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Abstract. In this investigation the boundary value problem of light propagation
in the gravitational field of one arbitrarily moving body with monopole structure
is considered in the second post-Newtonian approximation. The solution of the
boundary value problem comprises a set of altogether three transformations:
k → σ, σ → n, and k → n. Analytical solutions of these transformations
are given and the upper limit of each individual term is determined. Based on
these results, simplified transformations are obtained by keeping only those terms
relevant for the given goal accuracy of 1 nano-arcsecond in light deflection. Like in
case of light propagation in the gravitational field of one body at rest, there are so-
called enhanced terms which are of second post-Newtonian order but contain one
and the same typical large numerical factor. Finally, the impact of enhanced terms
beyond 2PN approximation is considered. It is found that enhanced 3PN terms
are relevant for astrometry on the level of 1 nano-arcsecond in light deflection,
while enhanced 4PN terms are negligible, except for grazing rays at the Sun.

PACS numbers: 95.10.Jk, 95.10.Ce, 95.30.Sf, 04.25.Nx, 04.80.Cc

1. Introduction

1.1. The new era of space-based astrometry

While advancement in astrometry has always been benefited from ground-based
telescope improvements, the new era of space-based astrometry missions has initiated
unprecedented accuracies in positional measurements of celestial objects, like Solar
System objects, stars, galaxies, and quasars [1, 2, 3]. Most notably, the astrometry
missions Hipparcos and Gaia of the European Space Agency (ESA) have opened this
new age in astronomy. These missions have (i) adapted from wide-field astrometry
realized by optical instruments which are designed to measure large angles on the
sky simultaneously, (ii) utilized the most modern technologies in the optical design
of scanning satellite, (iii) taken advantage of appreciable developments in theoretical
astrometry and applied gravitational physics.

Approved by ESA in 1980 and launched on 8 August 1989, Hipparcos was the
first ever astrometric satellite to precisely measure the positions and proper motions
of stars in the vicinity of the Sun. The completion of the Hipparcos mission has led to
the creation of three highly accurate catalogues of stellar positions, namely the star
catalogues Hipparcos and Tycho in 1997 [4, 5] and Tycho-2 in 2000 [6]. In particular,
the Hipparcos final catalogue [4] provides astrometric positions and stellar motions
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up to 1 milli-arcsecond (mas) in angular accuracies for about 120 thousand stars.
The catalogues Tycho [5] and Tycho-2 [6] contain positions of about 1 million and
2.5 million stars, respectively, with an accuracy of up to 20 mas in angular resolution
which still represents an unprecedented accuracy at that time, also in view of such huge
number of individual stars. These catalogues set the precedent on stellar positions and
are continuously used in space science research and for spacecraft navigation.

Gaia is the second space-based mission ever and will provide fundamental data
for many fields of astronomy. The Gaia mission was approved in 2000 by ESA as
cornerstone mission and is aiming at precisions up to a few micro-arcseconds (µas)
in determining positions and proper motions of stellar objects [7], which is about 200
times more accurately than the predecessor Hipparcos. Launched on 19 December
2013, the Gaia’s main goal is to create an extraordinarily precise three-dimensional
map of more than 1300 million stars of our galaxy, in order to determine the structure
and dynamics of the Milky way. The observational data of Gaia comprise not only
astrometry but also spectro-photometry. For the brightest subset of targets, spectra
will be acquired to obtain radial velocities of stellar objects by means of the Doppler
effect which is essential for the understanding of the kinematics of our Galaxy [8].

The highly precise measurements of the astrometry mission Gaia are of
fundamental importance to all the other fields of astronomy, specifically they will
have a tremendous impact on stellar astrophysics and galaxy evolution, solar-system
and extra-solar planet science, extra-galactic astrophysics, and fundamental physics
like dark matter and dark energy physics, highly-precise determination of natural
constants, testing equivalence principle, determination of Nordtvedt parameter,
possible temporal variation of the gravitational constant, and last but not least testing
alternative theories of gravity. Another aspect of highly-precise astrometric data
concerns the essential fact that not only more accurate but also qualitatively new
tests of general relativity become possible [9, 10, 11, 12].

Preliminary results of the Gaia mission have been published in September 2016
by Gaia Data Release 1 (Gaia DR1), providing astrometric data which are more
precise than those in any of the former star catalogues [8, 13, 14]. The five-parameter
astrometric solution (positions, proper motions, parallaxes) for about 2 million stars
in common between the Tycho-2 Catalogue and Gaia is contained in Gaia DR1.

The results of Gaia Data Release 2 (Gaia DR2) were published very recently
in April 2018 by a series of articles. There are specific articles and processing papers
which concern special scientific issues and which give technical details on the processing
and calibration of the raw data. A comprehensive overview of Gaia DR2 is expounded
in [15], while the full content of Gaia DR2 is available through the Gaia archive [16].
In particular, Gaia DR2 provides precise positions, proper motions, and parallaxes
for more than 1300 million stars. Furthermore, the Gaia DR2 contains positions for
more than 550 thousand quasars which allow for the definition of a new celestial
reference frame fully based on optical observations of extra-galactic sources (Gaia-
CRF2) [17]. Based on these results the third realization of the International Celestial
Reference Frame (ICRF-3) has recently been adopted by the XXXth General Assembly
of the International Astronomical Union (IAU) in 2018 [18], which is based on the
accurate measurement of over 4000 extragalactic radio sources. The ICRF-3 replaces
ICRF-2 which was adopted at the XXVIIth General Assembly of IAU in 2009. These
reference frames are of utmost importance for many branches is astronomy, like stellar
catalogues, space navigations, or determination of the rotational motion of the Earth.

Of specific importance for our investigations here is the impressive advancement
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in astrometric accuracy of positional measurements arrived within the Gaia DR2.
For parallaxes, uncertainties are typically around 30 µas for sources brighter than
V =15 mag, around 100 µas for sources with a magnitude about V =17 mag, and
around 700 µas for sources with about V=20 mag [15, 19]. These results represent a
giant advancement in astrometric science and comprise the fact that todays astrometry
has reached the micro-arcsecond level of accuracy in astrometric measurements.

Another astrometric space mission aiming at the micro-arcsecond level of accuracy
is JASMINE, an approved long-term project developed by the National Astronomical
Observatory of Japan, and which consists of altogether three astrometry satellites,
called Nano-JASMINE, Small-JASMINE, and (Medium-Sized) JASMINE [20], where
the two last satellites shall observe in the infrared. The Nano-JASMINE (nominal
mission: 2 years) is a mission in the optical based on CCD (charge-coupled device)
and the technical demonstrator of the entire JASMINE project, which represents the
first space astrometry satellite mission in Japan and the third space-based astrometry
mission ever following the ESA missions Hipparcos and Gaia. Meanwhile, the technical
equipment of the satellite has fully been completed and the launch of Nano-JASMINE
is expected within the very few next months. The launch of Small-JASMINE is
expected around 2024, while there is no concrete plan for the launch of (Medium-
Sized) JASMINE. Within the series of altogether three JASMINE missions, the target
accuracy in the positional measurements of stellar objects will be increasing step-by-
step, ranging from 3 mas by the Nano-JASMINE mission up to 10µas within the
(Medium-Sized) JASMINE mission.

1.2. Future astrometry on the sub-micro-arcsecond level

It is quite obvious that a long term goal of astrometric science is to arrive at the
sub-micro-arcsecond (sub-µas) or even the nano-arcsecond (nas) level of accuracy.
The scientific objectives for such ultra-highly precise astrometry are overwhelming
and it is almost impossible to enumerate all advances in science which astrometry on
such scales would initiate. For instance, astrometry on sub-µas scale would make it
possible to survey hundreds of thousands of stars up to a distance of about 100 pc
for detecting earth-like planets, would allow for much more stringent tests of General
Relativity through light bending, would enable the measurement of the energy density
of stochastic gravitational wave background, allows for precise mapping of dark matter
from the areas beyond the Milky Way, enables direct distance measurement of various
stellar standard candles up to the closest galaxy clusters, would allow for further
tests of alternative theories of gravity with much better precision than in the weak-
gravitational-field regime [21, 22, 23, 24, 25]. Especially, the proposed mission Theia
[26] is primarily designed to study the local dark matter properties, the detection of
Earth-like exoplanets in our nearest star systems and the physics of highly compact
objects like white dwarfs, neutron stars, black holes. For a more comprehensive list of
astronomical and astrophysical problems which can be solved by sub-µas astrometry
we refer to the article [27].

Furthermore, as soon as the third (Gaia DR3) and final Gaia Data Release (Gaia
Final DR), expected in the fall of 2020 and around the end of 2022, respectively,
are achieved and analyzed, new questions will emerge, which will require new space-
based astrometry missions, either in the form of a Gaia-like observer or in the form of
satellites aiming at the sub-µas or even the nas level of accuracy. In fact, the impressive
progress, made during the realization of the both ESA astrometry missions Hipparcos
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and Gaia, has already encouraged the astrometric science community to further
proceed in such directions in foreseeable future. Among several astrometry missions
suggested to ESA we mention the recent medium-sized (M-5) mission proposals Gaia-
NIR [28], Theia [26], and NEAT [29, 30, 31], which in this order are aiming at the
µas, sub-µas, and even the nas level of precision.

The envisaged advancement from µas-astrometry to sub-µas-astrometry implies
many subtle effects and new kind of challenges in technology and science such
as: (a) determination of Solar System ephemerides precisely enough for sub-µas-
astrometry, (b) modeling the influence of interstellar medium on light propagation,
(c) synchronization of atomic clocks between observer and ground stations on the sub-
nano-second scale, (d) tracking the spacecraft’s worldline and velocity with sufficient
accuracy for being able to account for aberrational effects, (e) development of new
CCD-based technologies in the optical or infrared to achieve astrometric data on the
sub-µas-level, etc. Each of these and many other challenges have to be clarified before
sub-µas-astrometry becomes feasible. But it is clear that astrometric information
is mainly carried by light signals of the celestial light sources, hence astrometric
measurements are intrinsically related to the problem about how to trace a light ray
detected by the observer back to the celestial light source. Therefore, the fundamental
assignment in astrometry remains the precise description of the trajectory of the
light signal as function of coordinate time. The foreseen progress in the accuracy
of observations and new observational techniques necessitates to account for several
relativistic effects in the theory of light propagation. A detailed review about the
recent progress in the theory of light propagation has been given in text books [10, 32]
as well as in several articles [11, 33, 34, 35, 36, 37, 38, 39, 40]. So in what follows
an introduction of the theory of light propagation is just given to the extent that it
proves necessary for our investigations.

1.3. The exact field equations of gravity

According to the theory of general relativity [41, 42] the space-time is not considered
as rigidly given once and for all, but a differentiable manifold and subject to dynamical
laws. Therefore, the determination of the (inner) geometry of space-time is the
foundation for any measurement in relativistic astrometry. The (inner) geometry
of the four-dimensional manifold is fully determined by the metric tensor gαβ whose
components are identified with tensorial gravitational potentials generalizing the scalar
gravitational potential of Newtonian theory of gravity. In compliance with Einstein’s
field equations [41, 42], the metric tensor gαβ is related to the stress-energy tensor
Tαβ of matter via a set of 10 coupled non-linear partial differential equations given by
[10, 41, 42, 43, 44, 45] (e.g. Sec. 17.1 in [43])

Rαβ −
1

2
gαβ R =

8πG

c4
Tαβ (1)

where Rαβ = Γραβ,ρ − Γραρ,β + Γρσρ Γσαβ − Γρσβ Γσαρ is the Ricci tensor (cf. Eq. (8.47) in

[43]), R = gαβRαβ is the Ricci scalar, and

Γραβ =
1

2
gρσ (gσα,β + gσβ,α − gαβ,σ) (2)

are the Christoffel symbols which are functions of the metric tensor.
The field equations of gravity (1) are valid in any coordinate system. The final

ambition in theoretical astrometry remains of course the determination of observables
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(scalars), which are, by definition, gauge-independent (coordinate-independent)
quantities [46]. There are three possibilities to get such observables [47]:

1. performing the calculations solely in terms of coordinate-independent quantities.

2. using any coordinate system in the calculations.

3. adopting one coordinate system and determine observables in the final step.

The IAU has adopted the third way by recommending the use of harmonic coordinates
in celestial mechanics and in the astrometric science [48]. These harmonic coordinates
considerably simplify the calculations in celestial mechanics and in the theory of light
propagation. They are denoted by xµ = (ct,x), where t is the coordinate time and
x =

(
x1, x2, x3

)
is a triplet of spatial coordinates. The harmonic coordinates are

curvilinear and they are defined by the harmonic gauge condition [10, 32, 43],

∂
(√
−g gαβ

)
∂xβ

= 0 , (3)

where g = det
(
gαβ
)

is the determinant of metric tensor. The condition (3) is called
de Donder gauge in honor of its inventor [49], which was also found independently by
Lanczos [50]; we note that (3) determines (a class of) concrete reference systems, hence
it is not surprising that condition (3) is not covariant. The harmonic coordinates can be
treated like Cartesian coordinates besides that they are curvilinear [10, 32, 51, 52, 53];
cf. text below Eq. (3.1.45) in [32] or the statement above Eq. (1.1) in [51], while more
detailed explanations for this fact are provided in Sections 1.5. and 1.6 in [53].

In line with these statements, in practical calculations in celestial mechanics
and astrometry it is very useful to express the exact field equations of gravity (1)
in terms of harmonic coordinates. In this so-called Landau-Lifschitz formulation of
the field equations [44], the contravariant components of the gothic metric density are
decomposed as follows

√
−g gαβ = ηαβ − hαβ , (4)

which is especially useful in case of an asymptotically flat space-time. Here, h
αβ

is the
trace-reversed metric perturbation which describes the deviation of the gothic metric
tensor density of curved space-time from the metric tensor of Minkowskian space-time.

The exact field equations (1) in terms of harmonic coordinates can be written as
follows (cf. Eq. (36.37) in [43] or Eq. (5.2b) in [51]):

ut hαβ = − 16πG

c4
(
ταβ + tαβ

)
, (5)

where ut = ηµν ∂µ ∂ν is the (flat) d’Alembert operator and

ταβ = (−g) Tαβ , (6)

tαβ = (−g) tαβLL +
c4

16πG

(
h
αµ

, ν h
βν

, µ − h
αβ

, µν h
µν
)
, (7)

where tαβLL is the Landau-Lifschitz pseudotensor of gravitational field [44], which is
symmetric in the indices and in explicit form given by Eq. (20.22) in [43] or by
Eqs. (3.503) - (3.505) in [10]. We shall assume that the gravitational system is isolated,
that means flatness of the metric at spatial infinity and the constraint of no-incoming
gravitational radiation is imposed at past null infinity J− (cf. notation in Section 34 in
[43] and Figure 34.2. in [43]). These so-called Fock-Sommerfeld boundary conditions,
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for instance given by Eqs. (4.64) and (4.65) in [10], have been adopted from classical
electrodynamics [54, 55] and later formulated for the general theory of gravity [45].
By imposing the Fock-Sommerfeld boundary conditions, a formal solution of (5) is
then provided by the implicit integro-differential equation,

h
αβ

(t,x) =
4G

c4

ˆ
d3x′

ταβ (u,x′) + tαβ (u,x′)

|x− x′|
, (8)

where

u = t− |x− x
′|

c
(9)

is the retarded time, which is associated with the finite speed of gravitational action
and not with the finite speed of light, as one may recognize from the fact that
electromagnetic fields are not necessarily involved in the stress-energy tensor on the
r.h.s. of (5) or (8). In order to deduce the formal solution (8) from the differential
equation (5) the Cartesian-like harmonic coordinates (ct,x) have been treated like
Cartesian coordinates besides that they are curvilinear; cf. text below Eq. (36.38) in
[43]. The approach about how to solve (8) iteratively is described in some detail in
[10]; cf. Eqs. (3.530a) - (3.530d) in [10]. In the first iteration (first post-Minkowskian
approximation) the integral runs only over the three-dimensional volume of the matter
source, while from the second iteration on (second post-Minkowskian approximation
and higher) the integral (8) gets also support from the metric perturbation, hence
runs over the entire three-dimensional space.

Four comments are in order about the exact field equations of gravity.
• First, the retarded time u, which is hidden in the exact field equations of gravity

(1), appears explicitly in the formal solution of the exact field equations (8), which
states that a space-time point (u,x′) (e.g. located inside the matter distribution) is in
causal contact with a space-time point (t,x) (e.g. located outside the matter source).

• Second, one may consider the propagation of electromagnetic action in a curved
space-time with background metric gαβ . That means, the metric of the curved
space-time is determined by some matter distribution Tαβ , while the impact of the
electromagnetic field on the metric of space-time is neglected. The electromagnetic
fields are generated by some electromagnetic four-current jµ = (cρ, j) with ρ
and j being charge-density and current-density, respectively. The covariant field
equations of Maxwell’s electrodynamics in curved space-time read Fµν ; ν = 4π jµ

and Fµν ; ρ + Fνρ ;µ + Fρµ ; ν = 0 (cf. Eqs. (22.17a) and (22.17b) in [43]), where
Fµν = Aν ;µ−Aµ ; ν is the field-tensor of electromagnetic field (cf. Eq. (22.19a) in [43]),
the semicolon denotes covariant derivative, and Aµ = (ϕ/c,A) is the four-potential,
where ϕ is the scalar potential and A is the vector potential. The Characteristics
(also called characteristical surface) of the covariant Maxwell equations are governed
by the following non-linear partial differential equation (non-linear PDE) of first order
[45, 56, 57, 58, 59],

gαβ
∂φ

∂xα
∂φ

∂xβ
= 0 , (10)

which is valid in the near-zone as well as in the far-zone of the four-current jα (t,x)
and is valid in any reference system. The Characteristics are three-dimensional curved
sub-manifolds, φ

(
x0, x1, x2, x3

)
= const, of the Riemannian space-time. In case of flat

space-time, i.e. gαβ = ηαβ , the characteristical surface at the event
(
x00, x

1
0, x

2
0, x

3
0

)
is

given by the Minkowskian light-cone,

φ
(
x0, x1, x2, x3

)
=
(
x00 − x0

)2 − (x10 − x1)2 − (x20 − x2)2 − (x30 − x3)2 . (11)
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That means, an electromagnetic discontinuity (abrupt electromagnetic signal)
generated at

(
x00, x

1
0, x

2
0, x

3
0

)
propagates in the flat space-time along the light-cone

(11). The generalization of the light-cone (11) in flat space-time is the light-conoid
in curved space-time as governed by Eq. (10), which for the curved space-time
of the Solar system can only be solved approximately, for instance by iteration.
The PDE of the Characteristics (10) can be derived by means of the following
consideration. Let aµ be a continuous (smoothly changing) electromagnetic four-
potential generated by some current jµ somewhere located in the Riemannian space-
time with metric gµν . Now suppose that the four-current jµ changes rapidly and
generates an abrupt Theta-like discontinuity (perturbation) in the electromagnetic
field with amplitude uµ, which propagates along some hypersurface φ. Then,
the entire electromagnetic four-potential Aµ is given by the following expression:
Aµ
(
x0,x

)
= aµ

(
x0,x

)
+ uµ

(
x0,x

)
Θ
(
φ
(
x0,x

))
[58]. By inserting this ansatz into

the covariant Maxwell equations one just obtains the equation (10) which governs the
evolution of the hypersurface φ in the curved space-time on which any discontinuity
of the electromagnetic field is located. Thus, the three-dimensional sub-manifolds
φ
(
x0, x1, x2, x3

)
of the Riemannian space-time can be identified with the front of

electromagnetic action (e.g. abrupt discontinuity in the near-zone of the four-current
or wave-front of an electromagnetic wave in the far-zone of the four-current) caused
by some rapid change in the electromagnetic four-current.

Furthermore, one may introduce a trajectory, xα (λ) where λ is an affine curve-
parameter, which is orthogonal on the surface φ [45, 57, 58, 59],

dxα (λ)

dλ
= gαβ

∂φ

∂xβ
, (12)

that means is normal to the front of electromagnetic action; we will come back
to that issue later, cf. text below Eqs. (66) - (68). Such trajectories are called
Bicharacteristics. The Bicharacteristics can be identified with the light rays, which
propagate with the finite speed of light. Therefore, also the Characteristics, that is
the surface of electromagnetic action, propagates with the finite speed of light. The
light-conoid in curved space-time is built by all Bicharacteristics emanating from some
(arbitrary) event. As mentioned above, besides that c is defined as the fundamental
speed of light in vacuum in the flat Minkowski space, it is clear that the retardation,
that means the natural constant c in the denominator on the r.h.s. in Eq. (9), is caused
by the finite speed of gravitational action and not due to the finite speed of light. Even
in case the stress-energy tensor of matter would only consist of electromagnetic fields,
4π Tαβ = Fαµ F βµ− 1

4 g
αβ Fµν F

µν [43], then, nevertheless, the retardation would also
originate from the finite speed of gravitational fields (in this case with the well-known
property that the Ricci scalar vanishes but of course not the Ricci tensor) which, in
this specific case, would entirely be generated by these electrodynamical fields.

• Third, let us now consider the non-linear PDE for the Characteristics of the
exact field equations of gravity (1), which is given by [45, 57, 58, 59],

gαβ
∂ω

∂xα
∂ω

∂xβ
= 0 , (13)

which is valid in the near-zone as well as in the far-zone of the matter source
Tαβ (t,x) and is valid in any reference system. The derivation of the PDE (13) for the
Characteristics is similar to the above considerations in case of the covariant Maxwell
equations. Consider a continuous (smoothly changing) background metric gµν0 which is
generated by some matter Tαβ . Then assume a rapid acceleration of the matter which
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results in an abrupt Theta-like discontinuity (perturbation) with metric hαβ . Hence,

the entire metric is given by: gαβ
(
x0,x

)
= gαβ0

(
x0,x

)
+ hαβ

(
x0,x

)
Θ
(
ω
(
x0,x

))
[58]. Now, if one wants to investigate how the gravitational discontinuity (non-analytic
gravitational signal) propagates in space and time, one has to insert this ansatz into
the exact Einstein equations, which yields the PDE (13). Thus, the Characteristics ω
can be identified with the front of gravitational action (e.g. abrupt discontinuity in
the near-zone of matter source or wave-front of a gravitational wave in the far-zone of
matter source) caused by the matter source. The front of gravitational action ω is a
curved three-dimensional sub-manifold, ω

(
x0, x1, x2, x3

)
= const, of the Riemannian

space-time, that means a three-dimensional surface on which any discontinuities of
the gravitational field must lie [45, 57, 58, 59]. In case of flat background metric, i.e.

gαβ0 = ηαβ , the solution of the PDE (13) at the event
(
x00, x

1
0, x

2
0, x

3
0

)
is given by the

null-cone,

ω
(
x0, x1, x2, x3

)
=
(
x00 − x0

)2 − (x10 − x1)2 − (x20 − x2)2 − (x30 − x3)2 . (14)

That means, a gravitational discontinuity (abrupt gravitational signal) generated
at
(
x00, x

1
0, x

2
0, x

3
0

)
propagates in the flat space-time along the null-cone (14). The

generalization of the null-cone (14) of gravitational action in flat background metric is
the null-conoid in curved space-time as governed by (13), which for the curved space-
time of the Solar system can only be solved approximately, for instance by iteration.

One may also introduce Bicharacteristics for the field equations of gravity, zα(ρ)
where ρ is an affine curve-parameter, which are trajectories orthonormal on the
hypersurface ω [45, 57, 58, 59],

dzα(ρ)

dρ
= gαβ

∂ω

∂xβ
, (15)

that means is normal to the front of gravitational action; we will come back to
that issue later, cf. text below Eqs. (66) - (68). These Bicharacteristics can be
considered as gravitational rays. Such an idealized picture is well justified for a
gravitational wave when the wavelength is negligibly small in comparison with the
spatial region of propagation of the wave. Such condition is satisfied in the far-zone of
the Solar System, but not in the near-zone of the Solar System where the wavelength
of gravitational radiation is larger than the boundary of the near-zone. That is
why the Bicharacteristics in the near-zone should be considered as a mathematical
concept of being normals onto the characteristic hypersurface ω, while in the far-
zone the Bicharacteristics can physically be interpreted as gravitational rays. But
what is important here is the fact that the speed of gravity equals the speed of light,
because the equations (10) and (12) are identical with (13) and (15), respectively; cf.
Section 7.2 in [10]. Therefore, as just mentioned above, the natural constant c in the
denominator on the r.h.s. in Eq. (9) is related to the finite speed of gravity which
equals the finite speed of light. The null-conoid (at some arbitrary event), can also
be defined as the set of all Bicharacteristics emanating from that (arbitrary) event in
the curved space-time.

• Fourth, as stated above, the equations for the Characteristics, Eq. (10) and
Eq. (13), are fundamental consequences of the exact field equations of electrodynamics
in curved space-time and the exact field equations of gravity, respectively. They
state that there is no difference between the speed of light in curved space-time and
the speed of gravitational action; cf. §53 in [45]. Nevertheless, the propagation of
electromagnetic action and the propagation of gravitational action are two different
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physical processes, and besides that their velocities are numerically equal, it does
not mean that they can not be distinguished from each other. For instance, if the
directions of electromagnetic wave propagation and propagation of gravitational action
are different from each other, then one may distinguish between the directions of
both these velocities; cf. Section 7.2 in [10]. Furthermore, the important theoretical
prediction of Einstein’s theory that both velocities are equal to each other, has recently
been confirmed by the first detection of gravitational waves generated by the inspiral
and merger of a binary neutron star and the determination of the location of the
source by subsequent observations in the electromagnetic spectrum [60, 61]. This
measurement has constrained the difference between the speed of gravity and the
speed of light to be between −3× 10−15 and +7× 10−16 times the speed of light [62].
Needless to say that in this case both physical processes have clearly been separated,
besides that the gravitational wave and the electromagnetic signal were parallel to
each other.

A detailed description about how the finite speed of gravity in the near-zone of
the Solar System could in principle be determined by means of Very Long Baseline
Interferometry (VLBI) has been presented in [63]. The suggested approach is based on
the increasing precision of VLBI facilities which allow to determine the impact of the
orbital velocity vA of a massive Solar System body on the Shapiro time-delay, which
states that the total time of the propagation of a light signal from the four-coordinate
of a light source (ct0,x0) to the four-coordinate of an observer (ct1,x1) is given by
(e.g. Eq. (43) in [37])

c (t1 − t0) = |x1 − x0|+ c∆ (t1, t0) , (16)

where |x1 − x0| is the Euclidean distance between source and observer and ∆ (t1, t0)
is the time-delay of the light signal caused by the gravitational field of the massive
body in motion.

In the first post-Minkowskian (1PM) approximation, which is exact up to terms
to order O

(
G2
)

and exact to all orders in the speed of the body, the time-delay is given
by Eq. (51) in [37], which, by neglecting all terms proportional to the acceleration of
the body (series expansion (35) is also employed), reads:

∆ (t1, t0) = −2
GMA

c3

(
1− k · vA (s1)

c

)
ln
rA (s1)− k · rA (s1)

rA (s0)− k · rA (s0)
+O

(
G2
)
, (17)

which is valid for light propagation in the field of one monopole in arbitrary motion,
irrespective of the fact that acceleration terms of the body were neglected. The unit-
vector k points from the light source towards the position of the observer, and the
three-vectors rA (s0) = x (t0)−xA (s0) and rA (s1) = x (t1)−xA (s1), where x (t0) and
x (t1) are the spatial coordinates of the light signal at source and observer, respectively,
while xA (s0) and xA (s1) are the spatial position of the body at the retarded time s0
and s1, as defined in the below standing equations (45) and (47). Let us notice here
that (17) also agrees with Eqs. (146) - (148) in [34].

In the 1.5 post-Newtonian (1.5PN) approximation, which is exact up to terms to
order O

(
c−4
)

that means only exact to the first order in the speed of the body, the
time-delay is given by Eq. (7) in [64] and reads:

∆ (t1, t0) = −2
GMA

c3

(
1− k · vA

c

)
ln
rA (t1)−K · rA (t1)

rA (t0)−K · rA (t0)
+O

(
c−4
)
, (18)

which is valid for light propagation in the field of one monopole in uniform motion,
that means all acceleration terms of the body are zero. The three-vectors rA (t0) =
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x (t0) − xA (t0) and rA (t1) = x (t1) − xA (t1), where xA (t0) and xA (t1) are the
spatial positions of the body at time of emission t0 and time of reception t1 of the

light signal. Furthermore, in Eq. (18) the three-vector K = k−k×
(vA
c
× k

)
. Let us

notice here that Eqs. (137) - (139) in [34] are valid for light propagation in the field of
one arbitrarily moving body in slow motion, which in case of uniform motion coincide
with (18), as one may show by series expansion.

For grazing light rays or radio waves at massive bodies of the Solar System, the
velocity dependent terms in (17) or (18) contribute of the order of a few picoseconds
in time-delay; cf. Table II in [34] for grazing rays at Sun or giant planets. At this
order of precision it becomes possible to measure such velocity-dependent terms in
time-delay (17) or (18) by means of the most modern VLBI techniques. In fact, such
a concrete experiment by VLBI facilities has been suggested in [63], and has finally
been performed in 2002 with remarkable effort and precision [66]. In particular, in [66]
the Shapiro time delay of a radio wave, emitted by the quasar QSO J0842 + 1835 and
passing near Jupiter, has been determined with extremely high precision, in order to
determine the finite speed of the gravity fields of that moving body. This experiment
has, at the very first time, succeeded in determining the impact of the orbital velocity
effects to order vA/c of Jupiter on the Shapiro time-delay. Subsequently, these results
have initiated a controversial debate in the literature about the correct interpretation
of this experiment [9, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79]; further
comments about the Kopeikin-Formalont experiment can be found in [10, 80, 81, 82,
83]. While there is no doubt at all in the literature about the correctness of the
expressions (17) and (18), a central topic of this conversion was about the correct
physical meaning of the natural constant c in the velocity-dependent terms in (17)
and (18).

That remarkable debate had arisen just because of the above discussed
fundamental prediction of general relativity that the speed of gravity and the speed of
light are numerically equal. That is why it becomes a highly sophisticated assignment
of a task to disentangle these both velocities in concrete astrometrical measurements.
In [37] it was shown that the retarded instant of time s0 and s1 in (17) are caused by
the retarded time of the Liénard-Wiechert potential of the metric tensor (Eq. (10) in
[37]), hence they are caused by the finite speed of gravity so that the natural constant c
is related to the finite speed of gravity. And due to the fact that (18) can be deduced
from (17) by series expansion and by assuming a uniform motion of the body, one
might be inclined to assume that the natural constant c in (18) is related to the finite
speed of gravity. On the other side, in [64] it was shown that the natural constant c
in (18) is caused by the finite speed of light and is not related to the finite speed of
gravity. So it might be that a unique interpretation of the experiment is impossible as
long as one is restricted to terms of the first order in vA/c. But it should be noticed
that the controversy was not about the correctness of the theory of general relativity,
but mainly about the question of whether the velocity-dependent term in the Shapiro
time-delay is related to the finite speed of gravity (retardation of gravitational action)
or to the finite speed of light (aberration of light).

In this context it should also be noticed that there is agreement among the
participants of this controversy with respect to the following minimal set of issues:

(a) the retarded time in (9) is caused by the finite speed of gravity.

(b) the finite speed of gravity has surely an impact on the Shapiro time-delay.

(c) the impact of orbital velocity of Jupiter on time-delay has been detected in [66].
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While in principle the experiment suggested in [63] is capable to measure the speed of
gravity, there is no general consensus about the correct interpretation of the results
of the concrete experiment in [66], as it was also formulated in [81]. It seems that
the fact that the retarded time u in (9) as well as the retarded time s1 and s0 in the
below standing equations (45) and (47) are due to the finite speed of gravity might not
necessarily be convincing for a unique and correct interpretation of these astrometrical
VLBI measurements [64]. Moreover, in [64] it was argued that acceleration terms or
terms of the order v2A/c

2 give the first level at which retardation effects due to the
motion of the massive bodies occur. However, in order to determine the next higher
order terms, that means terms proportional to the acceleration of the body or terms of
the order v2A/c

2 in the Shapiro time-delay, one needs to improve the precision in time
measurements by VLBI experiments by a factor of about 104, which requires an ultra-
high precision in the time-resolution of VLBI measurements of about 10−3 picoseconds,
which is far out of reach of present-day VLBI facilities. Furthermore, the theoretical
interpretation of the experiment might also depend on the generalized theoretical
models beyond general relativity which allow to distinguish between the speed of
light and speed of gravity [71]. Even the semantics in use could have an impact
on the correct interpretation of these VLBI results [80]. Here, also in view of the
exceptional number of articles in the literature related to this subject, a detailed and
correct interpretation of this famous experiment would be far beyond the intention
of our investigation. For the moment being, it seems sensible to keep in mind the
problem and to realize that further careful investigations and higher precisions in VLBI
measurements are necessary in order to clarify such involved difficulties regarding the
distinction between the speed of electromagnetic fields and the speed of gravitational
action in the near-zone of the Solar System.

Finally, having said all that we emphasize again that the retarded instant of time
(9) originates from the finite speed of gravity which equals the speed of light, a fact
that is in meanwhile sufficient for our considerations here; cf. also the comments in
the text below Eqs. (31) and (34) as well as in the text below Eqs. (45) and (47).

1.4. The exact geodesic equation for light propagation

Throughout the investigation the propagation of a light signal in vacuum is considered.
The most simplest light tracking model presupposes a four-dimensional flat space-
time with Minkowskian metric ηαβ = diag (−1,+1,+1,+1) which implicitly involves
Cartesian coordinates, where the light ray propagates along a straight line. Then, a
light signal emitted at some spatial point x0 at time t0 propagates along it’s initial
direction σ, so that the light trajectory in the global system reads as follows,

xN (t) = x0 + c (t− t0)σ , (19)

where suffix N labels Newtonian approximation. Such a simple light propagation
model is not sufficient for todays precision of astrometric measurements which,
as stated above, implicates a corresponding advancement in the theory of light
propagation. Especially, relativistic astrometry has necessarily to account for the
fact that the space-time is not flat but a four-dimensional curved manifold. Because
the space-time is curved, a light signal propagates along a geodesic which is the
generalization of the concept of a straight line because a geodesic is a curve that
parallel-transports its own tangent vector. Consequently, a fundamental assignment
in relativistic astrometry concerns the precise modeling of the time track of a light



Light propagation in 2PN approximation in the field of one moving monopole 12

signal through the curved space-time of Solar System, that is to say the determination
the trajectory of the light signal, x (t), in some reference system which covers the entire
curved space-time (at least those part of the entire space-time which contains the light
source and the observer) and, therefore, is called global coordinate system.

The trajectory of a light signal propagating in curved space-time is determined
by the geodesic equation and isotropic condition, which in terms of coordinate time
read as follows [10, 32, 43] (e.g. Eqs. (3.220) - (3.224) in [10]):

ẍi (t)

c2
+ Γiαβ

ẋα (t)

c

ẋβ (t)

c
− Γ0

αβ

ẋα (t)

c

ẋβ (t)

c

ẋi (t)

c
= 0 , (20)

gαβ
ẋα (t)

c

ẋβ (t)

c
= 0 , (21)

where a dot denotes total derivative with respect to coordinate time, hence ẋi (t) are
the three-components of the coordinate velocity of the photon. The null condition
(21) and geodesic equation (20) have equivalent physical content because (21) is a
first integral of (20). As mentioned above, the natural constant c explicitly seen in
both these equations (20) and (21) means actually the speed of light, while the natural
constant c contained in the Christoffel symbols and metric tensor is related to the finite
speed of gravity as stated already in the text below Eqs. (8) and (9). Furthermore, it
should be mentioned that the coordinate velocity of a light signal in the global system
of curved space-time differs from the speed of light in flat space-time |ẋ| 6= c ; only in
the local system of a free-falling observer both are equal.

1.4.1. The initial value problem The light signal is assumed to be emitted at the
four-position of the light source, (t0,x0), as given in some global coordinate system
(t,x). Then, a unique solution of the partial differential equation (20) is well-defined
by the so-called initial-value problem (Cauchy problem), where the spatial position of
the light source, x0, and the initial unit direction of the light ray, µ = ẋ (t0) / |ẋ (t0)|,
are given. Usually, the initial value problem is often replaced by the so-called initial-
boundary conditions [10, 32, 35, 36, 38, 33, 34]:

x0 = x (t)

∣∣∣∣
t=t0

and σ =
ẋ (t)

c

∣∣∣∣
t=−∞

, (22)

with σ being the unit-direction (σ · σ = 1) of the light ray at past null infinity J−
(cf. notation in Section 34 in [43] and Figure 34.2. in [43]). The advantage for using
initial-boundary conditions (22) rather than initial-value conditions when integrating
the geodesic equation (20) is solely based on the integration constant which becomes
simpler at past null infinity. One may easily find a unique relation between the tangent
vectors σ and µ (e.g. Section 3.2.3 in [32]), so one verifies that there is a unique one-to-
one correspondence between the initial-boundary problem (22) and the initial-value
problem; more precisely, these statements are valid in case of a weak gravitational
field and ordinary topology of space-time. According to (22), the solution for the light
trajectory is a function of these initial-boundary conditions: x (t) = x (t,x0,σ).

1.4.2. The boundary value problem A unique solution of geodesic equation (20)
can also be defined by the so-called boundary-value problem rather than the initial-
boundary problem (22). In the boundary-value problem a light signal is supposed



Light propagation in 2PN approximation in the field of one moving monopole 13

to be emitted at some initial space-time point (t0,x0) (source) which is received at
another space-time point (t1,x1) (observer) [10, 11, 12, 32, 35, 39]:

x0 = x (t)

∣∣∣∣
t=t0

and x1 = x (t)

∣∣∣∣
t=t1

. (23)

Accordingly, the solution of the light trajectory will be a function of these boundary
conditions: x (t) = x (t,x0,x1).

Because in reality any light source is located at some finite distance, the solution
of the boundary-value problem is of decisive importance in practical astrometry
[10, 32, 35]. Accordingly, the primary aim of our investigation is to determine the
solution of the boundary-value problem (23) when the solution of the initial-boundary
problem (22) is given.

1.5. The geodesic equation for light propagation in 2PN approximation

The metric enters the geodesic equation (20) in virtue of the Christoffel symbols (2). It
is, however, impossible to determine the Solar System metric without taking recourse
to an approximation scheme. Such an approximative approach is possible, because in
the Solar System the gravitational fields are weak, mA/PA � 1 (Schwarzschild radius
mA = GMA/c

2 with MA and PA being mass and equatorial radius of body A) and
the motions of matter are slow as compared with the speed of light vA/c� 1 (we have
in mind that vA is just the orbital velocity of the body, but in general could also be
rotational motion of extended bodies, convection currents inside the massive bodies,
oscillations of the bodies, etc.). Accordingly, a series expansion in inverse powers of
the natural constant c is meaningful,

gαβ (t,x) = ηαβ + h
(2)
αβ (t,x) + h

(3)
αβ (t,x) + h

(4)
αβ (t,x) +O

(
c−5
)
, (24)

where h
(n)
αβ ∼ O (c−n) are tiny perturbations of the flat Minkowskian metric, that is∣∣∣h(n)αβ

∣∣∣ � 1 for any α, β. Here, in line of the comments made above regarding the

physical meaning of the natural constant c, we just notice that the post-Newtonian
expansion of the metric tensor (24) is of course an expansion with respect to the
inverse power of the speed of gravity.

The series expansion (24) includes all terms up to the fifth order and is called
post-post-Newtonian (2PN) approximation of the metric tensor. The validity of the
post-Newtonian expansion (24) is restricted to the near-zone region of the Solar System
where the retardations are small by definition [10, 43, 52, 53, 84]; see also the Fig. 7.7
in [10] or Fig. 36.3 in [43]. The near-zone of a gravitating system is defined as spatial
region with the boundary |x| � λgr , where λgr is a characteristic wavelength of
gravitational waves emitted by the system and the origin of spatial axes is assumed to
be located at the center-of-mass of the gravitational system or somewhere nearby. For
the Solar System one obtains about λgr ∼ 1017 m which is the lowest wavelength of
gravitational radiation emitted by Jupiter during its revolution around the barycenter
of the Solar System [10, 34, 43]. A more accurate statement is achieved by the fact
that the term near-zone is intrinsically connected with orbital accelerations aA of the
massive bodies A = 1, ..., N which constitute gravitational system. In mathematical
terms it requires

aA (t) rA (t)

c2
� vA (t)

c
� 1 (25)
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for each massive body A; here vA (t) is the orbital velocity and rA (t) = |x− xA (t)| is
the spatial distance of some field point x from the massive body A located at xA (t).
The condition (25) has already been stated by by Eq. (B7) in [85] or Eq. (97) in [86]

and follows from
∣∣∣h(4)αβ ∣∣∣� ∣∣∣h(2)αβ ∣∣∣� 1, where the metric coefficients for a system of N

moving monopoles are given by Eqs. (24) - (27) in [86] ‡. Using the numerical values
of the most massive Solar System bodies as given in Table D1 we find the spatial
radius of the near-zone to be about

|x| ≤ 1014 m . (26)

The results and considerations of our investigation are valid within this spatial region,
which corresponds to about 4 light-days.

By inserting the post-Newtonian expansion of the metric tensor (24) into the
geodesic equation (20) via the Christoffel symbols (2) one obtains the geodesic
equation in the so-called post-post-Newtonian (2PN) approximation, which is given,
for instance, in [86, 85, 87]. The formal solution of the geodesic equation in 2PN
approximation reads §,

x (t) = x0 + c (t− t0)σ + ∆x1PN (t) + ∆x1.5PN (t) + ∆x2PN (t) +O
(
c−5
)
.(27)

The first two terms on the r.h.s. in (27) represent the unperturbed light ray (19), while
the subsequent terms represent corrections to the unperturbed light ray. The physical
meaning of the natural constant c in the unperturbed light ray, x0 + c (t− t0)σ,
is of course the speed of light in flat Minkowskian space-time; cf. comment below
Eqs. (20) - (21) regarding the geodesic equation and isotropic condition for light rays.
It should be noticed that the post-Newtonian correction terms ∆xnPN (t) originate
from the post-Newtonian expansion of the metric tensor (24), which is an expansion in
inverses powers of c, meaning the speed of gravity. However, in order to compute these
correction terms ∆xnPN (t), the integration of geodesic equation proceeded along the
unperturbed light ray [85, 86], where the meaning of c is the speed of light. Therefore,
the correction terms ∆xnPN (t) in (27) contain the natural constant c in two different
meanings, namely the speed of light and the speed of gravity. One might believe
that this kind of entanglement makes it impossible to separate the impact of the
finite speed of gravity and the finite speed of light in these correction terms. This is,
however, not true. The terms related to the characteristics of the gravity field and
the terms related to the light characteristics can clearly be separated in the solution
of the light-ray trajectory (27); cf. comments below Eqs. (66) - (68).

For an overview of the state-of-the-art in the theory of light propagation we refer
to the text books [10, 32] and the articles [11, 33, 34, 35, 36, 37, 38, 39, 40]. According
to these references, an impressive progress in the determination of the correction terms
∆x1PN (t) and ∆x1.5PN (t) has been made during recent decades.

On the other side, the knowledge of the correction terms ∆x2PN (t) is pretty much
limited thus far. In fact, the problem of light propagation in 2PN approximation, that

‡ Let us recall that the harmonic gauge condition (3) still inherits a residual gauge freedom, so the
harmonic coordinates actually refer to a class of reference systems. A unique choice of harmonic
coordinates is provided by the Barycentric Celestial Reference System (BCRS) [48], which defines
the origin of spatial coordinates at the barycenter of the Solar System, a stipulation which removes
the residual gauge freedom. The metric coefficients for a system of N moving monopoles, which have
been presented by Eqs. (24) - (27) in [86], are given in the BCRS, so they do not contain any gauge
terms.
§ The notation in Eq. (27) has been adjusted to the standard notation commonly used in the literature
[32, 33, 34, 85, 86]. A reconcilable notation for the series expansions (24) and (27) can be achieved
by noticing that ∆x(2) ≡ ∆x1PN and ∆x(3) ≡ ∆x1.5PN and ∆x(4) ≡ ∆x2PN.
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means the determination of the light trajectory (27) as function of coordinate time,
has only been considered for the following rather restricted situations ‖:
• 2PN light trajectory in the field of one monopole at rest [32, 96] ¶,

• 2PN light trajectory in the field of two point-like bodies in slow motion [87],

where [87] was not intended for light propagation in the Solar System.
It is, however, clear that for astrometry on the micro-arcsecond and sub-micro-

arcsecond level it is indispensable to determine the light trajectory in the second post-
Newtonian approximation for more realistic gravitational systems, especially where
the motion of the bodies is taken into account [25, 97, 98, 99, 107, 108, 109, 110, 111].
Already for micro-arcsecond astrometry it is necessary to account for the motion of
the Solar System bodies, where it is sufficient to determine the light trajectory in the
field of one monopole at rest, xA = const, and then simply to insert the retarded
position of the body, xA = xA (s1), where s1 is the retarded instant of time as defined
by Eq. (47). But for the sub-micro-arcsecond astrometry such a simplified access
is insufficient, because terms which are proportional to the orbital velocity of the
body contribute on such level of precision in light deflection. In order to account for
those terms in the 2PN solution of the light trajectory which are proportional to the
orbital velocity of the body, one needs to consider the equation of motion for light
signals propagating in the gravitational field of moving bodies. On these grounds, an
analytical solution for the light trajectory in 2PN approximation in the gravitational
field of one arbitrarily moving pointlike monopole has recently been determined in
[85, 86], where the so-called initial-value problem (22) has been solved:

• 2PN light trajectory in field of one arbitrarily moving monopole [85, 86].

Because in reality any light source is located at some finite distance, the consideration
of the boundary-value problem (23) is of fundamental importance for the unique
interpretation of astrometric observations [10, 32, 35]. Needless to say, that this
fact becomes of particular importance for astrometry of Solar System objects, say
for astrometric measurements in the near-zone of the Solar System, which will be the
primary topic of this investigation.

The organization of the article is aligned as follows. In Section 2 the main results
of the initial-boundary value problem of 2PN light propagation are summarized, which
were recently obtained in [85, 86]. Section 3 defines the boundary-value problem,
and series expansions in the near-zone of the Solar System are considered. The
three fundamental transformations of the boundary-value problem are derived in the
Sections 4 and 5 and 6. An estimation of the numerical magnitude of each individual
term and the resulting simplified transformations are also given in these Sections. The
impact of higher order terms beyond 2PN approximation is considered in Section 7.
The summary and outlook can be found in Section 8. The notation, some relations,
and details of the calculations are delegated to appendices.

‖ Let us notice here that the light deflection in 2PN approximation in the field of one monopole at
rest has been determined a long time ago [88, 89, 90, 91, 92, 93, 94]. But a unique interpretation
of astrometric observations requires the knowledge of the propagation of the light signal, i.e. the
determination of the light trajectory as function of coordinate time (27). We also notice the
investigation in [95] where the problem of time delay in the field of one monopole in uniform motion
has been considered, but this investigation was not aiming at astrometric measurements in the Solar
System.
¶ The results of [32, 96] were later confirmed in several related investigations [97, 98, 99, 100, 101,
102, 103, 104, 105, 106].
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2. The initial-boundary value problem in 2PN approximation

So as not to have to look up in the literature the main results of our articles [85, 86],
that is the solution in 2PN approximation for coordinate velocity and trajectory of a
light signal propagating in the field of one moving monopole, will be summarized for
subsequent considerations.

As formulated in the introductory section, a unique solution of (20) is well-defined
by initial-boundary conditions,

x0 = x (t)

∣∣∣∣
t=t0

and σ =
ẋ (t)

c

∣∣∣∣
t=−∞

, (28)

with x0 being the position of the light source at the moment t0 of emission of the
light-signal and σ being the unit-direction (σ · σ = 1) of the light ray at past null
infinity.

BCRS

s

worldline of pointlike body

exact light trajectory

light at 
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Figure 1. A geometrical representation of light propagation through the
gravitational field of one pointlike massive body A moving along its worldline
xA (t); the diagram is not Minkowskian but a purely spatial picture, i.e.(
x1, x2, x3

)
denote the three spatial axes of the BCRS. The three-vectors rA (s),

r 0
A (s0), and r 1

A (s1) are defined by Eqs. (30), (46), and (48), respectively; for

rNA (s) see footnote on p.18 . The impact vectors dN (s) and dN (s0) are given by
Eqs. (39). The three-vectors σ, k, and n are shown, which are defined by the
Eqs. (28), (43), and (44), respectively. Their transformations among each other
represent the fundamental aspects of the boundary value problem.

2.1. The coordinate velocity of a light signal in 2PN approximation

The first integration of geodesic equation in 2PN approximation yields the coordinate
velocity of a light signal and is given by (cf. Eq. (99) in [86]):

ẋ (t)

c
= σ +mAA1 (rA (s)) +mAA2 (rA (s) ,vA (s))

+m2
AA3 (rA (s)) +mA ε1 (rA (s) ,vA (s)) +O

(
c−5
)
, (29)



Light propagation in 2PN approximation in the field of one moving monopole 17

where the vectorial functions A1, A2, A3, and ε1 are given in Appendix B by
Eqs. (B.1) - (B.3) and Eq. (B.4), respectively. The argument rA (s) in the vectorial
functions in (29) is +

rA (s) = x (t)− xA (s) , (30)

with x (t) being the exact spatial coordinate of the light signal at global coordinate
time t, while xA (s) is the spatial position of the body at retarded time s, which is
defined by an implicit relation,

s = t− rA (s)

c
, (31)

where rA (s) = |rA (s)|; here it should be noticed that the retardation (31) is due to
the finite speed of propagation of gravity which equals the speed of light. The other
argument vA (s) in the vectorial functions in (29) is the orbital velocity of the body
at the retarded instant of time s. The retarded time (31) is a function of coordinate
time and cannot be solved in closed form; only for the simple case of linear motion of
the body a solution is possible as given by Eq. (3.14) in [75] or Eq. (9) in [112].

2.2. The trajectory of a light signal in 2PN approximation

The second integration of geodesic equation in 2PN approximation yields the
trajectory of a light signal and is given by (cf. Eq. (128) in [86]):

x (t) = x0 + c (t− t0)σ + mA

(
B1 (rA (s))−B1 (rA (s0))

)

+mA

(
BA

2 (rA (s) ,vA (s))−BA
2 (rA (s0) ,vA (s))

)

+mA

(
BB

2 (rA (s) ,vA (s))−BB
2 (rA (s0) ,vA (s0))

)

+m2
A

(
B3 (rA (s))−B3 (rA (s0))

)
+mA ε2 (s, s0) +O

(
c−5
)
, (32)

where the vectorial functions B1, BA
2 , BB

2 , B3, and ε2 are given in Appendix B by
Eqs. (B.5) - (B.8) and Eqs. (B.9) - (B.11), respectively. The argument rA (s0) reads

rA (s0) = x (t0)− xA (s0) , (33)

with x (t0) being the exact spatial coordinate of the light signal at the light source,
while xA (s0) is the spatial position of the body at retarded time s0, which reads

s0 = t0 −
rA (s0)

c
, (34)

where rA (s0) = |rA (s0)|; let us notice here that the retarded time in (34) is due to
the finite speed of propagation of gravity which equals the speed of light.

The other argument vA (s0) in the vectorial functions in (32) is the orbital velocity
of the body at the retarded instant of time s0. As it has been emphasized in [86], it
is important to realize that the velocity in the vectorial functions BA

2 in (32) is taken

+ The approximative arguments in the vectorial functions in Eqs. (99) and (128) in [86] can be
replaced by their exact value rA (s), because such replacement causes an error of the order O

(
c−5

)
which is beyond 2PN approximation.
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at the very same instant of retarded time s, which ensures the logarithm in (B.6) in
combination with (32) to be well-defined.

There seems to be a marginal difference between Eq. (32) and Eq. (128) in [86],
namely the argument of the velocity term in the second line of both these equations are
different. However, this difference is only apparent, because the relation (cf. Eq. (121)
in [86])

vA (s0)

c
=
vA (s)

c
+
aA (s)

c2
c (s0 − s) +O

(
c−3
)
, (35)

allows to replace vA (s0) by vA (s). But according to this relation, such a replacement
implies the occurrence of a term aA (s) (s0 − s) which is taken into account in the
vectorial function ε2 (s, s0); cf. last term in (B.11) and text below that equation.
Here we also notice the following important relation (cf. Eq. (127) in [86]),

c (s0 − s) = rA (s)− σ · rA (s)− rA (s0) + σ · rA (s0)− σ · xA (s) + σ · xA (s0) , (36)

which is valid up to terms of the order O
(
c−2
)

and follows from (31) and (34) in
virtue of (32) with (30) and (33). It should be noticed that the solutions of coordinate
velocity (29) and trajectory (32) of a light signal as well as relation (36) are valid for
any kind of configuration between source, body and observer.

2.3. Impact vectors in the initial value problem

In the solution for the coordinate velocity (29) and trajectory (32) of a light signal,
the following expressions naturally appear,

dA (s) = σ × (rA (s)× σ) , (37)

dA (s0) = σ × (rA (s0)× σ) , (38)

where the three-vectors rA (s) and rA (s0) are defined by Eqs. (30) and (33). The
three-vectors (37) and (38) and their absolute values are called impact vectors and
impact parameters ∗, respectively.

An important condition for the impact parameter dA (s) is imposed, which follows
from the requirement that the light source should not be screened by the finite disk
of the body,

dA (s) ≥ PA for σ · rA (s) ≥ 0 , (40)

cf. Section 4.2. in [100] for the case of body at rest. If σ · rA (s) < 0 then there is no
constraint imposed for the impact parameter,

dA (s) ≥ 0 for σ · rA (s) < 0 . (41)

One may show that (40) implies dA (s0) ≥ PA for σ · rA (s0) ≥ 0, which is not an
additional request but has the same meaning as (40). But because in the near-zone
of the Solar System the impact parameter dA (s0) is related to dA (s) via a series
expansion, there is no need to impose additional constraints on dA (s0). This issue
will be considered in more detail within the boundary value problem.

∗ One may also define impact vectors with respect to the unperturbed light ray,

dNA (s) = σ ×
(
rNA (s)× σ

)
and dNA (s0) = σ ×

(
rNA (s0)× σ

)
, (39)

where rNA (s) = x0 + cσ (t− t0)−xA (s) and rNA (s0) = x0−xA (s0) = rA (s0). They are illustrated

in Figure 1. Due to dA (s) = dNA (s) + O
(
c−2

)
and dA (s0) = dNA (s0), the impact vector dA (s)

differs marginal from dNA (s), while impact vector dA (s0) is even identical to dNA (s0). The graphical

representation of dNA (s) and dNA (s0) in Figure 1 makes it evident why these terms are called impact
vectors.
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3. The boundary value problem in 2PN approximation

As formulated in the introductory section, a unique solution of (20) is also well-defined
by boundary conditions,

x0 = x (t)

∣∣∣∣
t=t0

and x1 = x (t)

∣∣∣∣
t=t1

, (42)

where x0 is the point of emission of the light signal by the source and x1 is the point
of reception of the light signal by the observer. The position of the observer x1 in
the BCRS is known, while the position of the light source x0 has to be determined
by a unique interpretation of astronomical observations, for it is the primary aim of
astrometric data reduction.

In the theory of light propagation the unit-vector k, which points from the light
source towards the position of the observer, is of fundamental importance,

k =
R

R
with R = x1 − x0 and R = |x1 − x0| . (43)

A further important unit-vector is the normalized tangent along the light ray at the
observer’s position,

n =
ẋ (t1)

|ẋ (t1)|
. (44)

In Figure 1 these unit-vectors n and k are depicted which play the key role in the
boundary value problem.

There are two specific cases for the retarded moment of time (31) which are of
relevance in the boundary value problem:

(i) The retarded instant of time s0 with respect to the emission of the light signal
at the four-coordinate of source (ct0,x0) (cf. Eq. (34)),

s0 = t0 −
r 0
A (s0)

c
with r 0

A (s0) =
∣∣r 0
A (s0)

∣∣ , (45)

where

r 0
A (s0) = x0 − xA (s0) , (46)

where the upper index 0 refers to x0 and the argument s0 refers to the body’s position
xA (s0); here we notice again that the retarded time in (45) is caused by the finite
speed of propagation of gravity which equals the speed of light.

Actually, (46) coincides with (33) in view of x0 = x (t0), but we will keep the
notation (33) as is, in order not to change the notation for the initial-value problem
as used in [86].

(ii) The retarded instant of time with respect to the reception of the light signal
at the four-coordinate of observer (ct1,x1),

s1 = t1 −
r 1
A (s1)

c
with r 1

A (s1) =
∣∣r 1
A (s1)

∣∣ , (47)

where

r 1
A (s1) = x1 − xA (s1) , (48)

where the upper index 1 refers to x1 and the argument s1 refers to the body’s position
xA (s1); let us recall that the retarded time in (47) is due to the finite speed of
propagation of gravity which equals the speed of light.
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For the difference between these retarded instants of time the following relation
holds

c (s0 − s1) =

(
r 1
A (s1)− k · r 1

A (s1)− r 0
A (s0)+k · r 0

A (s0)

)(
1 +

k · vA (s1)

c

)
+O

(
c−2
)
,

(49)

which follows from (45) and (47) as well as (32) and (43); cf. Eq. (36) in combination
with the fact that and σ = k + O

(
c−2
)

and taking account of the below standing
series expansion (50). The relation (49) is valid for any kind of configuration between
source, body and observer.

3.1. Series expansion of the spatial position of the body

In the near-zone of the Solar System a series expansion of the spatial position of
the body becomes meaningful. It is clear that the determination of s0 requires
the knowledge of the four-coordinate of the light source (ct0,x0), which initially is
unknown but results from data reduction of astrometric observations. On the other
side, the determination of s1 requires the four-coordinate of the observer (ct1,x1) as
well as the worldline of the body xA (t), both of which are fundamental prerequisites
for astrometric observations in the near-zone of the Solar System. Usually, the four-
coordinates of the observer are provided by optical tracking of the spacecraft, while
xA (t) is provided by some Solar System ephemeris [113]. Accordingly, we consider a
series expansion of the body’s position around s1,

xA (s0) = xA (s1) +
1

1!

vA (s1)

c
c (s0 − s1) +

1

2!

aA (s1)

c2
c2 (s0 − s1)

2
+O

(
c−3
)
, (50)

which relates the spatial position of the body at retarded time s1 and at retarded time
s0, and where the expression for c (s0 − s1) is given by Eq. (49). The r.h.s. of (50) still
depends on s0. So it turns out to be meaningful to introduce a further three-vector
which is defined as follows,

r 0
A (s1) = x0 − xA (s1) and r 0

A (s1) =
∣∣r 0
A (s1)

∣∣ , (51)

where the upper index 0 refers to x0 and the argument s1 refers to the body’s position
xA (s1). Using this three-vector one may show by iterative use of relation (50) that
the expression for c (s0 − s1) as given by Eq. (49) can also be expressed solely in terms
of s1 as follows,

c (s0 − s1) =

(
r 1
A (s1)− k · r 1

A (s1)− r 0
A (s1) + k · r 0

A (s1)

)(
1 +

k · vA (s1)

c

)
+O

(
c−2
)
.

(52)

The series expansion (50) is absolutely convergent in the near-zone of the Solar System
where the time of light propagation is certainly less than the orbital period of any
massive body orbiting around the barycenter of the Solar System. That means,
according to the convergence criterion [114], the following limit exists ]

L = lim
n→∞

∣∣∣x(n+1)
A (s1)

∣∣∣ |s0 − s1|n+1

(n+ 1)!∣∣∣x(n)
A (s1)

∣∣∣ |s0 − s1|n
n!

< 1 where x
(n)
A (s1) =

dnxA (s)

d sn

∣∣∣∣
s=s1

. (53)

] For instance, the worldline of a body in a two-dimensional circular orbit of radius r is xA (t) =

(r cosωt , r sinωt)T where ω = 2π/T is the angular frequency with T being the orbital period. One

gets
∣∣∣x(n)
A

∣∣∣ = r ωn, hence the limit L = lim
n→∞

2π

T

|s0 − s1|
n+ 1

= 0.
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Even though that terms proportional to the velocity of the body, vA, can be of the
same magnitude or even much larger than the first term on the r.h.s. of the series
expansion (50), the series expansion converges so rapidly that just the first few terms
up to order O

(
c−3
)

were represented, while higher derivatives of the body’s position
(jerk-term, snap-term, jounce-term, etc.) are not given explicitly. This fact can be
seen by inserting the numerical parameters in Table D1 into the series expansion (50).
Finally, we notice that the expansion (50) implies a series expansion of the spatial
velocity of the body,

vA (s0)

c
=
vA (s1)

c
+
aA (s1)

c2
c (s0 − s1) +O

(
c−3
)
, (54)

where for c (s0 − s1) one has to use relation (52).

3.2. Impact vectors in the boundary value problem

For the boundary value problem the relevant impact vectors are defined with respect
to the unit vector k in Eq. (43). As we will see, the impact vector dkA at retarded time
s0 and s1 will naturally appear in the solution of the boundary value problem,

dkA (s0) = k ×
(
r 0
A (s0)× k

)
= k ×

(
r 1
A (s0)× k

)
, (55)

dkA (s1) = k ×
(
r 1
A (s1)× k

)
= k ×

(
r 0
A (s1)× k

)
, (56)

where in the second expression on the r.h.s. in (55) the three-vector

r 1
A (s0) = x1 − xA (s0) (57)

has been introduced. The first expression on the r.h.s. in (55) and (56) is regarded as
the actual definition of the impact vector, while the second expression on the r.h.s. in
(55) and (56) just establishes an equality. The notation impact vector for the three-
vectors (55) and (56) becomes evident by their graphical representations as given by
the Figures E1, E2 and E3. For the same reason their absolute values,

dkA (s0) =
∣∣k × r 0

A (s0)
∣∣ =

∣∣k × r 1
A (s0)

∣∣ , (58)

dkA (s1) =
∣∣k × r 1

A (s1)
∣∣ =

∣∣k × r 0
A (s1)

∣∣ , (59)

are called impact parameter. Like in Eq. (40), for the impact parameter at retarded
time s1 the following constraint is imposed,

dkA (s1) ≥ PA for k · r 1
A (s1) ≥ 0 , (60)

which generalizes the constraint dkA ≥ PA for light propagation in the field of bodies at
rest (cf. Section 4.2 in [100]) and just represents the fact that configurations where the
light source can be seen by the observer in front of the finite sized body are excluded
from the light propagation model. If k ·r 1

A (s1) < 0 then there is no constraint for the
impact vector,

dkA (s1) ≥ 0 for k · r 1
A (s1) < 0 . (61)

Actually, one may show that (60) implies dkA (s0) ≥ PA if k · r 0
A (s1) ≥ 0; such

a configuration has been represented in Figure E2. But there is no need for any
constraint on the impact parameter dkA (s0), because this impact parameter is not
independent of dkA (s1). This important issue will be considered in more detail in
what follows.
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As stated, the impact vectors (55) and (56) are not independent of each other
but related via a series expansion. Such a relation is obtained by inserting (50) into
(57) and subsequently into the second term on the r.h.s. of (55), which yields

dkA (s0) = dkA (s1)− 1

1!
k ×

(
vA (s1)

c
× k

)
c (s0 − s1)

− 1

2!
k ×

(
aA (s1)

c2
× k

)
c2 (s0 − s1)

2
+O

(
c−3
)
, (62)

where c (s0 − s1) is given by Eq. (52). For the absolute value we obtain from (62)(
dkA (s0)

)2
=
(
dkA (s1)

)2 − 2dkA (s1) · vA (s1)

c
c (s0 − s1)− dkA (s1) · aA (s1)

c2
c2 (s0 − s1)

2

+

∣∣∣∣k × vA (s1)

c

∣∣∣∣2 c2 (s0 − s1)
2

+ O
(
c−3
)
, (63)

where k·dkA (s1) = 0 has been used. Whatever we need is a relation between the inverse
of dkA (s0) and the inverse of dkA (s1). As mentioned above, the terms proportional to
the velocity and acceleration of the body might become larger than the first term,
hence a series expansion of the inverse of (63) is not necessarily possible in general.
So we will have to use the exact identity,

1

dkA (s0)
=

1

dkA (s1)
+

(
dkA (s1)

)2 − (dkA (s0)
)2

dkA (s0) dkA (s1)
(
dkA (s0) + dkA (s1)

) . (64)

The latter is used in evaluating the following expansion of the inverse impact
parameter,

1

dkA (s0)
=

1

dkA (s1)
+

2dkA (s1) · vA (s1)

c
c (s0 − s1)

dkA (s0) dkA (s1)
(
dkA (s0) + dkA (s1)

)

+
dkA (s1) · aA (s1)

c2
c2 (s0 − s1)

2

dkA (s0) dkA (s1)
(
dkA (s0) + dkA (s1)

) −
∣∣∣∣k × vA (s1)

c

∣∣∣∣2 c2 (s0 − s1)
2

dkA (s0) dkA (s1)
(
dkA (s0) + dkA (s1)

)
+O

(
c−3
)
, (65)

which is an incomplete series expansion because the r.h.s. still depends on dkA (s0).
A comment should be in order about these relations in (64) and (65). In contrast

to dkA (s1), which must be larger than the equatorial radius PA of the massive body
as long as k ·r 1

A (s1) > 0, there is no such kind of constraint for the impact parameter
dkA (s0). In other words, the impact parameter dkA (s0) can become arbitrarily small
and might even vanish, so that the limit dkA (s0)→ 0 is quite possible; cf. the related
comment below Eq. (B.12) in [86]. For such cases the relations (64) and (65) remain
strictly valid, but the expressions on the l.h.s. and r.h.s. of these relations would
become arbitrarily large. One has, however, to keep in mind that the inverse of the
impact parameter dkA (s0) is only one piece of a more complex expression which, up to
terms of the order O

(
c−5
)
, remains finite when inserting the r.h.s. of (65), even in the

limit dkA (s0) → 0. It is a remarkable feature of the 2PN solution that the constraint
(60) turns out to be sufficient to keep each term finite in each of the transformations
of boundary value problem, regardless of how small the impact parameter dkA (s0)
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can be. But one has to bear in mind the fact that the impact vectors, the impact
parameters, and the inverse of the impact parameters are not independent of each
other, but related via Eqs. (62), (63) and (65).

3.3. Notation of four-vectors

In what follows we will determine three fundamental transformations which comprise
the boundary value problem, that means the transformations between σ in Eq. (28),
k in Eq. (43), n in Eq. (44), in their chain of reasoning. But before we proceed
further, the following simplifying notation of four-dimensional vectors is introduced,
as adopted from [10, 37, 40],

σµ = (1,σ) , ηµν σ
µσν = 0 , (66)

kµ = (1,k) , ηµν k
µkν = 0 , (67)

rµA (s) = (rA (s) , rA (s)) , ηµν r
µ
A (s) rνA (s) = 0 . (68)

Each of these four-dimensional quantities, (66) and (67) and (68), is a null-vector with
respect to the metric tensor ηµν of the flat Minkowskian space-time. But one has to
take care about their different meaning: the four-vectors (66) and (67) are, up to terms
of the order O

(
c−2
)
, directed along the light ray which is a Bicharacteristic (12) of

the covariant Maxwell equations in the curved space-time of the Solar System, while
the four-vector (68) is directed along the Bicharacteristic (15) of the field equations
of gravity; cf. comments made below Eq. (7.82) in [10]. These facts allow formally to
clearly separate the terms related to the characteristics of the gravity field from those
terms related to the light characteristics; cf. text below Eq. (27). But these remarks
do not mean, that in concrete experiments the effects related to the speed of gravity
can easily and clearly be separated from the effects related to the speed of light; cf.
comments below Eqs. (18). Furthermore, one should keep in mind that only (66) is
actually a physical four-vector, because it is defined in the asymptotic region of the
Solar System which is Minkowskian, hence can be interpreted as a four-dimensional
arrow pointing from one event to another. On the other side, the four-quantities
(67) and (68) are introduced as difference of two events in Riemannian space-time,
hence they cannot be considered as physical four-vectors in the common sense, because
in Riemannian space-time a physical four-vector is a (class of) directional derivative
acting on some (arbitrary) scalar function; cf Sec. 9.2. in [43]. Here, we consider
four-quantities like (66) - (68) as purely mathematical objects with whom it is allowed
to apply usual vectorial operations; cf. text below Eq. (E.4). In the solution of the
light trajectory one encounters terms which, in the sense just described, are called
four-scalars between the four-vectors σµ = (−1,σ), kµ = (−1,k) and rµA (s), given by
††,

σ · rA (s) ≡ σµ rµA (s) = − (rA (s)− σ · rA (s)) , (69)

k · rA (s) ≡ kµ rµA (s) = − (rA (s)− k · rA (s)) . (70)

††The notation kµ is employed in [10] (cf. text below Eq. (7.82) in [10]) for what we call σµ (cf.
Eq. (66)). Furthermore, our three-vector k in Eq. (43) coincides, up to a minus sign, with the three-
vector K used in [10, 37, 40] (cf. Eq. (7.66) in [10] or Eq. (36) in [37] or Eq. (44) in [40]). It will
certainly not cause any kind of confusion that rA (s) ≡ rµA (s) on the l.h.s. in (70) denotes the four-
vector, while rA (s) ≡ |rA (s)| on the r.h.s. in (70) denotes the absolute value of the three-vector.
Throughout the manuscript a single four-vector carries always a Lorentz-index. Only in four-scalar
products the four-vectors do not carry a Lorentz index, but then there will always be a dot among
these four-vectors. In three-scalar products there is also a dot among the three-vectors, but the
three-vectors are always in bold. For the details of notation in use we refer to Appendix A.
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These four-vectors in (66) and (68) and their scalar-product (69) do naturally appear
as arguments of vectorial functions in the solution of the initial-boundary value
problem for the light trajectory, while the four-vectors in (67) and (68) and their
scalar-product (70) do naturally appear as arguments of vectorial functions in the
solution of the boundary value problem for the light trajectory.

Here, we just have introduced the above standing notation in order to simplify
the mathematical expressions in the boundary value problem of the theory of light
propagation. In particular, for the two specific four-vectors,

r 0 µ
A (s0) =

(
r 0
A (s0) , r 0

A (s0)
)

where r 0
A (s0) =

∣∣r 0
A (s0)

∣∣ , (71)

r 1 µ
A (s1) =

(
r 1
A (s1) , r 1

A (s1)
)

where r 1
A (s1) =

∣∣r 1
A (s1)

∣∣ , (72)

we obtain the following specific cases of four-scalar products

k · r 0
A (s0) = −

(
r 0
A (s0)− k · r 0

A (s0)
)
, (73)

k · r 1
A (s1) = −

(
r 1
A (s1)− k · r 1

A (s1)
)
, (74)

where the upper indices 0 and 1 refer to x0 and x1, respectively, as introduced in
Eqs. (46) and (48), so they are of course not Lorentz indices. In line with this notation
we also need to introduce the four-vector

r 0 µ
A (s1) =

(
r 0
A (s1) , r 0

A (s1)
)

where r 0
A (s1) =

∣∣r 0
A (s1)

∣∣ , (75)

and the four-scalar product

k · r 0
A (s1) = −

(
r 0
A (s1)− k · r 0

A (s1)
)
, (76)

where the three-vector r 0
A (s1) and its absolute value r 0

A (s1) =
∣∣r 0
A (s1)

∣∣ were defined
by (51).

4. Transformation from k to σ

The most important relation in the formulation of the boundary value problem
concerns the transformation from k to σ, where the unit tangent vector σ of the light
ray at past null infinity is defined by Eq. (28), while the unit vector k is defined by
Eq. (43) and determines the unit direction from the light source towards the observer.

4.1. The implicit expression for the transformation from k to σ

From (32) one finds the following formal expression,

N

∣∣∣∣ σ = k

1PN

∣∣∣∣ +
mA

R

(
k ×

[
k ×

(
B1

(
r 1
A (s1)

)
−B1

(
r 0
A (s0)

)) ])

1.5PN

∣∣∣∣ +
mA

R

(
k ×

[
k ×

(
BA

2

(
r 1
A (s1) ,vA (s1)

)
−BA

2

(
r 0
A (s0) ,vA (s1)

)) ])

1.5PN

∣∣∣∣ +
mA

R

(
k ×

[
k ×

(
BB

2

(
r 1
A (s1) ,vA (s1)

)
−BB

2

(
r 0
A (s0) ,vA (s0)

)) ])
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2PN

∣∣∣∣ +
m2
A

R

(
k ×

[
k ×

(
B3

(
r 1
A (s1)

)
−B3

(
r 0
A (s0)

)) ])

2PN

∣∣∣∣ +
m2
A

R2

[
B1

(
r 1
A (s1)

)
−B1

(
r 0
A (s0)

) ]
×
[
k ×

(
B1

(
r 1
A (s1)

)
−B1

(
r 0
A (s0)

)) ]

2PN

∣∣∣∣ − 3

2

m2
A

R2
k

∣∣∣∣k × (B1

(
r 1
A (s1)

)
−B1

(
r 0
A (s0)

)) ∣∣∣∣2 + ε̂2 (s1, s0)

2.5PN

∣∣∣∣ +O
(
c−5
)
, (77)

where relation (C.2) has been used in order to deduce (77). From (77) follows
that σ · σ = 1 + O

(
c−5
)

so that σ is still a unit vector up to terms beyond 2PN
approximation. In the limit of body at rest the transformation (77) agrees with
Eq. (3.2.50) in [32] and with Eq. (68) in [100].

The meaning of the notation in the transformation (77) and in each of the
subsequent transformations is the following: 1PN terms are proportional to mA,
1.5PN terms are proportional to mA vA/c, 2PN terms are proportional to either m2

A

or mA v
2
A/c

2.
The vectorial functions B1 , . . . ,B3 are given by Eqs. (B.5) - (B.8) in the

Appendix B, while ε̂2 is given by Eq. (I.4) in the Appendix I. The expression for
R is given by Eq. (43). Furthermore, the three-vector r 0

A (s0) is given by (46), while
the three-vector r 1

A (s1) is given by (48).
The vectorial functions B1 , . . . ,B3 as well as ε̂2 depend on σ rather than

k. Therefore, the expression (77) represents, as it stands, an implicit form of the
transformation k to σ. The explicit transformation k to σ is arrived within the next
section.

4.2. The explicit expression for the transformation from k to σ

In the given approximation one may immediately replace σ by k in the 1.5PN and
2PN terms, because it would cause an error of the order O

(
c−5
)

which is beyond 2PN
approximation. That means, in the vectorial functions of the third until the seventh
line in (77) one may substitute σ by k, while in the vectorial function in the second
line in (77) one needs to have the relation between σ and k in 1PN approximation as
given by (C.1), which subsequently yields Eqs. (C.3) and (C.4). Using these relations
one finally arrives at the following explicit expression for the transformation from k
to σ:

N

∣∣∣∣σ = k

1PN ρ1

∣∣∣∣ − 2
mA

R

(
dkA (s1)

k · r 1
A (s1)

− dkA (s0)

k · r 0
A (s0)

)

1.5PN ρ2

∣∣∣∣ + 2
mA

R
k ×

(
vA (s1)

c
× k

)
ln
k · r 1

A (s1)

k · r 0
A (s0)

1.5PN ρ3

∣∣∣∣ − 2
mA

R
k ×

(
vA (s1)

c
× k

)
+ 2

mA

R
k ×

(
vA (s0)

c
× k

)
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1.5PN ρ4

∣∣∣∣ + 2
mA

R

k · vA (s1)

c

dkA (s1)

k · r 1
A (s1)

− 2
mA

R

k · vA (s0)

c

dkA (s0)

k · r 0
A (s0)

scaling 2PN ρ5

∣∣∣∣ − 2
m2
A

R2
k

∣∣∣∣∣ dkA (s1)

k · r 1
A (s1)

− dkA (s0)

k · r 0
A (s0)

∣∣∣∣∣
2

enhanced 2PN ρ6

∣∣∣∣ − 2
m2
A

R2

(
dkA (s1)

k · r 1
A (s1)

+
dkA (s0)

k · r 0
A (s0)

)∣∣∣∣∣ dkA (s1)

k · r 1
A (s1)

− dkA (s0)

k · r 0
A (s0)

∣∣∣∣∣
2

enhanced 2PN ρ7

∣∣∣∣ − 4
m2
A

R

(
dkA (s1)

(k · r 1
A (s1))

2 −
dkA (s0)

(k · r 0
A (s0))

2

)

2PN ρA
8

∣∣∣∣ +
15

4

m2
A

R

dkA (s1)

|k × r 1
A (s1)|3

(
k · r 1

A (s1)
)(

arctan
k · r 1

A (s1)

|k × r 1
A (s1)|

+
π

2

)

2PN ρB
8

∣∣∣∣− 15

4

m2
A

R

dkA (s0)

|k × r 0
A (s0)|3

(
k · r 0

A (s0)
)(

arctan
k · r 0

A (s0)

|k × r 0
A (s0)|

+
π

2

)

2PN ρ9

∣∣∣∣ − 1

4

m2
A

R

(
dkA (s1)

(r 1
A (s1))

2 −
dkA (s0)

(r 0
A (s0))

2

)

2PN

∣∣∣∣ + ε̂2 (s1, s0)

2.5PN

∣∣∣∣ +O
(
c−5
)
, (78)

where ρi = ρi (s1, s0) with i = 1 , · · · , 9 that appear before the vertical lines are by
definition equal to the expressions on the right of the vertical bars in each line, and
the term ε̂2 is given by Eq. (I.5) in the Appendix I.

The transformation (78) allows the determination of σ for the given boundary
conditions x0 and x1. In the limit of bodies at rest the relation (78) is in agreement
with the expression as given by Eq. (3.2.52) in [32] and Eq. (74) in [100].

The term ρ5 in (78) is proportional to vector k and originates from the terms in
the last two lines of (77), where the vectorial relation a× (b× c) = b (a · c)− c (a · b)
has been used. In the transformation (78) a term proportional to vector k does not
influence the angle δ (σ,k), which can be computed from the vector product σ × k.
The only impact of that term proportional to vector k is to keep the vector σ to have
unit length. Therefore, all terms proportional to vector k will be called scaling terms.

In anticipation of subsequent considerations, the notation enhanced 2PN terms
in (78) for the 2PN terms ρ6 and ρ7 has been introduced whose meaning is as follows.
The estimation of the upper limit of the sum of these terms is given by Eq. (93),
which recovers that their upper limit is proportional to the large factor r 1

A (s1) /PA
and are, therefore, called enhanced 2PN terms in (78) in order to distinguish them
from standard 2PN terms in (78) which do not contain such a large factor. Originally,
enhanced terms have been recovered for the case of 2PN light propagation in the field
of one monopole at rest [100, 103, 105]. In our detailed investigation in [100] for light
propagation in the gravitational field of one monopole at rest we have demonstrated



Light propagation in 2PN approximation in the field of one moving monopole 27

that the mathematical origin of enhanced 2PN terms is solely caused by iterative
procedure of the integration of the geodesic equation. The same conclusion is valid for
the case of light propagation in the gravitational field of one monopole in motion. That
means, solving iteratively the geodesic equation in 1PN approximation (i.e. the first
four terms on the r.h.s. in the first line of Eq. (31) in [86] or Eq. (45) in [33] where the
metric in 1PN approximation is given by the first two terms in Eq. (24) in [86]) then
the first iteration contains terms proportional to mA, the second iteration contains
terms proportional to m2

A, and so on. Using this iterative approach it is inevitable to
encounter these so-called enhanced terms all of which contain that typical enhancing
factor r 1

A (s1) /PA. It should also be noticed that the enhanced terms impose no limit
on the distance between observer and light source, but impose only a constraint on
the distance between observer and light-ray deflecting body. Here, we consider light
deflection caused by Solar System bodies, where the distance between observer and
massive body is limited by the near-zone of the Solar System as given by Eq. (26). That
fact elucidates the limitation of the post-Newtonian approach which is not applicable
for the far-zone of the Solar System.

4.3. The simplified expression for the transformation from k to σ

Two comments are in order about the transformation k to σ as given by Eq. (78):
1. The transformation (78) is of rather involved structure. In order to simplify

the transformation one has to neglect all those terms whose magnitude it smaller than
the envisaged accuracy of 1 nas in light deflection.

2. The transformation (78) depends on the variables mA, x0, x1, xA (s0)
and xA (s1). As mentioned, while the four-coordinates of the observer (ct1,x1) are
precisely known and the fundamental prerequisite of any astrometric measurement, the
four-coordinates of the light source (ct0,x0) are not directly accessible but follow from
data reduction of the astronomical observations. Stated differently, while the retarded
instant of time s1 as defined by (47) is precisely known from the very beginning, the
retarded instant of time s0 as defined by Eq. (45) is, first of all, an unknown parameter
in the theory of light propagation.

In conclusion of these comments it becomes clear that practical astrometry
necessitates a transformation (78) solely in terms of s1 and where all those terms
are neglected which contribute less than the given goal accuracy of 1 nas in light
deflection. Such a transformation is obtained by means of a series expansion of each
individual term in (78) around s1, which reads

ρi (s1, s0) = ρi (s1, s1) + ∆ρi (s1, s1) +O
(
c−5
)

for i = 1 , · · · , 4 . (79)

ρi (s1, s0) = ρi (s1, s1) +O
(
c−5
)

for i = 5 , · · · , 9 . (80)

ε̂2 (s1, s0) = ε̂2 (s1, s1) +O
(
c−5
)
. (81)

In Appendix G the results for the upper limits are presented, while the approach is
described in Appendix E and a detailed example is given in Appendix F. The results
for the upper limits are given by Eqs. (F.7) and (F.8), Eqs. (G.5) and (G.6), Eqs. (G.9)
and (G.11), Eqs. (G.16) and (G.17), as well as Eqs. (G.21), (G.25), (G.29), (G.35),
(G.39), and (I.7). Numerical values for the upper limits are given in Table G1. These
results can be summarized as follows:

|ρi (s1, s1)| ≤ 1 nas , i = 3, 5, 8, 9 . (82)



Light propagation in 2PN approximation in the field of one moving monopole 28

|∆ρi (s1, s1)| ≤ 1 nas , i = 1 , 2 , 3 , 4 . (83)

|ε̂2 (s1, s1)| ≤ 1 nas . (84)

Besides the fact that the absolute value of the scaling term ρ5 is less than 1 nas, that
term can be omitted anyway, because, as stated above already, it has no impact on
the angle δ (σ,k) between σ and k. For the absolute value of the total sum of all
those neglected terms (82) - (84) which are not proportional to the three-vector k, we
get

I1 =

∣∣∣∣∣∣
∑

i=3,8,9

ρi (s1, s1) +
∑

i=1,2,3,4

∆ρi (s1, s1) + ε̂2 (s1, s1)

∣∣∣∣∣∣
≤ 6mA

r 1
A (s1)

vA (s1)

c
+

15

4
π
m2
A

P 2
A

+
6mA

PA

v2A (s1)

c2
+

6mA

r 1
A (s1)

v2A (s1)

c2
+ 18mA

aA (s1)

c2
.

(85)

For the upper limits of the terms in (85) we have used that

|ρ8 + ρ9| ≤
15

4
π
m2
A

P 2
A

, (86)

|∆ρ1| ≤ 6
mA

r 1
A (s1)

vA (s1)

c
, (87)

|∆ρ2 + ∆ρ3 + ∆ρ4| ≤ 6
mA

r 1
A (s1)

v2A (s1)

c2
+ 4

mA

PA

v2A (s1)

c2
+ 8mA

aA (s1)

c2
, (88)

while |ρ3 (s1, s1)| = 0 according to Eq. (G.9). The inequality (86) is not shown
explicitly, but follows by using the approach as described in Appendix E. The
inequality (87) has been shown in Appendix F and is given by Eq. (F.28). The
inequality (88) follows from (G.6), (G.11), and (G.17), while the upper limit of |ε̂2| is
given by Eq. (I.7). Using the numerical parameters as given by Table D1 one obtains

I1 ≤ 1.0 nas for Sun at 45◦ (solar aspect angle) ,

≤ 1.1 nas for Jupiter , (89)

and less than 0.38 nas for any other Solar System body. Accordingly, the terms (82) -
(84) can be neglected for sub-µas astrometry and even for astrometry on the level of
1.1 nas in light deflection. In this way one obtains the simplified transformation k to
σ fully in terms of s1:

N

∣∣∣∣σ = k

1PN ρ1

∣∣∣∣ − 2
mA

R

(
dkA (s1)

k · r 1
A (s1)

− dkA (s1)

k · r 0
A (s1)

)

1.5PN ρ2

∣∣∣∣ + 2
mA

R
k ×

(
vA (s1)

c
× k

)
ln
k · r 1

A (s1)

k · r 0
A (s1)

1.5PN ρ4

∣∣∣∣ + 2
mA

R

k · vA (s1)

c

(
dkA (s1)

k · r 1
A (s1)

− dkA (s1)

k · r 0
A (s1)

)
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enhanced 2PN ρ6

∣∣∣∣ − 2
m2
A

R2

(
dkA (s1)

k · r 1
A (s1)

+
dkA (s1)

k · r 0
A (s1)

)∣∣∣∣∣ dkA (s1)

k · r 1
A (s1)

− dkA (s1)

k · r 0
A (s1)

∣∣∣∣∣
2

enhanced 2PN ρ7

∣∣∣∣ − 4
m2
A

R

(
dkA (s1)

(k · r 1
A (s1))

2 −
dkA (s1)

(k · r 0
A (s1))

2

)

2.5PN

∣∣∣∣ +O
(
c−5
)
, (90)

where ρi = ρi (s1, s1) with i = 1, 2, 4, 6, 7 that appear before the vertical lines are by
definition equal to the expressions on the right of the vertical bars in each line. In
the limit of monopole at rest this expression coincides with Eqs. (79) - (80) in [100].
Using the approach and the results in the appendix one obtains for the upper limits
of the 1PN, 1.5PN, and 2PN terms in the simplified transformation (90):

1PN |ρ1| ≤ 4
mA

PA
, (91)

1.5PN |ρ2 + ρ4| ≤ 6
mA

PA

vA (s1)

c
, (92)

enhanced 2PN |ρ6 + ρ7| ≤ 16
m2
A

P 2
A

r 1
A (s1)

PA
. (93)

The reason of why there is a factor 6 in (92) rather than a factor 4 is discussed in the
text below Eq. (117). In the limit of body at rest, the results (91) and (93) would
coincide with Eqs. (76) and (77) in [100], respectively.

The simplified transformation (90) depends on the variables mA, x0, x1, and
xA (s1) and does not any longer depend on the retarded time s0. The only unknown in
(90) is the three-coordinate of the light source, x0, whose determination is the primary
aim of data reduction of astronomical observations. For the neglected terms of the
order O

(
c−5
)

(2.5PN approximation) and of the order O
(
c−6
)

(3PN approximation)
we refer to Section 7, where some statements about their impact on light deflection
are given.

5. Transformation from σ to n

Now we consider the transformation from σ to n, where σ is the unit tangent vector
along the light trajectory at past null infinity as defined by (28), while n is the
unit tangent vector along the light trajectory at the observer’s position as defined by
Eq. (44).

5.1. The implicit expression for the transformation from σ to n

By inserting (29) into (44) one obtains

N

∣∣∣∣ n = σ

1PN

∣∣∣∣ +mA σ ×
(
A1

(
r 1
A (s1)

)
× σ

)
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1.5PN

∣∣∣∣ +mA σ ×
(
A2

(
r 1
A (s1) ,vA (s1)

)
× σ

)
2PN

∣∣∣∣ +m2
A σ ×

(
A3

(
r 1
A (s1)

)
× σ

)
−m2

AA1

(
r 1
A (s1)

) (
σ ·A1

(
r 1
A (s1)

))
2PN

∣∣∣∣ − 1

2
m2
A σ

(
A1

(
r 1
A (s1)

)
·A1

(
r 1
A (s1)

))
+

3

2
m2
A σ

(
σ ·A1

(
r 1
A (s1)

))2
+ ε̂1 (s1)

2.5PN

∣∣∣∣ +O
(
c−5
)
, (94)

where the vectorial functions A1, A2, A3 are given by Eqs. (B.1) - (B.3) in the
Appendix B, while expression ε̂1 has been given by Eq. (I.1) in the Appendix I. From
(94) follows that n ·n = 1+O

(
c−5
)

so that n is still a unit vector up to terms beyond
2PN approximation. The vectorial functions A1 , . . . ,A3 as well as ε̂1 depend on
vector σ. However, the aim is to achieve the transformation from σ to n in terms of
the boundary values (42), which implies to express these vectorial functions in terms
of k rather than σ. This will be done in the next section.

5.2. The explicit expression for the transformation from σ to n

In the 1.5PN and 2PN terms one may immediately replace σ by k, because such
a replacement would cause an error of the order O

(
c−5
)

which is beyond 2PN
approximation. That means in the vectorial functions of the third until the fifth line
in (94) one may substitute σ by k, while in the vectorial function in the second line
in (94) one has to use relation (C.1) and Eqs. (C.3) and (C.4). Using these relations
one finally arrives at the following explicit expression for the transformation from σ
to n:

N

∣∣∣∣ n = σ

1PN ϕ1

∣∣∣∣ + 2mA
dkA (s1)

r 1
A (s1)

1

k · r 1
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r 1
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c
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c
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2 d
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c
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2mA

(r 1
A (s1))

2

dkA (s1)

k · r 1
A (s1)

dkA (s1) · vA (s1)

c

scaling 2PN ϕ6

∣∣∣∣ − 2k
m2
A

(r 1
A (s1))

2

dkA (s1) · dkA (s1)

(k · r 1
A (s1))

2
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scaling 2PN ϕ7

∣∣∣∣ + 4
k

R
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r 1
A (s1)

1

k · r 1
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(
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− d
k
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k · r 0
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)

enhanced 2PN ϕ8
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m2
A

r 1
A (s1)

dkA (s1)

(k · r 1
A (s1))

2

enhanced 2PN ϕ9
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)

enhanced 2PN ϕ10
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1

R
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k · r 0
A (s0)

)

2PN ϕ11
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m2
A
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2
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k · r 1
A (s1)

2PN ϕ12

∣∣∣∣− m2
A

2
dkA (s1)

k · r 1
A (s1)

(r 1
A (s1))

4 −
15

4

m2
A

(r 1
A (s1))

2 d
k
A (s1)
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2PN ϕ13
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arctan
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|k × r 1
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π
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2PN

∣∣∣∣ + ε̂1 (s1)

2.5PN

∣∣∣∣ +O
(
c−5
)
, (95)

where ϕi = ϕi (s1) for i = 1 , · · · , 6, 8, 11, 12, 13 and ϕi = ϕi (s1, s0) for i = 7, 9, 10
that appear before the vertical lines are by definition equal to the expressions on the
right of the vertical bars in each line, while the term ε̂1 is given by Eq. (I.2) in the
Appendix I. With the aid of the transformation (95) one may determine the difference
between the vectors n and σ from the given boundary conditions x0 and x1. In the
limit of bodies at rest the relation (95) is in agreement with the expression as given
by Eq. (81) in [100].

The 1.5PN scaling term ϕ2 in the third line of (95) originates from the term in
the third line of (94), where the vectorial relation a × (b× c) = b (a · c) − c (a · b)
has been used. The 2PN scaling term ϕ6 in the seventh line of (95) originates from
the first term of the fifth line of (94). The 2PN scaling term ϕ7 in the eighth line of
(95) originates from the term in the second line of (94), where relation (C.3) has to be
used. In the transformation (95) a term proportional to vector k influences the angle
δ (σ,n) between σ and n only beyond 2PN approximation, due to σ × k = O

(
c−2
)
.

Hence, the only impact of these scaling terms, ϕ2, ϕ6, ϕ7, is to keep the vector n to
have unit length.

5.3. Simplified expression for the transformation from σ to n

The transformation σ to n as given by Eq. (95) contains many terms which contribute
less than 1 nas in light deflection. Furthermore, as discussed above in the text before
Eq. (50) and in the second comment before Eq. (79), while the four-coordinates of
the observer (ct1,x1) are precisely known and the fundamental basis for any accurate
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astrometric measurement, the four-coordinates of the light source (ct0,x0) are, first
of all, not available but the result of astrometric data reduction. That means, the
retarded instant of time s1 defined by (47) is precisely known, while the retarded
time s0 defined by (45) is, first of all, an unknown parameter in the theory of light
propagation. Therefore, practical astrometry necessitates a transformation σ to n as
function of s1 and which contains only those terms which are above the goal accuracy
of 1 nas. In (95) the terms depend only on s1, except of ϕ7, ϕ9, and ϕ10. Hence, we
consider only the series expansion of these three terms, which reads

ϕi (s1, s0) = ϕi (s1, s1) +O
(
c−5
)

for i = 7, 9, 10 . (96)

The upper limit of each individual term in the transformation (95) has been
determined, given by (H.2), (H.4), (H.6), (H.8), (H.10), (H.12), (H.16), (H.18), (H.22),
(H.26), (H.28), (H.30), (H.32), and (I.3). Numerical values are given in Table H1.
These results can be summarized as follows:

|ϕi (s1)| ≤ 1 nas , i = 2, 4, 5, 6, 11, 12, 13 . (97)

|ϕi (s1, s1)| ≤ 1.3 nas , i = 7 . (98)

|ε̂1 (s1)| ≤ 1 nas . (99)

Besides the fact that the absolute value of the scaling terms ϕ2, ϕ6, ϕ7 is less than
1.3 nas, these terms are irrelevant for the angle δ (σ,n) between the vectors σ and
n, as stated above. Therefore, these scaling terms will be omitted in the simplified
transformation. For the absolute value of the total sum of all those neglected terms
(97) - (99) which are not proportional to the three-vector k, we get

I2 =

∣∣∣∣∣∣
∑
i=4,5

ϕi (s1) +
∑

i=11,12,13

ϕi (s1, s1) + ε̂1 (s1)

∣∣∣∣∣∣
≤ 8

mA

r 1
A (s1)

vA (s1)

c
+

15

4
π
m2
A

P 2
A

+ 18
mA

PA

v2A (s1)

c2
+ 8

mA

r 1
A

v2A (s1)

c2
. (100)

For the upper limits of the terms in (100) we have used that

|ϕ4 +ϕ5| ≤ 8
mA

r 1
A (s1)

vA (s1)

c
, (101)

|ϕ11 +ϕ12 +ϕ13| ≤
15

4
π
m2
A

P 2
A

, (102)

while the upper limit of |ε̂1| is given by Eq. (I.3). These inequalities, Eqs. (101) and
(102), are not shown explicitly, but can be demonstrated with the aid of the approach
as described in Appendix E. Using the numerical parameters as given by Table D1
one obtains for the absolute value of the total sum

I2 ≤ 1.1 nas for Sun at 45◦ (solar aspect angle) ,

≤ 1.2 nas for Jupiter , (103)

and less than 0.5 nas for any other Solar System body. Accordingly, the terms (97) -
(99) can be neglected for sub-µas astrometry and even for astrometry on the level of
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1.2 nas in light deflection. In this way one obtains the simplified transformation σ to
n fully in terms of s1, which reads

N

∣∣∣∣ n = σ

1PN ϕ1

∣∣∣∣ + 2mA
dkA (s1)

r 1
A (s1)

1

k · r 1
A (s1)

1.5PN ϕ3

∣∣∣∣ − 2
mA

r 1
A (s1)

dkA (s1)

k · r 1
A (s1)

k · vA (s1)

c

enhanced 2PN ϕ8

∣∣∣∣ + 4
m2
A

r 1
A (s1)

dkA (s1)

(k · r 1
A (s1))

2

enhanced 2PN ϕ9

∣∣∣∣ + 4
m2
A

r 1
A (s1)

1

R

dkA (s1)

(k · r 1
A (s1))

2

(
dkA (s1) · dkA (s1)

k · r 1
A (s1)

− d
k
A (s1) · dkA (s1)

k · r 0
A (s1)

)

enhanced 2PN ϕ10

∣∣∣∣+ 4
m2
A

r 1
A (s1)

1

R

k · r 1
A (s1)

k · r 1
A (s1)

(
dkA (s1)

k · r 1
A (s1)

− dkA (s1)

k · r 0
A (s1)

)

2.5PN

∣∣∣∣ +O
(
c−5
)
, (104)

where ϕi = ϕi (s1) for i = 1, 3, 8 and ϕi = ϕi (s1, s1) for i = 9, 10 which appear
before the vertical lines are by definition equal to the expressions on the right of the
vertical bars in each line. In the limit of monopole at rest this expression coincides
with Eqs. (85) - (86) in [100]. By means of the approach and using the results in the
appendix one obtains for the upper limits of the 1PN, 1.5PN, and 2PN terms in the
simplified transformation (104):

1PN |ϕ1| ≤ 4
mA

PA
, (105)

1.5PN |ϕ3| ≤ 4
mA

PA

vA (s1)

c
, (106)

enhanced 2PN |ϕ8 +ϕ9 +ϕ10| ≤ 16
m2
A

P 2
A

r 1
A (s1)

PA
. (107)

In the limit of body at rest, the results (105) and (107) would coincide with Eqs. (82)
and (83) in [100], respectively. The simplified transformation (104) depends on the
variables mA, x0, x1, and xA (s1), but not anymore on the retarded time s0. Thus,
the only unknown in (104) is the three-coordinate of the light source, x0, whose
determination is the fundamental aim of astrometric data reduction. Some statement
about the neglected terms of the order O

(
c−5
)

(2.5PN approximation) and of the

order O
(
c−6
)

(3PN approximation) are given in Section 7.
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6. Transformation from k to n

6.1. The explicit expression for the transformation from k to n

The actual aim of the boundary value problem is to establish a relation between the
unit-vectors k and n. From the transformations (78) and (95) we immediately obtain
the transformation k to n:

N

∣∣∣∣ n = k

1PN ρ1
+ϕ1

∣∣∣∣ − 2
mA

R

(
dkA (s1)

k · r 1
A (s1)

− dkA (s0)

k · r 0
A (s0)

)
+ 2mA

dkA (s1)

r 1
A (s1)

1

k · r 1
A (s1)

1.5PN ρ2

∣∣∣∣ + 2
mA

R
k ×

(
vA (s1)

c
× k

)
ln
k · r 1

A (s1)

k · r 0
A (s0)

1.5PN ρ3

∣∣∣∣ − 2
mA

R
k ×

(
vA (s1)

c
× k

)
+ 2

mA

R
k ×

(
vA (s0)

c
× k

)

1.5PN ρ4

∣∣∣∣ + 2
mA

R

k · vA (s1)

c

dkA (s1)

k · r 1
A (s1)

− 2
mA

R

k · vA (s0)

c

dkA (s0)

k · r 0
A (s0)

1.5PN ϕ3

∣∣∣∣ − 2
mA

r 1
A (s1)

dkA (s1)

k · r 1
A (s1)

k · vA (s1)

c

1.5PN ϕ4

∣∣∣∣ + 4
mA

r 1
A (s1)

vA (s1)

c
+

2mA

(r 1
A (s1))

2 d
k
A (s1)

k · vA (s1)

c

1.5PN ϕ5

∣∣∣∣ +
2mA

(r 1
A (s1))

2

dkA (s1)

k · r 1
A (s1)

dkA (s1) · vA (s1)

c

scaling 1.5PN ϕ2

∣∣∣∣ − 4
mA

r 1
A (s1)

k
k · vA (s1)

c

scaling 2PN ρ5
+ϕ6

∣∣∣∣ − 2m2
A

(r 1
A (s1))

2 k
dkA (s1) · dkA (s1)

(k · r 1
A (s1))

2 − 2
m2
A

R2
k

∣∣∣∣∣ dkA (s1)

k · r 1
A (s1)

− dkA (s0)

k · r 0
A (s0)

∣∣∣∣∣
2

scaling 2PN ϕ7

∣∣∣∣ + 4
k

R

m2
A

r 1
A (s1)

1

k · r 1
A (s1)

(
dkA (s1) · dkA (s1)

k · r 1
A (s1)

− d
k
A (s0) · dkA (s1)

k · r 0
A (s0)

)

enhanced 2PN ρ6

∣∣∣∣ − 2
m2
A

R2

(
dkA (s1)

k · r 1
A (s1)

+
dkA (s0)

k · r 0
A (s0)

)∣∣∣∣∣ dkA (s1)

k · r 1
A (s1)

− dkA (s0)

k · r 0
A (s0)

∣∣∣∣∣
2

enhanced 2PN ρ7

∣∣∣∣ − 4
m2
A

R

(
dkA (s1)

(k · r 1
A (s1))

2 −
dkA (s0)

(k · r 0
A (s0))

2

)

enhanced 2PN ϕ8

∣∣∣∣ + 4
m2
A

r 1
A (s1)

dkA (s1)

(k · r 1
A (s1))

2
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enhanced 2PN ϕ9

∣∣∣∣ + 4
m2
A

r 1
A (s1)

1

R

dkA (s1)

(k · r 1
A (s1))

2

(
dkA (s1) · dkA (s1)

k · r 1
A (s1)

− d
k
A (s0) · dkA (s1)

k · r 0
A (s0)

)

enhanced 2PN ϕ10

∣∣∣∣ + 4
m2
A

r 1
A (s1)

1

R

k · r 1
A (s1)

k · r 1
A (s1)

(
dkA (s1)

k · r 1
A (s1)

− dkA (s0)

k · r 0
A (s0)

)

2PN ρA
8

∣∣∣∣ +
15

4

m2
A

R

dkA (s1)

|k × r 1
A (s1)|3

(
k · r 1

A (s1)
)(

arctan
k · r 1

A (s1)

|k × r 1
A (s1)|

+
π

2

)

2PN ρB
8

∣∣∣∣ − 15

4

m2
A

R

dkA (s0)

|k × r 0
A (s0)|3

(
k · r 0

A (s0)
)(

arctan
k · r 0

A (s0)

|k × r 0
A (s0)|

+
π

2

)

2PN ρ9
+ϕ11

∣∣∣∣ − 1

4

m2
A

R

(
dkA (s1)

(r 1
A (s1))

2 −
dkA (s0)

(r 0
A (s0))

2

)
− 4

m2
A

(r 1
A (s1))

2

dkA (s1)

k · r 1
A (s1)

2PN ϕ12

∣∣∣∣ − m2
A

2
dkA (s1)

k · r 1
A (s1)

(r 1
A (s1))

4 −
15

4

m2
A

(r 1
A (s1))

2 d
k
A (s1)

k · r 1
A (s1)

|k × r 1
A (s1)|2

2PN ϕ13

∣∣∣∣ − 15

4
m2
A

dkA (s1)

|k × r 1
A (s1)|3

(
arctan

k · r 1
A (s1)

|k × r 1
A (s1)|

+
π

2

)

2PN

∣∣∣∣+ ε̂1 (s1) + ε̂2 (s1, s0)

2.5PN

∣∣∣∣+O
(
c−5
)
, (108)

where ρi = ρi (s1, s0) with i = 1 , · · · , 9, and ϕi = ϕi (s1) for i = 1 , · · · , 6, 8, 11, 12, 13,
and ϕi = ϕi (s1, s0) for i = 7, 9, 10 which appear before the vertical lines are by
definition equal to the expressions on the right of the vertical bars in each line.

The transformation (108) allows one to determine the unit coordinate direction
n at the observers position from the boundary values x0 and x1. In the limit of body
at rest this expression coincides with Eq. (87) in [100]. The terms ε̂1 and ε̂2 are given
in the Appendix I by Eqs. (I.2) and (I.5), respectively. In view of the remarkable
algebraic structure in (108) it is evident how important the estimation of the upper
limit of the individual terms is. Such an estimation allows for a considerably simpler
structure of this transformation, which will be the topic of the next section.

6.2. Simplified expression for the transformation from k to n

The simplified transformation from k to n follows from Eqs. (90) and (104), that
means where all scaling terms are omitted and all terms are neglected whose individual
contribution is less than 1 nas in light deflection for Sun at 45◦ and all the other
Solar System bodies. For the total sum of all those neglected terms which are not
proportional to three-vector k one obtains

I3 =

∣∣∣∣ ∑
i=3,8,9

ρi (s1, s1) +
∑

i=1,2,3,4

∆ρi (s1, s1) +
∑
i=4,5

ϕi (s1) +
∑

i=11,12,13

ϕi (s1, s1)

+ε̂1 (s1) + ε̂2 (s1, s1)

∣∣∣∣
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≤ 10mA

r 1
A (s1)

vA (s1)

c
+

15

4
π
m2
A

P 2
A

+
14mA

r 1
A (s1)

v2A (s1)

c2
+ 24

mA

PA

v2A (s1)

c2
+ 18mA

aA (s1)

c2
.

(109)

For the upper limits of the terms in (109) we have used that

|ρ8 + ρ9 +ϕ11 +ϕ12 +ϕ13| ≤
15

4
π
m2
A

P 2
A

, (110)

|∆ρ1 +ϕ4 +ϕ5| ≤ 10
mA

r 1
A (s1)

vA (s1)

c
, (111)

|∆ρ2 + ∆ρ3 + ∆ρ4| ≤
6mA

r 1
A (s1)

v2A (s1)

c2
+

4mA

PA

v2A (s1)

c2
+ 8mA

aA (s1)

c2
, (112)

while |ρ3 (s1, s1)| = 0 according to Eq. (G.9). The inequality (110) is not shown
explicitly, but its validity can be demonstrated by means of the approach described
in Appendix E. The inequality (111) is shown in Appendix J, while the inequality
(112) follows from (G.6), (G.11), and (G.17). The upper limit of |ε̂1| and |ε̂2| are
given by Eqs. (I.3) and (I.7), respectively. Using the numerical parameters as given
by Table D1 one obtains

I3 ≤ 1.3 nas for Sun at 45◦ (solar aspect angle) ,

≤ 1.3 nas for Jupiter , (113)

and less than 0.64 nas for all the other Solar System bodies. Accordingly, by neglecting
these terms in (109) one obtains the simplified transformation k to n fully in terms
of s1, which reads as follows:

N

∣∣∣∣ n = k

1PN ρ1
+ϕ1

∣∣∣∣ − 2
mA

R

(
dkA (s1)

k · r 1
A (s1)

− dkA (s1)

k · r 0
A (s1)

)
+ 2mA

dkA (s1)

r 1
A (s1)

1

k · r 1
A (s1)

1.5PN ρ2

∣∣∣∣ + 2
mA

R
k ×

(
vA (s1)

c
× k

)
ln
k · r 1

A (s1)

k · r 0
A (s1)

1.5PN ρ4

∣∣∣∣ + 2
mA

R

k · vA (s1)

c

(
dkA (s1)

k · r 1
A (s1)

− dkA (s1)

k · r 0
A (s1)

)

1.5PN ϕ3

∣∣∣∣ − 2
mA

r 1
A (s1)

dkA (s1)

k · r 1
A (s1)

k · vA (s1)

c

enhanced 2PN ρ6

∣∣∣∣ − 2
m2
A

R2

(
dkA (s1)

k · r 1
A (s1)

+
dkA (s1)

k · r 0
A (s1)

)∣∣∣∣∣ dkA (s1)

k · r 1
A (s1)

− dkA (s1)

k · r 0
A (s1)

∣∣∣∣∣
2

enhanced 2PN ρ7

∣∣∣∣ − 4
m2
A

R

(
dkA (s1)

(k · r 1
A (s1))

2 −
dkA (s1)

(k · r 0
A (s1))

2

)
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enhanced 2PN ϕ8

∣∣∣∣ + 4
m2
A

r 1
A (s1)

dkA (s1)

(k · r 1
A (s1))

2

enhanced 2PN ϕ9

∣∣∣∣ + 4
m2
A

r 1
A (s1)

1

R

dkA (s1)

(k · r 1
A (s1))

2

(
dkA (s1) · dkA (s1)

k · r 1
A (s1)

− d
k
A (s1) · dkA (s1)

k · r 0
A (s1)

)

enhanced 2PN ϕ10

∣∣∣∣ + 4
m2
A

r 1
A (s1)

1

R

k · r 1
A (s1)

k · r 1
A (s1)

(
dkA (s1)

k · r 1
A (s1)

− dkA (s1)

k · r 0
A (s1)

)

2.5PN

∣∣∣∣+O
(
c−5
)
, (114)

where ρi = ρi (s1, s1) for i = 1, 2, 4, 6, 7, and ϕi = ϕi (s1) for i = 1, 3, 8, and
ϕi = ϕi (s1, s1) for i = 9, 10 which appear before the vertical lines are by definition
equal to the expressions on the right of the vertical bars in each line. In the limit of
body at rest this expression coincides with Eqs. (92) - (93) in [100]. For the distance
R = |R| one should implement the exact expression (43), because the approximative
expression (E.3) is slightly more complicated and only in use for the estimations but
not for astrometric data reduction. By means of the approach and results of the
appendix, one obtains for the upper limits of the 1PN, 1.5PN, and 2PN terms of the
simplified transformation (114):

1PN |ρ1 +ϕ1| ≤ 4
mA

PA
, (115)

1.5PN |ρ2 + ρ4 +ϕ3| ≤ 6
mA

PA

vA (s1)

c
, (116)

enhanced 2PN |ρ6 + ρ7 +ϕ8 +ϕ9 +ϕ10| ≤ 16
m2
A

P 2
A

r 1
A (s1)

PA
. (117)

As outlined above, the 2PN term (117) is a so-called enhanced term because of the
factor r 1

A (s1) /PA.
A further comment is in order about the upper limit of the 1.5PN terms as given

by (116). In Eq. (179) in [34] the upper limit of the 1.5PN terms in light deflection

was given by ϕ1.5PN ≤ 4
mA

PA

vA (s1)

c
in agreement with the results in [11, 115]. The

marginal difference between the factor 6 in Eq. (116) and the factor 4 in Eq. (179)
in [34] originates from the logarithmic term ρ2 in the simplified transformation (114).
That term has been estimated by Eq. (G.5), according to which the term ρ2 would
vanish in the limit of light sources at infinity. So the term ρ2 originates from the
boundary value problem, which has not been on the scope of the investigations
[11, 34, 115]. In particular, without the term ρ2 we would get the result as given
by Eq. (179) in [34].

Let us summarize the variables on which the simplified transformations (90),
(104), and (114) depend on, as there are: mA,x0,x1,xA (s1). The values
mA,x1,xA (s1) are provided by some ephemerides and tracking of the orbit of the
satellite (observer). Thus, the only unknown in these transformations remains the
spatial position of the light source x0, which is the primary aim of astrometric data
reduction.



Light propagation in 2PN approximation in the field of one moving monopole 38

7. Impact of higher order terms

The transformations (78), (95), (108) and their simplified versions (90), (104), (114)
are valid up to terms of the order O

(
c−5
)
. So the question arises about the impact

of these higher order terms. Are they relevant for nas-astrometry?
In order to address the problem we consider the light deflection angle ϕ = ∠ (k,n).

By including terms up to the order O
(
c−7
)

the post-Newtonian expansion of the light
deflection angle is

ϕ = arcsin |k × n| = |k × n|+ 1

6
|k × n|3 +O

(
|k × n|5

)
(118)

= ϕ1PN + ϕ1.5PN + ϕ2PN + ϕ2.5PN + ϕ3PN + ϕ3.5PN + ϕ4PN + ϕ4.5PN +O
(
c−10

)
,

(119)

where ϕnPN = O
(
c−2n

)
. The first term on the r.h.s. of (118) contributes to any

order, while the second term on the r.h.s. of (118) contributes to the order O
(
c−6
)

and beyond. The 1PN, 1.5PN, and 2PN terms in (119) can be obtained from the
simplified transformation (114). One obtains

ϕ1PN = |k × (ρ1 +ϕ1)| ≤ 4
mA

PA
, (120)

ϕ1.5PN = |k × (ρ2 + ρ4 +ϕ3)| ≤ 6
mA

PA

vA (s1)

c
, (121)

ϕ2PN = |k × (ρ6 + ρ7 +ϕ8 +ϕ9 +ϕ10)| ≤ 16
m2
A

P 2
A

r 1
A (s1)

PA
, (122)

all of which are relevant on the nas-scale of accuracy. The next order beyond 2PN
approximation would be 2.5PN terms. While they are out of the scope of the present
investigation, a few comments can be stated already right now. Basically, there are
three kind of 2.5PN terms, as there are

ϕA2.5PN ∼
mA

PA

v3A (s1)

c3
� 1 nas , (123)

ϕB2.5PN ∼ mA
vA (s1)

c

aA (s1)

c2
� 1 nas , (124)

ϕC2.5PN ∼
m2
A

P 2
A

vA (s1)

c

r 1
A (s1)

PA
. (125)

The structure of the 2.5PN terms in (123) and (124) follows from a series expansion
of the first post-Minkowskian (1PM) solution of a light signal propagating in the field
of one arbitrarily moving monopole as found in [37]; for more explicit expressions
of the coordinate velocity and light trajectory we refer to Eqs. (C.1) - (C.8) in [39]
or Eqs. (E.4) - (E.6) and (E.16) in [86]. So these terms in (123) and (124) have
no enhancement factor and they are negligible even for highly precise measurements
on the nas-scale of accuracy, also in case of some large numerical factor in front of
these terms. But what about the 2.5PN terms in (125)? They are connected with
an enhancement factor r 1

A (s1) /PA and might become large enough to be of relevance
for nas-astrometry. As it stands, the term (125) is less than 1 nas for any Solar
System body (even for grazing rays at the Sun), but certainly there will be some large
numerical factor in front of this term. Then, the 2.5PN term (125) would be above
the threshold of 1 nas for grazing rays at Jupiter. In order to determine more precisely
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the relevance of 2.5PN terms (125) for nas-astrometry, one should consider the 2PN
light trajectory in the field of one monopole at rest, xA = const, and then perform a
Lorentz transformation in order to account for the translational motion of the body,
which would yield all terms proportional to m2

A (vA/c)
n

with n = 1, 2, 3, .... Such
an approach has already been developed in the first post-Minkowskian approximation
[39] and might be generalized for the case of 2.5PN light propagation in the field of
one body in translational motion.

Let us now consider terms of the 3PN approximation, that means terms of the
order O

(
c−6
)

in (119). Are they of relevance for nas-astrometry? A reliable answer
can be found in the following manner. In [116] a lens equation has been derived for
the light deflection angle ϕ in the field of one spherically symmetric body at rest,
xA = const, given by (cf. Eq. (15) in [116] and shift of the origin of spatial axes by
three-vector xA)

ϕ =
1

2

√(dkA
r 1
A

)2

+ 8
mA

r 1
A

r 0
A r

1
A − r 0

A · r 1
A

Rr 1
A

− dkA
r 1
A

+O
(
m2
A

P 2
A

)
, (126)

where r 0
A = x0 − xA and r 1

A = x1 − xA and the impact parameter dkA =
∣∣k × r 0

A

∣∣ =∣∣k × r 1
A

∣∣ is independent of time. The neglected terms of order O
(
m2
A/P

2
A

)
has been

shown to be less than
15

4
π
m2
A

P 2
A

which is less than 1 nas for Sun at 45◦ (solar aspect

angle adopted from the Gaia mission) and all the other Solar System bodies. The
lens equation (126) represents the total sum of all enhanced terms. Of course, for an
observer located in the Solar System the lens effect (i.e. second image of the source
caused by Solar System bodies) cannot be detected, and that is why the second solution
with the lower sign in Eq. (15) in [116] is omitted here for our considerations.

In the near-zone of the Solar System we have mA/d
k
A � 1, which allows for a

series expansion of the lens equation (126) in terms of this small parameter. This
possibility is utilized to get

ϕ = ϕ1PN + ϕ2PN + ϕ3PN +O
(
c−8
)

+O
(
m2
A

P 2
A

)
, (127)

which has already been given by Eq. (26) in [116]; because the body is assumed to
be at rest in (126) there are no 1.5PN terms, 2.5PN terms and so on in the series
expansion (127). For the upper limits one obtains (cf. Eqs. (17) and (18) in [116]),

ϕ1PN ≤ 4
mA

PA
, (128)

ϕ2PN ≤ 16
m2
A

P 2
A

r 1
A

PA
. (129)

The above standing results in (120) and (122) coincide, in the limit of body at rest,
with Eqs. (128) and (129). The 3PN term of light deflection for body at rest has
already been considered in Eq. (27) in [116] and reads:

ϕ3PN ≤ 128
m3
A

P 3
A

(
r 1
A

PA

)2

. (130)

The same result has also been obtained within the Time Transfer Function approach
in [117, 118] (cf. Eq. (93) in [117] or Eq. (21) in [118]). One might believe that
(130) could also be concluded from the second term on the r.h.s. of (118), but this
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would be incomplete as long as the transformation n to k is only known in the 2PN
approximation, because the first term on the r.h.s. of (118) contributes to any order.
Inserting numerical parameter of Table D1 one obtains for grazing rays at Jupiter and
Saturn about ϕ3PN = 32 nas and ϕ3PN = 7 nas, respectively, in light deflection, while
in the field of earth-like planets or Sun at 45◦ they would contribute much less than
1 nas; for grazing ray at the Sun the 3PN term (130) amounts to be about 12 · 103 nas
in light deflection, as already noticed by Eq. (22) in [118].

From these considerations it becomes certain, that enhanced terms in the third
post-Newtonian (3PN) approximation have to be taken into account for astrometry
on the nas-level of accuracy. But it is clear that such calculation would be a rather
ambitious assignment of a task for moving bodies. Therefore, in order to get the light
trajectory x (t) in the 3PN approximation for moving bodies, one should consider
the much simpler case of 3PN light trajectory in the field of one monopole at
rest, xA = const, and then just take the retarded position of the massive body,
xA = xA (s1), in order to account for the body’s motion.

Finally, from very similar considerations it becomes clear that 3.5PN terms and
4PN terms will not be of relevance for nas-astrometry. For instance, we would obtain

ϕ4PN ≤ 1280
m4
A

P 4
A

(
r 1
A

PA

)3

, (131)

which is much less than 1 nas for Sun at 45◦ and any other Solar System body; but
we notice that for grazing ray at the Sun the 4PN term (131) amounts to be about
50 nas in light deflection. So the strict statement is that the impact of enhanced
terms becomes smaller and smaller the higher the post-Newtonian order is, and can
be neglected from the 3.5PN order on, even for ultra-high precision of the nas-level of
accuracy in astrometry, except for grazing rays at the Sun where the 4PN order has
to be accounted for.

8. Summary

Todays precision in angular measurements of celestial objects has reached a level of a
few micro-arcseconds. In fact, the very recent Data Release 2 of the ESA astrometry
mission Gaia contains precise positions, proper motions, and parallaxes for more than
1300 million stars and provides astrometric data for parallaxes having uncertainties of
only about 30 µas for bright stars with V=15 mag in stellar magnitude [15, 16, 19].

The impressive progress of the ESA cornerstone mission Gaia in astrometric
precision has encouraged the astrometric science to further proceed in nearest future.
Over the next coming years, the Gaia science community will embark on an intense
series of workshops to develop the key science themes which will scope the requirements
for a future astrometry mission. This will culminate in a detailed white paper which
will be published to coincide with the first releases of Gaia data. Furthermore, among
several astrometry missions proposed to ESA the M-5 mission proposals Gaia-NIR [28],
Theia [26], and NEAT [29, 30, 31], are mentioned which in this order are designed
for a highly precise measurement aiming at the µas level, sub-µas level and even nas
level of precision. Also feasibility studies of Earth-bounded telescopes are presently
under consideration which aim at an accuracy of about 10 nas [119].

Such ultra-highly precise accuracies on the sub-µas-level presuppose correspond-
ing advancements in the theory of light propagation in the Solar System. In partic-
ular, at such level of precision it is necessary to describe the propagation of a light
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signal in the gravitational field of N Solar System bodies described by their full set
of mass-multipoles MA

L and spin-multipoles SAL , allowing the bodies to have arbi-
trary shape, inner structure, oscillations and rotational motion. A remarkable and
impressive progress has been achieved during recent years in determining the light
trajectories in the gravitational field of bodies with higher multipoles, as there are:

• A general solution for the light-trajectory in the stationary gravitational field
of a localized source at rest, xA = const, with time-independent intrinsic multipoles,
MA
L and SAL , has been determined in 1.5PN approximation in [36].
• Furthermore, the light-trajectory in the field of a localized source at rest with

time-dependent intrinsic multipoles, MA
L (t) and SAL (t), has been obtained in [120, 121]

in 1PM approximation; see also [38]. Furthermore, the light trajectory in the field of
an arbitrarily moving body with quadrupole-structure has been determined in [115].

• In the investigation [122] the light propagation in the field of an uniformly
moving axisymmetric body has been determined in terms of the full mass-multipole
structure of the body. Furthermore, an analytical formula for the time-delay caused by
the gravitational field of a body in slow and uniform motion with arbitrary multipoles
has been derived in [123].

• A general solution for light trajectories in the field of arbitrarily moving bodies
characterized by intrinsic multipoles has been determined in the 1PN approximation
[33] where the moving bodies are endowed with time-dependent intrinsic mass-
multipoles MA

L (t), as well as in the 1.5PN approximation [34] where the moving
bodies are endowed with both time-dependent intrinsic mass-multipoles MA

L (t) and
spin-multipoles SAL (t).

Moreover, it is clear that astrometry on the sub-micro-arcsecond level necessitates
to determine the light trajectory in the second post-Newtonian approximation
[25, 97, 98, 99, 107, 108, 109, 110, 111]. Thus far, the light trajectory in 2PN
approximation has only been determined in the field of one monopole at rest
[32, 96], a result which has later been confirmed within several investigations
[97, 98, 99, 100, 101, 102, 103, 104, 105, 106]. Very recently, an analytical solution
in 2PN approximation for the light trajectory in the field of one arbitrarily moving
pointlike monopole has been obtained in [85, 86]. That solution has solved the so-
called initial-value problem (22). The initial value problem is just the first step in
the theory of light propagation, while practical modeling of astronomical observations
needs to solve the boundary value problem (23), which is the primary topic of this
investigation.

The solution of the boundary value problem (23) comprises a set of altogether
three transformations, which represent the first part of the main results of this
investigation:

1. Transformation k→ σ given by Eq. (78),

2. Transformation σ → n given by Eq. (95),

3. Transformation k→ n given by Eq. (108).

These transformations are of rather involved structure which inherits two problems:
(i) a highly effective algorithm in data reduction requires a simpler solution and (ii)
a simplified solution reveals which terms are of relevance for a given goal accuracy in
the sub-µas domain. Therefore, in this investigation we have determined upper limits
for each individual term in these transformations.

Furthermore, in meanwhile it has become a well-known fact that light propagation
in second post-Newtonian approximation leads to the occurrence of so-called enhanced
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terms. The occurrence of enhanced terms have been recovered at the first time for the
case of light propagation in the field of bodies at rest [100, 103, 105]. Such enhanced
terms, despite that they are of second post-Newtonian order, contain a large factor
proportional to r 1

A (s1) /PA � 1, where r 1
A (s1) is the distance between body and

observer and PA is the equatorial radius of the body. These enhanced 2PN terms
are: ρ6 in (G.22), ρ7 in (G.26), ϕ8 in (H.17), ϕ9 in (H.19), and ϕ10 in (H.23).
The simplified transformations contain only those terms which are relevant for the
given threshold in light deflection of at least 1.0 nas, as there are: 1PN terms, 1.5PN
terms and the just mentioned enhanced 2PN terms. These simplified transformations
represent the second part of the main results of this investigation:

1. Simplified transformation k→ σ given by Eq. (90),

2. Simplified transformation σ → n given by Eq. (104),

3. Simplified transformation k→ n given by Eq. (114).

The simplified transformations k→ σ and σ → n are valid with an accuracy of 1.0 nas
and 1.2 nas, respectively, while the simplified transformation k → n is valid with an
accuracy of at least 1.3 nas. These statements are valid for light deflection for Sun at
45◦ (solar aspect angle adopted from the Gaia mission) and all the other Solar System
bodies.

But one has to take care about the fact that higher order terms may also
significantly contribute on the nas-level of accuracy. Therefore, the impact of possible
2.5PN and 3PN enhanced terms to order O

(
c−5
)

and O
(
c−6
)

has been considered.
While it might be that 2.5PN terms are relevant, it has turned out that 3PN terms
will certainly have an impact on the nas-scale of accuracy, namely about 32 nas for
grazing rays at Jupiter and about 7 nas for grazing rays at Saturn. That means, in
order to arrive at a light propagation model having an accuracy of 1 nas in angular
determination, the 3PN solution for the light trajectory needs to be determined. For
such a sophisticated calculation it would be sufficient to consider the case of one
monopole at rest and then to take just the retarded position of the body at s1 in order
to account for the motion of the body. Furthermore, we have argued that enhanced
terms in 3.5PN and 4PN approximation contribute certainly less than 1 nas for Sun at
45◦ and all the other Solar System bodies, except for grazing rays at the Sun, where
4PN terms amount to be about 50 nas in light deflection.

The primary aim of our investigations is to develop a fully analytical model of light
propagation in the gravitational field of the Solar System which allows for astrometry
on the sub-µas and even nas-level of accuracy. Before this aim is in reach, further
aspects of the theory of light propagation are of decisive importance, for instance:

(a) 1PN [33] and 1.5PN [34] light trajectory needs further to be investigated.

(b) 2PN light trajectory in the field of N moving monopoles.

(c) 2PN effects of light propagation in the field of finite sized bodies at rest.

(d) Enhanced terms in 2.5PN approximation in the field of one moving monopole.

(e) Enhanced terms in 3PN approximation in the field of one monopole at rest.

(f) Impact of the motion of source and observer.

Each of these and certainly further problems, for instance light propagation in the post-
Minkowskian scheme (which allows for astrometry in the far-zone of the Solar System),
need to be solved before light propagation models become feasible for astrometry on
the sub-µas-level or nas-level of accuracy.
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Priv.-Doz. Dr. G. Plunien, Prof. B. Kämpfer, and Prof. L.P. Csernai for inspiring
discussions about general theory of relativity and astrometry during recent years.

Appendix A. Notation

Throughout the investigation the following notation is in use:

• G is the Newtonian constant of gravitation

• c is the vacuum speed of light in Minkowskian space-time

• MA is the rest mass of the body A

• mA = GMA/c
2 is the Schwarzschild radius of the body A

• PA denotes the equatorial radius of the body A

• vA denotes the orbital velocity of the body A

• aA denotes the orbital acceleration of the body A

• Theta-function: Θ (x) = 0 for x < 0 and Θ (x) = 1 for x ≥ 0.

• Lower case Latin indices take values 1, 2, 3

• δij = δij = diag (+1,+1,+1) is the Kronecker delta

• εijk = εijk with ε123 = +1 is the fully anti-symmetric Levi-Civita symbol

• Triplet of spatial coordinates (three-vectors) are in boldface: e.g. a, b, k, σ, rA

• Contravariant components of three-vectors: ai =
(
a 1, a2, a3

)
• Absolute value of a three-vector: a = |a| =

√
a 1 a 1 + a2 a2 + a3 a3

• Scalar product of three-vectors: a · b = δij a
i bj

• Vector product of two three-vectors: (a× b)i = εijk a
j bk

• Angle α between three-vectors a and b is determined by α = arccos
a · b
|a| |b|

• Lower case Greek indices take values 0,1,2,3

• ηαβ = ηαβ = diag (−1,+1,+1,+1) is the metric tensor of flat space-time

• gαβ and gαβ are the covariant and contravariant components of the metric tensor

• the signature of the metric tensor is adopted to be (−,+,+,+)

• Contravariant components of four-vectors: aµ =
(
a 0, a 1, a2, a3

)
• Scalar product of four-vectors: a · b = ηµν a

µ bµ in Minkowskian metric ηµν

• f,µ = ∂µ f =
∂f
∂xµ

denotes partial derivative of f with respect to xµ

• Aα;µ = Aα, µ + Γαµν A
ν is covariant derivative of first rank tensor.

• Bαβ;µ = Bαβ, µ+Γαµν B
νβ +Γβµν B

αν is covariant derivative of second rank tensor.

• Einstein’s convention is used, i.e. repeated indices are implicitly summed over

• 1 mas (milli− arcsecond) =
π

180× 60× 60
10−3 rad ' 4.85× 10−9 rad
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• 1µas (micro− arcsecond) =
π

180× 60× 60
10−6 rad ' 4.85× 10−12 rad

• 1 nas (nano− arcsecond) =
π

180× 60× 60
10−9 rad ' 4.85× 10−15 rad

Appendix B. The vectorial functions for light propagation in 2PN
approximation

Appendix B.1. The vectorial functions for the coordinate velocity of a light signal

The vectorial functions A1, A2, A3, and ε1 are given by

A1 (x) = −2

(
σ × (x× σ)

x (x− σ · x)
+
σ

x

)
, (B.1)

A2 (x,v) = + 2
σ × (x× σ)

x (x− σ · x)

σ · v
c

+
4

x

v

c
+ 2

σ × (x× σ)

x2
σ · v
c
− 2

σ

x2
x · v
c

− 2
σ × (x× σ)

x2 (x− σ · x)

(σ × (x× σ)) · v
c

, (B.2)

A3 (x) = −1

2

σ · x
x4

x+ 8
σ × (x× σ)

x2 (x− σ · x)
+ 4

σ × (x× σ)

x (x− σ · x)
2 − 4

σ

x (x− σ · x)
+

9

2

σ

x2

− 15

4
(σ · x)

σ × (x× σ)

x2 |σ × x|2
− 15

4

σ × (x× σ)

|σ × x|3

(
arctan

σ · x
|σ × x|

+
π

2

)
, (B.3)

and the vectorial function ε1 is given as follows,

ε1 (x,v) = −v
2

c2
σ × (x× σ)

x− σ · x
1

x
− 2

(v · x
c x

)2 σ × (x× σ)

x− σ · x
1

x

− 2
(σ · v

c

)2 σ × (x× σ)

x− σ · x
1

x
+ 4

(σ · v
c

) (v · x
c x

) σ × (x× σ)

x− σ · x
1

x

+ 4
v

c

(v · x
c x

) 1

x
− 4

v

c

(σ · v
c

) 1

x
− v2

c2
σ

x
− 2

(v · x
c x

)2 σ
x

+ 2
(σ · v

c

)2 σ
x
. (B.4)

Appendix B.2. The vectorial functions for the trajectory of a light signal

The vectorial functions for the second integration of geodesic equation (32) are given
as follows:

B1 (x) = − 2
σ × (x× σ)

x− σ · x
+ 2σ ln (x− σ · x) , (B.5)

BA
2 (x,v) = −2

v

c
ln (x− σ · x) , (B.6)

BB
2 (x,v) = +2

σ × (x× σ)

x− σ · x
σ · v
c

+ 2
v

c
, (B.7)

B3 (x) = +4
σ

x− σ · x
+ 4

σ × (x× σ)

(x− σ · x)
2 +

1

4

x

x2
− 15

4

σ

|σ × x|
arctan

σ · x
|σ × x|

− 15

4
(σ · x)

σ × (x× σ)

|σ × x|3

(
arctan

σ · x
|σ × x|

+
π

2

)
. (B.8)
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We notice that the second term in the vectorial function BB
2 would vanish in case

of N bodies; cf. relation (C.20) in [86]. The vectorial function ε2 with well-defined
logarithms is given as follows:

ε2 (s, s0) = εA2 (s, s0) + εB2 (s, s0) , (B.9)

εA2 (s, s0) = −v
2
A (s)

c2
σ × (rA (s)× σ)

rA (s)− σ · rA (s)
+
v2A (s0)

c2
σ × (rA (s0)× σ)

rA (s0)− σ · rA (s0)

+
v2A (s0)

c2
σ ln

rA (s)− σ · rA (s)

rA (s0)− σ · rA (s0)
, (B.10)

εB2 (s, s0) = +2dA (s0)
σ · aA (s0)

c2
ln

rA (s)− σ · rA (s)

rA (s0)− σ · rA (s0)

+2
aA (s0)

c2
[rA (s)− σ · rA (s)− rA (s0) + σ · rA (s0)]

−2
aA (s0)

c2
(rA (s0)− σ · rA (s0)) ln

rA (s)− σ · rA (s)

rA (s0)− σ · rA (s0)

+2
aA (s)

c2
(rA (s0)− σ · rA (s0)− rA (s) + σ · rA (s)) ln

rA (s)− σ · rA (s)

rA (s0)− σ · rA (s0)
.

(B.11)

As mentioned above (cf. text below Eq. (35)) the last term in (B.11) is caused by the
replacement of vA (s0) in Eq. (128) in [86] by vA (s) according to the series expansion
(35) which, however, implies to account just for the last term in (B.11). Of course,
since aA (s) = aA (s0) + O

(
c−1
)
, the last two terms in (B.11) can be combined to

simplify the expression (B.11); cf. the vectorial function (I.5) where the last two terms
in (B.11) have been combined.

Appendix C. Some useful relations for the transformations

First of all, we notice two important relations between σ and k, namely

σ = k − 2
mA

R

(
dkA (s1)

k · r 1
A (s1)

− dkA (s0)

k · r 0
A (s0)

)
+O

(
c−3
)
, (C.1)

which is just the term in the second line in (78), and

σ · k = 1− 1

2

m2
A

R2

∣∣∣∣k × (B1

(
r 1
A (s1)

)
−B1

(
r 0
A (s0)

)) ∣∣∣∣2 +O
(
c−5
)
,(C.2)

which has already been given by Eq. (157) in [86] and which is needed in order to
obtain the formal expression in (77).

According to (C.1), up to the 1.5PN approximation there is no need to distinguish
between the impact vectors (37), (38) and (55), (56), simply because of σ = k +
O
(
c−2
)
. However, beyond the 1.5PN approximation one has carefully to distinguish

between these impact vectors. These impact vectors are related to each other,

dA (s) = dkA (s) + 2
mA

R
k

(
dkA (s) · dkA (s1)

k · r 1
A (s1)

− d
k
A (s) · dkA (s0)

k · r 0
A (s0)

)
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+2
mA

R
k · rA (s)

(
dkA (s1)

k · r 1
A (s1)

− dkA (s0)

k · r 0
A (s0)

)
+O

(
c−3
)
, (C.3)

which follows from (C.1). Actually, what we need is the relation between these impact
vectors for the specific case of the retarded moment of emission s0 and the retarded
moment of reception s1 of the light signal, which is easily obtained from (C.3) just
by specifying either s = s0 or s = s1. Furthermore, we notice the following relation
which follows from (C.1),

1

σ · rA (s)
=

1

k · rA (s)
+

1

R

2mA

(k · rA (s))
2

(
dkA (s) · dkA (s1)

k · r 1
A (s1)

− d
k
A (s) · dkA (s0)

k · r 0
A (s0)

)
+O

(
c−3
)
,

(C.4)

from which one may deduce the expressions for the specific cases s = s0 or s = s1.

Appendix D. Parameters for massive Solar System bodies

In order to quantify the numerical magnitude of the upper limits we will use the
parameters of the most massive bodies of the Solar System as presented in Table D1.

Table D1. The numerical parameters Schwarzschild radius mA, equatorial radius
PA, orbital velocity vA, and orbital acceleration aA of Solar System bodies [113].
For the distance r 1

A (s1) between massive body and observer we take the maximal
possible distance, which is computed under the assumption that the observer is
located at Lagrange point L2, that is 1.5 · 109 m from the Earth’s orbit. For Sun
at 45◦ (solar aspect angle adopted from the Gaia mission) one has to replace
PA → sin (π/4) r 1

A (s1) = 0.105 · 1012 m.

Object mA [m] PA [106 m] vA/c aA [10−3 m/s2] r 1
A (s1) [1012 m]

Sun 1476 696 4.0 · 10−8 − 0.149
Mercury 0.245 · 10−3 2.440 15.8 · 10−5 38.73 0.208
Venus 3.615 · 10−3 6.052 11.7 · 10−5 11.34 0.258
Earth 4.438 · 10−3 6.378 9.9 · 10−5 5.93 0.0015
Mars 0.477 · 10−3 3.396 8.0 · 10−5 2.55 0.399

Jupiter 1.410 71.49 4.4 · 10−5 0.21 0.898
Saturn 0.422 60.27 3.2 · 10−5 0.06 1.646
Uranus 0.064 25.56 2.3 · 10−5 0.016 3.142

Neptune 0.076 24.76 1.8 · 10−5 0.0065 4.638

Appendix E. The approach for the estimation of the upper limits

Appendix E.1. Preliminary remarks

The transformations k to σ and σ to n were given by Eqs. (78) and (95), respectively,
and the transformation k to n was given by Eq. (108). These formulae are of
rather involved algebraic structure and it is necessary to simplify these expressions
by estimations of the upper limit of each individual term which allows to neglect
all those terms which contribute less than 1 nas. The estimation of the terms for
light propagation in the gravitational field of moving bodies is considerably more
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complicated than in case of bodies at rest as presented in our article [100]. This fact
is mainly caused by the circumstance that the impact vectors do not coincide for
moving bodies, dkA (s0) 6= dkA (s1), while in case of bodies at rest the impact vector
dkA is constant. In the following the approach is described, while in a subsequent
Appendix F an example is considered in more detail.
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Figure E1. A geometrical illustration of a configuration of region A (Eq. (E.9)),
where the massive body is located between the observer at x1 and the light source
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Figure E2. A geometrical illustration of a configuration of region B (Eq. (E.10)),
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Figure E3. A geometrical illustration of a configuration of region C (Eq. (E.11)),
where the observer at x1 is located between the massive body and light source at
x0, i.e. π
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Appendix E.2. The distance vector R

The following notation for the angles is introduced,

0 ≤ α0 = ∠
(
k, r 0

A (s1)
)
≤ π and 0 ≤ α1 = ∠

(
k, r 1

A (s1)
)
≤ π . (E.1)

For the estimations it is reasonable to express the distance vector R in (43) in terms
of r 0

A (s1) and r 1
A (s1) as follows,

R = r 1
A (s1)− r 0

A (s1) , (E.2)

where r 1
A (s1) and r 0

A (s1) are given by Eqs. (48) and (51), respectively. The three-
vector R in Eq. (43) is time-independent. The vector R in Eq. (E.2) is identical to
vector R in Eq. (43), hence also time-independent. The absolute value is

R =

√
(r 0
A (s1))

2
+ (r 1

A (s1))
2 − 2 r 0

A (s1) r 1
A (s1) cos (α0 − α1) , (E.3)

where

∠
(
r 1
A (s1) , r 0

A (s1)
)

= ∠
(
k , r 0

A (s1)
)
− ∠

(
k , r 1

A (s1)
)

(E.4)

has been used; cf. Eq. (69) in [100] for the same angular relation in case of body at
rest and notice that α0 ≥ α1 in any astrometric configuration. In order to show the
validity of the angular relation (E.4) one should keep in mind that the usual vector
operations of Euclidean space can be applied to three-vectors like k, r 1

A (s1), r 0
A (s1)

[10, 32, 51, 52, 53]; e.g. text below Eq. (3.1.45) in [32]. Accordingly, relation (E.4)
asserts the following,

arccos
r 1
A (s1) · r 0

A (s1)

r 1
A (s1) r 0

A (s1)
=arccos

k · r 0
A (s1)

r 0
A (s1)

− arccos
k · r 1

A (s1)

r 1
A (s1)

. (E.5)

Using arccosx − arccos y = arccos
(
x y +

√
1− x2

√
1− y2

)
(cf. Eq. (4.4.33) on p.

80 in [124]) as well as Eqs. (43) and (E.2), one may demonstrate the validity of the
angular relation (E.4).

Furthermore, for the estimations it is convenient to introduce the ratio

x =
r 0
A (s1)

r 1
A (s1)

with x ≥ 0 . (E.6)

Formally, the astrometric configurations allow all individual values for angles, that
means 0 ≤ α0 ≤ π and 0 ≤ α1 ≤ π as already noticed in their definitions (E.1).
However, from (59) we get r 0

A (s1) sinα0 = r 1
A (s1) sinα1, hence as soon as the

parameter x in (E.6) is fixed, the combinations of these both angles are not arbitrary
anymore, but restricted by the relation (note that sinα0 ≥ 0 as well as sinα1 ≥ 0)

x =
sinα1

sinα0
. (E.7)

So, relation (E.6) is the exact definition of parameter x, while (E.7) follows from (59).
Finally, from (E.7) we deduce

α0 =


π − arcsin

(
sinα1

x

)
for

π

2
≤ α0 ≤ π and x ≥ 0

arcsin

(
sinα1

x

)
for 0 ≤ α0 ≤

π

2
and 1 ≥ x ≥ 0

 , (E.8)

while the region 0 ≤ α0 ≤ π/2 and x > 1 is not possible, because in such configurations
the light signal would not be received by an observer; see also comment below
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Eqs. (E.9) - (E.11). The relations in (E.8) are needed if one evaluates the term
cos (α0 − α1) in Eq. (E.3) for the distance R. In the estimations, the variables x
and α1 are considered as independent of each other, but restricted by the possible
configurations as defined in Eqs. (E.9) - (E.11). That means, in region A and C, as
defined below by Eqs. (E.9) and (E.11), one has to use the first line of (E.8), while
in region B, as defined below by Eq. (E.10), one has to use the relation in the second

line of (E.8). We also notice that (E.7) implies 0 ≤ sinα1

x
≤ 1, so that the relations

in (E.8) are uniquely defined.

Appendix E.3. The possible configurations

The approach for the estimation of the upper limit of each individual term is the
following. We separate all possible configurations into three angular areas,

A :
π

2
≤ α0 ≤ π , 0 ≤ α1 ≤

π

2
: dkA (s1) ≥ PA , x ≥ 0 , (E.9)

B : 0 ≤ α0 <
π

2
, 0 ≤ α1 ≤

π

2
: dkA (s1) ≥ PA , 1 ≥ x ≥ 0 , (E.10)

C :
π

2
≤ α0 ≤ π ,

π

2
< α1 ≤ π : dkA (s1) ≥ 0 , x ≥ 1 . (E.11)

A graphical representation of a typical configuration belonging to region A, B, and C,
is given by the Figures E1, E2, and E3, respectively. The constraints for the impact
parameter were given by Eqs. (60) and (61), while the constraints x ≤ 1 in (E.10) and
x ≥ 1 in (E.11) are necessary because otherwise the light signal cannot be received by
the observer.

Appendix E.4. The approach for the estimations

The determination of the upper limit of each individual term in the transformations
k to σ in (78) and σ to n in (95) proceeds as follows:

1. Series expansion of the individual expression in terms of s1,

2. Inserting (E.3) for the absolute value R of the distance vector,

3. Rewriting the expression in terms of the variables x (E.6) and α0, α1 (E.1),

4. Using relations (E.8) in line with the regions (E.9) - (E.11),

5. Estimation of the term for each possible region separately.

Appendix F. An example: the estimation of ρ1

The estimation of the upper limit of each individual term implies some algebraic effort.
So an example is considered in some more detail, which comprehensively elucidates
the basic steps about how the approach runs. Accordingly, we shall consider the
determination of the upper limit of the term in the second line of (78), which reads

ρ1 (s1, s0) = −2
mA

R

(
dkA (s1)

k · r 1
A (s1)

− dkA (s0)

k · r 0
A (s0)

)
. (F.1)

In what follows an upper limit of this expression will be given by means of the approach
as just described in the previous section.



Light propagation in 2PN approximation in the field of one moving monopole 50

Appendix F.1. Series expansion of ρ1

For the impact vector dkA (s0) in (F.1) the series expansion (62) is used. For the
four-scaler product k ·r 0

A (s0) = −
(
r 0
A (s0)− k · r 0

A (s0)
)

in (F.1) the series expansions

r 0
A (s0) = r 0

A (s1) +
vA (s1)

c

(
r 0
A (s1)− k · r 0

A (s1)− r 1
A (s1) + k · r 1

A (s1)

)
+O

(
c−2
)
, (F.2)

r 0
A (s0) = r 0

A (s1) +
r 0
A (s1)

r 0
A (s1)

· vA (s1)

c

(
r 0
A (s1)− k · r 0

A (s1)− r 1
A (s1) + k · r 1

A (s1)

)
+O

(
c−2
)
, (F.3)

are applied, which follow by inserting the expansion (50) into the definition (46) by
keeping in mind relation (52); recall that r 0

A (s0) =
∣∣r 0
A (s0)

∣∣ and r 0
A (s1) =

∣∣r 0
A (s1)

∣∣
in (F.3) are absolute values of three-vectors. Using these relations, one obtains the
following expansion for the term ρ1 in (F.1),

ρ1 (s1, s0) = ρ1 (s1, s1) + ∆ρ1 (s1, s1) +O
(
c−5
)
, (F.4)

where

ρ1 (s1, s1) = −2
mA

R

(
dkA (s1)

k · r 1
A (s1)

− dkA (s1)

k · r 0
A (s1)

)
, (F.5)

∆ρ1 (s1, s1) = +2
mA

R

dkA (s1)

k · r 0
A (s1)

(
k − r

0
A (s1)

r 0
A (s1)

)
· vA (s1)

c

k · r 0
A (s1)− k · r 1

A (s1)

k · r 0
A (s1)

−2
mA

R
k ×

(
vA (s1)

c
× k

)
k · r 0

A (s1)− k · r 1
A (s1)

k · r 0
A (s1)

+O
(
v2A (s1)

c2

)
+O

(
aA (s1)

c2

)
, (F.6)

where the absolute value R is still given by the exact expression (43). In what follows
we show that

ρ1 (s1, s1) ≤ 4
mA

PA
, (F.7)

∆ρ1 (s1, s1) ≤ 6
mA

r 1
A (s1)

vA (s1)

c
+O

(
v2A (s1)

c2

)
+O

(
aA (s1)

c2

)
, (F.8)

for any kind of astrometric configuration. Because of

∆ρ1 (s1, s1) ≤ 1 nas , (F.9)

for all Solar System bodies, only the term (F.5) is taken into account in the simplified
transformation (90).

First of all, we continue the exemplifying considerations with the expression (F.5),
while the estimation of the term (F.6) proceeds in similar manner and is considered
afterwards.
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Appendix F.2. Estimation of (F.5)

Appendix F.2.1. Region A: π/2 ≤ α0 ≤ π , 0 ≤ α1 ≤ π/2: Using the relations

1

k · r 1
A (s1)

= −r
1
A (s1) + k · r 1

A (s1)(
dkA (s1)

)2 and
1

k · r 0
A (s1)

= −r
0
A (s1) + k · r 0

A (s1)(
dkA (s1)

)2 , (F.10)

we get for the absolute value of (F.5),

ρ1 (s1, s1) = 2
mA

dkA (s1)

∣∣∣∣r 1
A (s1) + k · r 1

A (s1)− r 0
A (s1)− k · r 0

A (s1)

R

∣∣∣∣ . (F.11)

Now we insert for the absolute value R the expression (E.3), and then we can rewrite
(F.11) in terms of the variables x (E.6) as well as the angles α0, α1 (E.1) as follows,

ρ1 (s1, s1) = 2
mA

dkA (s1)

∣∣∣∣∣ 1 + cosα1 − x− x cosα0√
1 + x2 − 2x cos (α0 − α1)

∣∣∣∣∣ . (F.12)

Keeping in mind that in region A the first line of the angular relations (E.8) is
valid, we find that (F.12) depends on two variables only, namely x and α1. One
may demonstrate with the aid of the computer algebra system Maple [125] that

f1 =

∣∣∣∣∣ 1 + cosα1 − x− x cosα0√
1 + x2 − 2x cos (α0 − α1)

∣∣∣∣∣ ≤ 2 , for 0 ≤ α1 ≤
π

2
and x ≥ 0 . (F.13)

Inserting (F.13) into (F.12) yields for the upper limit

ρ1 (s1, s1) ≤ 4
mA

dkA (s1)
, (F.14)

which validates the upper limit (F.7) for region A, because dkA (s1) ≥ PA in region A.

Appendix F.2.2. Region B: 0 ≤ α0 ≤ π/2 , 0 ≤ α1 ≤ π/2: The same steps as in the
previous Section yield the same result as given by Eq. (F.12). Keeping in mind that
in region B the second line of the angular relations (E.8) is valid, one may show that
the inequality (F.13) is also valid for region B,

f1 =

∣∣∣∣∣ 1 + cosα1 − x− x cosα0√
1 + x2 − 2x cos (α0 − α1)

∣∣∣∣∣ ≤ 2 for 0 ≤ α1 ≤
π

2
and 1 ≥ x ≥ 0 . (F.15)

Hence, one obtains that (F.14) is also valid in region B,

ρ1 (s1, s1) ≤ 4
mA

dkA (s1)
, (F.16)

which confirms the validity of the upper limit (F.7) for region B, because dkA (s1) ≥ PA
in region B.

Appendix F.2.3. Region C: π/2 ≤ α0 ≤ π , π/2 ≤ α1 ≤ π: In this angular region the

impact parameter dkA (s1) can be arbitrarily small. Therefore, an estimation for the
expression in the first line of (F.4) is only meaningful if dkA (s1) does not appear in
the denominator. But due to rA (s1)� PA, we may get an upper limit where r 1

A (s1)
appears in the denominator rather than dkA (s1). Hence, we reshape identically the
expression in (F.11), which is also valid for region C, as follows,

ρ1 (s1, s1) = 2
mA

r 1
A (s1)

r 1
A (s1)

dkA (s1)

∣∣∣∣r 1
A (s1) + k · r 1

A (s1)− r 0
A (s1)− k · r 0

A (s1)

R

∣∣∣∣ .
(F.17)
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Inserting the expression (E.3) for the distance R and using the notation (E.1) for the
angles α0, α1, one obtains

ρ1 (s1, s1) = 2
mA

r 1
A (s1)

∣∣∣∣∣ 1

sinα1

1 + cosα1 − x− x cosα0√
1 + x2 − 2x cos (α0 − α1)

∣∣∣∣∣ . (F.18)

Keeping in mind that in region C the first line of the angular relations (E.8) is valid,
relation (F.18) depends on two variables only, namely x and α1. Then, one may show
that

f2 =

∣∣∣∣∣ 1

sinα1

1 + cosα1 − x− x cosα0√
1 + x2 − 2x cos (α0 − α1)

∣∣∣∣∣ ≤ 1 for
π

2
≤ α1 ≤ π and x ≥ 1 ,

(F.19)

which can demonstrated with the aid of the computer algebra system Maple [125].
Hence, by inserting (F.19) into (F.18) we get

ρ1 (s1, s1) ≤ 2mA

r 1
A (s1)

, (F.20)

which also confirms (F.7) because r 1
A (s1)� PA. The upper limits (F.14), (F.16), and

(F.20) confirm the estimation given by Eq. (F.7) for any astrometric configuration.

Appendix F.3. Estimation of (F.6)

The expression (F.6) is separated into two pieces,

∆ρ1 (s1, s1) = ∆ρA1 (s1, s1) + ∆ρB1 (s1, s1) +O
(
v2A (s1)

c2

)
+O

(
aA (s1)

c2

)
, (F.21)

where

∆ρA1 (s1, s1) = +2
mA

R

dkA (s1)

k · r 0
A (s1)

(
k − r

0
A (s1)

r 0
A (s1)

)
· vA (s1)

c

k · r 0
A (s1)− k · r 1

A (s1)

k · r 0
A (s1)

,

(F.22)

∆ρB1 (s1, s1) = −2
mA

R
k ×

(
vA (s1)

c
× k

)
k · r 0

A (s1)− k · r 1
A (s1)

k · r 0
A (s1)

. (F.23)

The estimation of these terms proceeds in the same way as the estimation of (F.5).
Inserting the expression (E.3) for the distance R and using the notation (E.1) for the
angles α0, α1, one obtains

∆ρA1 (s1, s1) = 2
mA

r 1
A (s1)

vA (s1)

c

∣∣∣∣∣
√

2

x2
1− cosα1 − x+ x cosα0√
1 + x2 − 2x cos (α0 − α1)

sinα1

(1− cosα0)
3/2

∣∣∣∣∣ ,
(F.24)

∆ρB1 (s1, s1) = 2
mA

r 1
A (s1)

vA (s1)

c

∣∣∣∣∣ 1x 1− cosα1 − x+ x cosα0√
1 + x2 − 2x cos (α0 − α1)

1

1− cosα0

∣∣∣∣∣ . (F.25)

where in (F.24) we have used
∣∣k − r 0

A (s1) /r 0
A (s1)

∣∣ =
√

2 (1− cosα0). For each region
A, B, and C one obtains the following inequality,

f3 =

∣∣∣∣∣
√

2

x2
1− cosα1 − x+ x cosα0√
1 + x2 − 2x cos (α0 − α1)

sinα1

(1− cosα0)
3/2

∣∣∣∣∣ ≤ 2 , (F.26)

f4 =

∣∣∣∣∣ 1x 1− cosα1 − x+ x cosα0√
1 + x2 − 2x cos (α0 − α1)

1

1− cosα0

∣∣∣∣∣ ≤ 1 . (F.27)
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Hence, inserting (F.26) into (F.24) and (F.27) into (F.25) yields for the upper limit of
(F.21)

∆ρ1 (s1, s1) ≤ 6
mA

r 1
A (s1)

vA (s1)

c
, (F.28)

which is less than 1 nas for any Solar System body, as already stated in Eq. (F.9).
The calculation of the remaining terms of order O

(
v2A/c

2
)

and O
(
aA/c

2
)

in (F.21) involves a considerable algebraic effort which we believe cannot be of
much interest. To present all these detailed calculations explicitly here would be
disadvantageous to the clarity. So we are obliged to confine ourselves here by the
statement that these terms turn out to be even smaller than the terms (F.22) and
(F.23) and will, also for this reason, not be presented here in their explicit form.

Appendix G. Estimation of the terms in the transformation k to σ

Appendix G.1. Estimation of ρ2

The term in the third line of (78) is denoted as ρ2 and reads

ρ2 (s1, s0) = 2
mA

R
k ×

(
vA (s1)

c
× k

)
ln
k · r 1

A (s1)

k · r 0
A (s0)

(G.1)

= ρ2 (s1, s1) + ∆ρ2 (s1, s1) +O
(
c−5
)
, (G.2)

where

ρ2 (s1, s1) = 2
mA

R
k ×

(
vA (s1)

c
× k

)
ln
k · r 1

A (s1)

k · r 0
A (s1)

, (G.3)

∆ρ2 (s1, s1)=2
mA

R
k ×

(
vA (s1)

c
× k
)(
k − r

0
A (s1)

r 0
A (s1)

)
· vA (s1)

c

k · r 0
A (s1)− k · r 1

A (s1)

k · r 0
A (s1)

.

(G.4)

The upper limits of the absolute values are given by

ρ2 (s1, s1) ≤ 2
mA√

PA r 0
A (s1)

vA (s1)

c
≤ 2

mA

PA

vA (s1)

c
, (G.5)

∆ρ2 (s1, s1) ≤ 4
mA

PA

v2A (s1)

c2
� 1 nas . (G.6)

For the second estimation in (G.5) we have taken into account that r 0
A (s1) ' PA

is quite possible, for instance by a moon orbiting around a planet. Hence, for all
Solar System bodies only the term (G.3) is taken into account in the simplified
transformation (90).

Appendix G.2. Estimation of ρ3

The term in the fourth line of (78) is denoted as ρ3 and reads

ρ3 (s1, s0) = −2
mA

R

(
k ×

(
vA (s1)

c
− vA (s0)

c

)
× k

)
(G.7)

= ρ3 (s1, s1) + ∆ρ3 (s1, s1) +O
(
c−5
)
, (G.8)
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where

ρ3 (s1, s1) = 0 , (G.9)

∆ρ3 (s1, s1) = −2mA k ×
(
aA (s1)

c2
× k

)
k · r 0

A (s1)− k · r 1
A (s1)

R
. (G.10)

The upper limit of the absolute value ρ3 is given by

∆ρ3 (s1, s1) ≤ 4mA
aA (s1)

c2
� 1 nas , (G.11)

hence the term ρ3 is not taken into account in the simplified transformation (90). As
already mentioned above (see text below Eq. (B.8)), the term (G.7) actually vanishes
in case of N moving monopoles; cf. Eq. (C.20) in [86].

Appendix G.3. Estimation of ρ4

The term in the fifth line of (78) is denoted as ρ4 and reads

ρ4 (s1, s0) = 2
mA

R

(
k · vA (s1)

c

dkA (s1)

k · r 1
A (s1)

− k · vA (s0)

c

dkA (s0)

k · r 0
A (s0)

)
(G.12)

= ρ4 (s1, s1) + ∆ρ4 (s1, s1) +O
(
c−5
)
, (G.13)

where

ρ4 (s1, s1) = 2
mA

R

k · vA (s1)

c

(
dkA (s1)

k · r 1
A (s1)

− dkA (s1)

k · r 0
A (s1)

)
, (G.14)

∆ρ4 (s1, s1) = +2
mA

R

k · vA (s1)

c
k ×

(
vA (s1)

c
× k

)
k · r 0

A (s1)− k · r 1
A (s1)

k · r 0
A (s1)

−2
mA

R

k · vA (s1)

c

dkA (s1)

k · r 0
A (s1)

(
k − r

0
A (s1)

r 0
A (s1)

)
· vA (s1)

c

k · r 0
A (s1)− k · r 1

A (s1)

k · r 0
A (s1)

−2
mA

R

k · aA (s1)

c2
dkA (s1)

k · r 0
A (s1)− k · r 1

A (s1)

k · r 0
A (s1)

. (G.15)

The upper limit of the absolute value ρ4 is given by

ρ4 (s1, s1) ≤ 4
mA

PA

vA (s1)

c
, (G.16)

∆ρ4 (s1, s1) ≤ 6
mA

r 1
A (s1)

v2A (s1)

c2
+ 4mA

aA (s1)

c2
� 1 nas , (G.17)

for all Solar System bodies. Hence, only the term (G.14) is taken into account in the
simplified transformation (90).

Appendix G.4. Estimation of ρ5

The term in the sixth line of (78) is denoted as ρ5 and reads

ρ5 (s1, s0) = −2
m2
A

R2
k

∣∣∣∣∣ dkA (s1)

k · r 1
A (s1)

− dkA (s0)

k · r 0
A (s0)

∣∣∣∣∣
2

(G.18)

= ρ5 (s1, s1) +O
(
c−5
)
, (G.19)
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where

ρ5 (s1, s1) = −2
m2
A

R2
k

∣∣∣∣∣ dkA (s1)

k · r 1
A (s1)

− dkA (s1)

k · r 0
A (s1)

∣∣∣∣∣
2

. (G.20)

The upper limit of the absolute value is given by

ρ5 (s1, s1) ≤ 8
m2
A

P 2
A

, (G.21)

which is less than 1 nas for all Solar System bodies. Furthermore, (G.18) is a scaling
term.

Appendix G.5. Estimation of ρ6

The term in the seventh line of (78) is denoted as ρ6 and reads

ρ6 (s1, s0) = −2
m2
A

R2

(
dkA (s1)

k · r 1
A (s1)

+
dkA (s0)

k · r 0
A (s0)

)∣∣∣∣∣ dkA (s1)

k · r 1
A (s1)

− dkA (s0)

k · r 0
A (s0)

∣∣∣∣∣
2

(G.22)

= ρ6 (s1, s1) +O
(
c−5
)
, (G.23)

where

ρ6 (s1, s1) = −2
m2
A

R2

(
dkA (s1)

k · r 1
A (s1)

+
dkA (s1)

k · r 0
A (s1)

)∣∣∣∣∣ dkA (s1)

k · r 1
A (s1)

− dkA (s1)

k · r 0
A (s1)

∣∣∣∣∣
2

. (G.24)

The upper limit of the absolute value is given by

ρ6 (s1, s1) ≤ 16
m2
A

P 2
A

r 1
A (s1)

PA
, (G.25)

which contains the large factor r 1
A (s1) /PA and, therefore, is an enhanced term, hence

(G.24) has necessarily to be taken into account in the simplified transformation (90).

Appendix G.6. Estimation of ρ7

The term in the eighth line of (78) is denoted as ρ7 and reads

ρ7 (s1, s0) = −4
m2
A

R

(
dkA (s1)

(k · r 1
A (s1))

2 −
dkA (s0)

(k · r 0
A (s0))

2

)
(G.26)

= ρ7 (s1, s1) +O
(
c−5
)
, (G.27)

where

ρ7 (s1, s1) = −4
m2
A

R

(
dkA (s1)

(k · r 1
A (s1))

2 −
dkA (s1)

(k · r 0
A (s1))

2

)
. (G.28)

The upper limit of the absolute value is given by

ρ7 (s1, s1) ≤ 16
m2
A

P 2
A

r 1
A (s1)

PA
, (G.29)

which is an enhanced term because of the large factor r 1
A (s1) /PA, hence (G.28) must

be taken into account in the simplified transformation (90).
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Appendix G.7. Estimation of ρ8

The terms in the ninth and tenth line of (78) are combined to a term ρ8,

ρ8 (s1, s0) = ρA8 (s1) + ρB8 (s0) , (G.30)

ρA8 (s1) = +
15

4

m2
A

R

dkA (s1)

|k × r 1
A (s1)|3

(
k · r 1

A (s1)
)(

arctan
k · r 1

A (s1)

|k × r 1
A (s1)|

+
π

2

)
, (G.31)

ρB8 (s0) = −15

4

m2
A

R

dkA (s0)

|k × r 0
A (s0)|3

(
k · r 0

A (s0)
)(

arctan
k · r 0

A (s0)

|k × r 0
A (s0)|

+
π

2

)
. (G.32)

The series expansion of ρ8 in (G.30) reads

ρ8 (s1, s0) = ρ8 (s1, s1) +O
(
c−5
)
, (G.33)

where

ρ8 (s1, s1) =
15

4

m2
A

R

dkA (s1)

|k × r 1
A (s1)|3

[ (
k · r 1

A (s1)
)(

arctan
k · r 1

A (s1)

|k × r 1
A (s1)|

+
π

2

)
−
(
k · r 0

A (s1)
)(

arctan
k · r 0

A (s1)

|k × r 0
A (s1)|

+
π

2

)]
. (G.34)

The upper limit of the absolute value is given by

ρ8 (s1, s1) ≤ 15

4
π
m2
A

P 2
A

, (G.35)

which is less than 1 nas for all Solar System bodies and for the Sun at 45◦. Hence
(G.34) is not taken into account in the simplified transformation (90).

Appendix G.8. Estimation of ρ9

The term in the eleventh line of (78) is denoted as ρ9 and reads

ρ9 (s1, s0) = −1

4

m2
A

R

(
dkA (s1)

(r 1
A (s1))

2 −
dkA (s0)

(r 0
A (s0))

2

)
(G.36)

= ρ9 (s1, s1) +O
(
c−5
)
, (G.37)

where

ρ9 (s1, s1) = −1

4

m2
A

R

(
dkA (s1)

(r 1
A (s1))

2 −
dkA (s1)

(r 0
A (s1))

2

)
. (G.38)

The upper limit of the absolute value is

ρ9 (s1, s1) ≤ 1

4

m2
A

P 2
A

, (G.39)

which is less than 1 nas for all Solar System bodies and for the Sun at 45◦. Hence
(G.36) is not taken into account in the simplified transformation (90).

Numerical values for the upper limits ρ1, . . . , ρ9 are presented in Table G1.
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Table G1. The numerical magnitude of the upper limits of Eqs. (F.7), (G.5),
(G.9), (G.16), (G.21), (G.25), (G.29), (G.35), (G.39), and (I.7). The parameters
of the most massive bodies of the Solar System are given in Table D1. The solar
aspect angle (angle between the direction of the Sun and the satellite’s spin axis
as seen from the satellite) in the Hipparcos mission [4] and Gaia mission [7] is 43◦

and 45◦, respectively. Therefore, we consider only astrometric observations equal
to or larger than 45◦ angular radii from the Sun. All values are given in nas. A
blank means the value is less than 1 nas.

ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 . . . ρ9 ε̂2

Sun at 45◦ 1.2 · 107 − − − − 0.95 0.95 − −
Mercury 0.8 · 105 6.5 − 13.1 − 2.8 2.8 − −
Venus 0.5 · 106 28.8 − 57.7 − 50.2 50.2 − −
Earth 0.6 · 106 28.4 − 56.8 − − − − −
Mars 0.1 · 106 4.6 − 9.3 − 7.6 7.6 − −

Jupiter 1.6 · 107 358.0 − 716.0 − 1.6 · 104 1.6 · 104 − −
Saturn 0.6 · 107 92.4 − 184.9 − 4.4 · 103 4.4 · 103 − −
Uranus 0.2 · 107 23.8 − 47.5 − 2.5 · 103 2.5 · 103 − −

Neptune 0.2 · 107 22.8 − 45.6 − 5.8 · 103 5.8 · 103 − −

Appendix H. Estimation of the terms in the transformation σ to n

The transformation σ to n is given by Eq. (95). In what follows an upper limit of each
individual term of this transformation is given. The approach is the same as described
and used in the previous sections. If the terms depend solely on the retarded s1 then
a series expansion is not necessary. The estimations are straightforward and they are
just given.

Appendix H.1. Estimation of ϕ1

The term in the second line of (95) is denoted as ϕ1 and reads

ϕ1 (s1) = 2
mA

r 1
A (s1)

∣∣∣∣∣ dkA (s1)

k · r 1
A (s1)

∣∣∣∣∣ , (H.1)

ϕ1 (s1) ≤ 4
mA

PA
, (H.2)

which has to be taken into account in the simplified transformation (104).

Appendix H.2. Estimation of ϕ2

The term in the third line of (95) is denoted as ϕ2 and reads

ϕ2 (s1) = −4
mA

r 1
A (s1)

k
k · vA (s1)

c
, (H.3)

ϕ2 (s1) ≤ 4
mA

r 1
A (s1)

vA (s1)

c
, (H.4)

which is less than 1 nas for all Solar System bodies. Furthermore, (H.3) is a scaling
term.
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Appendix H.3. Estimation of ϕ3

The term in the fourth line of (95) is denoted as ϕ3 and reads

ϕ3 (s1) = −2
mA

r 1
A (s1)

dkA (s1)

k · r 1
A (s1)

k · vA (s1)

c
, (H.5)

ϕ3 (s1) ≤ 4
mA

PA

vA (s1)

c
, (H.6)

which has to be taken into account in the simplified transformation (104).

Appendix H.4. Estimation of ϕ4

The term in the fifth line of (95) is denoted as ϕ4 and reads

ϕ4 (s1) = 4
mA

r 1
A (s1)

vA (s1)

c
+ 2

mA

(r 1
A (s1))

2 d
k
A (s1)

k · vA (s1)

c
, (H.7)

ϕ4 (s1) ≤ 6
mA

r 1
A (s1)

vA (s1)

c
, (H.8)

which is less than 1 nas for all Solar System bodies, hence (H.7) is not taken into
account in the simplified transformation (104).

Appendix H.5. Estimation of ϕ5

The term in the sixth line of (95) is denoted as ϕ5 and reads

ϕ5 (s1) = 2
mA

(r 1
A (s1))

2

dkA (s1)

k · r 1
A (s1)

dkA (s1) · vA (s1)

c
, (H.9)

ϕ5 (s1) ≤ 4
mA

r 1
A (s1)

vA (s1)

c
, (H.10)

which is less than 1 nas for all Solar System bodies, hence (H.9) is not taken into
account in the simplified transformation (104).

Appendix H.6. Estimation of ϕ6

The term in the seventh line of (95) is denoted as ϕ6 and reads

ϕ6 (s1) = −2k
m2
A

(r 1
A (s1))

2

dkA (s1) · dkA (s1)

(k · r 1
A (s1))

2 , (H.11)

ϕ6 (s1) ≤ 8
m2
A

P 2
A

, (H.12)

which is less than 1 nas for all Solar System bodies. Furthermore, (H.11) is a scaling
term.
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Appendix H.7. Estimation of ϕ7

The term in the eighth line of (95) is denoted as ϕ7 and reads

ϕ7 (s1, s0) = 4
m2
A

r 1
A (s1)

1

k · r 1
A (s1)

k

R

(
dkA (s1) · dkA (s1)

k · r 1
A (s1)

− d
k
A (s0) · dkA (s1)

k · r 0
A (s0)

)
(H.13)

= ϕ7 (s1, s1) +O
(
c−5
)
, (H.14)

where

ϕ7 (s1, s1) = 4
m2
A

r 1
A (s1)

1

k · r 1
A (s1)

k

R

(
dkA (s1) · dkA (s1)

k · r 1
A (s1)

− d
k
A (s1) · dkA (s1)

k · r 0
A (s1)

)
. (H.15)

For the upper limit one finds

ϕ7 (s1, s1) ≤ 16
m2
A

P 2
A

, (H.16)

which is less than 1.3 nas for all Solar System bodies. Furthermore, (H.13) is a scaling
term.

Appendix H.8. Estimation of ϕ8

The term in the ninth line of (95) is denoted as ϕ8 and reads

ϕ8 (s1) = 4
m2
A

r 1
A (s1)

dkA (s1)

(k · r 1
A (s1))

2 , (H.17)

ϕ8 (s1) ≤ 16
m2
A

P 2
A

r 1
A (s1)

PA
, (H.18)

which is an enhanced term because of the large factor r 1
A (s1) /PA, hence (H.17) must

necessarily to be taken into account in the simplified transformation (104).

Appendix H.9. Estimation of ϕ9

The term in the tenth line of (95) is denoted as ϕ9 and reads

ϕ9 (s1, s0) = 4
m2
A

r 1
A (s1)

1

R

dkA (s1)

(k · r 1
A (s1))

2

(
dkA (s1) · dkA (s1)

k · r 1
A (s1)

− d
k
A (s0) · dkA (s1)

k · r 0
A (s0)

)
(H.19)

= ϕ9 (s1, s1) +O
(
c−5
)
, (H.20)

where

ϕ9 (s1, s1) = 4
m2
A

r 1
A (s1)

1

R

dkA (s1)

(k · r 1
A (s1))

2

(
dkA (s1) · dkA (s1)

k · r 1
A (s1)

− d
k
A (s1) · dkA (s1)

k · r 0
A (s1)

)
.

(H.21)

For the upper limit one finds

ϕ9 (s1, s1) ≤ 32
m2
A

P 2
A

r 1
A (s1)

PA
, (H.22)

which contains the large factor r 1
A (s1) /PA hence is an enhanced term, so that (H.21)

must be taken into account in the simplified transformation (104).
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Appendix H.10. Estimation of ϕ10

The term in the eleventh line of (95) is denoted as ϕ10 and reads

ϕ10 (s1, s0) = 4
m2
A

r 1
A (s1)

1

R

k · r 1
A (s1)

k · r 1
A (s1)

(
dkA (s1)

k · r 1
A (s1)

− dkA (s0)

k · r 0
A (s0)

)
(H.23)

= ϕ10 (s1, s1) +O
(
c−5
)
, (H.24)

where

ϕ10 (s1, s1) = 4
m2
A

r 1
A (s1)

1

R

k · r 1
A (s1)

k · r 1
A (s1)

(
dkA (s1)

k · r 1
A (s1)

− dkA (s1)

k · r 0
A (s1)

)
. (H.25)

For the upper limit one finds

ϕ10 (s1, s1) ≤ 16
m2
A

P 2
A

r 1
A (s1)

PA
, (H.26)

which contains the large factor r 1
A (s1) /PA hence is an enhanced term, so that (H.25)

must be taken into account in the simplified transformation (104).

Appendix H.11. Estimation of ϕ11

The term in the twelfth line of (95) is denoted as ϕ11 and reads

ϕ11 (s1) = −4
m2
A

(r 1
A (s1))

2

dkA (s1)

k · r 1
A (s1)

, (H.27)

ϕ11 (s1) ≤ 8
m2
A

PA r 1
A (s1)

, (H.28)

which contributes less than 1 nas for all Solar System bodies, hence (H.27) is not taken
into account in the simplified transformation (104).

Appendix H.12. Estimation of ϕ12

The term in the thirteenth line of (95) is denoted as ϕ12 and reads

ϕ12 (s1) = −m
2
A

2
dkA (s1)

k · r 1
A (s1)

(r 1
A (s1))

4 −
15

4

m2
A

(r 1
A (s1))

2 d
k
A (s1)

k · r 1
A (s1)

|k × r 1
A (s1)|2

, (H.29)

ϕ12 (s1) ≤ 1

2

m2
A

(r 1
A (s1))

2 +
15

4

m2
A

PA r 1
A (s1)

, (H.30)

which is less than 1 nas for all Solar System bodies, hence (H.29) is not taken into
account in the simplified transformation (104).

Appendix H.13. Estimation of ϕ13

The term in the fourteenth line of (95) is denoted as ϕ13 and reads

ϕ13 (s1) = −15

4
m2
A

dkA (s1)

|k × r 1
A (s1)|3

(
arctan

k · r 1
A (s1)

|k × r 1
A (s1)|

+
π

2

)
, (H.31)

ϕ13 (s1) ≤ 15

4
π
m2
A

P 2
A

, (H.32)
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which is less than 1 nas for all Solar System bodies, hence (H.31) is not taken into
account in the simplified transformation (104).
The numerical values for the upper limits are presented in Table H1.

Table H1. The numerical magnitude of the upper limits of (H.2), (H.4), (H.6),
(H.8), (H.10), (H.12), (H.16), (H.18), (H.22), (H.26), (H.28), (H.30), (H.32), and
(I.3). The parameters of the most massive bodies of the Solar System are given
in Table D1. Like in Table G1, we consider only astrometric observations larger
or equal than 45◦ angular radii from the Sun in accordance with the solar aspect
angle in the Gaia mission [7]. All values are given in nas. A blank means the
value is less than 1 nas.

ϕ1 ϕ2 ϕ3 ϕ4 . . . ϕ6 ϕ7 ϕ8 ϕ9 ϕ10 ϕ11 . . . ϕ13 ε̂1

Sun at 45◦ 1.2 · 107 − − − − − 1.8 − − −
Mercury 0.8 · 105 − 13.1 − − 2.8 5.7 2.8 − −
Venus 0.5 · 106 − 57.7 − − 50.2 100.4 50.2 − −
Earth 0.6 · 106 − 56.8 − − − − − − −
Mars 0.1 · 106 − 9.3 − − 7.7 15.3 7.7 − −

Jupiter 1.6 · 107 − 716.0 − 1.3 1.6 · 104 3.2 · 104 1.6 · 104 − −
Saturn 0.6 · 107 − 184.9 − − 4.4 · 103 8.8 · 103 4.4 · 103 − −
Uranus 0.2 · 107 − 47.5 − − 2.5 · 103 5.1 · 103 2.5 · 103 − −

Neptune 0.2 · 107 − 45.6 − − 5.8 · 103 1.2 · 104 5.8 · 103 − −

Appendix I. The terms ε̂1 and ε̂2

Appendix I.1. The upper limit of the term ε̂1

The expression of the term ε̂1 in (94) and (95) reads

ε̂1 (s1) = mA σ ×
(
ε1
(
r 1
A (s1) ,vA (s1)

)
× σ

)
, (I.1)

where ε1 is given by Eq. (B.4). The vectorial term ε̂1 is of order O
(
c−4
)
. Due to

σ = k+O
(
c−2
)

we may replace the unit-vector σ in (I.1) by the unit-vector k, because

such a replacement would cause an error of the order O
(
c−6
)

which is beyond 2PN
approximation. Hence, we get

ε̂1 (s1) = mA k ×
(
ε1
(
r 1
A (s1) ,vA (s1)

)
× k

)
+O

(
c−6
)

= +4
mA

r 1
A (s1)

k × (vA (s1)× k)

c

r 1
A (s1) · vA (s1)

r 1
A (s1) c

−4
mA

r 1
A (s1)

k × (vA (s1)× k)

c

k · vA (s1)

c

− mA

r 1
A (s1)

dkA (s1)

k · r 1
A (s1)

[
v2A (s1)

c2
+ 2

(
r 1
A (s1) · vA (s1)

r 1
A (s1) c

+
k · vA (s1)

c

)2
]

+O
(
c−6
)
.

(I.2)

The upper limit of the absolute value of ε̂1 = |ε̂1| is given by

ε̂1 = |ε̂1 (s1)| ≤ 8
mA

r 1
A (s1)

v2A (s1)

c2
+ 18

mA

PA

v2A (s1)

c2
+O

(
c−6
)
. (I.3)
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Appendix I.2. The upper limit of the term ε̂2

The expression of the term ε̂2 in (77) and (78) reads as follows:

ε̂2 (s1, s0) =
mA

R

(
σ ×

[
σ × ε2 (s1, s0)

])
, (I.4)

where ε2 is given by Eq. (B.9). Because the vectorial term ε̂2 is of order O
(
c−4
)
,

we σ = k + O
(
c−2
)

we may replace the unit-vector σ in (I.4) by the unit-vector k,

because such a replacement would cause an error of the order O
(
c−6
)

which is beyond
2PN approximation. So, we obtain

ε̂2 (s1, s0) =
mA

R

(
k ×

[
k × ε2 (s1, s0)

])
+O

(
c−6
)

= −mA

R

v2A (s1)

c2
dkA (s1)

k · r 1
A (s1)

+
mA

R

v2A (s0)

c2
dkA (s0)

k · r 0
A (s0)

−2
mA

R
dkA (s0)

k · aA (s1)

c2
ln
k · r 1

A (s1)

k · r 0
A (s0)

+2
mA

R

k × (aA (s1)× k)

c2
[
k · r 1

A (s1)− k · r 0
A (s0)

]
−2

mA

R

k × (aA (s1)× k)

c2
(
k · r 1

A (s1)
)

ln
k · r 1

A (s1)

k · r 0
A (s0)

+O
(
c−6
)
, (I.5)

where all the acceleration terms carry the same argument because of aA (s0) =
aA (s1) + O

(
c−1
)
. In this respect we recall that dkA (s0) = dkA (s1) + O

(
c−1
)

and

vA (s0) = vA (s1) +O
(
c−1
)
, hence also the impact vectors and velocities in (I.5) may

actually be written such that they carry the same argument. Here we also notice that
the origin of last term in (I.5) is just the combination of the last both terms in (B.11).
The series expansion of (I.5) around s1 reads

ε̂2 (s1, s0) = ε̂2 (s1, s1) +O
(
c−5
)
. (I.6)

For the upper limit of the absolute value of (I.6) one finds

ε̂2 = |ε̂2 (s1, s1)| ≤ 2
mA

PA

v2A (s1)

c2
+ 10mA

aA (s1)

c2
. (I.7)

Appendix J. Proof of inequality (111)

We will show the inequality (111), which reads∣∣∆ρA1 (s1, s1) + ∆ρB1 (s1, s1) +ϕ4 (s1) +ϕ5 (s1)
∣∣ ≤ 10

mA

r 1
A (s1)

vA (s1)

c
, (J.1)

where ∆ρA1 , ∆ρB1 , ϕ4, and ϕ5 are given by Eqs. (F.22), (F.23), (H.7), and (H.9).
From (56) follows the relation

r 0
A (s1)

r 0
A (s1)

· vA (s1)

c
=
dkA (s1)

r 0
A (s1)

· vA (s1)

c
+

(
k · vA (s1)

c

)
k · r 0

A (s1)

r 0
A (s1)

, (J.2)
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which allows to rewrite the term ∆ρA1 in (F.22) in the form

∆ρA1 (s1, s1) = −2
mA

R

dkA (s1)

r 0
A (s1)

(
k · vA (s1)

c

)
k · r 0

A (s1)− k · r 1
A (s1)

k · r 0
A (s1)

−2
mA

R

dkA (s1)

k · r 0
A (s1)

(
dkA (s1)

r 0
A (s1)

· vA (s1)

c

)
k · r 0

A (s1)− k · r 1
A (s1)

k · r 0
A (s1)

. (J.3)

The term ∆ρB1 in (F.23) is written as follows,

∆ρB1 (s1, s1) = −2
mA

R

vA (s1)

c

k · r 0
A (s1)− k · r 1

A (s1)

k · r 0
A (s1)

, (J.4)

while the term proportional to three-vector k is omitted because it does not contribute
to the light deflection. Using the expressions (J.3) - (J.4) for ∆ρA1 and ∆ρB1 as well
as Eqs. (H.7) and (H.9) for ϕ4 and ϕ5 we get∣∣∆ρA1 (s1, s1) + ∆ρB1 (s1, s1) +ϕ4 (s1) +ϕ5 (s1)

∣∣ = |T 1 + T 2 + T 3| , (J.5)

where the terms of same algebraic structure are grouped together,

T 1 = +4
mA

r 1
A (s1)

vA (s1)

c
− 2

mA

R

vA (s1)

c

k · r 0
A (s1)− k · r 1

A (s1)

k · r 0
A (s1)

, (J.6)

T 2 = +
2mA

r 1
A (s1)

dkA (s1)

r 1
A (s1)

k · vA (s1)

c
− 2

mA

R

dkA (s1)

r 0
A (s1)

k · vA (s1)

c

k · r 0
A (s1)− k · r 1

A (s1)

k · r 0
A (s1)

,

(J.7)

T 3 = +2
mA

(r 1
A (s1))

2

dkA (s1)

k · r 1
A (s1)

dkA (s1) · vA (s1)

c

−2
mA

r 0
A (s1)

dkA (s1)

k · r 0
A (s1)

1

R

dkA (s1) · vA (s1)

c

k · r 0
A (s1)− k · r 1

A (s1)

k · r 0
A (s1)

. (J.8)

Then, using the approach described above (items 2. - 5. in Appendix E.4) one may
demonstrate that the upper limits are

|T 1| ≤ 4
mA

r 1
A (s1)

vA (s1)

c
, (J.9)

|T 2| ≤ 2
mA

r 1
A (s1)

vA (s1)

c
, (J.10)

|T 3| ≤ 4
mA

r 1
A (s1)

vA (s1)

c
, (J.11)

while their total sum confirms the asserted inequality (J.1), that is (111).
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