatives. Throughout
this appendix all time arguments are omitted in order
to simplify the notations, that means

rNA ≡ rNA (τ + t∗) , (D1)

rNA ≡ rNA (τ + t∗) , (D2)

dA ≡ dA (τ + t∗) , (D3)

vA ≡ vA (τ + t∗) . (D4)

1. Spatial-derivatives

In this appendix some relevant relations for spatial-
derivatives are summarized. The vector rNA depends only
on the variables ξ, τ and xA (τ + t∗). Since variable ξ
is independent of τ and xA (τ + t∗), we consider partial
derivatives with respect to variable ξ. We obtain the
following relations:

P ij
∂

∂ξj
ln
(
rNA − σ · rNA

)
=

diA
rNA

1

rNA − σ · rNA
. (D5)

P ij
∂

∂ξj
[
rNA + σ · rNA ln

(
rNA − σ · rNA

)]
=

diA
rNA − σ · rNA

.

(D6)

P ij
∂

∂ξj
dA · vA

rNA − σ · rNA
= − diA (dA · vA)

rNA
(
rNA − σ · rNA

)2
+
viA − σi (σ · vA)

rNA − σ · rNA
. (D7)

P ij
∂

∂ξj
(dA · vA) ln

(
rNA − σ · rNA

)
=

(dA · vA)

rNA − σ · rNA
diA
rNA

+
[
viA − σi (σ · vA)

]
ln
(
rNA − σ · rNA

)
.(D8)

Notice that
∂

∂ξj
(
σ · rNA

)
= 0.

2. Time-derivatives

In this appendix some relations of time-derivatives are
summarized which are of relevance for integrations by
part. Since the position of massive body depends on
time-variable, xA (τ + t∗), this vector is not independent
of τ . Therefore, in order to perform integration by parts,
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we need to consider the derivatives with respect to vari-
able τ . Taking into account rNA = dA + σ

(
σ · rNA

)
, we

find the following relations:

∂

∂cτ
ln
(
rNA − σ · rNA

)
= − 1

rNA
+
σ · vA
c

1

rNA

−vA · dA
c rNA

1

rNA − σ · rNA
. (D9)

∂

∂c τ

1

rNA

1

rNA − σ · rNA
=

1(
rNA
)3 − 1(

rNA
)3 σ · vAc

+
1(
rNA
)3 dA · vA

c
(
rNA − σ · rNA

) +
1(
rNA
)2 dA · vA

c
(
rNA − σ · rNA

)2 .
(D10)

∂

∂cτ

(
rNA + σ · rNA ln

(
rNA − σ · rNA

))
= ln

(
rNA − σ · rNA

)
−σ · vA

c
ln
(
rNA − σ · rNA

)
− dA · vA

c

1

rNA − σ · rNA
.(D11)

∂

∂c τ

1

rNA − σ · rNA
=

1

rNA

1

rNA − σ · rNA

+
1(

rNA − σ · rNA
)2 vA · dAc rNA

− 1

rNA

1

rNA − σ · rNA
σ · vA
c

.

(D12)

2

rNA − σ · rNA
=

∂

∂cτ

σ · rNA
rNA − σ · rNA

− ∂

∂cτ
ln
(
rNA − σ · rNA

)
+2

σ · vA
c

1

rNA − σ · rNA
− vA · dA
c
(
rNA − σ · rNA

)2 . (D13)

APPENDIX E: THE INTEGRAL I1

The first integration of the expression in the first line
in (96) reads:

I1 (τ + t∗) = +
2G

c2
P ij

∂

∂ξj

∞∑
l=0

(−1)
l

l!

×
τ∫

−∞

dcτ ′MA
〈L〉 (τ

′ + t∗) ∂′〈L〉
1

rNA (τ ′ + t∗)
, (E1)

where ∂′〈L〉 is given by Eq. (C5) where cτ is formally

replaced by the integration variable cτ ′. In order to solve
that integral, we use relation (D9) and obtain

I1 (τ + t∗) = −2G

c2
P ij

∂

∂ξj

∞∑
l=0

(−1)
l

l!

τ∫
−∞

dcτ ′MA
〈L〉 (τ

′ + t∗) ∂′〈L〉
∂

∂cτ ′
ln
[
rNA (τ ′ + t∗)− σ · rNA (τ ′ + t∗)

]

+
2G

c3
P ij

∂

∂ξj

∞∑
l=0

(−1)
l

l!

τ∫
−∞

dcτ ′MA
〈L〉 (τ

′ + t∗) ∂′〈L〉 σ · vA (τ ′ + t∗)
1

rNA (τ ′ + t∗)

−2G

c3
P ij

∂

∂ξj

∞∑
l=0

(−1)
l

l!

τ∫
−∞

dcτ ′MA
〈L〉 (τ

′ + t∗) ∂′〈L〉
vA (τ ′ + t∗) · dA (τ ′ + t∗)

rNA (τ ′ + t∗)− σ · rNA (τ ′ + t∗)

1

rNA (τ ′ + t∗)
, (E2)

where we also have used that rNA = dA+σ
(
σ · rNA

)
. Note

that Eq. (E2) is an exact expression for the integral in
Eq. (E1). Now the expression in the first line in (E2) will
be integrated by parts. For the integral in the second line

in (E2) we use relation (D9) again, while for the integral
in the third line in (E2) we will use relation (D12) and
obtain by means of integration by parts:



37

I1 (τ + t∗) = −2G

c2
P ij

∂

∂ξj

∞∑
l=0

(−1)
l

l!
MA
〈L〉 (τ + t∗) ∂〈L〉 ln

[
rNA (τ + t∗)− σ · rNA (τ + t∗)

]

+
2G

c3
P ij

∂

∂ξj

∞∑
l=1

(−1)
l

l!

τ∫
−∞

dcτ ′ ṀA
〈L〉 (τ

′ + t∗) ∂′〈L〉 ln
[
rNA (τ ′ + t∗)− σ · rNA (τ ′ + t∗)

]

−2G

c3
P ij

∂

∂ξj

∞∑
l=0

(−1)
l

l!
MA
〈L〉 (τ + t∗) ∂〈L〉 σ · vA (τ + t∗) ln

[
rNA (τ + t∗)− σ · rNA (τ + t∗)

]
−2G

c3
P ij

∂

∂ξj

∞∑
l=0

(−1)
l

l!
MA
〈L〉 (τ + t∗) ∂〈L〉

vA (τ + t∗) · dA (τ + t∗)

rNA (τ + t∗)− σ · rNA (τ + t∗)
+O

(vA
c
ṀA
L

)
+O

(
v2A
c2
MA
L

)
.

(E3)

By means of relation (C5) in [26] one may show that
the lower integration limit τ → −∞ in the first line of
Eq. (E2) vanishes. In order to determine the integral in

the second line in (E3), we use relation (D11), and obtain
finally:

I1 (τ + t∗) = −2G

c2
P ij

∂

∂ξj

∞∑
l=0

(−1)
l

l!
MA
〈L〉 (τ + t∗) ∂〈L〉 ln

[
rNA (τ + t∗)− σ · rNA (τ + t∗)

]
+

2G

c3
P ij

∂

∂ξj

∞∑
l=1

(−1)
l

l!
ṀA
〈L〉 (τ + t∗) ∂〈L〉

[
rNA (τ + t∗) + σ · rNA (τ + t∗) ln

[
rNA (τ + t∗)− σ · rNA (τ + t∗)

] ]

−2G

c3
P ij

∂

∂ξj

∞∑
l=0

(−1)
l

l!
MA
〈L〉 (τ + t∗) ∂〈L〉 σ · vA (τ + t∗) ln

[
rNA (τ + t∗)− σ · rNA (τ + t∗)

]
−2G

c3
P ij

∂

∂ξj

∞∑
l=0

(−1)
l

l!
MA
〈L〉 (τ + t∗) ∂〈L〉

vA (τ + t∗) · dA (τ + t∗)

rNA (τ + t∗)− σ · rNA (τ + t∗)
+O

(vA
c
ṀA
L

)
+O

(
M̈A
L

)
+O

(
v2A
c2
MA
L

)
.

(E4)

In general, terms of the order O
(vA
c
ṀA
L

)
, O

(
M̈A
L

)
or

O
(
v2A
c2
MA
L

)
have to be neglected in order to be consis-

tent with the DSX metric in Eqs. (68) - (72), where such
terms are absent because they would be beyond 1.5PN
approximation for the lightray metric, cf. text at the end
of section III C. This fact is also valid for all subsequent
calculations but will not be mentioned explicitly in what

follows.

APPENDIX F: THE INTEGRAL I2

The integration of the fifth term in Eq. (96) reads as
follows:
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I2 (τ + t∗) = +
4G

c3
σjP ik

∂

∂ξk

∞∑
l=1

(−1)
l

l!

τ∫
−∞

dcτ ′ ṀA
〈jL−1〉 (τ

′ + t∗) ∂′〈L−1〉
1

rNA (τ ′ + t∗)

= −4G

c3
σjP ik

∂

∂ξk

∞∑
l=1

(−1)
l

l!

τ∫
−∞

dcτ ′ ṀA
〈jL−1〉 (τ

′ + t∗) ∂′〈L−1〉
∂

∂cτ ′
ln
(
rNA (τ ′ + t∗)− σ · rNA (τ ′ + t∗)

)

+
4G

c3
σjP ik

∂

∂ξk

∞∑
l=1

(−1)
l

l!

τ∫
−∞

dcτ ′ ṀA
〈jL−1〉 (τ

′ + t∗) ∂′〈L−1〉
σ · vA (τ ′ + t∗)

c

1

rNA (τ ′ + t∗)

−4G

c3
σjP ik

∂

∂ξk

∞∑
l=1

(−1)
l

l!

τ∫
−∞

dcτ ′ṀA
〈jL−1〉 (τ

′ + t∗) ∂′〈L−1〉
vA (τ ′ + t∗) · dA (τ ′ + t∗)

c rNA (τ ′ + t∗)

1

rNA (τ ′ + t∗)− σ · rNA (τ ′ + t∗)
,

(F1)

where we have used relation (D9). We recognize that the

last two terms in (F1) are terms of the orderO
(vA
c
ṀA
L

)
,

hence they are neglected. Accordingly, integration by
parts of the remaining integral in (F1) results in

I2 (τ + t∗) = −4G

c3
σjP ik

∂

∂ξk

∞∑
l=1

(−1)
l

l!
ṀA
〈jL−1〉 (τ + t∗) ∂〈L−1〉 ln

(
rNA (τ + t∗)− σ · rNA (τ + t∗)

)
+O

(vA
c
ṀA
L

)
+O

(
M̈A
L

)
+O

(
v2A
c2
MA
L

)
. (F2)

Finally, by means of relation (D5), we just obtain the
expression in the last line of Eq. (111).

APPENDIX G: INTEGRALS OF SECOND
INTEGRATION OF MASS-MULTIPOLE TERMS

By inserting (110) and (111) into (117) we obtain the
following integrals, each of which will be considered sep-

arately.

1. Integral I3

The integral I3, using relation (D5), reads

I3 (τ + t∗, τ0 + t∗) = −2G

c2
P ij

∂

∂ξj

∞∑
l=0

(−1)
l

l!

τ∫
τ0

dcτ ′MA
〈L〉 (τ

′ + t∗) ∂′〈L〉 ln
[
rNA (τ ′ + t∗)− σ · rNA (τ ′ + t∗)

]
.(G1)

We insert relation (D11) into (G1) and obtain:
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I3 (τ + t∗, τ0 + t∗) =

−2G

c2
P ij

∂

∂ξj

∞∑
l=0

(−1)
l

l!
MA
〈L〉 (τ + t∗) ∂〈L〉

(
rNA (τ + t∗) + σ · rNA (τ + t∗) ln

[
rNA (τ + t∗)− σ · rNA (τ + t∗)

])

+
2G

c2
P ij

∂

∂ξj

∞∑
l=0

(−1)
l

l!
MA
〈L〉 (τ0 + t∗) ∂〈L〉

(
rNA (τ0 + t∗) + σ · rNA (τ0 + t∗) ln

[
rNA (τ0 + t∗)− σ · rNA (τ0 + t∗)

])

+
2G

c3

∞∑
l=1

(−1)
l

l!

τ∫
τ0

dcτ ′ ṀA
〈L〉 (τ

′ + t∗) ∂′〈L〉
diA (τ ′ + t∗)

rNA (τ ′ + t∗)− σ · rNA (τ ′ + t∗)

−2G

c3
P ij

∂

∂ξj

∞∑
l=0

(−1)
l

l!

τ∫
τ0

dcτ ′MA
〈L〉 (τ

′ + t∗) ∂′〈L〉 σ · vA (τ ′ + t∗) ln
[
rNA (τ ′ + t∗)− σ · rNA (τ ′ + t∗)

]

−2G

c3
P ij

∂

∂ξj

∞∑
l=0

(−1)
l

l!

τ∫
τ0

dcτ ′MA
〈L〉 (τ

′ + t∗) ∂′〈L〉
dA (τ ′ + t∗) · vA (τ ′ + t∗)

rNA (τ ′ + t∗)− σ · rNA (τ ′ + t∗)
. (G2)

In order to get the expression in (G2), we have performed
an integration by parts which results in the expressions
in the first and second line. Furthermore, for the expres-
sion in the third line we have used relation (D6). Con-
sequently, (G2) represents an exact expression for the
integral in (G1).

Now we are going to proceed with the consideration
of the remaining three integrals in the third, fourth, and
fifth line in (G2). For the integral in the third and fifth
line we will use relation (D13) and integrate by parts;
note that we also need relation (D9) and the facts that

∂

∂cτ
dA (τ + t∗) = σ ×

(
σ × vA (τ + t∗)

c

)
,

(G3)

∂

∂cτ
MA
〈L〉 (τ + t∗) =

ṀA
〈L〉 (τ + t∗)

c
. (G4)

For the integral in the fourth line we use relation (D11)
and integrate by parts and afterwards we apply relation
(D6). Altogether, we obtain:
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I3 (τ + t∗, τ0 + t∗) = I3 (τ + t∗)− I3 (τ0 + t∗) , where

I3 (τ + t∗) = −2G

c2

∞∑
l=0

(−1)
l

l!
MA
〈L〉 (τ + t∗) ∂〈L〉

diA (τ + t∗)

rNA (τ + t∗)− σ · rNA (τ + t∗)

+
G

c3

∞∑
l=1

(−1)
l

l!
ṀA
〈L〉 (τ + t∗) ∂〈L〉 d

i
A (τ + t∗)

σ · rNA (τ + t∗)

rNA (τ + t∗)− σ · rNA (τ + t∗)

−G
c3

∞∑
l=1

(−1)
l

l!
ṀA
〈L〉 (τ + t∗) ∂〈L〉 d

i
A (τ + t∗) ln

[
rNA (τ + t∗)− σ · rNA (τ + t∗)

]
−2G

c3

∞∑
l=0

(−1)
l

l!
MA
〈L〉 (τ + t∗) ∂〈L〉 σ · vA (τ + t∗)

diA (τ + t∗)

rNA (τ + t∗)− σ · rNA (τ + t∗)

−G
c3
P ij

∂

∂ξj

∞∑
l=0

(−1)
l

l!
MA
〈L〉 (τ + t∗) ∂〈L〉 dA (τ + t∗) · vA (τ + t∗)

σ · rNA (τ + t∗)

rNA (τ + t∗)− σ · rNA (τ + t∗)

+
G

c3
P ij

∂

∂ξj

∞∑
l=0

(−1)
l

l!
MA
〈L〉 (τ + t∗) ∂〈L〉 dA (τ + t∗) · vA (τ + t∗) ln

[
rNA (τ + t∗)− σ · rNA (τ + t∗)

]
+O

(vA
c
ṀA
L

)
+O

(
M̈A
L

)
+O

(
v2A
c2
MA
L

)
, (G5)

where in the first line we have used relation (D6).

2. Integral I4

The integral I4 reads

I4 (τ + t∗, τ0 + t∗) =

−2G

c2
σi
∞∑
l=0

(−1)
l

l!

τ∫
τ0

dcτ ′MA
〈L〉 (τ

′ + t∗) ∂′〈L〉
1

rNA (τ ′ + t∗)
.

(G6)

The evaluation of that integral goes very similar to the
determination of the integral I1 as given in appendix E.
Accordingly we obtain:
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I4 (τ + t∗, τ0 + t∗) = I4 (τ + t∗)− I4 (τ0 + t∗) , where

I4 (τ + t∗) = +
2G

c2
σi

∞∑
l=0

(−1)
l

l!
MA
〈L〉 (τ + t∗) ∂〈L〉 ln

[
rNA (τ + t∗)− σ · rNA (τ + t∗)

]
−2G

c3
σi

∞∑
l=1

(−1)
l

l!
ṀA
〈L〉 (τ + t∗) ∂〈L〉

[
rNA (τ + t∗) + σ · rNA (τ + t∗) ln

[
rNA (τ + t∗)− σ · rNA (τ + t∗)

] ]

+
2G

c3
σi

∞∑
l=0

(−1)
l

l!
MA
〈L〉 (τ + t∗) ∂〈L〉 σ · vA (τ + t∗) ln

[
rNA (τ + t∗)− σ · rNA (τ + t∗)

]
+

2G

c3
σi

∞∑
l=0

(−1)
l

l!
MA
〈L〉 (τ + t∗) ∂〈L〉

vA (τ + t∗) · dA (τ + t∗)

rNA (τ + t∗)− σ · rNA (τ + t∗)
+O

(vA
c
ṀA
L

)
+O

(
M̈A
L

)
+O

(
v2A
c2
MA
L

)
.

(G7)

3. Integral I5

The integral I5 reads

I5 (τ + t∗, τ0 + t∗) =

+
2G

c3

∞∑
l=1

(−1)
l

l!

τ∫
τ0

dcτ ′ ṀA
〈L〉 (τ

′ + t∗)

× ∂′〈L〉
diA (τ ′ + t∗)

rNA (τ ′ + t∗)− σ · rNA (τ ′ + t∗)
. (G8)

In order to perform that integral we need relation (D13).
Integration by parts and by inspection of relations (G3)
and (G4) one obtains:

I5 (τ + t∗, τ0 + t∗) = I5 (τ + t∗)− I5 (τ0 + t∗) , where

I5 (τ + t∗) = +
G

c3

∞∑
l=1

(−1)
l

l!
ṀA
〈L〉 (τ + t∗) ∂〈L〉 d

i
A (τ + t∗)

σ · rNA (τ + t∗)

rNA (τ + t∗)− σ · rNA (τ + t∗)

−G
c3

∞∑
l=1

(−1)
l

l!
ṀA
〈L〉 (τ + t∗) ∂〈L〉 d

i
A (τ + t∗) ln

[
rNA (τ + t∗)− σ · rNA (τ + t∗)

]
+O

(vA
c
ṀA
L

)
+O

(
M̈A
L

)
.

(G9)

4. Integral I6

The integral I6, using relation (D5), reads

I6 (τ + t∗, τ0 + t∗) =

+
2G

c3
P ij

∂

∂ξj

∞∑
l=0

(−1)
l

l!

τ∫
τ0

dcτ ′MA
〈L〉 (τ

′ + t∗)

× σ · vA (τ ′ + t∗) ∂′〈L〉 ln
[
rNA (τ ′ + t∗)− σ · rNA (τ ′ + t∗)

]
.

(G10)

Integration by parts using relation (D11), and recalling
relation (G4), yields:
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I6 (τ + t∗, τ0 + t∗) = I6 (τ + t∗)− I6 (τ0 + t∗) , where

I6 (τ + t∗) = +
2G

c3

∞∑
l=0

(−1)
l

l!
MA
〈L〉 (τ + t∗)σ · vA (τ + t∗) ∂〈L〉

diA (τ + t∗)

rNA (τ + t∗)− σ · rNA (τ + t∗)

+O
(vA
c
ṀA
L

)
+O

(
v2A
c2
MA
L

)
. (G11)

In (G11) we have also used relation (D6).

5. Integral I7

The integral I7 reads

I7 (τ + t∗, τ0 + t∗) =

−2G

c3
P ij

∂

∂ξj

∞∑
l=0

(−1)
l

l!

τ∫
τ0

dcτ ′MA
〈L〉 (τ

′ + t∗)

× ∂′〈L〉
vA (τ ′ + t∗) · dA (τ ′ + t∗)

rNA (τ ′ + t∗)− σ · rNA (τ ′ + t∗)
. (G12)

Inserting relation (D13) and integration by parts, recall-
ing relations (G3) and (G4), yields:

I7 (τ + t∗, τ0 + t∗) = I7 (τ + t∗)− I7 (τ0 + t∗) , where

I7 (τ + t∗) = −G
c3
P ij

∂

∂ξj

∞∑
l=0

(−1)
l

l!
MA
〈L〉 (τ + t∗) ∂〈L〉vA (τ + t∗) · dA (τ + t∗)

σ · rNA (τ + t∗)

rNA (τ + t∗)− σ · rNA (τ + t∗)

+
G

c3
P ij

∂

∂ξj

∞∑
l=0

(−1)
l

l!
MA
〈L〉 (τ + t∗) ∂〈L〉vA (τ + t∗) · dA (τ + t∗) ln

[
rNA (τ + t∗)− σ · rNA (τ + t∗)

]
+O

(vA
c
ṀA
L

)
+O

(
v2A
c2
MA
L

)
. (G13)

6. Integral I8

The integral I8 reads

I8 (τ + t∗, τ0 + t∗) =

−4G

c3

∞∑
l=1

(−1)
l

l!

τ∫
τ0

dcτ ′ ṀA
〈iL−1〉 (τ

′ + t∗)

×∂′〈L−1〉
1

rNA (τ ′ + t∗)
. (G14)

Integration by parts using relation (D9), and recalling
relation (G4), yields:
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I8 (τ + t∗, τ0 + t∗) = I8 (τ + t∗)− I8 (τ0 + t∗) , where

I8 (τ + t∗) = +
4G

c3

∞∑
l=1

(−1)
l

l!
ṀA
〈iL−1〉 (τ + t∗) ∂〈L−1〉 ln

[
rNA (τ + t∗)− σ · rNA (τ + t∗)

]
+O

(
M̈A
L

)
.(G15)

7. Integral I9

The integral I9 reads

I9 (τ + t∗, τ0 + t∗) =

+
4G

c3

∞∑
l=0

(−1)
l

l!

τ∫
τ0

dcτ ′ viA (τ ′ + t∗) MA
〈L〉 (τ

′ + t∗)

× ∂′〈L〉
1

rNA (τ ′ + t∗)
. (G16)

Integration by parts using relation (D9), and recalling
relation (G4) yields:

I9 (τ + t∗, τ0 + t∗) = I9 (τ + t∗)− I9 (τ0 + t∗) , where

I9 (τ + t∗) = −4G

c3
viA (τ + t∗)

∞∑
l=0

(−1)
l

l!
MA
〈L〉 (τ + t∗) ∂〈L〉 ln

[
rNA (τ + t∗)− σ · rNA (τ + t∗)

]
+O

(vA
c
ṀA
L

)
+O

(
v2A
c2
MA
L

)
. (G17)

8. Integral I10

The integral I10, using relation (D5), reads

I10 (τ + t∗, τ0 + t∗) =

−4G

c3
σjP ik

∂

∂ξk

∞∑
l=1

(−1)
l

l!

τ∫
τ0

dcτ ′ ṀA
〈jL−1〉 (τ

′ + t∗)

× ∂′〈L−1〉 ln
[
rNA (τ ′ + t∗)− σ · rNA (τ ′ + t∗)

]
. (G18)

Integration by parts using relation (D11) and (G4) yields,
with the aid of relation (D6):

I10 (τ + t∗, τ0 + t∗) = I10 (τ + t∗)− I10 (τ0 + t∗) , where

I10 (τ + t∗) = −4G

c3
σj

∞∑
l=1

(−1)
l

l!
ṀA
〈jL−1〉 (τ + t∗) ∂〈L−1〉

diA (τ + t∗)

rNA (τ + t∗)− σ · rNA (τ + t∗)

+O
(
M̈A
L

)
+O

(vA
c
ṀA
L

)
. (G19)
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APPENDIX H: LIGHT TRAJECTORY IN THE
FIELD OF SPIN-MULTIPOLES AT REST

1. First integration

The contribution of the spin-multipoles in the first
integration of geodesic equation for the light trajec-
tory in the field of arbitrarily moving bodies with time-
dependent spin-multipoles is given by Eq. (113). In [31]
the light trajectory has been determined in the field
of motionless bodies located at the origin of coordi-
nate system (xA = 0) and with time-independent mass-
multipoles and spin-multipoles. Accordingly, in order to
compare our results with [31], we have to consider the
following limits in our solution:

SA〈L〉 (τ + t∗) → SA〈L〉 , (H1)

dA (τ + t∗) → ξ , (H2)

dA (τ + t∗) → d = |ξ| , (H3)

rNA (τ + t∗) → r = ξ + c τ σ , (H4)

rNA (τ + t∗) → r =
√
d2 + c2τ2 , (H5)

where

rNA (τ + t∗) =
√
ξ2 + c2τ2 + x2A (τ + t∗)− 2 c τ σ · xA (τ + t∗)− 2 ξ · xA (τ + t∗) . (H6)

In these limits the expression in Eq. (113) simplifies to

∆ẋi SA (τ)

c
= −4G

c3

∞∑
l=1

(−1)
l
l

(l + 1)!
εiab S

A
〈bL−1〉 ∂〈aL−1〉

1

r

−4G

c3
σj
∞∑
l=1

(−1)
l
l

(l + 1)!
εjab S

A
〈bL−1〉 ∂〈aL−1〉

ξi

d2

(
1 +

c τ

r

)
,

(H7)

up to terms O
(
c−4
)
. In (H7) we have used σ ·r = c τ and

1

r

1

r − σ · r
=

1

d2

(
1 +

c τ

r

)
. The derivative operator has

been given by Eq. (C5) and simplifies as follows:

∂〈aL−1〉 = STF
ai1...il−1

P ab P i1 j1 ... P il−1 jl−1
∂

∂ξb
∂

∂ξj1
...

∂

∂ξjl−1

+ STF
ai1...il−1

l∑
p=1

l!

(l − p)! p!
σi1 ... σip P ab P ip+1 jp+1 ... P il−1 jl−1

∂

∂ξb
∂

∂ξjp+1
...

∂

∂ξjl−1

(
∂

∂c τ

)p
, (H8)

because there is no dependence on variable t∗ any longer, and the expression in (H8) has been subdivided into one
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summand p = 0 and all other terms with p ≥ 1. By
inserting the expression (H8) into (H7) we confirm an
agreement with Eq. (37) in [31], up to an overall sign
which has been clarified by private communication [69].
For such a comparison it may be useful to note the rela-
tions (

∂

∂cτ

)p
1

r
= −

(
∂

∂cτ

)p−1
c τ

r3
, (H9)(

∂

∂cτ

)p (
1 +

c τ

r

)
= +

(
∂

∂cτ

)p−1
d2

r3
, (H10)

while d is here time-independent.

2. Second integration

The contribution of the spin-multipoles in the sec-
ond integration of geodesic equation for the light tra-
jectory in the field of arbitrarily moving bodies with

time-dependent spin-multipoles is given by Eq. (121).
In [31] the light trajectory has been determined in the
field of motionless bodies located at the origin of coordi-
nate system (xA = 0) and with time-independent mass-
multipoles and spin-multipoles. Accordingly, we consider
the limits (H1) - (H5) in our solution (121) and obtain

∆xSA (τ , τ0) = ∆xSA (τ)−∆xSA (τ0) , (H11)

with

∆xiSA (τ) =
4G

c3

∞∑
l=1

(−1)
l
l

(l + 1)!
εiabS

A
〈bL−1〉∂〈aL−1〉 ln (r − cτ)

−4G

c3
σj
∞∑
l=1

(−1)
l
l

(l + 1)!
εjab S

A
〈bL−1〉 ∂〈aL−1〉

ξi

d2
(r + c τ) ,

(H12)

up to terms of the order O
(
c−4
)
, and the derivative op-

erator is given by

∂〈aL−1〉 = STF
ai1...il−1

P ab P i1 j1 ... P il−1 jl−1
∂

∂ξb
∂

∂ξj1
...

∂

∂ξjl−1

+ STF
ai1...il−1

l σi1 P ab P i2 j2 ... P il−1 jl−1
∂

∂ξb
∂

∂ξjp+1
...

∂

∂ξjl−1

∂

∂c τ

+ STF
ai1...il−1

l∑
p=2

l!

(l − p)! p!
σi1 ... σip P ab P ip+1 jp+1 ... P il−1 jl−1

∂

∂ξb
∂

∂ξjp+1
...

∂

∂ξjl−1

(
∂

∂c τ

)p
, (H13)

where the expression has been subdivided into three
pieces: one term p = 0, one term p = 1, and all other
terms with p ≥ 2. By inserting (H13) into (H12), we
have found an agreement with Eq. (38) in [31], up to an
overall sign which has been clarified by private commu-
nication [69]. For such comparison, it might be useful to

recall ln
r − cτ
r0 − cτ0

= − ln
r + cτ

r0 + cτ0
and to note the follow-

ing relations:

∂

∂cτ
ln (r − c τ) = −1

r
, (H14)

∂

∂cτ
(r + c τ) = 1 +

c τ

r
, (H15)

as well as(
∂

∂cτ

)p
ln (r − c τ) =

(
∂

∂cτ

)p−2
c τ

r3
, (H16)(

∂

∂cτ

)p
(r + c τ) =

(
∂

∂cτ

)p−2
d2

r3
. (H17)

We also note that time-independent terms cancel each
other in view of relation (H11).

APPENDIX I: LIGHT PROPAGATION IN THE
FIELD OF ARBITRARILY MOVING BODIES IN

1PM APPROXIMATION

In [38] the light trajectory in the field of N bodies with
spin-dipole in post-Minkowskian approximation has been
determined. That solution is given by Eq. (39) in [38] and
reads:

xS (τ + t∗) = ξ + c τ σ + Ξ (τ)−Ξ (τ0) , (I1)

where according to Eq. (41) in [38]

Ξi (τ) = +
1

2
σα σβ ∂̂iD

αβ
S (τ)− σαBαiS (τ)

−1

2
σiB00

S (τ) +
1

2
σi σp σq B

pq
S (τ) , (I2)

with σα = (−1, σi) and σi = σi. The expressions for BαβS
and ∂̂iD

αβ
S were given by Eqs. (C16) and (C17) in [38],

respectively (note a missing factor 4 in the last term in
Eq. (C17) in [38]). Inserting these expressions into (I2)
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yields

Ξi (τ) = −2G

c4
Pij r

j

r − v · r/c
σα σβ

rγ S
γ (α uβ )

(r − σ · r)
2

+
2G

c4
Pij r

j

1− σ · v/c
σα σβ

σγ S
γ (α uβ )

(r − σ · r)
2

+
2G

c4
Pij v

j/c

(1− σ · v/c)2
σα σβ

σγ S
γ (α uβ )

r − σ · r

+
2G

c4
Pij σα σβ S

j (α uβ )

1− σ · v/c
1

r − σ · r

−4G

c4
σα

rγ S
γ (α ui )

r − σ · r
1

r − v · r/c

+
4G

c4
σα

σγ S
γ (α ui )

r − σ · r
1

1− σ · v/c

−2G

c4
σi
rγ S

γ ( 0 u0 )

r − σ · r
1

r − v · r/c

+
2G

c4
σi
σγ S

γ ( 0 u0 )

r − σ · r
1

1− σ · v/c

+
2G

c4
σi σp σq

rγ S
γ ( p uq )

r − σ · r
1

r − v · r/c

−2G

c4
σiσpσq

σγ S
γ ( p uq )

r − σ · r
1

1− σ · v/c
, (I3)

where Sγ (α uβ ) =
(
Sγ α uβ + Sγ β uα

)
/ 2 means the

symmetrization with respect to the indices α and β.
Thereby, uβ = γv (c , v) where γ−1v =

√
1− v2/c2 is the

Lorentz factor, and all time-dependent quantities depend
on the retarded time-variable τret, that means for the
global spin-tensor Sαβ = Sαβ (τret), for the four-velocity
uα = uα (τret) and for the three-velocity v = v (τret).
Furthermore, rα = (−r , r) with r = |r| and r being
the vector pointing from the spatial position of the body
at retarded time, xA (tret), toward the spatial position of
the photon at global coordinate-time, x (t). That means,
in (I3) we may replace the new variables ξ, τret by the old
variables x, tret (see also text below Eq. (128)):

r ≡ r (t, tret) = x0 + c (t− t0) σ − xA (tret) , (I4)

where the retarded time in terms of the old variables is
given by Eq. (143); see also Eq. (11) in [33] or Eqs. (12) in
[38]. The solution in (I3) is valid for the light trajectory
in post-Minkowskian approximation in the gravitational
field of an arbitrarily moving point-like body carrying a
spin-dipole, while our result in Eq. (122) and Eq. (128) is
valid for the light trajectory in post-Newtonian approxi-
mation in the gravitational field of an arbitrarily moving
extended body carrying a spin-dipole. In order to com-
pare both results we have to expand all expressions in
(I3) with respect to variable v/c � 1 and neglect all

terms of the order O
(
c−4
)
, and afterwards we have to

express the global spin-tensor Sαβ in terms of the intrin-
sic spin-vector S. Especially, we find

r (t, tret) = rNA (t) +O
(
c−1
)
, (I5)

v (tret) = vA (t) +O
(
c−1
)
, (I6)

Sαβ (tret) = Sαβ (t) +O
(
c−1
)
, (I7)

where in (I5) and (I6) we have attached an index A in
order to indicate that actually the body A is meant here,
while the spin-tensor in (I7) describes still the global spin,
besides the fact that this spin-tensor originates from the
intrinsic spin SA of that single body. Let us consider one
specific example by performing a series-expansion of the
first term in (I3), for which we obtain:

−2G

c4
Pij r

j

r − v · r/c
σα σβ

rγ S
γ (α uβ )

(r − σ · r)
2

= −2G

c4
Pij r

j

r − v · r/c
σα σβ

rγ S
γα uβ

(r − σ · r)
2

= +
2G

c3
diA (t)

rNA (t)
σα

rNγ (t) Sγα (t)(
rNA (t)− σ · rNA (t)

)2 +O
(
c−1
)
,

(I8)

where in the second line we have determined the sym-
metrization, while in the third line we have used (I5) -
(I7) and Pij r

j = diA (t). Very similar steps for the other
terms in (I3) yield the following expression:

Ξi (t) = +
2G

c3
diA (t)

rNA (t)
σα

rNγ (t) Sγα (t)(
rNA (t)− σ · rNA (t)

)2
−2G

c3
Pij σα

Sjα (t)

rNA (t)− σ · rNA (t)

+
2G

c3
rNγ (t) Sγi (t)

rNA (t)− σ · rNA (t)

1

rNA (t)

−2G

c3
σγ S

γi (t)

rNA (t)− σ · rNA (t)

−2G

c3
σi

rNγ (t) Sγ0 (t)

rNA (t)− σ · rNA (t)

1

rNA (t)

+
2G

c3
σi

σγ S
γ0 (t)

rNA (t)− σ · rNA (t)
+O

(
c−4
)
,

(I9)

where we have used σα σγ S
γα = 0 because the spin-

tensor is anti-symmetric, Sγα = −Sαγ , and we have in-
troduced rNγ (t) =

(
−rNA (t) , rNA (t)

)
. In order to compare

(I9) with our result in (128) we have to express the global
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spin-tensor Sαβ in (I9) in terms of the intrinsic spin-
vector SA, where the index refers to body A. Recalling
relations (24) and (C.10) in [74] we have

Si0 (t) = O
(
c−1
)
, (I10)

Sij (t) = εijk S
k
A (t) +O

(
c−1
)
. (I11)

By inserting (I10) - (I11) into (I9) we arrive at

Ξi (t) = +
2G

c3
diA (t)

rNA (t)
σj

rNk (t) εkjl S
l
A (t)(

rNA (t)− σ · rNA (t)
)2

−2G

c3
σk εikl

SlA (t)

rNA (t)− σ · rNA (t)

+
2G

c3
rNj (t) εjil S

l
A (t)

rNA (t)− σ · rNA (t)

1

rNA (t)

−2G

c3
σj εjil

SlA (t)

rNA (t)− σ · rNA (t)
+O

(
c−4
)
. (I12)

Finally, using rNA (t) = dA (t) + σ
(
σ · rNA (t)

)
we obtain

Ξ (t) = −2G

c3
σ · (dA (t)× SA (t))(
rNA (t)− σ · rNA (t)

)2 dA (t)

rNA (t)

−2G

c3
σ × SA (t)

rNA (t)− σ · rNA (t)

+
2G

c3
SA (t)× dA (t)

rNA (t)− σ · rNA (t)

1

rNA (t)

+
2G

c3
σ × SA (t)

rNA (t)
, (I13)

where the last two terms in (I13) comprise the last two
terms in (I12). The expression in (I13) agrees with our re-
sult in (128); note that all derivatives according to (124)
have been performed, hence the replacement τ + t∗ → t
in (128) is possible.

APPENDIX J: LIGHT TRAJECTORY IN
POST-POST-NEWTONIAN APPROXIMATION

FOR MONOPOLES AT REST

In this appendix we briefly summarize the 2PN solu-
tion for the lightray (in harmonic gauge) in the field of
one monopole at rest, located at xA = const. The 2PN
metric for one monopole at rest reads [18, 27, 46, 79]:

h
(2)
00 (x) = +

2mA

rA
, (J1)

h
(2)
ij (x) = +

2mA

rA
δij , (J2)

h
(4)
00 (x) = −2m2

A

r2A
, (J3)

h
(4)
ij (x) = +

m2
A

r2A
δij +

m2
A

r4A
riA r

j
A , (J4)

where mA = GMA/c
2 is the Schwarzschild radius of body

A and rA = x − xA. Using the constraint for lightrays,
ds = 0, the geodesic equation can be written in the fol-
lowing form [18, 27, 45, 46]:

ẍ2PN = − 2mA c
2 rA
r3A

+ 4mA ẋ
rA · ẋ
r3A

−2m2
A ẋ

rA · ẋ
r4A

+ 8m2
Ac

2 rA
r4A

+ 2m2
ArA

(rA · ẋ)
2

r6A
.

(J5)

The solution of geodesic equation (J5) has been found at
the first time in [18, 27]. This solution has been confirmed
within several investigations, e.g. [24, 45, 46] and has also
been recalculated in this work.

1. Light trajectory in Newtonian approximation
for monopole at rest

The light trajectory in Newtonian approximation (N)
reads:

xN (t) = x0 + c (t− t0)σ . (J6)

2. Light trajectory in 1PN approximation for
monopole at rest

The light trajectory in post-Newtonian approximation
(1PN) reads:

x1PN (t) = x0 + c (t− t0)σ

−2mA

(
dA

rNA − σ · rNA
− dA
r0A − σ · r0A

)

+2mA σ ln
rNA − σ · rNA
r0A − σ · r0A

, (J7)
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where rNA = xN (t) − xA and r0A = x (t0) − xA. The
expression in (J7) corrects some typos in Eq. (B6) in
[26].

3. Light trajectory in 2PN approximation for
monopole at rest

The light trajectory in post-post-Newtonian approxi-
mation (2PN) reads:

x2PN (t) = x0 + c (t− t0)σ

+mA

[
B1

(
r1PN
A

)
−B1

(
r0A
)]

+m2
A

[
B2

(
rNA
)
−B2

(
r0A
)]
,

(J8)

where r1PN
A = x1PN (t)−xA. The vectorial functions B1

and B2 are given by (cf. Eqs. (3.2.41) and (3.2.42) in
[18] or Eqs. (50) and (51) in [45]):

B1(r1PN
A ) = −2

σ × (r1PN
A × σ)

r1PN
A − σ · r1PN

A

+ 2σ ln
(
r1PN
A − σ · r1PN

A

)
, (J9)

B2(rNA) = +4
σ

rNA − σ · rNA
+ 4

dA(
rNA − σ · rNA

)2 +
1

4

rNA(
rNA
)2 − 15

4

σ

dA
arctan

(
σ · rNA
dA

)
−15

4
dA

σ · rNA
d3A

[
π

2
+ arctan

(
σ · rNA
dA

)]
. (J10)

It should be mentioned that in B1 the coordinate of the
photon in 1PN approximation, x1PN, can be replaced by
the exact coordinate x of the photon, and in B2 the
coordinate of the photon in Newtonian approximation,
xN, can be replaced by the exact coordinate x, because
such replacements are correct up to terms of the order

O
(
c−6
)
.

Sometimes it is useful to perform a series-expansion of
the vectorial functionB1 in terms of the small parameter
mA and to express the 2PN solution (J8) in terms of
unperturbed lightray as follows:

x2PN (t) = x0 + c (t− t0)σ

−2mA

(
dA

rNA − σ · rNA
− dA
r0A − σ · r0A

)
+ 2mA σ ln

rNA − σ · rNA
r0A − σ · r0A

−15

4

m2
A

d3A
dA

[(
σ · rNA

) (π
2

+ arctan
σ · rNA
dA

)
−
(
σ · r0A

) (π
2

+ arctan
σ · r0A
dA

)]

−15

4

m2
A

dA
σ

[
arctan

σ · rNA
dA

− arctan
σ · r0A
dA

]
− 4

m2
A

rNA

dA
rNA − σ · rNA

ln
rNA − σ · rNA
r0A − σ · r0A

− 4
m2
A

rNA
σ ln

rNA − σ · rNA
r0A − σ · r0A

+
1

4
m2
A

dA(
rNA
)2 − 1

4
m2
A

dA

(r0A)
2 +

1

4
m2
A σ

σ · rNA(
rNA
)2 − 1

4
m2
A σ

σ · r0A
(r0A)

2 − 4m2
A

σ · rNA
rNA

σ

(
1

rNA − σ · rNA
− 1

r0A − σ · r0A

)

+4m2
A dA

(
1

rNA
+

1

r0A − σ · r0A

)(
1

rNA − σ · rNA
− 1

r0A − σ · r0A

)
, (J11)
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where we recall that rNA = dA+σ
(
σ · rNA

)
and r0A = dA+

σ
(
σ · r0A

)
. The expression in (J11) corrects some typos

in Eq. (37) in [26]. Let us notice that in the second line
in (J11) it is not allowed to replace the coordinate of the
photon in Newtonian approximation, xN, by the exact

coordinate of the photon, x, because such a relacement
would cause an error of the order O

(
c−4
)
. This is the

reason for the fact that the form in (J11) is usually not
in use in favor of the expression in Eqs. (J8) - (J10).
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