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Abstract. In this investigation the light propagation in the gravitational field of
one arbitrarily moving body with monopole structure is considered in the second
post-Newtonian approximation. It is found that the light trajectory depends on
the acceleration of the body. Some of these acceleration terms are important
in order to get well-defined logarithmic functions with dimensionless arguments,
while all the other acceleration terms are negligible on the pico-second level of
accuracy in time-delay measurements. The expressions of the observables total
light deflection and time delay are determined.
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1. Introduction

The precision of astrometric observations has made impressive progress during the
recent decades. Especially two space-based astrometry missions of the European
Space Agency (ESA) exemplify the rapid evolution in the accuracy of astrometric
measurements. The first ESA astrometry mission has been the Hipparcos mission,
launched on 8 August 1989, which has provided astrometric data with milli-arcsecond
(mas) accuracy in angular observations [1, 2, 3]. The second ESA astrometry mission
is the Gaia mission, launched on 19 December 2013, which is aiming at the micro-
arcsecond (µas) level of accuracy in angular observations [4]. The Gaia mission is an
all-sky survey in astrometry, photometry and spectroscopy, which will be complete
up to stellar magnitude of V = 20 of altogether about 109 celestial light sources,
mainly stars of our galaxy, but also quasars, exoplanets, and Solar System objects.
Preliminary results of first Gaia Data Release (DR1) have recently been published
within a series of articles [5, 6, 7, 8, 9, 10, 11, 12], which are already more precise than
those in all existing star catalogues. The astrometric precision will further be improved
substantially by the second (DR2) and third (DR3) Gaia Data Release announced for
April 2018 and in the fall of 2020, while the final release for the nominal mission is
expected at the end of 2022 which will provide the full astrometric, photometric, and
radial-velocity catalogues. In view of these extensive advancements it is clear that in
foreseeable future the astrometric precision will arrive at the domain of sub-micro-
arcsecond (sub-µas) and perhaps even the nano-arcsecond (nas) level of accuracy. In
this respect the medium-sized missions Theia [13], NEAT [14, 15] and Gaia-NIR [16]
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are mentioned, which have been proposed to ESA and aim to operate at such fields of
ultra-high-precision astrometry.

The primary information in astrometry is carried by light signals emitted by the
celestial objects and which propagate from the light source towards the observer. So
the progress in high-precision astrometry depends directly on improvements in the
theory of light propagation and based on these advancements all subsequent issues of
relativistic astrometry can be investigated. Consequently, the precise description of
the trajectory of a light signal in the near-zone of the curved space-time of the Solar
System is a fundamental aspect in the science of relativistic astrometry and triggered
by this reason substantial advancements in the theory of light propagation have been
achieved in recent decades. For a survey on the present status in the theory of light
propagation we take the liberty to refer to the text books [17, 18] as well as to the
references [19, 20, 21, 22, 23, 24, 25] and the recent reviews in [26, 27]. Particularly
with regard to astrometry on the sub-micro-arcsecond or nano-arcsecond level, it is
absolutely necessary to account for second post-Newtonian (2PN) effects in the theory
of light propagation [28, 29, 30, 31, 32, 33, 34, 35, 36]. Several post-post-Newtonian
effects on light deflection in the gravitational field of one monopole at rest have been
determined a long time ago [37, 38, 39, 40, 41, 42, 43]. An exceptional progress has been
made in [17, 44], where the coordinate velocity and trajectory as function of coordinate
time have been determined in 2PN approximation for light signals propagating in the
Schwarzschild field. Generalizations of that solution for the case of the parametrized
post-post-Newtonian metric have been given in [45], where the numerical magnitude
of each individual term has been determined. Especially, the occurrence of so-called
enhanced post-post-Newtonian terms have been ascertained and it was clarified that
they are caused by a physically inadequate choice of the parametrization of the light
rays (namely the use of coordinate dependent impact vectors) which, however, is
inevitable in real astrometric data reduction. Two alternative approaches to the
calculation of propagation time and direction of light rays have been formulated
recently. Both approaches allow one to avoid explicit integration of the geodesic
equations for light rays. The first approach [46, 47, 48, 49] is based on the use of Synge’s
world function. Another approach based on the eikonal concept has been developed in
[50] in order to investigate the light propagation in the field of a spherically symmetric
body.

Thus far, all these investigations in 2PN approximation have been focussed on
the problem of light propagation in the field of one monopole at rest, while in reality
the Solar System bodies are in motion. In order to account for the motion of the
bodies one may take the analytical solution for the light trajectory in the field of one
monopole at rest and afterwards one may implement the body’s retarded position,
an idea which is induced by some kind of educated guess. In fact, such an approach
would be sufficient for µas-astrometry. Though, such procedure does not allow to
account for those terms which are proportional to the speed of the massive body,
and it turns out that for the sub-µas-astrometry it is really necessary to consider
light trajectories in the field of moving bodies in order to account for the just
mentioned terms [26, 27]. However, investigations about light propagation in 2PN
approximation in the field of moving bodies are extremely rare. So far, to the best
of our knowledge, there are only three investigations dealing with moving deflecting
bodies in the post-post-Newtonian approximation. (i) In [51] the light propagation in
2PN approximation in the field of two moving point-like bodies has been determined
but with approximations which are of interest in case of studying light propagation
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in the field of binary pulsars rather than Solar System objects. (ii) In [52, 53] the
problem of time-delay of a light signal in the field of a Kerr-Newman black hole in
uniform motion has been determined, but this study does also not aim at astrometry
in the Solar System. (iii) In [54] the light trajectory in the field of one arbitrarily
moving point-like body in the 2PN approximation has been determined, but the
problem of ill-defined logarithms has not been addressed and the fact that the light
trajectory depends on the acceleration of the body has not been recognized. It has not
escaped our attention that the logarithms were not well-defined in [54], but neither
the importance of this circumstance nor its relation to the acceleration terms has been
recovered. More explicitly, the reinvestigation of the problem of light propagation in
2PN approximation in the field of one moving monopole has revealed two peculiarities:
First, it has been found that some logarithmic terms are improperly defined because
their arguments have the dimension of a length which spoils a clear mathematical
meaning of these functions. Second, it has been recognized that the solution for the
light trajectory depends on the acceleration of the moving body and these terms are
related to the problem of incorrectly defined logarithmic terms.

The manuscript is organized as follows: A compendium of the exact field equations
and exact geodesic equation is given in Section 2. The metric tensor and geodesic
equation in the 2PN approximation is provided in Section 3. In Sections 4 and 5
the integration procedure and the consideration of retardation is described. The
coordinate velocity of a light signal in 2PN approximation in given in Section 6. Section
7 contains the light trajectory in 2PN approximation and shows the relation between
logarithmic terms and acceleration terms which allows to rearrange the 2PN solution
for the light trajectory in such a way that it contains only well-defined logarithmic
functions. Expressions for total light deflection and time delay are derived in Section
8. A summary is given in Section 9. The notation, parameters, impact vectors,
relations of the partial integration, and the light propagation in post-Newtonian (1PN
and 1.5PN) and first post-Minkowskian (1PM) approximation are presented in the
appendices.

2. The metric tensor and geodesic equation

2.1. The exact field equations

According to the general theory of relativity, the geometry of curved space-time is
determined by the field equations of gravity which relate the metric tensor gµν of
curved space-time to the stress-energy tensor of matter Tµν and which can be written
in the following form [18, 55, 56, 57, 58, 59] (e.g. Sec. 17.1 in [55]),

Rµν −
1

2
gµν R =

8πG

c4
Tµν , (1)

where Rµν = Γρµν,ρ − Γρµρ,ν + Γρσρ Γσµν − Γρσν Γσµρ is the Ricci tensor (cf. Eq. (8.47) in
[55]) ‡, the Christoffel symbols are

Γαµν =
1

2
gαβ (gβµ,ν + gβν,µ − gµν,β) , (2)

R = gµνRµν is the Ricci scalar (cf. Eq. (8.48) in [55]), and the signature of
metric tensor is (−,+,+,+). Frequently, the form of the field equations (1) is not

‡ In view of Γρµρ,ν = (ln
√
−g),µν (cf. Eq. (8.51a) in [55] or Eq. (29.a) in [59]) the symmetry of Ricci

tensor Rµν = Rνµ is evident due to Γρµν = Γρνµ.
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convenient for practical calculations in celestial mechanics and relativistic astrometry.
A more feasible form is arrived by the Landau-Lifschitz formulation of the field
equations [18, 55, 56, 60], where instead of the metric gαβ the inverse gothic metric
gαβ =

√
−g gαβ is used, where g = det (gαβ) is the determinant of the metric tensor.

The factor
√
−g implies that the gothic metric is actually not a tensor but a tensor

density. From the gothic metric one can obtain the metric tensor uniquely at any
stage of the calculations where the fact that det (gαβ) = det(gαβ) becomes useful. In
this formulation the contravariant components of the gothic metric are decomposed
as follows (cf. Eq. (5.1) in [61]),

√
−g gαβ = ηαβ − hαβ , (3)

which is especially useful in case of an asymptotically flat space-time. Here, h
αβ

is
the trace-reversed metric perturbation which describes the deviation of the metric
tensor of curved space-time from the metric tensor of Minkowskian space-time. In
line with the resolutions of International Astronomical Union (IAU) [62] we adopt
harmonic coordinates (ct,x), a class of coordinate systems which obey the harmonic
gauge condition [17, 18]

∂
√
−g gαβ

∂xα
= 0 , (4)

usually called de Donder gauge [63] which has also been introduced independently
in [64]. The harmonic coordinates (ct,x) are curvilinear but they can be treated as
though they were Cartesian coordinates [61]. The exact field equations (1) in terms of
harmonic coordinates can be written as follows (cf. Eq. (36.37) in [55] or Eq. (5.2b)
in [61]):

ut hαβ = − 16πG

c4
(
ταβ + tαβ

)
, (5)

where ut = ηµν ∂µ ∂ν is the (flat) d’Alembert operator and
ταβ = (−g) Tαβ , (6)

tαβ = (−g) tαβLL +
c4

16πG

(
h
αµ

, ν h
βν

, µ − h
αβ

, µν h
µν
)
, (7)

where tαβLL is the Landau-Lifschitz pseudotensor of gravitational field [56], which is
symmetric in its indices and in explicit form given by Eq. (20.22) in [55] or by
Eqs. (3.503) - (3.505) in [18]. We shall assume that the gravitational system is
isolated (Fock-Sommerfeld boundary conditions), that means flatness of the metric at
spatial infinity and the constraint of no-incoming gravitational radiation is imposed
at past null infinity J− (cf. notation in Section 34 in [55] and Figure 34.2. in
[55]). In terms of trace-reversed metric perturbation these conditions read as follows
[18, 19, 57, 62, 65, 66],

lim
r→∞

t+ r
c
=const

h
µν

(t,x)=0 , (8)

lim
r→∞

t+ r
c
=const

(
∂

∂r
r h

µν
(t,x) +

∂

∂ct
r h

µν
(t,x)

)
= 0 , (9)

where r = |x|. In addition, r ∂α h
µν

should be bounded at spatial infinity [57, 65].
Then, a formal solution of (5) is given by

h
αβ

(t,x) =
4G

c4

ˆ
d3x′

ταβ (u,x′) + tαβ (u,x′)

|x− x′|
, (10)
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where the integral runs over three-dimensional volume of the entire space-time.
This solution represents an implicit integro-differential equation because the metric
perturbations appear on both sides of this equation, which can be solved by iteration
[60, 61, 67]; see also Eqs. (3.530a) - (3.530d) in [18]. What is of primary importance

here is the fact that the retarded time u = t− |x− x
′|

c
naturally appears in the formal

solution of the exact field equations (10), which states that a space-time point (u,x′)
(e.g. located inside the matter distribution) is in causal contact with a space-time
point (t,x) (e.g. located outside the matter source).

2.2. The exact geodesic equation

In general relativity light signals in curved space-time propagate along null geodesics
which are governed by the geodesic equation and isotropic condition [17, 18, 55],

d2xα (λ)

dλ2
+ Γαµν

dxµ (λ)

dλ

dxν (λ)

dλ
= 0 , (11)

gαβ
dxα (λ)

dλ

dxβ (λ)

dλ
= 0 , (12)

where xα (λ) is the four-coordinate of the light signal (photons) which depends on
the affine curve parameter λ. The geodesic equation (11) is valid for any free falling
particle in space-time and can be defined by the requirement that a tangent vector
along the geodesics remains tangent when parallel transported along it. The null
condition (12) is only valid for massless particles (photons) and asserts that the length
of the tangent vector along the light trajectory remains zero. The geodesic equation
(11) and isotropic condition (12) are valid in any coordinate system. They can be
rewritten in terms of coordinate time x0 = x0 (λ) (recalling that x0 = ct) [17, 18, 55]
(e.g. Eqs. (3.220) - (3.224) in [18]),

ẍi (t)

c2
+ Γiµν

ẋµ (t)

c

ẋν (t)

c
− Γ0

µν

ẋµ (t)

c

ẋν (t)

c

ẋi (t)

c
= 0 , (13)

gαβ
ẋα (t)

c

ẋβ (t)

c
= 0 , (14)

where a dot denotes total derivative with respect to coordinate time and ẋi (t) are
the three-components of the coordinate velocity of the photon which absolute value
differs from the speed of light in flat space |ẋ| 6= c . For a unique solution of (13)
initial-boundary conditions are required [17, 19, 20, 22, 26, 27],

x0 = x (t)

∣∣∣∣
t=t0

and σ =
ẋ (t)

c

∣∣∣∣
t=−∞

, (15)

with x0 being the position of the light source at the moment t0 of emission of the
light-signal and σ being the unit-direction (σ · σ = 1) of the light ray at past null
infinity. The first integration of geodesic equation (13) yields the coordinate velocity
of the light signal,

ẋ (t)

c
=

tˆ

−∞

dct
ẍ (t)

c2
= σ +

∆ẋ (t)

c
, (16)
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where the integration variable t (roman style) runs from lower limit of integration
−∞ to the upper limit of integration t and where ∆ẋ (t) /c denotes the correction to
the unit-direction σ of the light ray at past null infinity. The second integration of
geodesic equation yields the trajectory of the light signal,

x (t) =

tˆ

t0

dct
ẋ (t)

c
= x0 + c (t− t0)σ + ∆x (t, t0) , (17)

where the integration variable t runs from lower limit of integration t0 to the upper
limit of integration t and where ∆x (t, t0) denotes the corrections to the unperturbed
light trajectory

xN (t) = x0 + c (t− t0)σ . (18)

The metric in the Christoffel symbols (2) are functions of the space-time coordinates
(t,x), while if one inserts these symbols in the geodesic equation (13) then the metric
becomes relevant at the coordinates of the photon x (t). Consequently, the derivatives
of the metric tensor contained in the Christoffel symbols of the geodesic equation (13)
must be taken along the light trajectory,

gαβ,µ =
∂gαβ (t,x)

∂xµ

∣∣∣∣∣
x=x(t)

, (19)

where x (t) is the exact light trajectory. The equation (19) means that the
differentiations of the metric in (13) have to be performed with respect to the space-
time coordinates, and afterwards the light trajectory has to be substituted. The
metric gαβ of the Solar System, however, and therefore also the trajectories x (t) of
light signals propagating in the Solar System, can be determined only approximately,
which will be the topic of the next Section.

3. The metric tensor and geodesic equation in 2PN approximation

The Solar System consists of N bodies which move under the influence of their
mutual gravitational interaction around the barycenter of the Solar System. Because
the field equations (10) for the case of N moving bodies cannot be determined
in their exact form one has to resort on approximation schemes. There are two
important approximations: the post-Minkowskian (weak-field) approximation and
the post-Newtonian (weak-field slow-motion) approximation. The post-Minkowskian
approximation represents a series expansion of the metric tensor in powers of the
gravitational constant and is briefly viewed in Appendix E, while the post-Newtonian
approximation represents a series expansion of the metric tensor in inverse powers of
the speed of light and will be considered now.

3.1. The metric tensor in the second post-Newtonian approximation

Because the gravitational fields in the Solar System are weak (mA � PA, where mA

and PA are Schwarzschild radius and equatorial radius of body A) and the velocities
of the bodies are slow (vA � c, where vA is the orbital velocity of body A and c is the
speed of light) the utilization of the post-Newtonian approximation is well justified
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[17, 18, 55, 60, 68, 69, 70, 71], which admits an expansion of the metric tensor in
inverse powers of the speed of light (weak-field slow-motion approximation),

gαβ (t,x) = ηαβ +

∞∑
n=2

h
(n)
αβ (t,x) , (20)

where h(n)αβ ∼ O (c−n) are tiny perturbations to the flat Minkowskian metric. The post-
Newtonian expansion (20) actually represents a non-analytic series because besides
simple inverse powers in the speed of light (1/c)

n it also involves powers of logarithmic
terms (1/c)

n
(ln c)

m [67, 70, 72, 73]. Such non-analytic terms are associated with the
problem of wave tails (see also appendix in [61]) caused by the non-linear structure of
the gravitational field equations (5) but emerge at the order O

(
c−8
)
; cf. Eq. (5.5) in

[67] or Eq. (5.3) in [73]. One has furthermore to keep in mind that the post-Newtonian
expansion (20) is only valid inside the near-zone of the gravitational system where the
retardations are assumed to be small [18, 55, 60, 69, 74]. The near-zone can be thought
of as three-dimensional sphere around the gravitating system with radius (cf. Figure
7.7 in [18] or Figure 36.3 in [55])

|x| � λgr , (21)
where λgr is a characteristic wavelength of gravitational waves emitted by the
gravitational system. To have an idea about the magnitude for the Solar System
one may consider the wavelength of gravitational radiation emitted by Jupiter during
its revolution around the Sun which amounts to be about λgr ∼ 1017 m [18, 27, 55].
The condition in (21) is only a rather rough estimate which refers to the term
near-zone of the Solar System, while a more restrictive condition will be provided
later in (98) subject to relation (97). In 2PN approximation, the post-Newtonian
expansion (20) for the covariant and contravariant components of the metric tensor
reads [17, 18, 19, 60, 69],

gαβ (t,x) = ηαβ + h
(2)
αβ (t,x) + h

(3)
αβ (t,x) + h

(4)
αβ (t,x) +O

(
c−5
)
, (22)

gαβ (t,x) = ηαβ − hαβ(2) (t,x)− hαβ(3) (t,x)− hαβ(4) (t,x) +O
(
c−5
)
. (23)

The metric perturbations in 2PN approximation for the case of one monopole in slow
but otherwise arbitrary motion read as follows [31, 54, 75] (cf. Eqs. (C7) - (C12) and
(C14) - (C16) in [54]),

h
(2)
00 (t,x) = +

2mA

rA (t)
, h

(2)
ij (t,x) = +

2mA

rA (t)
δij , h

(3)
0i (t,x) = − 4mA

rA (t)

viA (t)

c
, (24)

h
(4)
0i (t,x) = +4mA

aiA (t)

c2
, (25)

h
(4)
00 (t,x) = +

4mA

rA (t)

v2A (t)

c2
− mA

rA (t)

(nA (t) · vA (t))
2

c2
−mA

(nA (t) · aA (t))

c2
− 2m2

A

r2A (t)
,

(26)

h
(4)
ij (t,x) = − mA

rA (t)

(nA (t) · vA (t))
2

c2
δij +

4mA

rA (t)

viA (t)

c

vjA (t)

c

−mA
(nA (t) · aA (t))

c2
δij +

m2
A

r2A (t)
δij +

m2
A

r2A (t)
niA (t) njA (t) , (27)
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while h(2)0i = h
(3)
00 = h

(3)
ij = 0 [17, 54, 55, 62, 68, 72, 76, 77]. Thereby, the three-vector

pointing from the position of the monopole towards the field point (e.g. Eq. (B.4) in
[78]),

rA (t) = x− xA (t) , (28)

and its unit-vector nA (t) = rA (t) /rA (t) have been introduced. The metric (24) -
(27) is valid for one monopole A in arbitrary motion where the physical origin of the
motion is not specified; for instance one might imagine just rockets tied to that body
(cf. comment in the text below Eq. (C.22) in [78] and in the text below Eq. (C5) in
[54]). In addition the following asymptotic conditions are implicitly involved,

lim
t→−∞

aA (t) = 0 , (29)

lim
t→−∞

vA (t) = 0 . (30)

The dynamical asymptotic condition (29) means that the body is asymptotically free
at past timelike infinity I− (cf. notation in Section 34 in [55] and Figure 34.2. in [55]).
The kinematical asymptotic condition (30) follows from (29) and the requirement that
the orbital motion of the body is bounded by the near-zone of the gravitational system.
Besides these conditions and the requirement of slow-motion the worldline xA (t) of
body A is supposed to be arbitrary.

3.2. The geodesic equation in the second post-Newtonian approximation

Inserting the post-Newtonian expansion (22) - (23) into (13) one obtains the geodesic
equation in the second post-Newtonian approximation [17, 22, 51, 54],

ẍi

c2
= +

1

2
h
(2)
00,i − h

(2)
00,j

ẋi

c

ẋj

c
− h(2)ij,k

ẋj

c

ẋk

c
+

1

2
h
(2)
jk,i

ẋj

c

ẋk

c
− h(2)ij,0

ẋj

c

+
1

2
h
(2)
jk,0

ẋi

c

ẋj

c

ẋk

c
− 1

2
h
(2)
00,0

ẋi

c
− h(3)0i,j

ẋj

c
+ h

(3)
0j,i

ẋj

c
− h(3)0j,k

ẋi

c

ẋj

c

ẋk

c

−h(3)0i,0 −
1

2
h
(2)
ij h

(2)
00,j − h

(2)
00 h

(2)
00,j

ẋi

c

ẋj

c
+ h

(2)
is h

(2)
sj,k

ẋj

c

ẋk

c
− 1

2
h
(2)
is h

(2)
jk,s

ẋj

c

ẋk

c

+
1

2
h
(4)
00,i − h

(4)
00,j

ẋi

c

ẋj

c
− h(4)ij,k

ẋj

c

ẋk

c
+

1

2
h
(4)
jk,i

ẋj

c

ẋk

c

+h
(4)
0j,i

ẋj

c
− h(4)0i,j

ẋj

c
− h(4)0j,k

ẋi

c

ẋj

c

ẋk

c
− h(4)0i,0 +O

(
c−5
)
, (31)

where the time-argument has been omitted so that ẍi = ẍi (t) and ẋi = ẋi (t). The
last term in (31) is seemingly of the order O

(
c−5
)
but contributes to order O

(
c−4
)

to the light trajectory [54]. In order to obtain (31) the following relations among the
covariant and contravariant components of the metric tensor have been used,

h
(2)
00 = h00(2) , h

(2)
ij = hij(2) ,

h
(3)
0i = − h0i(3) , h

(4)
0i = −h0i(4) ,

h
(4)
00 = h00(4) − h

00
(2) h

00
(2) , h

(4)
ij = hij(4) + hik(2) h

kj
(2) , (32)
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which result from gαµ g
µβ = δβα = diag (+1,+1,+1,+1). The formal solution for the

first and second integration of the geodesic equation (31) is written as follows,

ẋ (t)

c
= σ +

∆ẋ1PN (t)

c
+

∆ẋ1.5PN (t)

c
+

∆ẋ2PN (t)

c
+O

(
c−5
)
, (33)

x (t) = x0 + c (t− t0)σ + ∆x1PN (t, t0) + ∆x1.5PN (t, t0) + ∆x2PN (t, t0) +O
(
c−5
)
,

(34)

where ∆x1PN = O
(
c−2
)
, ∆x1.5PN = O

(
c−3
)
, and ∆x2PN = O

(
c−4
)
. Let us recall

that the metric perturbations in (24) - (27) are functions of the field-points (t,x),
while in the geodesic equation (31) the metric perturbations must be taken at the
coordinates of the photon x (t), so that according to Eq. (19) we have

h
(n)
αβ,µ =

∂h
(n)
αβ (t,x)

∂xµ

∣∣∣∣∣
x=x(t)

. (35)

The equation (35) states that first of all the differentiations in (31) have to be
performed with respect to the space-time coordinates, and afterwards the light
trajectory has to be substituted in the appropriate approximation, as it will be
enlightened within the next Section.

4. Basic procedure of the integration of geodesic equation

Faced with the fact that the worldline of the body is unknown, we will naturally
be obliged to integrate the geodesic equation (31) by parts. Integration by parts is a
technique to integrate the product of two functions, when one of the functions forming
the product is given as the total derivative of another function,ˆ

dct f (t)

[
d

dct
g (t)

]
= f (t) g (t) −

ˆ
dct

[
d

dct
f (t)

]
g (t) . (36)

The result in (36) still involves an integral, but the new integral will either be of
simpler structure or it turns out to be of higher order and can be neglected. It
has to be emphasized that the first and second integration of geodesic equation (31)
implicates an appreciable amount of algebraic effort. In particular, the complete list
incorporates a few hundred integrals. Therefore, the description of the integration
procedure is restricted to a very few but typical integrals in favor of a clear description
of the basic ideas of the entire approach. The exemplifying considerations are fairly
detailed and will provide a comprehensive understanding about how to integrate the
geodesic equation.

4.1. First example of the first integration

The first integration of geodesic equation yields the coordinate velocity of the light
signal and is defined by Eq. (16) where the integrand is given by (31).

We consider the first integration of the first term on the fourth line in (31).
According to (35) after spatial differentiation we substitute the light ray and obtain,

IA (t) =
1

2

tˆ

−∞

dct
∂h

(4)
00 (t,x)

∂x

∣∣∣∣∣
x=x(t)

= IA1
(t) + IA2

(t) + IA3
(t) + IA4

(t) , (37)
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which separates into four integrals, each of which corresponds to one of the four
summands of the metric coefficient h(4)00 in (26). Due to (rmA ),i = mriA (rA)

m−2,
where m = ...,−2,−1,±0,+1,+2, ... denotes integer powers and i = 1, 2, 3 labels the
vectorial components, we get the following integrals,

IA1 (t) = −2mA

tˆ

−∞

dct
rA (t)

r3A (t)

v2A (t)

c2
, (38)

IA2
(t) = − mA

c2

tˆ

−∞

dct
rA (t) · vA (t)

r3A (t)
vA (t) +

3

2

mA

c2

tˆ

−∞

dct
rA (t)

r5A (t)
(rA (t) · vA (t))

2
,

(39)

IA3 (t) = −1

2

mA

c2

tˆ

−∞

dct
aA (t)

rA (t)
+

1

2

mA

c2

tˆ

−∞

dct
rA (t) · aA (t)

r3A (t)
rA (t) , (40)

IA4
(t) = +2m2

A

tˆ

−∞

dct
rA (t)

r4A (t)
, (41)

where the three-vector §
rA (t) = x (t)− xA (t) (42)

points from the instantaneous position of the body towards the spatial position of the
light signal; we notice that the same three-vector has been introduced by Eq. (6.8) in
[19] or by Eq. (B.22) in [78]. In line with the geodesic equation in 2PN approximation
(31) these integrals have to be determined up to terms of the order O

(
c−5
)
. The

evaluation of each of the integrals in (38) - (41) proceeds in very similar way. As typical
example let us consider the integral in (38). In view of the prefactormA/c

2 ∼ O
(
c−4
)
,

we may approximate the three-vector rA (t) in (38) by it’s Newtonian approximation,

rNA (t) = x0 + c (t− t0)σ − xA (t) , (43)

due to rA (t) = rNA (t) +O
(
c−2
)
. Then, the integral (38) reads

IA1 (t) = −2mA

tˆ

−∞

dct
rNA (t)(
rNA (t)

)3 v2A (t)

c2
+O

(
c−5
)
. (44)

First of all, the numerator rNA is rewritten in the form rNA = dNA +
(
σ · rNA

)
σ which

follows from the definition (B.1), so we have

IA1
(t) = −2mA

tˆ

−∞

dct
dNA (t)(
rNA (t)

)3 v2A (t)

c2
− 2mA σ

tˆ

−∞

dct
σ · rNA (t)(
rNA (t)

)3 v2A (t)

c2
+O

(
c−5
)
.

(45)

§ We shall avoid to introduce a further notation which distinguishes among (42) which points from
the position of the body xA (t) towards the exact position of the light signal x (t) and (28) which
points from the position of the body xA (t) towards the field point x.
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The only unknown in (45) is the worldline of the body, xA (t), which necessitates
integration by parts. Using the relations (D.3) and (D.8) in Appendix D we conclude
that

IA1 (t) = − 2mA

tˆ

−∞

dct

[
d

dct

1

rNA (t)

1

rNA (t)− σ · rNA (t)

]
dNA (t)

v2A (t)

c2

+ 2mA σ

tˆ

−∞

dct

[
d

dct

1

rNA (t)

]
v2A (t)

c2
+O

(
c−5
)
. (46)

Now we are in the position to integrate by parts. With the aid of (36) and recalling
relation (B.3) we obtain for the integral (38) the solution

IA1
(t) = −2mA

dNA (t)

rNA (t)

1

rNA (t)− σ · rNA (t)

v2A (t)

c2
+ 2mA

σ

rNA (t)

v2A (t)

c2
+O

(
c−5
)
.(47)

Let us also consider the integral in (41). The prefactor m2
A ∼ O

(
c−4
)
allows to

approximate the three-vector rA (t) in (41) by it’s Newtonian approximation (43) due
to rA (t) = rNA (t) +O

(
c−2
)
, so we get

IA4 (t) = + 2m2
A

tˆ

−∞

dct
rNA (t)(
rNA (t)

)4 +O
(
c−5
)
. (48)

Rewriting the numerator of that integral in the same way as in the previous example
we obtain

IA4
(t) = +2m2

A

tˆ

−∞

dct
dNA (t)(
rNA (t)

)4 + 2m2
Aσ

tˆ

−∞

dct
σ · rNA (t)(
rNA (t)

)4 +O
(
c−5
)
. (49)

By means of the relations (D.4) and (D.8) in Appendix D we conclude that

IA4 (t) = +m2
A

tˆ

−∞

dct

[
d

dct

(
σ · rNA (t)(

dNA (t)
)2 (

rNA (t)
)2 +

1(
dNA (t)

)3 arctan
σ · rNA (t)

dNA (t)

)]
dNA (t)

−m2
A σ

tˆ

−∞

dct

[
d

dct

1(
rNA (t)

)2
]

+O
(
c−5
)
. (50)

Then, integration by parts (36) and recalling relation (B.3) we obtain for the integral
(41) the solution

IA4
(t) = +m2

A

dNA (t)(
dNA (t)

)2 σ · rNA (t)(
rNA (t)

)2 +m2
A

dNA (t)(
dNA (t)

)3 arctan
σ · rNA (t)

dNA (t)

−m2
A

σ(
rNA (t)

)2 +
π

2
m2
A

dNA (−∞)(
dNA (−∞)

)3 +O
(
c−5
)
. (51)

The last term in (51) originates from the lower limit of integration and is finite because
the orbital motion of the body is supposed to be inside the domain of the near-zone
of the Solar System. On the other side, such terms cannot be determined exactly
because there is no exact statement for the spatial position of the body at past timelike
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infinity xA (−∞), hence dNA (−∞) remains an unknown parameter. It is, therefore, a
remarkable and providential feature that all integration constants cancel against each
other in the final result for the coordinate velocity of the light signal.

4.2. Second example of the first integration

Now let us look at the first integration (16) of terms in the first line of geodesic
equation (31). For instance, let us consider the integration of the first term on the
first line in (31),

IB (t) =
1

2

tˆ

−∞

dct
∂h

(2)
00 (t,x)

∂x

∣∣∣∣∣
x=x(t)

= −mA

tˆ

−∞

dct
rA (t)

r3A (t)
. (52)

In view of the prefactor mA ∼ O
(
c−2
)

the three-vector rA (t) in (52) can be
approximated by it’s first post-Newtonian approximation,

r1PN
A (t) = x0 + c (t− t0)σ + ∆x1PN (t, t0)− xA (t) , (53)

because of rA (t) = r1PN
A (t) +O

(
c−3
)
, and where the perturbation ∆x1PN (t, t0) has

been given by Eqs. (C.8) and (C.10). Hence

IB (t) = −mA

tˆ

−∞

dct
r1PN
A (t)(

r1PN
A (t)

)3 +O
(
c−5
)
. (54)

We write the three-vector (53) and its absolute value in the following form

r1PN
A (t) = rNA (t) + ∆x1PN (t, t0) , (55)

r1PN
A (t) = rNA (t) +

rNA (t) ·∆x1PN (t, t0)

rNA (t)
+O

(
c−3
)
. (56)

Then, inserting (55) and (56) into (54) and series expansion yields

IB (t) = IB1 (t) + IB2 (t) + IB3 (t) , (57)

IB1
(t) = −mA

tˆ

−∞

dct
rNA (t)(
rNA (t)

)3 +O
(
c−5
)
, (58)

IB2
(t) = +3mA

tˆ

−∞

dct
rNA (t)(
rNA (t)

)5 (rNA (t) ·∆x1PN (t, t0)
)

+O
(
c−5
)
, (59)

IB3
(t) = −mA

tˆ

−∞

dct
∆x1PN (t, t0)(

rNA (t)
)3 +O

(
c−5
)
. (60)

The integrands of these integrals depend on the unknown worldline of the body xA (t)
and can be solved by integration by parts. For the determination of the integral
(58) one has to rewrite the numerator in the form rNA = dNA +

(
σ · rNA

)
σ, while for

the denominator one has to insert the exact relation (D.23). Moreover, a second
integration by parts is necessary which also yields terms proportional to mA v

2
A. On

the other side, the integral in (59) can be solved by one integration by parts. Here we
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will restrict our exemplifying considerations on the evaluation of the integral in (60).
By inserting the expressions (C.8) and (C.10) into (60) one obtains

IB3
(t) = +2m2

A

tˆ

−∞

dct
1(

rNA (t)
)3 dNA (t)

rNA (t)− σ · rNA (t)

−2m2
A

dNA (t0)

rNA (t0)− σ · rNA (t0)

tˆ

−∞

dct
1(

rNA (t)
)3 − 2m2

A σ

tˆ

−∞

dct
ln
(
rNA (t)− σ · rNA (t)

)(
rNA (t)

)3
+2m2

A ln
(
rNA (t0)− σ · rNA (t0)

)
σ

tˆ

−∞

dct
1(

rNA (t)
)3 +O

(
c−5
)
. (61)

The integrand of the first integral in (61) is rewritten by means of

1

rNA (t)− σ · rNA (t)
=
rNA (t) + σ · rNA (t)(

dNA (t)
)2 . (62)

Then, using relations (D.2), (D.3) and (D.8) in Appendix D we may rewrite the integral
in (61) as follows,

IB3
(t) = +2m2

A

tˆ

−∞

dct

[
d

dct

(
1

dNA (t)
arctan

σ · rNA (t)

dNA (t)
− 1

rNA (t)

)]
dNA (t)(
dNA (t)

)2
−2m2

A

dNA (t0)

rNA (t0)− σ · rNA (t0)

tˆ

−∞

dct

[
d

dct

1

rNA (t)

1

rNA (t)− σ · rNA (t)

]

−2m2
A σ

tˆ

−∞

dct ln
(
rNA (t)− σ · rNA (t)

) [ d

dct

1

rNA (t)

1

rNA (t)− σ · rNA (t)

]

+2m2
A ln

(
rNA (t0)− σ · rNA (t0)

)
σ

tˆ

−∞

dct

[
d

dct

1

rNA (t)

1

rNA (t)− σ · rNA (t)

]
+O

(
c−5
)
.(63)

Now we can perform the integration by parts according to relation (36). While the
integrals in the first, second, and fourth line are straightforward, the evaluation of the
integral in the third line implies a second integration by parts and runs as follows:

−2m2
A σ

tˆ

−∞

dct ln
(
rNA (t)− σ · rNA (t)

) [ d

dct

1

rNA (t)

1

rNA (t)− σ · rNA (t)

]

= −2m2
A

σ

rNA (t)

ln
(
rNA (t)− σ · rNA (t)

)
rNA (t)− σ · rNA (t)

− 2m2
A σ

tˆ

−∞

dct
1(

rNA (t)
)2 1

rNA (t)− σ · rNA (t)
,

(64)

where we have used relation (D.1) in Appendix D. The remaining integral in the
second line of (64) is treated by means of relation (62) as well as relations (D.7) and
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(D.1) in Appendix D. Altogether, we obtain for the integral in (63) the following
solution,

IB3
(t) = +2m2

A

(
1

dNA (t)
arctan

σ · rNA (t)

dNA (t)
− 1

rNA (t)

)
dNA (t)(
dNA (t)

)2
−2

m2
A

rNA (t)

1

rNA (t)− σ · rNA (t)

dNA (t0)

rNA (t0)− σ · rNA (t0)
+ 2

m2
A(

dNA (t)
)2 σ ln

rNA (t)− σ · rNA (t)

rNA (t)

−2
m2
A

rNA (t)

σ

rNA (t)− σ · rNA (t)
ln

rNA (t)− σ · rNA (t)

rNA (t0)− σ · rNA (t0)

+πm2
A

dNA (−∞)(
dNA (−∞)

)3 − 2
m2
A(

dNA (−∞)
)2 σ ln (2) +O

(
c−5
)
, (65)

where the last term originates from lim
t→−∞

ln
rNA − σ · rNA

rNA
= ln (2). As mentioned

above, the terms in the last line of (65) represent finite constants and do cancel each
other in the final solution of the first integration of geodesic equation. The complete
cancelation of all these integration constants is used as an important check for the
correctness of the entire integration procedure. Furthermore, we notice that all the
logarithms of the structure ln rNA (t) as appearing in the last term of the second line in
(65) do also cancel each other in the final solution for the first integration of geodesic
equation.

4.3. The intermediate result of the first integration

In general, the first integration (16) of geodesic equation (31) is performed along
this procedure which has been elucidated by the examples in (37) and (52). In the
Appendix D a list of all relevant relations are presented which are required in order
to execute each integral by means of integration by parts. While the evaluation of
all these integrals is actually not as much tricky, the integration procedure becomes
rather cumbersome in view of the considerable amount of integrals and individual
terms so that the algebraic expressions become very lengthy. Therefore, the computer
algebra system Maple [79] has extensively been used in order to facilitate and to assist
the entire integration procedure. Basically, there are two primary steps: (i) Each
individual integral is calculated analytically and cross-checked by differentiation. (ii)
Summarize and simplify all those three-scalars which have one and the same vectorial
prefactor (there are only four linearly independent vectorial prefactors: σ,vA,aA and
either dNA or rNA). It is important to realize that the final solution of that procedure
yields the coordinate velocity as function of rNA (t). Afterwards, by means of Eqs. (55)
and (56), one has to rewrite this solution in terms of r1PN

A (t) and rNA (t). Then, for
the formal solution one arrives at the following structure:
ẋ2PN (t)

c
= σ +mA F 1

(
r1PN
A (t)

)
+mA F 2

(
rNA (t) ,vA (t) ,aA (t)

)
+m2

A F 3

(
rNA (t)

)
,

(66)

where rNA (t) and r1PN
A (t) are given by Eqs. (43) and (53), respectively. That means,

the solution for the coordinate velocity of the light signal (66) is given in terms of
the instantaneous position xA (t) of the massive body. As it has been enlightened by
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the examples and as mentioned above, the solution in (66), that means the vectorial
functions F 1 and F 2 and F 3, are of rather involved structure and as an intermediate
result will not be presented here, but they can be retrieved from the final result for the
coordinate velocity (99) by series expansion in inverse powers of the speed of light. As
emphasized above, the effect of retardation is hidden in the intermediate solution (66).
This fact allows us to rewrite (66) in terms of the retarded position of the body xA (s),
which will lead us to the considerably simpler expression in (99) for the coordinate
velocity of the light signal. This fact will be the subject of Section 5. We stress that
both the expressions, Eq. (66) and Eq. (99), are identical up to terms of the order
O
(
c−5
)
.

4.4. First example of the second integration

The second integration of geodesic equation yields the trajectory of the light signal
and is defined by Eq. (17) where the integrand is given by (66).

In Section 4.1 we have considered the first integration of the first term on the
fourth line in (31). Now we will consider the second integration of this term, that
means the following integral

J A (t, t0) =

tˆ

t0

dctIA (t) , (67)

where the integrand is given by Eq. (37). Accordingly, we have to consider
J A (t, t0) = J A1 (t, t0) + J A2 (t, t0) + J A3 (t, t0) + J A4 (t, t0) , (68)

where

J An
(t, t0) =

tˆ

t0

dctIAn
(t) with n = 1, 2, 3, 4 , (69)

and the functions IAn
(t) are given by (38) - (41). Explicit solutions were presented

for IA1
in Eq. (47) and IA4

in Eq. (51). As typical example let us consider J A1
. By

inserting the function IA1 in (47) into (69) we get the integral

J A1
(t, t0) = − 2mA

tˆ

t0

dct

[
dNA (t)

rNA (t)

1

rNA (t)− σ · rNA (t)

v2A (t)

c2
− σ 1

rNA (t)

v2A (t)

c2

]
. (70)

By means of relations (D.1) and (D.15) in Appendix D we may rewrite that integral
as follows,

J A1
(t, t0) = − 2mA

tˆ

t0

dct

[
d

dct

1

rNA (t)− σ · rNA (t)

]
dNA (t)

v2A (t)

c2

− 2mA σ

tˆ

t0

dct

[
d

dct
ln
(
rNA (t)− σ · rNA (t)

) ]v2A (t)

c2
+O

(
c−5
)
. (71)

Now we may integrate by parts according to (36) and obtain the following solution
for the integral,

J A1
(t, t0) = −2mA

(
dNA (t)

rNA (t)− σ · rNA (t)

v2A (t)

c2
− dNA (t0)

rNA (t0)− σ · rNA (t0)

v2A (t0)

c2

)
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−2mAσ

(
v2A (t)

c2
ln
(
rNA (t)− σ · rNA (t)

)
− v2A (t0)

c2
ln
(
rNA (t0)− σ · rNA (t0)

))
+O

(
c−5
)
.

(72)

As further example we will consider J A4
. By inserting the function IA4

in (51) into
(69) we get the integral

J A4 (t, t0) = m2
A

tˆ

t0

dct

[
dNA (t)(
dNA (t)

)2 σ · rNA (t)(
rNA (t)

)2 +
dNA (t)(
dNA (t)

)3 arctan
σ · rNA (t)

dNA (t)
− σ(

rNA (t)
)2 ],
(73)

where the integration constant (i.e. the last term in the second line of (51)) is omitted
because all integration constants cancel each other. Subject to relations (D.2), (D.7),
and (D.18) in Appendix D we may rewrite the integral as follows,

J A4
(t, t0) = +m2

A

tˆ

t0

dct

[
d

dct
σ · rNA (t) arctan

σ · rNA (t)

dNA (t)

]
dNA (t)(
dNA (t)

)3
−m2

A σ

tˆ

t0

dct

[
d

dct

1

dNA (t)
arctan

σ · rNA (t)

dNA (t)

]
+O

(
c−5
)
, (74)

where the logarithms have cancelled each other. Integration by parts according to
(36) yields the following solution for that integral:

J A4
(t, t0) = +m2

A σ · rNA (t) arctan
σ · rNA (t)

dNA (t)

dNA (t)(
dNA (t)

)3
−m2

A σ · rNA (t0) arctan
σ · rNA (t0)

dNA (t0)

dNA (t0)(
dNA (t0)

)3
−m2

A

σ

dNA (t)
arctan

σ · rNA (t)

dNA (t)
+m2

A

σ

dNA (t0)
arctan

σ · rNA (t0)

dNA (t0)
+O

(
c−5
)
.(75)

4.5. Second example of the second integration

In Section 4.2 we have considered the first integration of the first term on the first
line in (31). Now we will consider the second integration of this term, that means the
following integral

J B (t, t0) =

tˆ

t0

dctIB (t) , (76)

where the integrand is given by Eq. (52). According to (57), we have to consider

J B (t, t0) = J B1
(t, t0) + J B2

(t, t0) + J B3
(t, t0) , (77)

where

J Bn (t, t0) =

tˆ

t0

dctIBn (t) with n = 1, 2, 3 , (78)
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and the functions IBn
(t) are given by (58) - (60). An explicit solution has been

presented for IB3
in Eq. (65). By inserting the solution (65) into (78) we get

J B3
(t, t0) = 2m2

A

tˆ

t0

dct

[(
1

dNA (t)
arctan

σ · rNA (t)

dNA (t)
− 1

rNA (t)

)
dNA (t)(
dNA (t)

)2
− dNA (t0)

rNA (t0)− σ · rNA (t0)

1

rNA (t)

1

rNA (t)− σ · rNA (t)
+

σ(
dNA (t)

)2 ln
(
rNA (t)− σ · rNA (t)

)
− σ

rNA (t)

1

rNA (t)− σ · rNA (t)
ln

rNA (t)− σ · rNA (t)

rNA (t0)− σ · rNA (t0)

]
, (79)

where we have taken into account that all the logarithms having the structure ln rNA (t)
do cancel against each other in the final result for the coordinate velocity of the light
signal (cf. text below Eq. (65)). Also the integration constants, i.e. the terms in the
last line of (65), have been omitted because all these constants cancel each other in
the final solution for the coordinate velocity of the light signal. By making use of
relations (D.1), (D.15), (D.18), (D.19) in Appendix D we may rewrite the integral as
follows,

J B3 (t, t0) = 2m2
A

tˆ

t0

dct

[
d

dct

(
σ · rNA (t) arctan

σ · rNA (t)

dNA (t)
− dNA (t) ln rNA (t)

)]
dNA (t)(
dNA (t)

)3
+ 2m2

A

tˆ

t0

dct

[
d

dct
ln
(
rNA (t)− σ · rNA (t)

) ] dNA (t)(
dNA (t)

)2
− 2m2

A

dNA (t0)

rNA (t0)− σ · rNA (t0)

tˆ

t0

dct

[
d

dct

1

rNA (t)− σ · rNA (t)

]

+ 2m2
Aσ

tˆ

t0

dct

[
d

dct

(
rNA (t) + σ · rNA (t) ln

(
rNA (t)− σ · rNA (t)

))] 1(
dNA (t)

)2
− 2m2

Aσ

tˆ

t0

dct

[
d

dct

1

rNA (t)− σ · rNA (t)

]
ln

rNA (t)− σ · rNA (t)

rNA (t0)− σ · rNA (t0)
+O

(
c−5
)
. (80)

Then, by integration by parts (36) and keeping in mind relation (B.3), we obtain

J B3 (t, t0) = +2m2
A

(
σ · rNA (t) arctan

σ · rNA (t)

dNA (t)
− dNA (t) ln rNA (t)

)
dNA (t)(
dNA (t)

)3
−2m2

A

(
σ · rNA (t0) arctan

σ · rNA (t0)

dNA (t0)
− dNA (t0) ln rNA (t0)

)
dNA (t0)(
dNA (t0)

)3
+ 2m2

A ln
(
rNA (t)− σ · rNA (t)

) dNA (t)(
dNA (t)

)2 − 2m2
A ln

(
rNA (t0)− σ · rNA (t0)

) dNA (t0)(
dNA (t0)

)2
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− 2m2
A

dNA (t0)

rNA (t0)− σ · rNA (t0)

(
1

rNA (t)− σ · rNA (t)
− 1

rNA (t0)− σ · rNA (t0)

)

+ 2m2
Aσ

(
σ · rNA (t)(
dNA (t)

)2 ln
(
rNA (t)− σ · rNA (t)

)
− σ · r

N
A (t0)(

dNA (t0)
)2 ln

(
rNA (t0)− σ · rNA (t0)

))

+ 2m2
Aσ

(
rNA (t)(
dNA (t)

)2 − rNA (t0)(
dNA (t0)

)2
)
− 2m2

Aσ
1

rNA (t)− σ · rNA (t)
ln

rNA (t)− σ · rNA (t)

rNA (t0)− σ · rNA (t0)

− 2m2
Aσ

(
1

rNA (t)− σ · rNA (t)
− 1

rNA (t0)− σ · rNA (t0)

)
+O

(
c−5
)
, (81)

where for the last integral in (80) two integration by parts were required.

4.6. The intermediate result of the second integration

The entire algorithm of second integration proceeds in exactly the way enlightened by
the examples. All these integrals are treated by integration by parts with the aid of
the relations listed in Appendix D. The examples have also shown that the integrals
of second integration turn out to be of similar structure to those one encounters in the
first integration of geodesic equation. Nevertheless, as elucidated by the example in
(81), the expressions are of remarkable algebraic structure. Furthermore, in view of
the considerable amount of integrals, the integration procedure is rather cumbersome.
The computer algebra system Maple [79] has extensively been used to run the entire
integration procedure of the second integration of geodesic equation. That means,
like in the first integration, there are two basic steps: (i) Calculation of each integral
analytically and cross-check by differentiation. (ii) Summarize and simplify the entire
three-scalars which have the same vectorial prefactor (there are only four linearly
independent vectorial prefactors: σ,vA,aA and either dNA or rNA). The final solution
of that procedure yields the trajectory of a light signal in terms of rNA (t). Afterwards,
by means of Eqs. (55) and (56), one may rewrite this solution in terms of r1PN

A (t) and
rNA (t). Then, one arrives at the following structure for the formal solution:

x2PN (t) = x0 + (t− t0)σ

+mAG1

(
r1PN
A (t)

)
+mAG2

(
rNA (t) ,vA (t) ,aA (t)

)
+m2

AG3

(
rNA (t)

)
, (82)

where the position of the light ray and the position of the massive body xA (t) are taken
at the very same instant of time. This solution, like the solution in (66), is of pretty
involved algebraic structure and as an intermediate result the vectorial functions G1

and G2 and G3 will not be given here, but they can be retrieved from the final result
for the light trajectory (107) by series expansion in inverse powers of the speed of light.
As a matter of fact, the effect of retardation is hidden in the intermediate solution
(82), which allows us to rewrite (82) in terms of the retarded position of the body
xA (s) and results in the considerably simpler expression in (107) for the trajectory
of the light signal, which will be the subject of Section 5. We stress that both the
expressions, Eq. (82) and Eq. (107), are identical up to terms of the order O

(
c−5
)
.

5. Transformation in terms of retarded time

The solutions for coordinate velocity in Eq. (66) and trajectory in Eq. (82) of a light
signal depend on the position of the body xA (t) where t is the coordinate time of
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the global reference system. These expressions are of rather involved structure, which
can drastically be simplified if they are expressed in terms of the retarded position of
the body xA (s) where s is the retarded time defined by Eq. (83). This fact has been
used for the first time in [23] in order to simplify the mathematical expressions for
the photon’s coordinate velocity and trajectory; cf. Eqs. (31) - (33) and (35) - (37)
in [23]. Though, the advantage to express the solutions (66) and (82) in terms of the
retarded position of the body is threefold:

(i) The mathematical expressions in (66) and (82) which are functions of xA (t)
become considerably simpler when expressed in terms of the retarded position
xA (s).

(ii) The results (66) and (82) can directly be compared with the post-Minkowskian
approach if they are given in terms of xA (s).

(iii) If (66) and (82) are expressed in terms of the retarded position xA (s) then the
effect of retardation is evident.

The items (i) and (ii) are mathematical arguments hence of rather formal nature,
while item (iii) is triggered by physical reasons which will be considered in more detail
in what follows.

It is a fundamental consequence of the exact field equations of gravity (5) that
gravitational action travels with the finite speed of light. In fact, the first detection of
gravitational waves from the inspiral of a binary neutron star and the determination of
the location of the source by subsequent observations in the electromagnetic spectrum
[80, 81] has been used to constrain the difference between the speed of gravity and the
speed of light to be between −3× 10−15 and +7× 10−16 times the speed of light [82].
The effect of retardation of gravity can explicitly be read off from the general solution
(10) of the field equations, where the retardation is evident. Consequently, in case
of one pointlike body the gravitational field at (t,x) is generated by the body at its
retarded position xA (s), where the retarded time s is given by the following implicit
relation (e.g.. Eq. (7.13) in [18]),

s = t− rA (s)

c
, (83)

with

rA (s) = x− xA (s) . (84)

This fundamental statement is not only valid for the far-zone of a gravitational
system, where the gravitational field decouples from the matter and propagates as
a gravitational wave, but also inside the near-zone of the gravitational system where
the gravitational fields and the matter sources are still entangled with each other.

The post-Newtonian expansion (20) is based on the assumption that the
retardation (83) is small. Especially, this assumption implies that a series expansion
of the retarded position of the massive body becomes meaningful [18, 55, 60]

xA (s) = xA (t) +
1

1!
ẋA (t) (s− t) +

1

2!
ẍA (t) (s− t)2 +O

(
c−3
)
. (85)

Accordingly, the retarded time can also be expanded in terms of inverse powers of the
speed of light,

s = t− rA (t)

c
− rA (t) · vA (t)

c2
+O

(
c−3
)
. (86)
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Figure 1. A geometrical representation of light propagation through the
gravitational field of one pointlike massive body A moving along its worldline
xA (t). The unperturbed light ray xN (t) is defined by Eq. (18) and propagates
along a straight line in direction σ. The exact light ray x (t) is defined by Eq. (17)
and propagates along a curved trajectory. The three-vector rA (t) is defined by
Eq. (42) and points from the massive body A at its instantaneous position xA (t)
(gray sphere) toward the exact photon’s position x (t) at instant t. Because of the
fact that gravitational action travels with the finite speed of light, the light ray at
x (t) is influenced by the gravitational field generated by the body at its retarded
position xA (s) (black sphere). The spatial vector rA (s) is defined by Eq. (90)
and points from the massive body A at its retarded position xA (s) toward the
exact photon’s position x (t) at instant t. The impact vectors dNA (t) and dNA (s)
are defined by Eqs. (B.1) and (B.2), while the impact vectors dA (t) and dA (s)
are defined by Eqs. (B.8) and (B.9) but they are not illustrated here.

In particular, using (85) and (86) one obtains the following important relations [27, 83],

rA (s) = rA (t) +
vA (t)

c
rA (t) +

vA (t)

c

rA (t) · vA (t)

c
− 1

2

aA (t)

c

r2A (t)

c
+O

(
c−3
)
,

(87)
vA (s)

c
=
vA (t)

c
− aA (t)

c

rA (t)

c
+O

(
c−3
)
, (88)

aA (s)

c
=
aA (t)

c
+O (ȧA) +O

(
c−3
)
, (89)

where vA (t) = ẋA (t) and aA (t) = ẍA (t) is the velocity and acceleration of the
body. These equations relate the expressions rA (t), vA (t), aA (t) at coordinate time
with the expressions rA (s), vA (s), aA (s) at retarded time; such relations were also
used in [23, 78]. Because the metric perturbations in 2PN approximation, Eqs. (24)
- (27), are functions of these expressions, they can be either expressed in terms of
coordinate time t or in terms of retarded time s, where it becomes obvious that the
retardation effects are present in the post-Newtonian expansion of the metric. In other
words, the relations (87) - (89) allow one to demonstrate that the post-post-Newtonian
approximation of the metric tensor (22) when expressed in terms of retarded time s
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would coincide with the post-post-Minkowskian approximation of the metric tensor
(E.1) up to terms of the order O

(
c−5
)
.

Like the 2PN metric perturbations (24) - (27), also the 2PN solutions for the
coordinate velocity and trajectory of the light signal (66) and (82) are functions of
rA (t), vA (t), aA (t). Hence, using the relations (87) - (89) one may express these
solutions either in terms of coordinate time or in terms of retarded time. No additional
assumptions are imposed. As mentioned above, if we do so then the advantage is that
the mathematical expressions for (66) and (82) become drastically simplified (a fact
which has also been recognized in [23]) and the retardation which is somehow hidden
in (66) and (82) becomes more explicit. Let us consider that issue further.

The equations (83) - (89) are valid for any field point x which is arbitrary, and
in particular the series expansions (86) - (89) are based on the series expansion of the
retarded position of the body (85) without reference to the field point x. So if we
replace the spatial field point x in Eq. (84) by the spatial position of the light signal
x (t), and introduce the three-vector ‖

rA (s) = x (t)− xA (s) , (90)
then all these equations (83) - (89) will keep their validity. For later purposes we also
introduce the three-vector

rA (s0) = x (t0)− xA (s0) , (91)
where the retarded time s0 is a specific case of (83) and related to the time of emission
of the light signal (cf. Eqs. (7.75) and (7.361) in [18] or Eq. (46) in [21])

s0 = t0 −
rA (s0)

c
. (92)

The solutions of first and second integration of geodesic equation, formally given by
(66) and (82), depend on the three-vectors rNA (t) and r1PN

A (t) as given by Eqs. (43)
and (53). As mentioned, the solutions for coordinate velocity and trajectory adopt the
most simple mathematical structure if they are presented in terms of retarded time
s. Accordingly, we introduce the following three-vectors (the three-vector defined in
Eq. (93) has also been used in Eq. (B.2) in [23]),

rNA (s) = x0 + c (t− t0)σ − xA (s) , (93)

r1PN
A (s) = x0 + c (t− t0)σ + ∆x1PN (s, s0)− xA (s) , (94)

where ∆x1PN (s, s0) is given by Eqs. (C.13) and (C.15). Then, according to (87), the
three-vectors at retarded time in Eqs. (93) and (94) and the three-vectors at coordinate
time in Eqs. (43) and (53) are related to each other as follows:

rNA (s) = rNA (t) +
vA (t)

c
rNA (t) +

vA (t)

c

rNA (t) · vA (t)

c
− 1

2

aA (t)

c

(
rNA (t)

)2
c

+O
(
c−3
)
, (95)

r1PN
A (s) = r1PN

A (t) +
vA (t)

c
r1PN
A (t) +

vA (t)

c

r1PN
A (t) · vA (t)

c
− 1

2

aA (t)

c

(
r1PN
A (t)

)2
c

+O
(
c−3
)
. (96)

‖ We shall avoid to introduce a further notation which distinguishes among (90) which points from
the retarded position of the body xA (s) towards the exact position of the light signal x (t) and (84)
which points from the retarded position of the body xA (s) towards the field point x.
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By means of relations (88) - (89) and (95) - (96) the solutions of first integration in
(66) and second integration in (82) of geodesic equation, first of all given in terms of
the instantaneous position of the massive body, can be rewritten in terms of retarded
position of the body, which will be the topic of the next Section.

Before we proceed further, another comment should be in order about the near-
zone. The series-expansions in (86) - (89) and (95) - (96) are useful as long as the
retardations are small, a requirement which is well-justified in the near-zone of the
Solar System [18, 55, 60, 69, 70]. It especially implies that for the acceleration of the
body we have the restriction that

aA (t) rA (t)

c2
� vA (t)

c
� 1 , (97)

for any moment of time. This relation can be used in order to set limits on the spatial
radius of the near-zone of the Solar System,

|x| ≤ 1014 m , (98)

which is about 0.01 light-year.

6. The coordinate velocity of a light signal in 2PN approximation

According to Eq. (16), the first integration of geodesic equation (31) yields the
coordinate velocity of a light signal in 2PN approximation. As described in Section 4
the integration is performed by iteration and by means of integration by parts. Such a
solution is, first of all, given in terms of the instantaneous position of the body xA (t)
as formally given by Eq. (66). According to Section 5, the solution for the coordinate
velocity can be reexpressed in terms of the retarded position of the body xA (s) using
relations (88) - (89) and (95) - (96). Then, the first integration of geodesic equation
in 2PN approximation reads as follows:
ẋ2PN (t)

c
= σ +mAA1

(
r1PN
A (s)

)
+mAA2

(
rNA (s) ,vA (s)

)
+m2

AA3

(
rNA (s)

)
+mA ε1

(
rNA (s) ,vA (s)

)
, (99)

where the arguments are given by Eqs. (93) and (94). Observe that even though
the velocity of the photon (66), which is expressed in terms of xA (t), depends on
the acceleration of the body, the velocity of the photon (99), which is expressed in
terms of xA (s), does not depend on the acceleration of the body. Furthermore, we
notice that in Eq. (99) one may replace the approximate arguments by the exact
expression in (90) because of rA (s) = rNA (s)+O

(
c−2
)
and rA (s) = r1PN

A (s)+O
(
c−3
)

such a replacement would cause an error of the order O
(
c−5
)
which is beyond 2PN

approximation. The vectorial functions are given as follows:

A1 (x) = −2

(
σ × (x× σ)

x (x− σ · x)
+
σ

x

)
, (100)

A2 (x,v) = + 2
σ × (x× σ)

x (x− σ · x)

σ · v
c

+
4

x

v

c
+ 2

σ × (x× σ)

x2
σ · v
c
− 2

σ

x2
x · v
c

− 2
σ × (x× σ)

x2 (x− σ · x)

(σ × (x× σ)) · v
c

, (101)
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A3 (x) = −1

2

σ · x
x4

x+ 8
σ × (x× σ)

x2 (x− σ · x)
+ 4

σ × (x× σ)

x (x− σ · x)
2 − 4

σ

x (x− σ · x)
+

9

2

σ

x2

− 15

4
(σ · x)

σ × (x× σ)

x2 |σ × x|2
− 15

4

σ × (x× σ)

|σ × x|3

(
arctan

σ · x
|σ × x|

+
π

2

)
. (102)

The result in Eq. (99) agrees with Eq. (35) in a preceding investigation [54], while
the vectorial functions in Eqs. (100) - (102) coincide with the vectorial functions in
Eqs. (36) - (38) in [54]; notice that the vectorial function ε1 was contained in A2 in
[54]. The explicit form of the vectorial function ε1 has already been determined in [54]
but was not presented there explicitly, only an upper limit has been given by Eq. (39)
in [54]. The vectorial function ε1 was given at the first time in [84] and reads explicitly

ε1 (x,v) = −v
2

c2
σ × (x× σ)

x− σ · x
1

x
− 2

(v · x
c x

)2 σ × (x× σ)

x− σ · x
1

x

− 2
(σ · v

c

)2 σ × (x× σ)

x− σ · x
1

x
+ 4

(σ · v
c

) (v · x
c x

) σ × (x× σ)

x− σ · x
1

x

+ 4
v

c

(v · x
c x

) 1

x
− 4

v

c

(σ · v
c

) 1

x
− v2

c2
σ

x
− 2

(v · x
c x

)2 σ
x

+ 2
(σ · v

c

)2 σ
x
. (103)

For the determination of the upper limit of |ε1| it is useful to introduce the angles(v · x
c x

)
=
v

c
cosα , (104)

(σ · v
c

)
=
v

c
cosβ . (105)

Then, one obtains for the upper limit of the absolute value of ε1

|ε1 (x,v)| ≤ 18

|σ × x|
v2

c2
+

9

x

v2

c2
, (106)

which is a marginal correction of the estimate given by Eq. (39) in [54]. Using
the parameters in Table 1, numerical values of the upper limit of this expression
in (106) are given in Table 2 which indicate the negligibility of this term for light
deflection measurements on nas-level of accuracy within the Solar System. It should
be emphasized that the expression in Eq. (99) is identical to the expression in Eq. (66)
up to terms of the order O

(
c−5
)
.

7. The trajectory of a light signal in 2PN approximation

7.1. The preliminary solution for the light trajectory

According to Eq. (17), the second integration of geodesic equation (31) yields the
trajectory of the light signal in 2PN approximation. The integration proceeds similar
to the first integration, that means by iteration and by means of integration by parts,
see Section 4. Such a solution is, first of all, given in terms of the instantaneous
position of the body xA (t) as formally given by Eq. (82). Afterwards, this solution
of the light trajectory is reexpressed in terms of the retarded position xA (s) of the
body, see Section 5 and especially the relations (88) - (89) and (95) - (96). Then, the
second integration of geodesic equation in 2PN approximation reads as follows:

x2PN (t) = x0 + c (t− t0)σ + mA

(
B̃1

(
r1PN
A (s)

)
− B̃1

(
r1PN
A (s0)

))
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+mA

(
B̃2

(
rNA (s) ,vA (s)

)
− B̃2

(
rNA (s0) ,vA (s0)

))

+m2
A

(
B̃3

(
rNA (s)

)
− B̃3

(
rNA (s0)

))

+ mA

(
ε̃2
(
rNA (s) ,vA (s) ,aA (s)

)
− ε̃2

(
rNA (s0) ,vA (s0) ,aA (s0)

))
, (107)

where the arguments have been given by Eqs. (93) and (94). Like in (99), one may
replace the approximate arguments in Eq. (107) by the exact expression in (90) because
of rA (s) = rNA (s)+O

(
c−2
)
and rA (s) = r1PN

A (s)+O
(
c−3
)
such a replacement would

cause an error of the order O
(
c−5
)
which is beyond 2PN approximation. The vectorial

functions are given as follows:

B̃1 (x) = − 2
σ × (x× σ)

x− σ · x
+ 2σ ln (x− σ · x) , (108)

B̃2 (x,v) = +2
σ × (x× σ)

x− σ · x
σ · v
c
− 2

v

c
ln (x− σ · x) + 2

v

c
, (109)

B̃3 (x) = +4
σ

x− σ · x
+ 4

σ × (x× σ)

(x− σ · x)
2 +

1

4

x

x2
− 15

4

σ

|σ × x|
arctan

σ · x
|σ × x|

− 15

4
(σ · x)

σ × (x× σ)

|σ × x|3

(
arctan

σ · x
|σ × x|

+
π

2

)
, (110)

where we notice that the last term in the vectorial function B̃2 vanishes in case
of a closed system of N bodies subject to relation (C.20). The result in Eq. (107)
agrees with Eq. (41) in a preceding investigation [54], while the vectorial functions
in Eqs. (108) - (110) coincide with the vectorial functions in Eqs. (42) - (44) in [54];
notice that the vectorial function ε̃2 was contained in B2 in [54]. The expression
for the vectorial function ε̃2 was given at the first time in [84], which is separated
into ε̃A2 proportional to the velocity of the body plus a term ε̃B2 proportional to the
acceleration of the body,

ε̃2 (x,v,a) = ε̃A2 (x,v) + ε̃B2 (x,a) , (111)

ε̃A2 (x,v) = −v
2

c2
σ × (x× σ)

x− σ · x
+
v2

c2
σ ln (x− σ · x) , (112)

ε̃B2 (x,a) = +2
a

c2
(x− σ · x) (1− ln (x− σ · x)) + 2

σ · a
c2

(σ × (x× σ)) ln (x− σ · x) .

(113)

The vectorial function ε̃A2 has also been determined in [54] but was not presented there
explicitly. Its upper limit reads∣∣∣ε̃A2 (x,v)

∣∣∣ ≤ v2

c2

√(
x+ σ · x
|σ × x|

)2

+ (ln (x− σ · x))
2
, (114)

which confirms Eq. (45) in [54]. The vectorial function ε̃B2 was not determined in
[54], where it was asserted that the light trajectory is supposed to contain no terms
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proportional to the acceleration of the body, see text below Eq. (45) in [54]. But
according to Eq. (113), this assertion is incorrect because there are terms in the
vectorial function ε̃2 which are proportional to the acceleration of the body. In the
Appendix we show that the terms proportional to the acceleration of the body are in
exact agreement with the results in [21] up to the order O

(
c−5
)
; cf. Eq. (E.16). For

the sake of completeness an upper limit of the vectorial function ε̃B2 is also given,∣∣∣ε̃B2 (x,a)
∣∣∣ ≤ 2

a

c2

(
(x− σ · x) (1 + |ln (x− σ · x)|) + |σ × x| |ln (x− σ · x)|

)
. (115)

Before we proceed further, it should be noticed that the expression in Eq. (107) is
identical to the expression in Eq. (82) up to terms of the order O

(
c−5
)
. However, the

arguments of the logarithms in Eqs. (108) - (109) and Eqs. (112) - (113) as well as in
(114) - (115) have the physical dimension of a length and for this reason they are not
well-defined mathematical objects. This problem will be issued in the next Section.

7.2. Cancellation of improperly defined logarithmic terms

Let us consider the logarithmic functions in the solution for the light trajectory (107),
as there are

S1 = + 2mA σ ln
r1PN
A (s)− σ · r1PN

A (s)

r1PN
A (s0)− σ · r1PN

A (s0)
, (116)

S2 = − 2
mA

c

[
vA (s) ln

(
rNA (s)− σ · rNA (s)

)
− (s↔ s0)

]
, (117)

S3 = +
mA

c2
σ

[
v2A (s) ln

(
rNA (s)− σ · rNA (s)

)
− (s↔ s0)

]
, (118)

S4 = −2
mA

c2

[
aA (s)

(
rNA (s)− σ · rNA (s)

)
ln
(
rNA (s)− σ · rNA (s)

)
− (s↔ s0)

]
, (119)

S5 = +2
mA

c2

[
σ · aA (s) dNA (s) ln

(
rNA (s)− σ · rNA (s)

)
− (s↔ s0)

]
. (120)

The argument of the logarithm in (116) is dimensionless, but the arguments of the
logarithms in (117) - (120) have the dimension of a length and in this sense they are
meaningless expressions as they stand. A meaning to these ill-defined logarithms can
be attributed by a series expansion in terms of inverse powers of the speed of light,

vA (s) = vA (s0) + aA (s0) (s− s0) +O (ȧA) , (121)

aA (s) = aA (s0) +O (ȧA) . (122)

We will show how all improperly defined logarithms cancel each other. The proof
is restricted to logarithms proportional to vA and aA, but one may show that each
ill-defined logarithms proportional to higher time-derivatives do cancel each other as
well. Using (121) - (122) we obtain

S2 = − 2mA
vA (s0)

c
ln

rNA (s)− σ · rNA (s)

rNA (s0)− σ · rNA (s0)

−2mA
aA (s0)

c
(s− s0) ln

(
rNA (s)− σ · rNA (s)

)
+O (ȧA) , (123)
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S3 = +mA σ
v2A (s0)

c2
ln

rNA (s)− σ · rNA (s)

rNA (s0)− σ · rNA (s0)
+O (vA aA) , (124)

S4 = −2mA
aA (s0)

c2
(
rNA (s0)− σ · rNA (s0)

)
ln

rNA (s)− σ · rNA (s)

rNA (s0)− σ · rNA (s0)

+2mA
aA (s0)

c
(s− s0) ln

(
rNA (s)− σ · rNA (s)

)
+O (aA vA) +O (ȧA) , (125)

S5 = +2mA
σ · aA (s0)

c2
dNA (s0) ln

rNA (s)− σ · rNA (s)

rNA (s0)− σ · rNA (s0)
+O (vA aA) . (126)

In order to get (125) we have used σ · xA (s)− σ · xA (s0) = O (vA) and the relation

rNA (s)− σ · rNA (s) = rNA (s0)− σ · rNA (s0)− c (s− s0) + σ · xA (s)− σ · xA (s0) , (127)

which is valid up to terms of the order O
(
c−2
)
and which follows from (83) and (92)

as well as (90) and (91), and which corresponds to Eq. (96) in [21]. One recognizes
that the arguments of the second logarithmic function in (123) and (125) have still the
dimension of a length, but they do cancel each other. So there remain no improperly
defined logarithms if one takes into account the acceleration terms correctly. In other
words, the seemingly occurrence of ill-defined logarithms appears as an artifact of
the approximation to neglect acceleration terms. Accordingly, by series expansion
in inverse powers of the speed of light one recognizes that the solution for the light
trajectory (107) contains, in fact, only well-defined logarithms. This observation allows
to rearrange the solution for the light trajectory (107) in such a manner that it contains
only properly-defined logarithms from the very beginning, which is the subject of the
next Section.

7.3. The final expression for the 2PN light trajectory

According to the results of the previous Section, the light trajectory in 2PN
approximation in the field of one moving monopole can be rearranged in such a way
that it contains only well-defined logarithmic functions:

x2PN (t) = x0 + c (t− t0)σ + mA

(
B1

(
r1PN
A (s)

)
−B1

(
r1PN
A (s0)

))

+mA

(
BA

2

(
rNA (s) ,vA (s0)

)
−BA

2

(
rNA (s0) ,vA (s0)

))

+mA

(
BB

2

(
rNA (s) ,vA (s)

)
−BB

2

(
rNA (s0) ,vA (s0)

))

+m2
A

(
B3

(
rNA (s)

)
−B3

(
rNA (s0)

))
+mA ε2 (s, s0) , (128)

where the arguments are given by Eqs. (93) and (94). It should be noticed that
in Eq. (128) one may formally replace these approximate arguments by the exact
expression in (90) because of rA (s) = rNA (s)+O

(
c−2
)
and rA (s) = r1PN

A (s)+O
(
c−3
)

such a replacement would cause an error of the order O
(
c−5
)
which is beyond 2PN
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approximation. The vectorial functions are given as follows:

B1 (x) = − 2
σ × (x× σ)

x− σ · x
+ 2σ ln (x− σ · x) , (129)

BA
2 (x,v) = −2

v

c
ln (x− σ · x) , (130)

BB
2 (x,v) = +2

σ × (x× σ)

x− σ · x
σ · v
c

+ 2
v

c
, (131)

B3 (x) = +4
σ

x− σ · x
+ 4

σ × (x× σ)

(x− σ · x)
2 +

1

4

x

x2
− 15

4

σ

|σ × x|
arctan

σ · x
|σ × x|

− 15

4
(σ · x)

σ × (x× σ)

|σ × x|3

(
arctan

σ · x
|σ × x|

+
π

2

)
. (132)

We recall, that the second term in the vectorial function BB
2 would vanish in case of

closed system of N bodies moving under their mutual gravitational interaction owing
to relation (C.20). It is important to realize that the velocity in the vectorial functions
BA

2 in (128) is taken at the very same instant of retarded time s0, which ensures the
logarithm in (130) in combination with (128) to be well-defined. The explicit form
of the vectorial function ε2 with well-defined logarithms is separated into two pieces,
proportional to v2A and aA, and reads

ε2 (s, s0) = εA2 (s, s0) + εB2 (s, s0) , (133)

εA2 (s, s0) = −v
2
A (s)

c2
σ ×

(
rNA (s)× σ

)
rNA (s)− σ · rNA (s)

+
v2A (s0)

c2
σ ×

(
rNA (s0)× σ

)
rNA (s0)− σ · rNA (s0)

+
v2A (s0)

c2
σ ln

rNA (s)− σ · rNA (s)

rNA (s0)− σ · rNA (s0)
, (134)

εB2 (s, s0) = +2dNA (s0)
σ · aA (s0)

c2
ln

rNA (s)− σ · rNA (s)

rNA (s0)− σ · rNA (s0)

+2
aA (s0)

c2
[
rNA (s)− σ · rNA (s)− rNA (s0) + σ · rNA (s0)

]
−2

aA (s0)

c2
(
rNA (s0)− σ · rNA (s0)

)
ln

rNA (s)− σ · rNA (s)

rNA (s0)− σ · rNA (s0)
. (135)

In order to determine the relevance of ε2 it is more meaningful to consider |σ · ε2|
which determines its impact on the Shapiro time delay, rather than its absolute value
|ε2|. Complying to this proposition in anticipation of the Shapiro time delay (162),
we consider the following upper limit (note that σ = k +O

(
c−2
)
):

|σ · ε2 (s, s0)| ≤
∣∣σ · εA2 (s, s0)

∣∣+
∣∣σ · εB2 (s, s0)

∣∣ , (136)

∣∣σ · εA2 (s, s0)
∣∣ ≤ v2A (s0)

c2
ln

4 rNA (s0) rNA (s)(
dNA (s)

)2 , (137)
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Table 1. The numerical parameters Schwarzschild radius mA, equatorial radius
PA, orbital velocity vA, and orbital acceleration aA of Solar System bodies [85].
The maximal distance rmax

A (s) between observer and body at its retarded position
is computed under the assumption that the observer is located at Lagrange point
L2, i.e. 1.5 × 109 m from the Earth’s orbit. For the maximal distance between
light-source and body we assume rA (s0) = 1013 m so that the light-source is for
sure located inside the near-zone of the Solar System, cf. Eq. (98).

Object mA [m] PA [106 m] vA/c aA [10−3 m/s2] rmax
A (s) [1012 m]

Sun 1476 696 4.0× 10−8 − 0.147
Mercury 0.245× 10−3 2.440 15.8× 10−5 38.73 0.208
Venus 3.615× 10−3 6.052 11.7× 10−5 11.34 0.258
Earth 4.438× 10−3 6.378 9.9× 10−5 5.93 0.0015
Mars 0.477× 10−3 3.396 8.0× 10−5 2.55 0.399
Jupiter 1.410 71.49 4.4× 10−5 0.21 0.898
Saturn 0.422 60.27 3.2× 10−5 0.06 1.646
Uranus 0.064 25.56 2.3× 10−5 0.016 3.142
Neptune 0.076 24.76 1.8× 10−5 0.0065 4.638

∣∣σ · εB2 (s, s0)
∣∣ ≤ 4

aA (s0)

c2
rNA (s0)

(
1 + ln

4 rNA (s0) rNA (s)(
dNA (s)

)2
)
, (138)

where an astrometric configuration with rNA (s0) ' −σ ·rNA (s0) and rNA (s) ' σ ·rNA (s)
has been assumed and we recall the constraint in (97) for the near-zone of the Solar
System. Using the parameters in Table 1, numerical values for the upper limit of the
expression in (136) are given in Table 2.
A comment should be in order about the solutions (99) and (128). It is remarkable that
these solutions depend on the position and velocity of the body taken at the retarded
instant of time, while it is independent of the history of the motion of the body. Due
to the fact that gravitational fields are long-ranged, one actually expects that the
trajectory of a light signal will be influenced during the entire time of propagation,
i.e. from the time of emission until the time of reception. This picture is absolutely
true and the above standing solutions just state that the integral effect of gravitational
fields on the entire light trajectory can approximately be written in such a form that
it depends only of the position and velocity of the body at its retarded position.

8. Observables

If light signals travel in the gravitational field of one massive body, two important
effects of general relativity occur, namely bending of the light trajectory and delay of
the travel time of the light signal. These observable effects are of specific importance
for astrometry and will be considered in this Section.

8.1. Total light deflection

The total light deflection is defined as angle ϕ between the tangent vectors along the
light trajectory at past and future null infinity,

σ = lim
t→−∞

ẋ (t)

c
, (139)
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Table 2. The upper limits mA |ε1| (i.e. grazing light rays) and mA |σ · ε2|
(i.e. grazing light rays and maximal values for rA (s0) and rA (s)) as determined
according to the estimates (106) and (136), respectively. These extremely tiny
numerical values for the upper limits clearly indicate that the vectorial functions
ε1 in Eq. (103) and ε2 in Eq. (133) are negligible even for extremely high-precision
astrometry on nano-arcsecond and time delay measurements on pico-second level.
These numbers also do illustrate the fact that acceleration terms in the solution
for the light trajectory are only of relevance in order to get logarithms with
dimensionless arguments.

Object mA |ε1| [nas] mA |σ · ε2| /c [ps]

Sun 1.3× 10−5 0.1× 10−6

Mercury 0.9× 10−2 0.4× 10−3

Venus 0.4× 10−1 0.2× 10−2

Earth 0.2× 10−1 0.9× 10−3

Mars 0.4× 10−2 0.5× 10−4

Jupiter 1.4× 10−1 0.1× 10−1

Saturn 0.2× 10−1 0.9× 10−3

Uranus 0.5× 10−2 0.4× 10−1

Neptune 0.4× 10−2 0.2× 10−1

ν = lim
t→+∞

ẋ (t)

c
. (140)

The photon’s coordinate velocity ẋ (t) is only known up to terms of the order O
(
c−5
)
,

hence for the angle of total light deflection we may use

ϕ = |σ × ν|+O
(
c−6
)
. (141)

While these tangent vectors in (139) and (140) are exact definitions, the approach
presented is only valid in the near-zone of the gravitating bodies. It is therefore
clear that the limits in (139) and (140) can only be determined approximately. By
inserting the coordinate velocity of a light signal in 2PN approximation (99) into
(140) one obtains the expression for ν as presented by Eq. (47) in [54]. Such an
expression depends on both the impact vector in 1PN approximation, d1PN

A , as well
as in Newtonian approximation, dNA. These impact vectors are related to each other
subject to Eq. (B.7), which allows to express ν fully in terms of dNA ,

ν = σ + lim
t→+∞

[
− 4mA

dNA (s)(
dNA (s)

)2 (1− σ · vA (s)

c

)
− 8m2

A

σ(
dNA (s)

)2
−15

4
πm2

A

dNA (s)(
dNA (s)

)3 − 8m2
A

dNA (s0)(
dNA (s)

)2 1

rNA (s0)− σ · rNA (s0)

+16m2
A

dNA (s)(
dNA (s)

)4 dNA (s) · dNA (s0)

rNA (s0)− σ · rNA (s0)

]
+O

(
c−5
)
. (142)

The limit in (142) is treated by means of

lim
t→+∞

s = s0 +
rNA (s0)− σ · rNA (s0)

c

(
1 +

σ · vA (s0)

c

)
+O

(
c−3
)
, (143)

which is finite for worldlines of bodies restricted in the spatial domain of the Solar
System and follows from (83) - (92) by series expansion; compare text below Eq. (25) in
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[21] which is in accordance with (143). On the other side, let us note for completeness
that the opposite limit

lim
t→−∞

s = −∞ (144)

is infinite. According to Eqs. (140) and (142), the following impact vector and its
absolute value naturally arises,

DN
A (s0) = lim

t→+∞
dNA (s)

= dNA (s0)− σ × (vA (s0)× σ)
rNA (s0)− σ · rNA (s0)

c
+O

(
c−2
)
, (145)

DN
A (s0) = lim

t→+∞
dNA (s)

=

[ (
dNA (s0)

)2 − 2
dNA (s0) · vA (s0)

c

(
rNA (s0)− σ · rNA (s0)

)
+

(
σ × vA (s0)

c

)2 (
rNA (s0)− σ · rNA (s0)

)2 ] 1
2

+O
(
c−2
)
, (146)

which are induced by series expansion with regard to relation (143). As indicated,
terms of the order O

(
c−2
)
can safely be neglected in these relations for Solar System

bodies; here we note that σ = ν + O
(
c−2
)
. The second term on the r.h.s. in

(145) proportional to the orbital velocity of the body is not a tiny correction but of
the same order as the first term on the r.h.s. and must not be neglected in what
follows. This can already be concluded from the fact that dNA (s0) could be small
and even zero, while dNA (s) � mA for any moment of time; cf. Eq. (B.12) and text
below that equation. For the same reason, all the terms in the square root can be of
similar magnitude for Solar System objects, which prevents a series expansion of this
expression in inverse powers of the speed of light. In particular, the condition (B.13)
discussed in Appendix implies that DN

A (s0)� mA, but actually DN
A (s0) ≥ PA which

follows from the condition (B.15) for grazing light rays. Furthermore, one needs the
relation

lim
t→+∞

vA (s) = vA (s0) + aA (s0)
rNA (s0)− σ · rNA (s0)

c
+O

(
c−2
)
, (147)

where the second term on the r.h.s. in (147) proportional to the orbital acceleration
of the body is actually negligible on the nas-level of accuracy. By inserting (145) and
(147) into (142) one obtains

ν = σ − 4mA
DN
A (s0)(

DN
A (s0)

)2 (1− σ · vA (s0)

c

)
− 15

4
πm2

A

DN
A (s0)(

DN
A (s0)

)3
+ 8m2

A

DN
A (s0)(

DN
A (s0)

)2 1

rNA (s0)− σ · rNA (s0)
− 8m2

A

σ(
DN
A (s0)

)2 +O
(
c−5
)
. (148)

In case of motionless body (148) exactly coincides with Eq. (64) in [45] and with
Eq. (3.2.43) in [17]. Using the fact that |σ ×DN

A (s0) | = DN
A (s0) one obtains from

(148) the following expression for the total light deflection,

|σ × ν| = 4
mA

DN
A (s0)

(
1− σ · vA (s0)

c

)
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+
15

4
π

m2
A(

DN
A (s0)

)2 − 8
m2
A

DN
A (s0)

1

rNA (s0)− σ · rNA (s0)
+O

(
c−5
)
, (149)

which in case of body at rest coincides with Eq. (65) in [45] and also with the expression
as given by Eq. (3.2.44) in [17]. For astrometry on the nano-arcsecond level each of
the terms in (149) are relevant and cannot be neglected. The total light deflection in
(149) is a function of the initial values (15) of the light trajectory, x0 and σ, as well as
of the retarded position and velocity of the massive body, xA (s0) and vA (s0). This
fact is not surprising, because in the approximation made there are no acceleration
terms and, therefore, the motion of the body at any moment of time is determined by
its position and velocity at the retarded time.

A final comment should be in order. In case of light propagation in the field of
one monopole at rest (Schwarzschild metric) there exists an integral of motion of the
geodesic equations, denoted as three-vector D in Eq. (59) in [45]. The absolute value
of it is nothing else but Chandrasekhar’s impact parameter D (defined by Eq. (215)
in 3th Section in [86]). This integral of motion is related to coordinate-independent
impact vectors, d′ and d′′, which were defined by Eqs. (57) and (58) in [45]. In
particular, their absolute values agree with each other, D = d′ = d′′. Therefore, it
is meaningful to rewrite the expression for the total light deflection in terms of such
impact parameters for light propagation in the field of one monopole at rest. However,
for light propagation in the field of one moving monopole there exists no integral of
motion for the null geodesics. For instance, in line with the investigations in [45] one
might want to introduce the impact vectors

D′A (s0) = lim
t→−∞

σ × (rA (s)× σ) , (150)

D′′A (s0) = lim
t→+∞

ν × (rA (s)× ν) , (151)

where rA (s) was introduced by Eq. (90) with the photon’s trajectory x (t). These
impact vectors (150) and (151) correspond to Eqs. (57) and (58) in [45]. But their
absolute values are not related to Chandrasekhar’s impact parameter D and they also
differ among each other: D 6= D′A 6= D′′A. In other words, a physical meaning cannot be
attributed to such kind of impact vectors. For these reasons it appears not meaningful
to rewrite (149) in terms of impact vectors like (150) or (151). Furthermore, practical
astrometric measurements are processed within concrete reference systems, so the
expression for the total light deflection in (149) represents the appropriate form for
real astrometric data reduction; see also text below Eq. (60) in [45].

In order to get an idea about the impact of the individual terms in (149) we use
the following estimates for grazing light rays,

|σ × ν| = ϕ1PN + ϕ1.5PN + ϕ2PN +O
(
c−5
)
, (152)

|ϕ1PN| ≤ 4
mA

PA
, (153)

|ϕ1.5PN| ≤ 4
mA

PA

vA (s0)

c
, (154)

|ϕ2PN| ≤ 15

4
π
m2
A

P 2
A

+ 8
m2
A

PA rNA (s0)
, (155)

where in the last term in (155) we have used that −rNA (s0) ≤ σ·rNA (s0) ≤ 0. Numerical
values of these expressions are presented in Table 3; for the numerical magnitude of
these light deflection terms see also [24] where the light deflection in the field of one
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Table 3. The upper limits of total light deflection as given by Eqs. (153) -
(155). Besides the smallness of 2PN terms in the total light deflection it has
to be emphasized that not all 2PN effects are negligible in µas-astrometry or
nas-astrometry; see also a comment in the main text.

Object |ϕ1PN| [µas] |ϕ1.5PN| [µas] |ϕ2PN| [µas]

Sun 1.75× 106 0.07 10.9
Mercury 82.8 0.013 2× 10−8

Venus 492.8 0.058 9× 10−7

Earth 574.1 0.057 1× 10−6

Mars 115.9 0.009 5× 10−8

Jupiter 16.272× 103 0.72 0.9× 10−3

Saturn 5.776× 103 0.18 0.1× 10−3

Uranus 2.066× 103 0.047 2× 10−5

Neptune 2.532× 103 0.046 2× 10−5

uniformly moving monopole in 1PN and 1.5PN approximation and in the field of one
monopole at rest in 2PN approximation has been determined.
Here we should briefly raise another subject for avoiding incorrect conclusions about
the impact of 2PN terms. Namely, in view of the small numerical magnitude of the
2PN terms in Table 3 one might be led to believe that 2PN effects are negligible for
nas-astrometry. Such a conclusion is, however, absolutely wrong. While the 2PN
terms in (155) are negligible, detailed investigations in [45, 48, 50] have recovered
that there are also enhanced 2PN effects which are of decisive importance already for
astrometry on the µas-level of accuracy. In order to recognize that highly important
fact about the existence of enhanced 2PN terms one has to consider the boundary-
value problem (e.g. Section 6 in [45]) which, however, will not be on the scope of
the present investigation, which mainly aims at a correct description for the light
trajectory in 2PN approximation. In the next Section we merely touch the topic of
the boundary-value problem in order to determine the Shapiro effect of time delay.

8.2. Shapiro time delay

According to the theory of gravity, the speed of a light signal depends on the strength
of the gravitational fields along its curvilinear trajectory. The corresponding effect of
time delay of a light signal which propagates in the field of one monopole at rest is the
so-called classical Shapiro effect. Since the pioneering works of Shapiro [87, 88, 89],
measurements of the time delay of light signals propagating through the Solar System
become one of the four classical tests of general relativity.

For the Shapiro effect one has to consider the travel time of a light signal which
is supposed to be emitted at some space-time point (x0, t0) and is received at some
space-time point (x1, t1). Accordingly, one has to consider the boundary value problem
where a unique solution of geodesic equation (31) is defined by the boundary conditions
[17, 18, 19, 23, 24, 68]

x (t0) = x0 , x (t1) = x1 , (156)

rather than the initial-boundary problem (15). Furthermore, we introduce the unit-
vector which points from the source to the observer,

k =
R

R
with R = x1 − x0 , (157)
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where the light source at x0 and observer at x1 both are assumed to be at rest with
respect to the global coordinate system. Then, the Shapiro time delay is defined as
the time interval ∆t = (t1 − t0) − R/c. In order to find the expression for the total
time of propagation of the light signal, t1 − t0, one needs the relation between the
unit-vectors σ and k. Such a relation follows immediately from (128) and reads

σ = k +
mA

R

(
k ×

[
k × (B1 (rA (s1))−B1 (rA (s0)))

])
+O

(
c−3
)

(158)

= k + 2
mA

R

(
k × (rA (s1)× k)

rA (s1)− k · rA (s1)
− k × (rA (s0)× k)

rA (s0)− k · rA (s0)

)
+O

(
c−3
)
, (159)

where we have accounted for x1 = x1PN (t1) + O
(
c−3
)
, rA (s) = rNA (s) + O

(
c−2
)
,

and rA (s) = r1PN
A (s) + O

(
c−3
)
. It is important to realize that in (158) and (159)

the vector σ has been replaced by vector k in the arguments of the vectorial function
B1 subject to σ = k+O

(
c−2
)
. Now we are in the position to determine the Shapiro

effect. With the aid of (158) one obtains from (128) the Shapiro effect,

c (t1 − t0) = R−mA k ·
[
B1 (rA (s1))−B1 (rA (s0))

]

−mA k ·
[
BA

2 (rA (s1) ,vA (s0))−BA
2 (rA (s0) ,vA (s0)

]

−mA k ·
[
BB

2 (rA (s1) ,vA (s1))−BB
2 (rA (s0) ,vA (s0)

]

−m2
A k ·

[
B3 (rA (s1))−B3 (rA (s0))

]
−mA k · ε2 (s1, s0)

+
m2
A

2R

∣∣∣∣k × (B1 (rA (s1))−B1 (rA (s0)))

∣∣∣∣2 +O
(
c−5
)
, (160)

where we also have used that

σ · k = 1− 1

2

m2
A

R2

∣∣∣∣k × (B1 (rA (s1))−B1 (rA (s0)))

∣∣∣∣2 +O
(
c−5
)
. (161)

The vectorial functions in (160) still depend on the unit-vector σ and, therefore, the
expression for the time delay is still implicit. According to relation (158) we have
σ = k + O

(
c−2
)
, that means one may immediately replace σ by vector k in the

arguments of the vectorial functions of the second until the fifth line in (160). Then,
the insertion of (159) in the argument of the vectorial functions B1 in the first line
in (160) completes the assignment to find an expression for the Shapiro effect fully in
terms of the boundary values (156),

c (t1 − t0) = R− 2mA ln
rA (s1)− k · rA (s1)

rA (s0)− k · rA (s0)

(
1− k · vA (s0)

c

)

−2mA

(
k · vA (s1)

c
− k · vA (s0)

c

)
− 1

4
m2
A

(
k · rA (s1)

r2A (s1)
− k · rA (s0)

r2A (s0)

)

−4m2
A

(
1

rA (s1)− k · rA (s1)
− 1

rA (s0)− k · rA (s0)

)
−mA k · ε2 (s1, s0)
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+
15

4
m2
A

(
1

|k × rA (s1)|
arctan

k · rA (s1)

|k × rA (s1)|
− 1

|k × rA (s0)|
arctan

k · rA (s0)

|k × rA (s0)|

)

+2
m2
A

R

∣∣∣∣ k × rA (s1)

rA (s1)− k · rA (s1)
− k × rA (s0)

rA (s0)− k · rA (s0)

∣∣∣∣2 +O
(
c−5
)
. (162)

The last term of the first line vanishes in case of N bodies due to relation (C.20) as
mentioned above. This expression for the Shapiro time delay in 2PN approximation
in the field of one moving body with monopole structure generalizes the expression
for the Shapiro time delay in 2PN approximation in the field of one body at rest with
monopole structure as provided by Eq. (69) in [45]. In particular, one may demonstrate
that in the limit of monopole at rest the expression in Eq. (162) would coincide with
the expression in Eq. (69) in [45].

Let us recall that the term mA k · ε2 is negligible for time delay measurements
on the pico-second level according to the tiny numerical magnitude of this term given
in Table 2 which corresponds to the estimation in Eq. (136). In order to get an idea
about the impact of the individual terms in (162) for the Shapiro time-delay, we use
the following estimates for grazing light rays,

∆t = ∆t1PN + ∆t1.5PN + ∆t2PN +O
(
c−5
)
, (163)

|∆t1PN| ≤ 2
mA

c
ln

4 rA (s0) rA (s1)

P 2
A

, (164)

|∆t1.5PN| ≤ 2
mA

c

vA (s0)

c
ln

4 rA (s0) rA (s1)

P 2
A

, (165)

|∆t2PN| ≤ 2
m2
A

c

R

P 2
A

+
15

4
π
m2
A

c

1

PA
, (166)

where for the estimate (166) we have used results of our previous investigations [90, 91].
Numerical values of these expressions are presented in Table 4. According to the
magnitude of the time-delay as given in Table 4, the Shapiro delay becomes detectable
in nearest future for all of the planets of the Solar System, while higher order effects
beyond 1PN approximation are measurable only for the Sun.

9. Summary

Todays astrometric accuracy has reached a level of several micro-arcseconds in angular
measurements [4, 5]. It is clear that in foreseeable future the sub-micro-arcsecond
level will be attained by prospective astrometry and several space-based missions have
already been proposed to ESA aiming at such unprecedented accuracies [13, 14, 15, 16].
One fundamental problem in relativistic astrometry concerns the accurate modeling
of light rays emitted by the celestial light sources which propagate through the
gravitational field of the Solar System and which finally arrive at the observer. It
is well-known that astrometry on the sub-micro-arcsecond or nano-arcsecond level
will not be feasible without accounting for several post-post-Newtonian effects in the
theory of light propagation [28, 29, 30, 31, 32, 33, 34, 35, 36]. However, so far the
light trajectory in 2PN approximation has mainly been considered in the field of one
motionless body with monopole structure [17, 19, 31, 33, 44, 45, 48, 49, 50], while
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Table 4. The upper limits of Shapiro time-delay as given by Eqs. (164) -
(166). The given numerical values for the time delay should be compared with
aimed accuracies of astrometry missions proposed to ESA like ASTROD [92, 93],
LATOR [94, 95], ODYSSEY [96], SAGAS [97], or TIPO [98], which have aimed
at an accuracy in time delay measurements better than about ∆t ∼ 10−1 ns.
Accordingly, 1.5PN effects in time delay will surely not be detectable even within
the very next generation of high-precision space-based astrometry missions, while
2PN effects on time-delay become detectable for the Sun.

Object |∆t1PN| [ns] |∆t1.5PN| [ns] |∆t2PN| [ns]

Sun 160× 103 6× 10−3 304
Mercury 0.05 7× 10−6 7× 10−7

Venus 0.64 7× 10−5 2× 10−5

Earth 0.68 7× 10−5 3× 10−5

Mars 0.09 7× 10−6 1× 10−6

Jupiter 213 9× 10−3 3× 10−2

Saturn 66 2× 10−3 4× 10−3

Uranus 11 2× 10−4 5× 10−4

Neptune 13 2× 10−4 9× 10−4

investigations in the field of moving bodies are extremely rare. In fact, up to now
the problem of 2PN light propagation in the field of moving monopoles has only
been considered in [51], where additional approximations were imposed because that
investigation was not intended for astrometry within the Solar System. Furthermore,
the problem of time-delay of a light signal in the field of a Kerr-Newman black
hole in uniform motion has been considered in [52, 53], which also does not aim for
astrometry in the Solar System. Recently, the coordinate velocity and light trajectory
in 2PN approximation in the field of one moving monopole has been determined at
the first time in [54]. The reinvestigation of that problem was mainly triggered by two
peculiarities: First, it has been recognized that the solution for the light trajectory
contains logarithmic functions which are improperly defined because their arguments
carry the dimension of a length. Second, it has been found that the 2PN solution
for the trajectory contains terms proportional to the acceleration of the body. Both
these aspects are related to each other, because it has turned out that some of these
acceleration terms are indispensable for getting well-defined logarithmic functions in
the light trajectory, while all the other acceleration terms are negligible on the pico-
second level of accuracy in time delay measurements. In respect thereof, the main
results of this investigation can be summarized as follows:

1. The coordinate velocity of a light signal in 2PN approximation is given by Eq. (99)
and confirms previous results obtained in [54].

2. Terms proportional to v2A/c
2 in Eq. (99) are negligible for astrometry on nano-

arcsecond level in light deflection measurements.
3. The preliminary solution for light trajectory in 2PN approximation (107) can be

rewritten in such a way that it contains only well-defined logarithms and is given
by Eq. (128).

4. It has been found that the light trajectory, both the preliminary expression (107)
as well as the final expression (128), depend in the acceleration aA of the body.

5. Terms proportional to v2A/c
2 as well as the acceleration terms proportional to aA

in Eq. (128) are negligible for time-delay measurements on the pico-second level.
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6. An effort has been made which allows to compare some of our results with the
post-Minkowskian approach up to terms of the order O

(
c−4
)
so that no space is

left for any kind of incorrectness in the primary results presented by Eq. (99) and
Eq. (128). The only difference of our results with the 1PM solution (second term
in Eq. (131)) has its origin in the consideration of only one moving body while
for a closed system (i.e. no energy or momentum escapes the system at infinity)
of N bodies this term vanishes; cf. Eq. (C.20).

7. The total light deflection in 2PN approximation is given by Eq. (149).
8. It has been shown that the 2PN terms (155) in the total light deflection (149)

are negligible for nas-astrometry. But in order to avoid incorrect conclusions, it
was emphasized that the consideration of the boundary value problem [100] will
recover the existence of so-called enhanced 2PN terms which are much larger than
the 2PN terms in (155). That means 2PN effects are not negligible, neither for
µas-astrometry nor for nas-astrometry.

9. The Shapiro time delay is given by Eq. (162).

Finally, it should be mentioned that in the astrometrical science not only the light
deflection by Solar System bodies is of interest, but also gravitational lensing caused
by extra-solar massive bodies. In order to describe gravitational lensing one needs a
solution for the light trajectory which is valid in the near-zone as well as in the far-zone
of the lens (gravitating body). In [99] an approach has been described about how the
light trajectory in 2PN approximation can be used in order to derive a generalized lens
equation valid for light deflection in the field of one monopole at rest. For the case
of monopole at rest the second post-Newtonian (2PN) solution coincides with second
post-Minkowskian (2PM) solution, because the gravitational field is time-independent.
Hence, for monopoles at rest the 2PN solution is valid in the near-zone as well as in
the far-zone of the gravitating system. However, for arbitrarily moving bodies, i.e.
time-dependent gravitational fields, the validity of the 2PN solution is restricted to
the near-zone of the gravitating system, while the 2PM solution is valid in the near-
zone as well as in the far-zone of the gravitating system. That means, in order to
obtain a generalized lens equation in the field of arbitrarily moving monopoles one has
to solve the light trajectory in the second post-Minkowskian approximation, which is
out of the scope of the present investigation. Of course, a prerequisite for solving the
light trajectory in 2PM approximation is the determination of the metric perturbation
in 2PM approximation (E.1). While the 1PM terms h1PM

αβ are known for N arbitrarily
moving bodies (see Eq. (E.2)), the 2PM terms h2PM

αβ might be determined within the
Multipolar Post-Minkowskian (MPM) formalism [67]. As soon as the 2PM terms of the
metric tensor are in reach, the light trajectory in 2PM approximation seems to touch
the realms of possibility in view of advanced mathematical techniques for integrating
the equations of null geodesics as developed in [18, 21, 22]. For several reasons such
2PM solution would be of great value in the astrometrical science. For instance, if
such a 2PM solution has been achieved, then it might be that the approach described
in [99] can be used in order to derive a generalized lens equation for light deflection
in the field of one arbitrarily moving monopole.

In summary, by this investigation the initial value problem of light propagation
in the near-zone of the gravitational field generated by one arbitrarily moving
monopole has been determined in the 2PN approximation. Initiated by very general
considerations about the finite speed at which gravitational action travels, the
solutions were given in terms of the retarded position of the massive body. But this
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fact does not mean they would be in coincidence with a possible solution in second
post-Minkowskian approximation. Such an agreement could only be established up
to terms of the order O

(
c−5
)
, as soon as such a solution in second post-Minkowskian

approximation might be obtained in future. In a prospective investigation [100] the
corresponding boundary value problem of light propagation will be determined which
is necessary for practical astrometry in the Solar System. Accordingly, for the moment
being we consider this investigation as a further step towards a general relativistic light
propagation model aiming at high-precision astrometry on the sub-micro-arcsecond-
level of accuracy.
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Appendix A. Notation

Throughout the investigation the following notation is in use.

• G is the Newtonian constant of gravitation.
• c is the vacuum speed of light in Minkowskian space-time.
• ηαβ = ηαβ = diag (−1,+1,+1,+1) is the metric tensor of flat space-time.
• gαβ and gαβ are the contravariant and covariant components of the metric tensor

with signature (−,+,+,+).
• g = det (gµν) is the determinant of metric tensor.

• f , µ = ∂µ f =
∂f

∂xµ
is partial derivative of function f .

• Aα;µ = Aα, µ + Γαµν A
ν is covariant derivative of first rank tensor.

• Bαβ;µ = Bαβ, µ+Γαµν B
νβ +Γβµν B

αν is covariant derivative of second rank tensor.
• MA denotes the rest mass of the body.
• mA = GMA/c

2 is the Schwarzschild radius of the body.
• PA denotes the equatorial radius of the body.
• vA denotes the orbital velocity of the body.
• aA denotes the orbital acceleration of the body.

• 1 mas (milli− arcsecond) =
π

180× 60× 60
10−3 rad ' 4.85× 10−9 rad.

• 1µas (micro− arcsecond) =
π

180× 60× 60
10−6 rad ' 4.85× 10−12 rad.

• 1 nas (nano− arcsecond) =
π

180× 60× 60
10−9 rad ' 4.85× 10−15 rad.

• 1 ns (nano− second) = 10−9 seconds.
• 1 ps (pico− second) = 10−12 seconds.
• Lower case Latin indices take values 1,2,3.
• Lower case Greek indices take values 0,1,2,3.
• The three-dimensional coordinate quantities (three-vectors) referred to the spatial

axes of the reference system are in boldface: a.
• The contravariant components of three-vectors: ai =

(
a1, a2, a3

)
.

• The contravariant components of four-vectors: aµ =
(
a0, a1, a2, a3

)
.

• The absolute value of a three-vector: a = |a| =
√
a1 a1 + a2 a2 + a3 a3.

• The scalar product of two three-vectors: a · b = δij a
i bj = ai bi with Kronecker

delta δij .

• The vector product of two three-vectors reads (a× b)i = εijk a
j bk with Levi-

Civita symbol εijk.
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Appendix B. Impact vectors

In case of moving bodies it is appropriate to introduce a set of several impact vectors
as they naturally arise in the practical calculations about light propagation. It is a
tacitly important issue to have a clear definition of them, because the expressions
for the light trajectory depend sensitively on these impact vectors. First of all, we
introduce the impact vectors with respect to the unperturbed light trajectory,

dNA (t) = σ ×
(
rNA (t)× σ

)
, (B.1)

dNA (s) = σ ×
(
rNA (s)× σ

)
, (B.2)

where rNA (t) and rNA (s) are given by Eqs. (43) and (93), respectively. For an
illustration of these impact vectors see Figure 1. The impact vector are time-
dependent. In particular, we need the time-derivative of (B.1) which reads

d

dct
dNA (t) = σ ×

(
σ × vA (t)

c

)
= O

(vA
c

)
. (B.3)

Furthermore, we define the impact vectors with respect to the light trajectory in first
post-Newtonian approximation,

d1PN
A (t) = σ ×

(
r1PN
A (t)× σ

)
, (B.4)

d1PN
A (s) = σ ×

(
r1PN
A (s)× σ

)
, (B.5)

where r1PN
A (t) and r1PN

A (s) are given by Eqs. (53) and (94), respectively.
These impact vectors (B.1) - (B.2) and (B.4) - (B.5) are uniquely related to each

other and one may switch from one impact vector to another whenever it is necessary.
It is not a matter of taste which concrete impact vector the most appropriate one is,
but solely depends on the expression under consideration. What we need to have is
the relation between the impact vector (B.1) and (B.4) as well as between (B.2) and
(B.5), which read

d1PN
A (t) = dNA (t)− 2mA

(
dNA (t)

rNA (t)− σ · rNA (t)
− dNA (t0)

rNA (t0)− σ · rNA (t0)

)
, (B.6)

d1PN
A (s) = dNA (s)− 2mA

(
dNA (s)

rNA (s)− σ · rNA (s)
− dNA (s0)

rNA (s0)− σ · rNA (s0)

)
, (B.7)

where rNA (t0) = x0 − xA (t0) and rNA (s0) = x0 − xA (s0). Furthermore, we need the
corresponding impact vectors with regard of the exact light trajectory, namely

dA (t) = σ × (rA (t)× σ) , (B.8)

dA (s) = σ × (rA (s)× σ) , (B.9)

where rA (t) and rA (s) are defined by Eqs. (42) and (90), respectively. The difference
between these exact impact vectors and the impact vectors in Newtonian and post-
Newtonian approximation is of the order

dA (t) = dNA (t) +O
(
c−2
)
, dA (s) = dNA (s) +O

(
c−2
)
, (B.10)

dA (t) = d1PN
A (t) +O

(
c−3
)
, dA (s) = d1PN

A (s) +O
(
c−3
)
. (B.11)
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Finally, we emphasize that the term ’weak gravitational field’ implies a constraint for
the impact vector of the exact light ray (cf. Eq. (34) in [54]),

dA (s)� mA , (B.12)

and because of dNA (s) > dA (s) the same condition is valid for the impact vector of
the unperturbed light ray. On the other side, impact vectors at retarded time s0 can
be small and even be zero in some astrometric configurations, so that dA (s0) = 0 or
dNA (s0) = 0 is possible. In such astrometric configurations the unit-direction σ of the
light ray is anti-parallel to rNA (s0). During the time of propagation of the light signal
the body moves with velocity vA out of the line of sight between light source and body,
so that the smallest distance between body and light signal has to be much larger than
the Schwarzschild radius of the body, which implies the following constraint for the
orbital speed, ∣∣∣∣σ × vA (s0)

c

∣∣∣∣ (rNA (s0)− σ · rNA (s0)
)
� mA , (B.13)

which is not an additional condition but follows from (B.12) and (145). It states that
even in case dNA (s0) = 0 the minimal distance between light ray and body will be
larger than the Schwarzschild radius of that body. It also implies that configurations
with dNA (s0) = 0 are only possible if the body is in motion.

Since in reality a light ray in the optical band cannot propagate inside the body,
the condition (B.12) can be replaced by a stronger restriction which is valid for grazing
light rays, where the impact vector dA (s) equals the equatorial radius of the body,
while in general it will be larger, so we get

dA (s) ≥ PA , (B.14)

which implies dNA (s) ≥ PA. This condition states that even in case dA (s0) = 0 the
minimal distance between light ray and body will be larger than the body’s equatorial
radius. From (B.14) and (145) is follows that∣∣∣∣σ × vA (s0)

c

∣∣∣∣ (rA (s0)− σ · rA (s0)) ≥ PA , (B.15)

for practical astrometry.

Appendix C. Light propagation in 1.5PN approximation

The coordinate velocity and trajectory of a light signal in 1.5PN approximation in the
field of arbitrarily shaped bodies in arbitrary motion has been determined in [27]. Here
we need these results for the much simpler case of one moving body with monopole
structure.

Appendix C.1. The coordinate velocity of a light signal in 1.5PN approximation

The coordinate velocity of a light signal in the gravitational field of one arbitrarily
moving monopole reads (Eqs. (110) - (111) in [27]):

ẋ (t)

c
= σ +

∆ẋ1PN (t)

c
+

∆ẋ1.5PN (t)

c
+O

(
c−4
)
, (C.1)



Light propagation in 2PN approximation in the field of one moving monopole 41

with

∆ẋ1PN (t)

c
= − 2mA

rNA (t)

(
dNA (t)

rNA (t)− σ · rNA (t)
+ σ

)
, (C.2)

∆ẋ1.5PN (t)

c
= +

2mA

rNA (t)

σ · vA (t)

c

dNA (t)

rNA (t)− σ · rNA (t)
+

4mA

rNA (t)

vA (t)

c

− 2mA

rNA (t)− σ · rNA (t)

σ × (vA (t)× σ)

c
+

2mA(
rNA (t)− σ · rNA (t)

)2 dNA (t) · vA (t)

c

dNA (t)

rNA (t)
.

(C.3)

Using relations (87) - (89) one may rewrite the expressions in (C.1) - (C.3) in terms
of retarded time (cf. Eq. (177) in [27]):

ẋ (t)

c
= σ +

∆ẋ1PN (s)

c
+

∆ẋ1.5PN (s)

c
+O

(
c−4
)
, (C.4)

with

∆ẋ1PN (s)

c
= − 2mA

rNA (s)

(
dNA (s)

rNA (s)− σ · rNA (s)
+ σ

)
, (C.5)

∆ẋ1.5PN (s)

c
= +

2mA

rNA (s)

σ · vA (s)

c

dNA (s)

rNA (s)− σ · rNA (s)
+

4mA

rNA (s)

vA (s)

c

+
2mA(
rNA (s)

)2 σ · vA (s)

c
dNA (s)− 2mA(

rNA (s)
)2 vA (s) · dNA (s)

c

dNA (s)

rNA (s)− σ · rNA (s)

− 2mA(
rNA (s)

)2 rNA (s) · vA (s)

c
σ , (C.6)

which up to terms of the order O
(
c−4
)
agrees with the post-Minkowskian solution in

[21]; cf. Eq. (E.4).

Appendix C.2. The trajectory of a light signal in 1.5PN approximation

The trajectory of a light signal in the gravitational field of one arbitrarily moving
monopole reads (Eqs. (118) - (119) in [27]):

x (t) = x0 + c (t− t0)σ + ∆x1PN (t, t0) + ∆x1.5PN (t, t0) +O
(
c−4
)
, (C.7)

∆x1PN (t, t0) = ∆x1PN (t)−∆x1PN (t0) , (C.8)

∆x1.5PN (t, t0) = ∆x1.5PN (t)−∆x1.5PN (t0) , (C.9)

with

∆x1PN (t) = −2mA
dNA (t)

rNA (t)− σ · rNA (t)
+ 2mA σ ln

(
rNA (t)− σ · rNA (t)

)
, (C.10)
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∆x1.5PN (t) = +2mA
vA (t) · dNA (t)

c

dNA (t)(
rNA (t)− σ · rNA (t)

)2
−2mA

vA (t)

c
ln
(
rNA (t)− σ · rNA (t)

)
− 2mA

σ × (vA (t)× σ)

c

σ · rNA (t)

rNA (t)− σ · rNA (t)

+2mA
vA (t) · dNA (t)

c

σ

rNA (t)− σ · rNA (t)
. (C.11)

One may check that the total time-derivative of (C.7) yields (C.1). Using relations
(87) - (89) one may rewrite the expressions in (C.7) - (C.11) in terms of retarded time:

x (t) = x0 + c (t− t0)σ + ∆x1PN (s, s0) + ∆x1.5PN (s, s0) +O
(
c−4
)
, (C.12)

∆x1PN (s, s0) = ∆x1PN (s)−∆x1PN (s0) , (C.13)

∆x1.5PN (s, s0) = ∆x1.5PN (s)−∆x1.5PN (s0) , (C.14)

with

∆x1PN (s) = −2mA
dNA (s)

rNA (s)− σ · rNA (s)
+ 2mA σ ln

(
rNA (s)− σ · rNA (s)

)
, (C.15)

∆x1.5PN (s) = +2mA
σ · vA (s)

c

dNA (s)

rNA (s)− σ · rNA (s)
+ 2mA

vA (s)

c

−2mA
vA (s)

c
ln
(
rNA (s)− σ · rNA (s)

)
, (C.16)

which up to terms of the order O
(
c−4
)
agrees with the post-Minkowskian solution

in [21]; cf. Eqs. (E.5) - (E.6). The logarithm in (C.15) is well-defined in view of
(C.13) which results in dimensionless arguments. But besides of (C.14) the logarithm
in (C.16) remains ill-defined. As outlined in the main text, a meaning of this function
is attributed by the series expansion (121) up to terms beyond 1.5PN approximation.

A comment should be in order about the last term in the first line of (C.16). It has
much long been known [56] that the vanishing of covariant derivative of stress-energy
tensor of matter Tαβ implies [18, 55, 56, 60]

Tαβ; β = 0 =⇒
[
(−g)

(
Tαβ + tαβLL

)]
, β

= 0 , (C.17)

where the Landau-Liftschitz pseudotensor of the gravitational fields tαβLL has already
been encountered in the field equations of gravity (5). This local conservation
equation admits the formulation of global conservation laws. Especially, a global
four-momentum for isolated gravitational systems can be defined (e.g. Eqs. (20.23a)
and (20.23c) in [55] or Eqs. (1.1.7) and (1.2.1) in [60]),

Pα =
1

c

ˆ
d3x (−g (t,x))

(
Tα0 (t,x) + tα0LL (t,x)

)
with

dPα

dt
= 0 . (C.18)

The four-momentum (C.18) is coordinate-independent and convergent for isolated
systems, hence is well-defined and a physical meaning can be attributed. Moreover, the
second equation in (C.18) states that the four-momentum is strictly conserved for such
systems. This fact can be proven by means of Gauss theorem with boundary at infinity
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(e.g. Eq. (20.25) in [55]) because the flux through the surface of the volume vanishes
at infinity due to Eqs. (8) and (9). From (C.18) we readily find (for the stress-energy
tensor of N pointlike bodies moving under their gravitational interaction we refer to
Eq. (2.363) in [18] or Eqs. (1) - (2) in [21], while the Landau-Lifschitz pseudotensor
is neglected due to tαβLL = O

(
c−2
)
) that the total three-momentum of N arbitrarily

moving pointlike bodies is strictly conserved to order O
(
c−2
)
¶,

PN =

N∑
A=1

MA vA (t) with
dPN

dt
= O

(
c−2
)
, (C.19)

where the index N refers to the Newtonian approximation. The relation (C.19) implies
that (cf. Eqs. (7.213) in [18], Eqs. (155) in [21] or Eq. (5.4.25) in [60])

N∑
A=1

mA

(
vA (s)

c
− vA (s0)

c

)
= O

(
c−5
)
, (C.20)

where we recall vA (s) = vA (t) +O
(
c−1
)
and vA (s0) = vA (t0) +O

(
c−1
)
. It clearly

shows that the last term in the first line of (C.16) is solely caused by the model of only
one arbitrarily moving monopole which necessarily is an open system, while this term
vanishes in case of a closed system (i.e. no energy or momentum escapes the system)
of N bodies.

Appendix D. Some relations for integration by parts

Some relations of total time derivatives are listed which are useful for integrating the
geodesic equation by parts. Time-arguments are omitted to simplify the notation.

Appendix D.1. Relations valid to order O
(
c−1
)

1

rNA
= − d

dct
ln
(
rNA − σ · rNA

)
+O

(vA
c

)
. (D.1)

1(
rNA
)2 =

d

dct

1

dNA
arctan

σ · rNA
dNA

+O
(vA
c

)
. (D.2)

1(
rNA
)3 =

d

dct

1

rNA

1

rNA − σ · rNA
+O

(vA
c

)
. (D.3)

¶ Likewise, the total three-momentum in post-Newtonian approximation P 1PN of a isolated
gravitating system of N arbitrarily moving bodies (cf. Eq. (5.4.21) in [60]) is strictly conserved

to order O
(
c−4
)
, that means

dP 1PN

dt
= O

(
c−4
)
(cf. Eq. (5.4.24) in [60]), but this fact is beyond

the approximations of the investigation. We also note that the gravitational potentials among the
bodies are taken into account by the Landau-Lifschitz pseudotensor tαβLL = O

(
c−2
)
hence they do

not contribute in the Newtonian approximation PN in Eq. (C.19) but appear in the post-Newtonian
approximation P 1PN (cf. Eq. (5.4.25) in [60]).
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1(
rNA
)4 =

1

2

d

dct

(
σ · rNA(

dNA
)2 (

rNA
)2 +

1(
dNA
)3 arctan

σ · rNA
dNA

)
+O

(vA
c

)
. (D.4)

1(
rNA
)5 =

d

dct

[
2

3

σ · rNA
rNA

1(
dNA
)4 +

1

3

σ · rNA(
rNA
)3 1(

dNA
)2
]

+O
(vA
c

)
. (D.5)

σ · rNA
rNA

=
d

dct
rNA +O

(vA
c

)
. (D.6)

σ · rNA(
rNA
)2 =

d

dct
ln rNA +O

(vA
c

)
. (D.7)

σ · rNA(
rNA
)n = − 1

n− 2

d

dct

1(
rNA
)n−2 +O

(vA
c

)
for n ≥ 3 . (D.8)

(
σ · rNA

)2(
rNA
)3 = − d

dct

[
σ · rNA
rNA

+ ln
(
rNA − σ · rNA

)]
+O

(vA
c

)
. (D.9)

(
σ · rNA

)2(
rNA
)4 = +

1

2

d

dct

[
arctan

σ · rNA
dNA

−
dNA
(
σ · rNA

)(
rNA
)2

]
+O

(vA
c

)
. (D.10)

(
σ · rNA

)2(
rNA
)5 =

1

3

d

dct

(
σ · rNA

)3(
rNA
)3 1(

dNA
)2 +O

(vA
c

)
. (D.11)

(
σ · rNA

)3(
rNA
)5 = − d

dct

[
2

3

1

rNA
+

1

3

(
σ · rNA

)2(
rNA
)3

]
+O

(vA
c

)
. (D.12)

(
σ · rNA

)2(
rNA
)6 =

1

4

d

dct

[
1

2

σ · rNA(
dNA
)2 (

rNA
)2 − σ · rNA(

rNA
)4 +

1

2

1(
dNA
)3 arctan

σ · rNA
dNA

]
+O

(vA
c

)
.

(D.13)
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(
σ · rNA

)3(
rNA
)6 =

1

2

d

dct

[
1

2

(
dNA
)2(

rNA
)4 − 1(

rNA
)2
]

+O
(vA
c

)
. (D.14)

1

rNA

1

rNA − σ · rNA
=

d

dct

1

rNA − σ · rNA
+O

(vA
c

)
. (D.15)

1

rNA

1(
rNA − σ · rNA

)2 =
1

2

d

dct

1(
rNA − σ · rNA

)2 +O
(vA
c

)
. (D.16)

1

rNA − σ · rNA
=

1

2

d

dct

rNA
rNA − σ · rNA

− 1

2

d

dct
ln
(
rNA − σ · rNA

)
+O

(vA
c

)
. (D.17)

arctan
σ · rNA
dNA

=
d

dct

[
σ · rNA arctan

σ · rNA
dNA

− dNA ln rNA

]
+O

(vA
c

)
. (D.18)

ln
(
rNA − σ · rNA

)
= +

d

dct

[
rNA + σ · rNA ln

(
rNA − σ · rNA

)]
+O

(vA
c

)
. (D.19)

Appendix D.2. Exact relations

1

rNA
= − d

dct
ln
(
rNA − σ · rNA

)
+

1

rNA

σ · vA
c
− 1

rNA − σ · rNA
dNA · vA
c rNA

. (D.20)

σ · rNA
rNA

= +
d

dct
rNA +

1

rNA

rNA · vA
c

. (D.21)

σ · rNA(
rNA
)3 = − d

dct

1

rNA
+

1(
rNA
)3 rNA · vAc

. (D.22)

1(
rNA
)3 = +

d

dct

1

rNA

1

rNA − σ · rNA
+

1(
rNA
)3 σ · vAc − 1(

rNA
)3 1

rNA − σ · rNA
dNA · vA

c

− 1(
rNA
)2 1(

rNA − σ · rNA
)2 dNA · vAc

. (D.23)
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1

rNA

1

rNA − σ · rNA
= +

d

dct

1

rNA − σ · rNA
− 1(

rNA − σ · rNA
)2 dNA · vAc rNA

+
1

rNA

1

rNA − σ · rNA
σ · vA
c

. (D.24)

1(
rNA
)2 = +

d

dct

1

dNA
arctan

σ · rNA
dNA

− 1(
dNA
)3 dNA · vAc

arctan
σ · rNA
dNA

+
1(
rNA
)2 σ · vAc

− 1(
dNA
)2 σ · rNA(

rNA
)2 1(

dNA
)2 dNA · vAc

. (D.25)

ln
(
rNA − σ · rNA

)
= +

d

dct

[
rNA + σ · rNA ln

(
rNA − σ · rNA

)]
+
σ · vA
c

ln
(
rNA − σ · rNA

)
+
dNA · vA

c

1

rNA − σ · rNA
. (D.26)

1

rNA − σ · rNA
= +

1

2

d

dct

rNA
rNA − σ · rNA

− 1

2

d

dct
ln
(
rNA − σ · rNA

)
+

1

rNA − σ · rNA
σ · vA
c

−1

2

1(
rNA − σ · rNA

)2 dNA · vAc
. (D.27)

Appendix E. Light propagation in first post-Minkowskian approximation

In view of the emphasized importance of the acceleration terms for clear definition of
the logarithms it is advisable to have an independent check of the results obtained.
Such a check is possible, at least up to terms of the orderO

(
c−4
)
, by a comparison with

results in the post-Minkowskian approach. The light trajectory in the gravitational
field of N arbitrarily moving monopoles in first post-Minkowskian approximation, i.e.
exact to the first order in the gravitational constant and to all orders in the velocities
of the bodies, was determined in [21]. We shall briefly summarize these results for
comparison with our solution. Here we keep the notation of [21] except for their k
(defined by Eq. (12) in [21]) which is just our σ (defined by Eq. (15)).

Appendix E.1. The metric and geodesic equation in 1PM approximation

In the post-Minkowskian expansion one assumes the gravitational fields to be weak
while the speed of matter is not restricted and could even be ultra-relativistic, hence
this expansion is performed in terms of the gravitational constant, while the speed of
matter is taken into account to any order. The corresponding series expansion of the
metric in powers of the gravitational constant reads

gαβ (t,x) = ηαβ + h1PM
αβ (t,x) + h2PM

αβ (t,x) +O
(
G3
)
, (E.1)
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where h1PM
αβ = O

(
G1
)
and h2PM

αβ = O
(
G2
)
are small metric perturbations which

describe deviations from the flat space-time. The expansion in (E.1) is exact up to
terms of the third order in the gravitational constant. At the present time, for the
case of bodies at rest the 1PM metric perturbation h1PM

αβ as well as the 2PM metric
perturbations h2PM

αβ have been determined within the Multipolar Post-Minkowskian
(MPM) formalism in [101, 102], while for the general case of arbitrarily moving bodies
of finite size they are far out of reach. But in case of moving pointlike bodies they are
known in the first post-Minkowskian approximation [21, 25, 83],

h1PM
αβ (t,x) =

4mA

γA (s)

(
rA (s)− vA (s) · rA (s)

c

) (
uAα (s)

c

uAβ (s)

c
+
ηαβ
2

)
, (E.2)

where γA (s) =
(
1− v2A (s) /c2

)− 1
2 is the Lorentz factor. The covariant components of

the four-velocity of the body are uAα (s) = γA (s) (−c,vA (s)), and vA (s) is the three-
velocity of the body in the global system. The vector pointing from the retarded
position xA (s) of the body A towards the field-point x reads rA (s) = x−xA (s) (cf.
Eq. (84)), where the retarded time s is related to the coordinate time t via the implicit
relation (83). Inserting (E.1) into (13) yields up to terms of the order O

(
G2
)
[22]:

ẍi (t)

c2
= +

1

2
h1PM
00,i − h1PM

00,j

ẋi (t)

c

ẋj (t)

c
− h1PM

ij,k

ẋj (t)

c

ẋk (t)

c
+

1

2
h1PM
jk,i

ẋj (t)

c

ẋk (t)

c

−1

2
h1PM
00,0

ẋi (t)

c
− h1PM

ij,0

ẋj (t)

c
+

1

2
h1PM
jk,0

ẋi (t)

c

ẋj (t)

c

ẋk (t)

c
− h1PM

0i,j

ẋj (t)

c

+h1PM
0j,i

ẋj (t)

c
− h1PM

0j,k

ẋi (t)

c

ẋj (t)

c

ẋk (t)

c
− h1PM

0i,0 +O
(
G2
)
. (E.3)

Let us consider the solution of the geodesic equation (E.3) as it has been provided in
[21], that means excluding terms of the order O

(
G2
)
.

Appendix E.2. The coordinate velocity of a light signal

The coordinate velocity of a light signal is given by Eqs. (32) and (34) in [21]. Using
hαβ and ∂̂iBαβ as given by Eqs. (10) and (30) in [21] it reads

ẋ (t)

c
= σ − 2mAγA (s)

dA (s)

rA (s)− σ · rA (s)

(
1− σ · vA (s)

c

)2
1

rA (s)− vA (s) · rA (s)

c

+4mA γA (s)
vA (s)

c

1

rA (s)− vA (s) · rA (s)

c

(
1− σ · vA (s)

c

)

−2mA γA (s)σ

(
1−

(
σ · vA (s)

c

)2
)

1

rA (s)− vA (s) · rA (s)

c

+O
(
G2
)
, (E.4)

with rA (s) = x (t)− xA (s) (cf. Eq. (90)), where x (t) is the exact spatial coordinate
of the photon rather than the field point x in (84). The solution in (E.4) confirms the
expression (C.4) in [23]. By series expansion in inverse powers of the speed of light
one may show that (E.4) agrees, up to terms of the order O

(
c−3
)
, with our 1.5PN
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solution provided by Eqs. (C.4) - (C.6) and it agrees, up to terms of the order O
(
c−4
)
,

with our 2PN solution in Eq. (99).

Appendix E.3. The trajectory of a light signal

The trajectory of a light signal is defined by Eqs. (33) and (35) in [21] and reads,
x (t) = x0 + c (t− t0)σ + Ξ (s)−Ξ (s0) +O

(
G2
)
, (E.5)

Ξ (s) = −2mA γA (s)

(
1− σ · vA (s)

c

)
dA (s)

rA (s)− σ · rA (s)

+2mA γA (s)

(
σ − vA (s)

c

)
ln (rA (s)− σ · rA (s)) + I (s) + K (s) , (E.6)

where rA (s) is defined by Eq. (90). The solution in (E.6) confirms the expressions for
the light trajectory as given by Eqs. (C.2) - (C.3) in [23]. In order to get (E.5) - (E.6)
we have used the expressions Bαβ and ∂̂iDαβ as defined by Eqs. (26) and (31) in [21]
and performed an integration by parts which yields (using (28) and (48) in [21]):

Bαβ (s) = −4

(
T̂αβ (s)− 1

2
ηαβ T̂λλ (s)

)
ln (rA (s)− σ · rA (s))

1− σ · vA (s)

c

+ Iαβ (s) , (E.7)

∂̂iD
αβ (s) = −4 diA (s)

(
T̂αβ (s)− 1

2
ηαβ T̂λλ (s)

)
1

1− σ · vA (s)

c

1

rA (s)− σ · rA (s)

+ 4Pij
vjA (s)

c

(
T̂αβ (s)− 1

2
ηαβ T̂λλ (s)

)
ln (rA (s)− σ · rA (s))(

1− σ · vA (s)

c

)2 +Kαβi (s) , (E.8)

where the components of the stress-energy tensor are given by T̂αβ = MA γ
−1
A uαA u

β
A

(cf. Eq. (2) in [21]) where uαA = γA (c,vA) and the functions Iαβ and Kαβi are

Iαβ (s) = 4

sˆ

−∞

dζ ln (rA − σ · rA)
d

dζ

[(
T̂αβ − 1

2
ηαβ T̂λλ

)(
1− σ · vA

c

)−1]
, (E.9)

Kαβi (s) = 4

sˆ

−∞

dζ
diA

rA − σ · rA
d

dζ

[(
T̂αβ − 1

2
ηαβ T̂λλ

)(
1− σ · vA

c

)−1]

−4

sˆ

−∞

dζ ln (rA − σ · rA)
d

dζ

[(
T̂αβ − 1

2
ηαβ T̂λλ

)(
1− σ · vA

c

)−2
P ij

vjA
c

]
, (E.10)

where the arguments are omitted for simpler notation: dA = dA (ζ), T̂αβ = T̂αβ (ζ),
vA = vA (ζ), and rA = x0 + c (t− t0)σ−xA (ζ). The vectorial functions I and K in
(E.6) are defined by

Ii (s) = − σαIαi (s)− 1

2
σiI00 (s) +

1

2
σiσpσqIpq (s) , (E.11)

Ki (s) =
1

2
σασβ Kαβi (s) . (E.12)
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One obtains the following expression for the function (E.11) and (E.12):

I (s) = +2mA

sˆ

−∞

dζ ln (rA − σ · rA) γA

×
[
2
aA
c
− σ

(σ · aA
c

)
+ γ2A

(
2
vA
c
− σ − σ σ · vA

c

)(vA · aA
c2

)]
, (E.13)

K (s) = +2mA

sˆ

−∞

dζ
dA

rA − σ · rA
γA

[
γ2A

(vA · aA
c2

)(
1− σ · vA

c

)
−
(σ · aA

c

)]

−2mA

sˆ

−∞

dζ ln (rA − σ · rA) γA

[
γ2A

(vA · aA
c2

) σ × (vA × σ)

c
+
σ × (aA × σ)

c

]
.

(E.14)

Using Eqs. (25) and (29) in [21]) one may show that the expressions in (E.13) and
(E.14) are in agreement with the vectorial function g (t0, t) defined by Eq. (C.2) in
[23], that means −2mA g (t0, t) = I (s)−I (s0)+K (s)−K (s0). For comparison with
our results in (107) we consider a series expansion of the expressions in (E.13) - (E.14)
in inverse powers of the speed of light. According to (E.5) and (E.6) we consider

I (s)− I (s0) + K (s)−K (s0) = +2mA

sˆ

s0

dζ ln (rA − σ · rA)
aA
c

−2mA

sˆ

s0

dζ
dA

rA − σ · rA
σ · aA
c

+O
(
c−5
)
, (E.15)

where it has been taken into account that integrals having an integrand vA · aA turn
out to be of the order O

(
c−5
)
. Integration by parts, using relations (28) and (48) in

[21], yields

I (s)− I (s0) + K (s)−K (s0) = +2mA

(
σ · aA (s)

c2

)
dA (s) ln (rA (s)− σ · rA (s))

−2mA

(
σ · aA (s0)

c2

)
dA (s0) ln (rA (s0)− σ · rA (s0)) +O (ȧA)

+2mA
aA (s)

c2
(rA (s)− σ · rA (s)) [1− ln (rA (s)− σ · rA (s))]

−2mA
aA (s0)

c2
(rA (s0)− σ · rA (s0)) [1− ln (rA (s0)− σ · rA (s0))] +O

(
c−5
)
, (E.16)

which might also be compared with solutions for the integrals given by the
Eqs. (49) - (50) and (202) in [21]. This expression in (E.16) is in coincidence
with ε̃B2 (rA (s) ,a (s))− ε̃B2 (rA (s0) ,a (s0)) where the vectorial function ε̃B2 has been
defined by Eq. (113), and we recall that rA = rNA +O

(
c−2
)
.
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