
Light propagation in the gravitational field of one arbitrarily moving pointlike body
in the 2PN approximation

Sven Zschocke
Institute of Planetary Geodesy - Lohrmann Observatory,

Dresden Technical University,
Helmholtzstrasse 10,

D-01069 Dresden, Germany

An analytical solution for the light trajectory in the near-zone of the gravitational field of one
pointlike body in arbitrary slow-motion in the post-post-Newtonian approximation is presented in
harmonic gauge. Expressions for total light deflection and time delay are given. The presented solu-
tion is a further step toward high-precision astrometry aiming at nano-arcsecond level of accuracy.

I. INTRODUCTION

In order to determine the positions and motions of as-
tronomical objects on the sky, astrometry uses light sig-
nals (photons) which are emitted by the celestial objects.
These light rays propagate from the celestial light source
through the gravitational field of the Solar System and
do finally arrive at the observer. Therefore, the precise
determination of the trajectories of light signals through
the warped space-time of Solar System is a fundamental
assignment of a task in relativistic astrometry. Accord-
ing to the theory of general relativity [1, 2] light rays
propagate along null-geodesics governed by the geodesic
equation,

d2xα (λ)

dλ2
+ Γαµν

dxµ (λ)

dλ

dxν (λ)

dλ
= 0 , (1)

gαβ
dxα (λ)

dλ

dxβ (λ)

dλ
= 0 , (2)

where (1) represents the geodesic equation and the con-
straint (2) must be imposed for null-geodesics which
states that the tangent four-vector along light rays is
isotropic. In (1) and (2) the four-coordinates of a light-
signal xα (λ) depend on affine parameter λ, and the
Christoffel symbols in (1) are related to the metric gαβ
of curved space-time,

Γαµν =
1

2
gαβ

(
∂gβµ
∂xν

+
∂gβν
∂xµ

− ∂gµν
∂xβ

)
, (3)

with metric signature (−,+,+,+). The geodesic equa-
tion (1) and the isotropic condition (2) are valid in any
reference system. With the aid of the zeroth component
of (1), the geodesic equation and the isotropic condition
can be expressed in terms of coordinate time t rather
than the affine parameter λ as follows [3–5],

d2xi (t)

c2dt2
+ Γiµν

dxµ (t)

cdt

dxν (t)

cdt
= Γ0

µν

dxµ (t)

cdt

dxν (t)

cdt

dxi (t)

cdt
,

(4)

gαβ
dxα (t)

cdt

dxβ (t)

cdt
= 0 , (5)

while the zeroth component in (4) vanishes identically.
The equations in (4) and (5) are more appropriate in or-
der to integrate the geodesic equation and also in view
of the fact that real astrometric measurements do by
all means imply the use of concrete reference systems.
In line with the resolutions of International Astronomi-
cal Union (IAU) [6], the Barycentric Celestial Reference
System (BCRS) is adopted, which is the standard global
chart in modern-day astrometry. The origin of the spa-
tial axes of the BCRS is located at the barycenter of the
Solar system, the harmonic coordinates of the BCRS are
denoted by

(
ct, xi

)
where t is the BCRS coordinate time

and xi are the three-dimensional coordinates referred to
the spatial axes of the BCRS, and obey the harmonic
gauge condition (de Donder gauge):

∂
√
−g gαβ

∂xα
= 0 , (6)

where g = det (gµν) is the determinant of metric tensor.
For a unique solution of the geodesic equation (4)

mixed initial-boundary conditions must be imposed [4, 7–
13]:

x0 = x (t0) , (7)

σ = lim
t→−∞

ẋ (t)

c
, (8)

where the dot in (8) denotes total derivative with re-
spect to coordinate time. The first condition (7) defines
the spatial coordinates of the photon at the moment t0
of emission of light. The second condition (8) defines the
unit-direction of the light ray at past null infinity, that
means the unit-tangent vector along the light path in the
infinite past hence at infinite spatial distance from the
origin of the global coordinate system. Then, the exact
solution of (4) for the trajectory of the light ray, prop-
agating from the light source through the Solar System
towards the observer, can formally be written as follows,

x (t) = x0 + c (t− t0)σ + ∆x , (9)

where the term ∆x denotes gravitational corrections to
the unperturbed light ray.
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In case of weak gravitational fields it is useful to de-
compose the metric tensor as follows,

gαβ (t,x) = ηαβ + hαβ (t,x) , (10)

where ηαβ = ηαβ = diag (−1,+1,+1,+1) is the met-
ric of Minkowskian space and for any components of the
metric perturbations |hαβ | � 1. Because the gravita-
tional fields are weak in the Solar system, the orbital
motions of the Solar system bodies are slow (virial the-
orem), mA/PA � 1 and vA/c � 1 (notations are given
in the Appendix A), hence an expansion of the metric
in terms of inverse powers of the speed of light can be
applied, called post-Newtonian expansion or weak-field
slow-motion approximation [4, 6, 8, 14–17], which for the
covariant and contravariant components reads

gαβ = ηαβ + h
(2)
αβ + h

(3)
αβ + h

(4)
αβ +O

(
c−5
)
, (11)

gαβ = ηαβ − hαβ(2) − h
αβ
(3) − h

αβ
(4) +O

(
c−5
)
, (12)

where h
(n)
αβ = O (c−n) with n = 2, 3, 4; e.g. Eqs. (4.17) -

(4.19) in [17]. Notice that the post-Newtonian expansion
in (11) describes the metric in the near-zone of the Solar
System defined by |x| < λgr where λgr is a characteris-
tic wavelength of gravitational radiation emitted by the
Solar System. It should be mentioned that, according to
the famous theorem in [18], the post-Newtonian expan-
sion of the metric tensor is, in fact, non-analytic because
it contains logarithmic terms. However, in the near-zone
the post-Newtonian expansion in inverse powers of the
speed of light is valid up to 4PN approximation, that
means logarithmic terms in metric coefficients emerge at
the order of O

(
c−8
)

[19].
The post-Newtonian expansion of the metric in (11)

inherits a corresponding post-Newtonian expansion of
the light trajectory (9), which up to terms of the order
O
(
c−5
)

reads

x (t) = x0 + c (t− t0)σ + ∆x1PN + ∆x1.5PN + ∆x2PN ,

(13)

where the label 1PN, 1.5PN, and 2PN refer to terms of
the order O

(
c−2
)
, O

(
c−3
)
, and O

(
c−4
)
, respectively.

The expressions for ∆x1PN and ∆x1.5PN for a light tra-
jectory in the field of N arbitrarily moving bodies of finite
size have recently been determined in [12, 13]. In these
investigations each individual body A = 1, 2, ..., N is al-
lowed to move along its own arbitrary worldline xA (t)
and the global metric of the Solar System has been de-
scribed in terms of the full set of time-dependent intrinsic
mass-multipoles ML

A (t) and full set of time-dependent
intrinsic spin-multipoles SLA (t), allowing for arbitrary
shape, inner structure and rotational motion of the mas-
sive bodies of the Solar System. About the magnitude of
these terms in time-delay and light deflection we refer to
Table II and Table III in [13].

However, rapidly growing accuracy in astrometric mea-
surements demands to account for post-post-Newtonian

terms ∆x2PN as well. In particular, it is well-known that
present-day precision in astrometry has reached a level
of a few micro-arcseconds (µas) in angular observations
of stars [20, 21] and a level of a few nano-seconds (ns) in
measurements of time delay [22]. Such extremely high-
precision astrometry necessitates to account for 2PN ef-
fects in the theory of light propagation [8, 23]. On the
other side, results about the post-post-Newtonian terms
∆x2PN in (13) are fairly rare. So far, 2PN effects in light
propagation have mainly been determined for the case
of mass monopoles at rest [24–29], that means where
the position of the mass monopole remains constant:
xA = const. In this respect, an important progress in
calculating post-post-Newtonian effects on light propa-
gation in the monopole field has been achieved in [4, 7]
where an explicit 2PN solution for light trajectories in
the Schwarzschild field as function of coordinate time has
been found and later been confirmed within several pro-
gressing investigations [8, 9, 13, 30–32]. Also alternative
approaches for the calculation of directions of light rays
and their propagation time in 2PN approximation have
been developed, which avoid the peculiarities of solving
the null geodesic equations, based on the eikonal concept
[33], on the Synge’s world function [34] or on the Time
Transfer Function formalism [35, 36].

An ambitious goal in astrometric measurements in near
future is to aim at sub-micro-arcsecond (sub-µas) level
in angular determination and sub-nano-second (sub-ns)
level in time delay measurements. For instance, several
space-based astrometry missions are under discussion
which have been proposed to the European Space Agency
(ESA) which aim at precisions on sub-nano-arcsecond
(sub-nas) level in angular determination of celestial ob-
jects [37–44]. Such extremely high-precision astrometry
needs to account for the impact of the motion of massive
bodies on the light propagation in 2PN approximation.
The problem, however, of light propagation in the field of
moving monopoles in 2PN approximation has not been
considered yet, aside from the investigation in [30] which
was not intended for the problem of light propagation in
the Solar System. For this reason, we will consider the
problem of light propagation through the gravitational
field of one pointlike body in slow but otherwise arbi-
trary motion in the 2PN approximation. The article is
organized as follows: In Section II the geodesic equation
in 2PN approximation is presented, in Section III the
metric of one massive pointlike body in arbitrary motion
in 2PN approximation is given, in Section IV and Section
V the first and second integration of geodesic equation is
represented. The observable effects of total light deflec-
tion and time delay are given in Section VI. A summary
and outlook can be found in Section VII. The notation
in use is given in the Appendix A.
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II. GEODESIC EQUATION IN 2PN
APPROXIMATION

The Solar System is composed of N massive bodies
of finite size which move according their mutual gravita-
tional interaction. In our investigation we will consider

one of these massive bodies and approximate the body
as pointlike object with Newtonian rest mass MA. By
inserting the metric (11) into (4) we obtain the geodesic
equation in 2PN approximation, which in terms of global
coordinate time reads [4, 11, 30]

ẍi (t)

c2
= +

1

2
h
(2)
00,i − h

(2)
00,j

ẋi (t)

c

ẋj (t)

c
− h(2)ij,k

ẋj (t)

c

ẋk (t)

c
+

1

2
h
(2)
jk,i

ẋj (t)

c

ẋk (t)

c
− h(2)ij,0

ẋj (t)

c

+
1

2
h
(2)
jk,0

ẋi (t)

c

ẋj (t)

c

ẋk (t)

c
− 1

2
h
(2)
00,0

ẋi (t)

c
− h(3)0i,j

ẋj (t)

c
+ h

(3)
0j,i

ẋj (t)

c
− h(3)0j,k

ẋi (t)

c

ẋj (t)

c

ẋk (t)

c

−h(3)0i,0 −
1

2
h
(2)
ij h

(2)
00,j − h

(2)
00 h

(2)
00,j

ẋi (t)

c

ẋj (t)

c
+ h

(2)
is h

(2)
sj,k

ẋj (t)

c

ẋk (t)

c
− 1

2
h
(2)
is h

(2)
jk,s

ẋj (t)

c

ẋk (t)

c

+
1

2
h
(4)
00,i − h

(4)
00,j

ẋi (t)

c

ẋj (t)

c
− h(4)ij,k

ẋj (t)

c

ẋk (t)

c
+

1

2
h
(4)
jk,i

ẋj (t)

c

ẋk (t)

c

+h
(4)
0j,i

ẋj (t)

c
− h(4)0i,j

ẋj (t)

c
− h(4)0j,k

ẋi (t)

c

ẋj (t)

c

ẋk (t)

c
− h(4)0i,0 +O

(
c−5
)
, (14)

where we have taken into account that in general h
(2)
0i =

h
(3)
00 = h

(3)
ij = 0 [3–6, 15, 16]. The last term in (14),

i.e. the term h
(4)
0i,0, is a peculiarity in the sense that this

term is seemingly of the order O
(
c−5
)
, but by inspec-

tion of (25) one realizes that the first integration (30) of
this term results into 4mA aA/c

2 which is of the order
O
(
c−4
)
, and, therefore, cannot be neglected. Further-

more, the following relations have been used,

h
(2)
00 = h00(2) , h

(2)
ij = hij(2) ,

h
(3)
0i =−h0i(3) , h

(4)
0i = −h0i(4) ,

h
(4)
00 = h00(4) − h

00
(2) h

00
(2) , h

(4)
ij = hij(4) + hik(2) h

kj
(2) , (15)

which result from gαµ g
µβ = δβα = diag (+1,+1,+1,+1).

The metric perturbations in (11) are functions of the
field-points (t,x), while in the geodesic equation (14) the
metric perturbations are of relevance at the coordinates
of the photon x (t). Consequently, the derivatives in (14)
are taken along the light ray:

h
(n)
αβ,µ =

∂h
(n)
αβ (t,x)

∂xµ

∣∣∣∣∣
x=x(t)

, n = 2, 3, 4 . (16)

The geodesic equation in 2PN approximation in (14) can
be solved by iteration and allows to determine the coor-
dinate velocity (first integration) and the light trajectory

(second integration) up to terms of the order O
(
c−5
)
:

ẋ (t) = cσ + ∆ẋ1PN + ∆ẋ1.5PN + ∆ẋ2PN , (17)

x (t) = x0 + c (t− t0)σ + ∆x1PN + ∆x1.5PN + ∆x2PN .

(18)

As mentioned above, the 1PN and 1.5PN terms in (17)
and (18) have recently been determined in [12] and [13],
respectively, for the case of N bodies in slow but other-
wise arbitrary motion and the bodies may have arbitrary
shape and inner structure and can be in arbitrary rota-
tional motion. The aim of this investigation is to deter-
mine the 2PN terms for the case of one pointlike body in
arbitrary slow-motion.

III. METRIC IN 2PN APPROXIMATION FOR
ONE BODY

We shall assume that the one-body system is isolated
(Fock-Sommerfeld boundary conditions), that means
flatness of the metric at spatial infinity and the con-
straint of no-incoming gravitational radiation is imposed
at Minkowskian past null infinity J−M , which in terms of

trace-reversed metric perturbation h
µν

= ηµν −
√
−g gµν
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FIG. 1: A geometrical representation of the light trajectory
x (t) of Eq. (41) through the gravitational field of one point-
like massive body A moving along an arbitrary worldline in
slow motion vA � c. At the same instant of coordinate time
the body’s position is xA (t) (gray sphere). However, since
gravitational action travels with the finite speed of light, the
light ray at x (t) is influenced by the gravitational field gen-
erated by the body at its retarded position xA

(
tret

)
(black

sphere). The spatial vector rA
(
tret

)
is defined by Eq. (32)

and points from the massive body A at its retarded position
toward the exact photon’s position at instant t.

read as follows [6, 8, 17, 45–47],

lim
r→∞

t+ r
c
=const

h
µν

(t,x)=0 , (19)

lim
r→∞

t+ r
c
=const

(
∂

∂r
r h

µν
(t,x) +

∂

∂ct
r h

µν
(t,x)

)
= 0 , (20)

where r = |x|. In addition, r ∂α h
µν

should be bounded
in this limit [45, 46], that means any component of the
metric tensor obeys the constraint

lim
r→∞

t+ r
c
=const

∣∣∣∣∣∂h
µν

(t,x)

∂xα

∣∣∣∣∣ < K

r
, (21)

where K > 0 is some positive number related to the total
rest mass of the gravitational system. According to (11)
and Eqs. (C17) - (C22), the metric perturbations for the
gravitational fields of one pointlike body in slow motion
read:

h
(2)
00 (t,x) = +

2mA

rA (t)
, (22)

h
(2)
ij (t,x) = +

2mA

rA (t)
δij , (23)

h
(3)
0i (t,x) =− 4mA

rA (t)

viA (t)

c
, (24)

h
(4)
0i (t,x) = +4mA

aiA (t)

c2
, (25)

h
(4)
00 (t,x) = +

4mA

rA (t)

v2A (t)

c2
− mA

rA (t)

(nA (t) · vA (t))
2

c2
−mA

(nA (t) · aA (t))

c2
− 2m2

A

r2A (t)
, (26)

h
(4)
ij (t,x) =− mA

rA (t)

(nA (t) · vA (t))
2

c2
δij +

4mA

rA (t)

viA (t)

c

vjA (t)

c
−mA

(nA (t) · aA (t))

c2
δij

+
m2
A

r2A (t)
δij +

m2
A

r2A (t)
niA (t) njA (t) , (27)

where mA = GMA/c
2 and

rA (t) = x− xA (t) , (28)

while its absolute value rA (t) = |rA (t)|, and we in-
troduce the unit-vector nA (t) = rA (t) /rA (t). The
constraints (19) - (21) restrict the time-dependence of
the acceleration so that it vanishes at past null infinity:
limt→−∞ aA (t) = 0.

The BCRS metric coefficients h
(2)
00 , h

(2)
ij , h

(3)
0i , h

(4)
00 in the

mass-monopole approximation for N slowly moving bod-
ies were given by Eqs. (8) and (51) - (55) in [6]. The
same metric coefficients were also given by Eqs. (39.63a)
- (39.63c) in [3]. In the limit of one monopole in
slow-motion they agree with our metric coefficients in
Eqs. (22), (23), (24) and (26). We also notice that in
the limit of one body A at rest, the metric in (22) - (27)
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agrees with the metric in Eqs. (25) in [9] if the body is
assumed to be located at the origin of the global refer-
ence system. For further details consult [14, 31, 48] and
the Appendix C.

The three-vector x in (28) is an arbitrary spatial field-
point. But according to (16), as soon as the partial
derivatives in the geodesic equation (14) are performed,
the field-point x has to be identified with the exact spa-
tial position of the light signal x (t), that means after all
partial derivatives are performed we have

rA (t) = x (t)− xA (t) . (29)

Of course, one has strictly to distinguish between (28)
and (29), but nevertheless the same notation rA (t) for
these expressions is in use and will certainly not cause
any confusion.

IV. FIRST INTEGRATION OF GEODESIC
EQUATION IN 2PN APPROXIMATION

The first integration of geodesic equation yields the
coordinate velocity of the photon,

ẋ (t)

c
=

t∫
−∞

dct
ẍ (t)

c2
, (30)

where ẍ (t) is given by (14) and the boundary condi-
tion (8) must be imposed. The geodesic equation (14) is
solved by iteration, that means in first iteration the inte-
gration is performed along the unperturbed light ray and
in the second iteration the integration proceeds along the
light ray in 1PN approximation. Owing to the fact that
the metric, thence the geodesic equation, depends on the
arbitrary worldline of the body, a solution of geodesic
equation is obtained by means of integration by parts
with respect to coordinate time. One may show that,

after a finite set of partial integrations, the remaining
non-integrated terms of such an approach are terms be-
yond 2PN approximation. The solution for the coordi-
nate velocity of the photon is, first of all, given in terms
of the spatial position of the massive body at coordinate
time, xA (t). Since gravitational action propagates with
the finite speed of light, it is meaningful to reexpress this
solution in terms of retarded time of the massive body’s
position xA (tret). The retarded time is defined by an
implicit relation,

tret = t− rA (tret)

c
, (31)

where rA (tret) = |rA (tret)| with

rA
(
tret
)

= x (t)− xA
(
tret
)
, (32)

and x (t) being the exact photon trajectory. Further de-
tails are given in the Appendix B.

Accordingly, we may define an impact vector of the
incident light ray associated with the body’s position at
retarded instant of time, given by

dA
(
tret
)

=σ ×
(
rA
(
tret
)
× σ

)
, (33)

and weak gravitational field means

mA� dA
(
tret
)
, (34)

where dA (tret) = |dA (tret)|. For grazing light rays the
impact vector at the retarded position equals the radius
of the massive body, while in general it will be larger:
dA (tret) ≥ PA. It should also be remarked that the solu-
tion for the coordinate velocity of the photon takes the
most simple form in terms of xA (tret). In this way one
obtains the following 2PN solution for the photon’s co-
ordinate velocity in the field of one arbitrarily moving
pointlike body:
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ẋ (t)

c
=σ +mAA1

(
r1PN
A

(
tret
))

+mAA2

(
rNA
(
tret
)
,vA

(
tret
))

+m2
AA3

(
rNA
(
tret
))

+O
(
c−5
)
, (35)

A1 (x) =−2

(
σ × (x× σ)

x (x− σ · x)
+
σ

x

)
, (36)

A2 (x,v) = 2
σ × (x× σ)

x (x− σ · x)

σ · v
c

+
4

x

v

c
+ 2

σ × (x× σ)

x2
σ · v
c
− 2

σ

x2
x · v
c
− 2

σ × (x× σ)

x2 (x− σ · x)

(σ × (x× σ)) · v
c

+ ε1 ,

(37)

A3 (x) =−1

2

σ · x
x4

x+ 8
σ × (x× σ)

x2 (x− σ · x)
+ 4

σ × (x× σ)

x (x− σ · x)
2 − 4

σ

x (x− σ · x)
+

9

2

σ

x2
− 15

4
(σ · x)

σ × (x× σ)

x2 |σ × x|2

−15

4

σ × (x× σ)

|σ × x|3

(
arctan

σ · x
|σ × x|

+
π

2

)
, (38)

where the arguments of the vectorial functions are given
in Appendix D. One may demonstrate that in case of
body at rest (35) agrees with [4, 7–9], and the terms
up to order O

(
c−4
)

agree with [13, 49]. In view of the
complexity of the 2PN solution, all those terms in (37)
have been combined in some small parameter ε1 given by
Eq. (E1) and which has been estimated by Eq. (E4):

∣∣ε1 (rNA (tret) ,vA (tret))∣∣≤ 10

dNA (tret)

v2A (tret)

c2
, (39)

which amounts to be less than mA |ε1| < 0.1 nas for
grazing light rays at Jupiter and even less for all the other
Solar System bodies. We emphasize that the solution in
(35) does not depend on the acceleration of the massive
body, as long as it is given in terms of the retarded posi-
tion of the massive body. This fact is related to the case
of an arbitrarily moving and radiating electron in classi-
cal electrodynamics where the Liénard-Wiechert poten-
tials do not depend on the acceleration of the electron if
the worldline of the electron is expressed in terms of its
retarded position [50, 51].

Finally, we notice that the vectorial function A1 in
Eq. (36) agrees with Eq. (46) in [9] and the vectorial
function A3 in Eq. (38) agrees with Eq. (48) in [9] (in
general theory of relativity α = β = γ = ε = 1).

V. SECOND INTEGRATION OF GEODESIC
EQUATION IN 2PN APPROXIMATION

The second integration of geodesic equation yields the
light trajectory of the light signal,

x (t) =

t∫
t0

dct
ẋ (t)

c
, (40)

where ẋ (t) is given by (35) and the boundary condition
(7) must be imposed. Note that (35) is given in terms
of retarded time, but in order to proceed with the inte-
gration in (40) all terms in (35) must have to be reex-
pressed in terms of coordinate time by means of relations
(B4) - (B6). Like in case of the first integration in (30),
the second integration in (40) is performed by iteration.
Furthermore, since the worldline of the body remains ar-
bitrary, xA (t), the integration is performed by means of
integration by parts. In this way, one obtains the light
trajectory in terms of the spatial position of the mas-
sive body at coordinate time, xA (t), but can be rewrit-
ten in terms of retarded time of the position of massive
body, xA (tret), which is also from the physical point of
view more appropriate because gravitational action trav-
els with the finite speed of light. Altogether, we obtain
the following 2PN solution for the photon’s trajectory in
the field of one arbitrarily moving pointlike body, for an
illustration see Fig. 1:
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x (t) = x0 + c (t− t0)σ + mA

(
B1

(
r1PN
A

(
tret
))
−B1

(
r1PN
A

(
tret0

)))

+mA

(
B2

(
rNA
(
tret
)
,vA

(
tret
))
−B2

(
rNA
(
tret0

)
,vA

(
tret0

)))
+ m2

A

(
B3

(
rNA
(
tret
))
−B3

(
rNA
(
tret0

)))
+O

(
c−5
)
,

(41)

B1 (x) =− 2
σ × (x× σ)

x− σ · x
+ 2σ ln (x− σ · x) , (42)

B2 (x,v) = 2
σ × (x× σ)

x− σ · x
σ · v
c
− 2

v

c
ln (x− σ · x) + 2

v

c
+ ε2 , (43)

B3 (x) = 4
σ

x− σ · x
+ 4

σ × (x× σ)

(x− σ · x)
2 +

1

4

x

x2
− 15

4

σ

|σ × x|
arctan

σ · x
|σ × x|

− 15

4
(σ · x)

σ × (x× σ)

|σ × x|3

(
arctan

σ · x
|σ × x|

+
π

2

)
, (44)

where the arguments of the vectorial functions are given
in Appendix D. One may demonstrate that in case of
body at rest (41) agrees with [4, 7–9], and the terms
up to order O

(
c−4
)

agree with [13, 49]. In view of the
complexity of the 2PN solution, all those terms in (43)
have been combined in some small parameter ε2 given by
Eq. (E7) and which has been estimated by Eq. (E8):

∣∣ε2 (rNA (tret) ,vA (tret))∣∣≤ v2A (tret)

c2

×

√√√√4
(
rNA (tret)

)2(
dNA (tret)

)2 + ln2
(
rNA (tret)− σ · rNA (tret)

)
, (45)

which for grazing light rays at Jupiter (dNA = 7.15×107 m)
and an observer nearby the Earth (rNA = 0.59 × 1012 m)
amounts to be mA |ε2| < 10−4 m and even less for all the
other Solar system bodies.

We emphasize that the solution in (41) does not de-
pend on the acceleration of the massive body, as long
as the solution is given in terms of the retarded position
of the massive body. This important fact resembles the
case of an arbitrarily moving electron, where the Liénard-
Wiechert potential does not depend on the acceleration
as long as the worldline of the electron is given in terms
of its retarded position [50, 51].

We notice that the vectorial function B1 in Eq. (42)
agrees with Eq. (50) in [9] and the vectorial function B3

in Eq. (44) agrees with Eq. (51) in [9] (in general theory
of relativity α = β = γ = ε = 1).

VI. OBSERVABLE EFFECTS

In this section we briefly consider the observable effects
of total light deflection and time delay which are of up-
most relevance for astrometry and belong to the classical
tests of relativity.

A. Total light deflection

The total light deflection of a light signal propagating
through the gravitational field of one arbitrarily moving
body is defined by the angle between the coordinate light
velocity at t → ±∞. From (35) we first of all obtain up
to terms of the order O

(
c−5
)
:

lim
t→−∞

ẋ (t)

c
≡σ , (46)

lim
t→+∞

ẋ (t)

c
≡ ν

= σ − 4mA
dA (tret)

(dA (tret))
2

(
1− σ · vA (tret)

c

)

−8m2
A

σ(
dNA (tret)

)2 − 15

4
πm2

A

dNA (tret)(
dNA (tret)

)3
+8m2

A

dNA (tret)(
dNA (tret)

)4 (rNA (tret)+ σ · rNA
(
tret
))
. (47)

In the limit of one body at rest and located at the origin
of reference system, the expression in (47) agrees with
Eq. (64) in [9]. The impact vector dA (tret) and the im-

pact vector dNA (tret) are related to each other subject to
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(D2). Then, from (47) one obtains for the total light deflection up to terms of the order O
(
c−5
)
:

|σ × ν|= lim
t→+∞

4mA

dNA (tret)

[
1− σ · vA (tret)

c
− 2mA

rA (tret0 ) + σ · rA (tret0 )(
dNA (tret)

)2 dNA (tret0 ) · dNA (tret)(
dNA (tret0 )

)2 +
15

16
π

mA

dNA (tret)

]
,

(48)

where tret0 = t0 − rA (tret0 ) /c and

rA
(
tret0

)
= x (t0)− xA

(
tret0

)
, (49)

and terms |σ × ε1| have been omitted in (48) in view of
the estimate in (39). Furthermore, in (48) the impact
vector at tret0 and tret of the unperturbed light ray has
been used:

dNA
(
tret0

)
=σ ×

((
x0 − xA

(
tret0

))
× σ

)
, (50)

dNA
(
tret
)

=σ ×
((
x0 − xA

(
tret
))
× σ

)
, (51)

which in the case of a motionless body at the origin of
coordinate system coincides with the impact vector de-
fined by Eq. (55) in [9]. The expression in (48) depends
on the direction of the light ray σ, on the coordinates
of the light source x0, t0 and on the mass, position and
velocity of the massive body mA,xA,vA and it general-
izes the corresponding 2PN expression for a body at rest
[4, 7, 9], cf. Eq. (3.2.44) in [4] or Eq. (65) in [9]. The

occurrence of the third term in the brackets in (48) is
caused by the fact that the total light deflection, which
is a coordinate-independent observable, is expressed in
terms of coordinate-dependent quantities. This assertion
can be shown by introducing a coordinate independent
impact vector similar to the one given by Eq. (57) in [9].
But, as emphasized above, the use of concrete reference
systems is inevitable in real astrometric data reduction.

B. Time-delay

A light signal which propagates through the curved
space of a massive body takes a longer time to travel
from one space-time point to another space-time point
compared to the flat Minkowskian space. Let’s assume
the light source and the observer to be located at (x0, t0)
and (x1, t1), respectively, and to be at rest with respect to
the global reference system, and we may define a spatial
distance R = |x1 − x0|. Then, from (41) one obtains the
following expression for the time delay up to terms of the
order O

(
c−5
)
:

c (t1 − t0) =R− 2mA

(
σ · vA (tret1 )

c
− σ · vA (tret0 )

c

)
− 2mA

(
1− σ · vA (tret1 )

c

)
ln
(
rA
(
tret1

)
− σ · rA

(
tret1

)
+ 2mA

)
+2mA

(
1− σ · vA (tret0 )

c

)
ln
(
rA
(
tret0

)
− σ · rA

(
tret0

)
+ 2mA

)
, (52)

where tret1 = t1 − rA (tret1 ) /c; the terms σ · ε2 were ne-
glected in view of the estimate in (45). The expression
in (52) generalizes the corresponding 2PN expression for
one monopole at rest [4, 7, 9, 52] and it generalizes the
expression in Eqs. (146) - (148) in [13] which is valid for
arbitrarily moving monopoles but in 1.5PN approxima-
tion.

VII. SUMMARY AND OUTLOOK

Present-day astrometry has reached a level of a few
micro-arcseconds in angular determination of celestial

objects and prospective astrometry aims at sub-micro-
arcsecond or even nano-arcsecond level of precision. As-
sociated therewith is the precise determination of light
trajectories through the warped space-time of the Solar
System as one central issue in relativistic astrometry. An
exact solution for the light ray is, however, not possible
because of the involved structure of the metric of the So-
lar System and one has, therefore, to resort on approx-
imation schemes. The gravitational fields of the Solar
System are weak, mA/PA � 1, and the velocities of the
bodies are slow, vA/c � 1, so that an expansion of the
metric tensor of the Solar System in inverse powers of the
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speed of light becomes meaningful as given by Eq. (11),

gαβ = ηαβ + h
(2)
αβ + h

(3)
αβ + h

(4)
αβ , (53)

up to terms of the order O
(
c−5
)
. This so-called post-

Newtonian expansion (weak-field slow-motion approx-
imation) implicitly assumes that all retardations are
small, which is well-justified inside the near-zone of the
Solar System. A corresponding expansion of the light
trajectory is given by Eq. (13) and reads

x (t) = x0 + c (t− t0)σ + ∆x1PN + ∆x1.5PN + ∆x2PN ,

(54)

up to terms of the order O
(
c−5
)
. One of the most in-

tricate problems in the relativistic theory of light prop-
agation concerns the impact of the motion of the mas-
sive bodies on light trajectory. In recent investigations
[12, 13] the 1PN and 1.5PN terms, ∆x1PN and ∆x1.5PN,
have been determined for the case of N arbitrarily mov-
ing bodies having full mass-multipole and spin-multipole
structure. The rapid advance in astrometric measure-
ments enforces one to account for post-post-Newtonian
effects ∆x2PN in the theory of light propagation as well.
The 2PN terms in (54) are only known for the case of
one monopole at rest, first been determined in [4, 7] and
later been confirmed within several ongoing investiga-
tions [8, 9, 13, 31, 35, 36]. But little is known about
these terms in (54) for the case of moving bodies. So far,
the only investigation in 2PN approximation regarding
light trajectory in the field of moving bodies has been
performed in [30] which was, however, not intended for
light propagation inside the Solar System.

In our investigation, the problem of light propagation
in the field of one arbitrarily moving pointlike monopole
has been considered. Especially, an analytical solution
in post-post-Newtonian approximation for coordinate ve-
locity ẋ (t) and trajectory x (t) of the light ray is pre-
sented. According to the recommendations of IAU [6]
the metric is given in terms of harmonic coordinates. Be-
cause of the fact that the worldline xA (t) of the massive
body is arbitrarily, an integration of the geodesic equa-
tion in (14) is only possible by means of integration by
parts. The first integration (30) and the second integra-
tion (40) has been performed in terms of coordinate time.
In this respect one has to keep in mind that the post-
Newtonian expansion of the metric (53) and of the light
ray (54) inherits that all retardations are small, but they
are not negligible. Instead, the fact remains that gravita-
tional action travels with the speed of light also inside the
near-zone of the Solar system. The phrase smallness of
retardation effects in the Solar System means that a series
expansion of the retarded time is meaningful, as given by
Eqs. (B2) - (B6). By means of these relations the solu-
tion, first of all given in terms of the instantaneous posi-
tion of the body xA (t), can be expressed in terms of the
retarded position of the body xA (tret), where the first in-
tegration and the second integration of geodesic equation
adopt the most simple form, as given by Eqs. (35) and

(41), respectively. The expressions for the observables of
total light deflection and of Shapiro time delay are given
by Eqs. (48) and (52).

The case of N arbitrarily moving pointlike bodies is
rather involved and needs special consideration. But in
view of the fact that the impact of two-body effects on
light deflection is less than 0.1 nas in the Solar System
[31], one might assert that the 2PN light trajectory in the
field of N pointlike monopoles in arbitrary slow-motion
can be obtained from our solution just by a summation
over N individual bodies, at least for an envisaged accu-
racy on nas-level. These aspects will have to be scruti-
nized within more detailed prospective analyses.
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APPENDIX A: NOTATION

Throughout the article the following notation is in use.

• G is the Newtonian constant of gravitation.

• c is the vacuum speed of light.

• MA denotes the rest mass of body A.

• mA = GMA/c
2 is the Schwarzschild radius.

• PA denotes the equatorial radius of body A.

• vA denotes the orbital velocity of massive body A.

• 1µas =
π

180× 60× 60
10−6 rad ' 4.85× 10−12 rad.

• 1 nas =
π

180× 60× 60
10−9 rad ' 4.85× 10−15 rad.

• Lower case Latin indices take values 1,2,3.

• Lower case Greek indices take values 0,1,2,3.

• The three-dimensional coordinate quantities
(three-vectors) referred to the spatial axes of the
reference system are in boldface: a.

• The contravariant components of three-vectors
ai =

(
a1, a2, a3

)
.

• The contravariant components of four-vectors aµ =(
a0, a1, a2, a3

)
.

• The absolute value of a three-vector. a = |a| =√
a1 a1 + a2 a2 + a3 a3.

• The scalar product of two three-vectors. a · b =
δij a

i bj = ai bi with Kronecker delta δij .

• The vector product of two three-vectors. reads

(a× b)i = εijk a
j bk with Levi-Civita symbol εijk.
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APPENDIX B: RETARDED TIME

Gravitational action travels with the finite speed of
light which implies that the gravitational field at some
field point x is generated by the pointlike body at its
position xA (tret) at the retarded instant of time defined
by

tret = t− rA (tret)

c
, (B1)

where rA (tret) = |x− xA (tret)|. In the near-zone of the
Solar System [3, 17, 53] one may assume that all retarda-
tions are small, hence a series expansion of (B1) becomes
meaningful,

tret = t− rA (t)

c
− rA (t) · vA (t)

c2
+O

(
c−3
)
, (B2)

which will later be used for the series expansion of the
metric tensor. Using (B2) and the series expansion of the
retarded position of the body which up to terms of the
order O

(
c−3
)

reads

xA
(
tret
)

= xA (t) + ẋA (t)
(tret − t)

1!
+ ẍA (t)

(tret − t)2

2!
,

(B3)

we find the following relations:

rA
(
tret
)

= rA (t) +
vA (t)

c
rA (t) +

vA (t)

c

rA (t) · vA (t)

c
− 1

2

aA (t)

c

r2A (t)

c
+O

(
c−3
)
, (B4)

rA
(
tret
)

= rA (t)

(
1 +

rA (t) · vA (t)

c rA (t)
+

1

2

v2A (t)

c2
+

1

2

(vA (t) · rA (t))
2

c2 r2A (t)
− 1

2

rA (t) · aA (t)

c2

)
+O

(
c−3
)
, (B5)

vA (tret)

c
=
vA (t)

c
− aA (t)

c

rA (t)

c
+O

(
c−3
)
, (B6)

where vA (t) = ẋA (t) and aA (t) = ẍA (t) is the velocity
and acceleration of the body, respectively. These rela-
tions agree with Eqs. (47) - (49) in [54] up to the term
proportional to the acceleration aA. These relations have
been obtain for rA (tret) = x − xA (tret), but we notice
that the relations in (B2) and (B4) - (B6) remain its va-
lidity for rA (tret) = x (t) − xA (tret), because they root
on the expansion in (B3).

The series-expansions in (B4) - (B6) are useful as long
as the retardations are small which is well-justified in the
near-zone of the Solar System. It especially constraints
the accelerations,

aA (t) rA (t)

c2
� vA (t)

c
� 1 , (B7)

for any moment of time.

APPENDIX C: 2PN METRIC FOR ONE
ARBITRARILY MOVING BODY

For our intention we need the 2PN metric in harmonic
gauge (6) for the case of one arbitrarily but slowly mov-

ing pointlike monopole. The 2PN metric contains terms
proportional to G and terms proportional to G2, which
are considered in what follows.

1. Metric coefficients proportional to G

The terms proportional to G can easily be obtained
from the metric for one arbitrarily moving pointlike
monopole in post-Minkowskian approximation, which
has been given by Eq. (10) in [49], by Eq. (11) in [55],
and also by Eq. (43) in [54]:
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h(M)
µν

(
tret,x

)
=

4mA

γA (tret)

(
rA (tret)− vA

(
tret
)
· rA

(
tret
)

c

) (
uAµ (tret)

c

uAν (tret)

c
+
ηµν
2

)
, (C1)

where γ−1A (tret) =
√

1− v2A (tret) /c2 is the Lorentz fac-
tor and (M) denotes monopole. The vector pointing from
the retarded position xA (tret) of the body A towards the
field-point x reads:

rA
(
tret
)

= x− xA
(
tret
)
. (C2)

Let us note that in (C1) we present the covariant compo-
nents of the metric perturbations, while in [49, 54, 55] the
contravariant components have been used. Accordingly,
the covariant components of the four-velocity of the body
are uAµ (tret) = γ (tret) (−c,vA (tret)), and vA (tret) is the

three-velocity of the body in the global system. Let us
also draw the attention to the fact, that the metric ten-
sor in (C1) does not depend on the acceleration but only
on the velocity of body A because it is given in terms of
retarded time, see also comment below Eq. (39).

The metric in (C1) is valid for an arbitrarily moving
body which could even be in ultra-relativistic motion. We
are interested in the case of a slowly-moving body, and
a corresponding series expansion of (C1) in terms of the
small parameter vA/c� 1 yields up to order O

(
c−5
)
:

h
(M)
00

(
tret,x

)
= +

2mA

rA (tret)

(
1 +

vA (tret) · rA (tret)

c rA (tret)
+

(vA (tret) · rA (tret))
2

c2r2A (tret)
+

3

2

v2A (tret)

c2

)
, (C3)

h
(M)
0i

(
tret,x

)
=− 4mA

rA (tret)

viA (tret)

c

(
1 +

vA (tret) · rA (tret)

c rA (tret)

)
, (C4)

h
(M)
ij

(
tret,x

)
= +

2mA

rA (tret)
δij

(
1 +

vA (tret) · rA (tret)

c rA (tret)
+

(vA (tret) · rA (tret))
2

c2 r2A (tret)
− 1

2

v2A (tret)

c2

)

+
4mA

rA (tret)

viA (tret) vjA (tret)

c2
. (C5)

The retarded time-argument in (C3) - (C5) has to be
replaced by the global coordinate time using the relations
in (B4) - (B6).

Before going further, one has to realize that the accel-
eration of some body A is proportional to G according
to the equations of motion for N pointlike bodies,

aA (t) =−G
N−1∑
B 6=A

MB
rA (t)− rB (t)

r3AB
+O

(
c−2
)
,(C6)

where the terms of order O
(
c−2
)

are given by the
Einstein-Infeld-Hoffmann equations [3–5, 17, 56]. Here,
however, we cannot use the equations of motion (C6) be-
cause we consider the metric of one body A in arbitrary
motion and the physical origin of the motion of the body
is not relevant for the moment being. Especially, we do
not have some kind of equations of motion like in an

N -body system (just imagine accelerating rockets tied to
that body). Therefore, we are enforced to keep the accel-
eration terms explicitly in Eqs. (B4) - (B6). Of course,
if one would go back and consider an N -body system
under the influence of their mutual gravitational interac-
tion, then one could make use of the equations of motion
(C6) and then such an acceleration term would appear
as term of the order G2 in the metric tensor. According
to these considerations, to order G we obtain:

h
(2)
00 (t,x) = +

2mA

rA (t)
, (C7)

h
(2)
ij (t,x) = +

2mA

rA (t)
δij , (C8)

h
(3)
0i (t,x) =− 4mA

rA (t)

viA (t)

c
, (C9)
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while h
(2)
0i = h

(3)
00 = h

(3)
ij = 0 and

h
(4)G
00 (t,x) = +

4mA

rA (t)

v2A (t)

c2
− mA

rA (t)

(nA (t) · vA (t))
2

c2
− mA

rA (t)

(rA (t) · aA (t))

c2
, (C10)

h
(4)G
0i (t,x) = +4mA

aiA (t)

c2
, (C11)

h
(4)G
ij (t,x) =− mA

rA (t)

(nA (t) · vA (t))
2

c2
δij +

4mA

rA (t)

viA (t)

c

vjA (t)

c
− mA

rA (t)

(rA (t) · aA (t))

c2
δij . (C12)

We recognize that in (C10) - (C12) there are terms pro-
portional to the acceleration of the body. The metric
in Eqs. (C7) - (C12) agrees with the metric given by
Eqs. (7.2a) - (7.2c) in [14] for all terms proportional to
G and up to the order O

(
c−5
)
. But we notice that in

Eqs. (7.2a) - (7.2c) in [14] there are no acceleration terms,
because they have been rewritten by means of the equa-
tions of motion of an N -body system (C6), cf. Eq. (3.11)
in [14] and the text above that equation.

Another point to mention concerns the expression in
(C11). For an N -body system it is a strict law that there
are no terms to power c−4 in g0i [3, 4, 17, 53], because
in an N -body system, instead of (C11), we would have a
summation over all bodies,

h
(4)G
0i (t,x) = +

4G

c4

N∑
A=1

MA a
i
A (t)

= +
4G

c4
d

dt
P i (t) = O

(
c−6
)
, (C13)

where P i (t) =
N∑
A=1

MA v
i
A (t) is the total Newtonian mo-

mentum of the N -body system, which is strictly con-

served to order O
(
c−2
)
, that means

d

dt
P i (t) = O

(
c−2
)

[53]. Therefore, in an N -body system there is in fact no
term to power c−4 in g0i [3, 4, 17, 53]. But in our case of
one single body which moves along an arbitrary world-
line without to resort on the equations of motion (C6),
there is no conservation of total Newtonian momentum,
hence we have to keep that term in (C11). Nevertheless,
there is an important difference regarding the accelera-
tion terms: in 2PN approximation the acceleration term
in (C11) would disappear for an N -body system, while
the acceleration term in (C10) and (C12) could be rewrit-
ten in a form proportional to G2, but they remain to be
of the order O

(
c−4
)
, hence they would not disappear for

an N -body system in 2PN approximation.

2. Metric coefficients proportional to G2

The metric of a system of two pointlike bodies under
the influence of their mutual gravitational interaction has
been determined in 2.5PN approximation in [14], that
means g00, gi0 and gij up to terms of the order O

(
c−8
)
,

O
(
c−7
)
, and O

(
c−6
)
, respectively. Recently, the met-

ric of N pointlike bodies has been determined in [31] in
2PN approximation for the light rays, that is: gαβ up to
terms of the order O

(
c−5
)
. In order to find all terms pro-

portional to G2, we may issue the results from Ref. [31],
but have to take the limit MB → 0 for all bodies except
body A. In this way we obtain from Eqs. (47) - (49)
(with α = β = γ = 1) in [31]:

h
(4)G2

00 (t,x) =− 2m2
A

r2A (t)
, (C14)

h
(4)G2

ij (t,x) =
m2
A

r2A (t)
δij +

m2
A

r2A (t)
niA(t)njA(t) .(C15)

The metric perturbations h
(4)
αβ are given by

h
(4)
αβ = h

(4)G
αβ + h

(4)G2

αβ , (C16)

with h
(4)G
αβ given by (C10) - (C12) and h

(4)G2

αβ given by

(C14) and (C15).

Let us draw the attention to the fact, that if we insert
the equations of motion (C6) into the last term in (C10),
then we would get the next-to-last term in Eq. (47) in
[31]. Similarly, if we insert the equations of motion (C6)
into the last term in (C12), then we would get the next-
to-last term in the second line of Eq. (49) in [31]. But we
emphasize again, that we are not allowed to do such kind
of replacements (which in [14] were called order-reduced
form of the metric, cf. text above Eq. (3.11) ibid), be-
cause we do not consider an N -body system but a system
of one body which moves arbitrarily along its worldline
without taking resort on the equations of motion in (C6).
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3. Collection of all terms

Collecting all metric coefficients in Eqs. (C7) - (C12)
and in Eqs. (C14) - (C16), the post-post Newtonian met-

ric for light rays can also expressed in terms of so-called
potentials (w, wi, τij) in the following form, cf. Eqs. (A1)
- (A3) in [57] or Eq. (2) in [58]:

g00 (t,x) =−1 + 2w (t,x)− 2w2 (t,x) +O
(
c−5
)
, (C17)

g0i (t,x) =−4wi (t,x) +O
(
c−5
)
, (C18)

gij (t,x) =
(
1 + 2w (t,x) + 2w2 (t,x)

)
δij + 4 τij (t,x) +O

(
c−5
)
, (C19)

where the potentials read

w (t,x) =
mA

rA (t)
+

3

2

mA

rA (t)

v2A (t)

c2
+

1

2

mA

c2
d2

dt2
rA (t)

=
mA

rA (t)
+ 2

mA

rA (t)

v2A (t)

c2
− 1

2

mA

rA (t)

(nA (t) · vA (t))
2

c2
− 1

2
mA

(nA (t) · aA (t))

c2
, (C20)

wi (t,x) =
mA

rA (t)

viA (t)

c
−mA

aiA (t)

c2
, (C21)

τij (t,x) =− mA

rA (t)

v2A (t)

c2
δij +

mA

rA (t)

viA (t)

c

vjA (t)

c
− 1

4

m2
A

r2A (t)
δij +

1

4

m2
A

r2A (t)
niA (t) njA (t) , (C22)

recalling rA (t) = |x− xA (t)|.

APPENDIX D: LIGHT TRAJECTORY IN 1PN
APPROXIMATION

The Newtonian and the first post-Newtonian solution
for the light ray appears as argument in the vectorial
functions of the 2PN solution in (35) and (41). In this
Appendix we will present these expressions. In Newto-
nian approximation we have

rNA
(
tret
)

= x0 + c (t− t0)σ − xA
(
tret
)
. (D1)

Furthermore, the light trajectory in the field of one arbi-
trarily moving body in the first post-Newtonian approx-

imation can be obtained from [13] by means of relations
(B4) - (B5) and reads:

r1PN
A

(
tret
)

= rNA
(
tret
)

+ 2mA σ ln
rNA (tret)− σ · rNA (tret)

rNA (tret0 )− σ · rNA (tret0 )

−2mA

(
σ ×

(
rNA (tret)× σ

)
rNA(tret)− σ · rNA (tret)

−
σ ×

(
rNA (tret0 )× σ

)
rNA(tret0 )− σ · rNA (tret0 )

)
.

(D2)

APPENDIX E: THE EXPRESSIONS ε1 AND ε2

The term ε1 in Eq. (37) reads as follows:
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ε1 (x,v) =−v
2

c2
σ × (x× σ)

x− σ · x
1

x
− 2

(v · x
c x

)2 σ × (x× σ)

x− σ · x
1

x
− 2

(σ · v
c

)2 σ × (x× σ)

x− σ · x
1

x

+4
(σ · v

c

) (v · x
c x

) σ × (x× σ)

x− σ · x
1

x
+ 4

v

c

(v · x
c x

) 1

x
− 4

v

c

(σ · v
c

) 1

x

−v
2

c2
σ

x
− 2

(v · x
c x

)2 σ
x

+ 2
(σ · v

c

)2 σ
x
. (E1)

By means of the angles(v · x
c x

)
=
v

c
cosα , (E2)

(σ · v
c

)
=
v

c
cosβ , (E3)

one obtains up to terms of the order O
(
mA

x

v2

c2

)
the

following upper limit:

mA |ε1 (x,v)| ≤ 18
mA

|σ × x|
v2

c2
+ 9

mA

x

v2

c2
, (E4)

where for the first and second term on the r.h.s. in (E4)
we have used

∣∣−1− 2 cos2 α− 2 cos2 β + 4 cosα cosβ
∣∣≤ 9 , (E5)

and

√
16 (cosα− cosβ)

2 − 8 cosβ (cosα− cosβ) (1 + 2 cos2 α− 2 cos2 β) + (1 + 2 cos2 α− 2 cos2 β)
2 ≤ 9 , (E6)

respectictively. The term ε2 in Eq. (43) reads as follows:

ε2 (x,v) =−v
2

c2
σ × (x× σ)

x− σ · x
+
v2

c2
σ ln (x− σ · x) .

(E7)

The absolute value of ε2 can be estimated by

|ε2 (x,v)| ≤ v2

c2

√
4x2

|σ × x|2
+ ln2 (x− σ · x) . (E8)
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