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The time delay of a light signal in the quadrupole field of a body at rest is determined in the
second post-Newtonian (2PN) approximation in harmonic coordinates. For grazing light rays at Sun,
Jupiter, and Saturn the 2PN quadrupole effect in time delay amounts up to 0.004, 0.14, and 0.04
pico-second, respectively. These values are compared with the time delay in the first post-Newtonian
(1PN and 1.5PN) approximation, where it turns out that only the first eight mass-multipoles and
the spin-dipole of these massive bodies are required for a given goal accuracy of 0.001 pico-second in
time-delay measurements in the solar system. In addition, the spin-hexapole of Jupiter is required
on that scale of accuracy.

I. INTRODUCTION

The time delay of a light signal in the gravitational
field of a massive body was predicted by Shapiro in 1964
[1] and belongs to the four classical tests of general rela-
tivity: perihelion precession of Mercury, light deflection
at the Sun, gravitational redshift of light, and light-travel
time delay [2]. In its original formulation of the Shapiro
effect one considers a light signal which propagates in the
monopole field of one massive body with mass M which
is at rest with respect to the coordinate system.

Assume, the space-time is covered by harmonic coordi-
nates, (t,x) [2–5] (cf. Eq. (5.177) in [3]) and the origin of
spatial axes is located at the center-of-mass of the mas-
sive body. The light signal is emitted by a light source
at (t0,x0) and then received by an observer at (t1,x1).
The Shapiro time delay is the difference between the
light-travel-time, (t1 − t0), and the Euclidean distance
between source and observer, R = |x1 − x0|, divided by
the speed of light,

∆τ = (t1 − t0)−
R

c
. (1)

The Newtonian theory predicts no time delay. In General
Relativity (GR), however, the light-travel-time (t1 − t0)
differs from R/c, because the light signal propagates
through the gravitational fields of the massive body,
which decelerate the speed of the light signal. In first
post-Newtonian (1PN) approximation for a massive body
at rest the time delay is given by [2–4]

∆τM1PN =
2GM

c3
ln

x1 + k · x1

x0 + k · x0
, (2)

where k = (x1 − x0) /R is the unit-vector pointing from
the source towards the observer; superscript label M
stands for monopole.

In the first time-delay measurements, performed in
1968 [6] and 1971 [7], radar signals were emitted from
Earth, which have passed nearby the limb of the Sun,

then they were reflected by an inner planet, either Mer-
cury or Venus, and finally the radar signals were received
back on Earth. This round trip of the light signal is
called two-way Shapiro effect and yields the double of
Eq. (2) (cf. Eq. (10.102) in [3]) which gives up to 248
micro-seconds for the constellation Earth-Sun-Mercury,
and amounts up to 251 micro-seconds for the constel-
lation Earth-Sun-Venus. In these experiments the time
delay predicted by GR has been confirmed up to an error
of a few percent, which corresponds to a precision in time
measurements of a few micro-seconds. Ever since, time
delay measurements have been performed with increasing
accuracy. In 1977 the Viking1 and Viking2 spacecrafts
(Mars landers and orbiters) were used as radar reflec-
tors, where an accuracy of about 0.5 percent in time
delay measurements was achieved [8], which was later
improved towards an accuracy of about 0.1 percent [9],
which corresponds to a precision in time measurements
of about 300 nano-seconds. The most accurate time de-
lay measurements in the solar system were achieved in
2003 by using the Cassini spacecraft (orbiting Saturn)
as reflector of the radar signals with an error of about
0.001 percent [10]. The two-way Shapiro time delay for a
grazing ray at the Sun for the configuration Earth-Sun-
Saturn amounts up to 288 micro-seconds, thus that error
corresponds to an accuracy of a few nano-seconds in time
delay measurements.

Future time-delay experiments will be performed by
optical laser rather than radar signals, as suggested by
several mission proposals of the European Space Agency
(ESA) [11–16]. These missions are designed to signifi-
cantly improve the test of relativistic gravity of the solar
system. One aim of these experiments are time-delay
measurements at the pico-second and sub-pico-second
level of accuracy. In these mission proposals it has been
suggested that a laser signal is emitted by the observer
and then reflected by the spacecraft and afterwards re-
ceived back by the observer. The decisive advantage of
this two-way Shapiro effect is, that there is no need for
clock-synchronization between observer and spacecraft
[17]. Thus, besides laser availability and reliability, sig-
nificant improvements in measurements of the Shapiro
effect are mainly dependent on advancements in the de-
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termination of the proper time at the observer’s position,
either at ground stations or in space, which have made
impressive progress during recent decades.

Today, accuracies on the sub-nano-second scale and
even pico-second scale in time measurements are becom-
ing standard in high-precision experiments in space. For
instance, both Lunar Laser Ranging (LLR) as well as
Satellite Laser Ranging (SLR) have reached the sub-
nano-second and even the pico-second level of accuracy
[18–23] which implies a standard deviation of the atomic
clocks of about ∆t/t ∼ 10−13. In these experiments a
laser signal is sent from a ground station to the Moon
or satellite, where it is reflected from retroreflectors, and
then the laser signal is received back by the ground sta-
tion; a review of LLR and future developments of SLR
are given in [21, 24]. Meanwhile, there exists a global
network of 45 active ground stations which represent the
International Laser Ranging Service. The measurement
of the round-trip travel time allows one to determine the
distance to the Moon or spacecraft, and such laser trans-
fer measurements have reached the centimeter and even
the millimeter level of accuracy, which corresponds to an
accuracy of about 3 pico-seconds in time measurements.

Furthermore, the two hydrogen maser atomic clocks
onboard of each satellite of the European Galileo nav-
igation system are mentioned, which have a standard
deviation of ∆t/t ∼ 10−14 which can be considered as
minimal criterion for present-day technology of time mea-
surements in space. The present-day most precise atomic
clock onboard of a satellite is the Deep Space Atomic
Clock (DSAC) [25] launched in 2019 by National Aero-
nautics and Space Administration (NASA), which has
a standard deviation of ∆t/t ∼ 10−15. For a light sig-
nal in the solar system with a travel-time of about 104 s
such a standard deviation of DSAC implies an accuracy
of about ∆t ∼ 10 pico-second, which one may consider
as minimal criterion for present-day technology of time
measurements for the time-of-flight of such a light sig-
nal. In fact, by comparing DSAC to the U.S. Naval Ob-
servatory’s hydrogen maser master clock on the ground,
the researchers found that the space clock deviates by
about 26 pico-seconds during one day [26]. A follow-up
project, DSAC-2, has recently been selected by NASA
for demonstration on the upcoming space mission VERI-
TAS (Venus Emissivity Radio Science Insar Topography
and Spectroscopy) to Venus [27].

The atmosphere of the Earth has a significant impact
on the speed and trajectory of light signals. In view of
this fact, the advantage of space-based missions is that
the atmosphere of Earth cannot disturb the time-of-flight
measurements of light signals between spacecrafts. If
ground-stations on Earth are involved in time-of-flight
measurements, then the local meteorological data (i.e.
altitude profile of temperature, pressure, humidity) need
carefully to be determined with high accuracy during
the period of time measurements. The modeling and
description of atmospheric corrections of the ground-to-
satellite time-transfer of light signals has made important

advancements during recent years and has reached the
pico-second level of accuracy [28]. Thus, time-delay mea-
surements with ground-stations remain an option also for
future highly precise experiments on the pico-second and
maybe on the sub-pico-second level.
As example of Earth-bound clocks are the Caesium

atomic clocks NIST-F1 and NIST-F2 at the National
Institute of Standard and Technology (NIST) are men-
tioned, where a standard deviation of ∆t/t ∼ 10−16 has
been achieved [29]. The highest accuracies for Earth-
bound atomic clocks have been achieved with optical
atomic clocks with a standard deviation of ∆t/t ∼ 10−19

[30]. If one considers a light signal emitted from Earth
towards a spacecraft located in the solar system, for in-
stance, nearby Uranus, and back, then the light-travel-
time would be about t ∼ 104 s. Hence, the standard
deviation of such an atomic clock corresponds to a pre-
cision of about ∆t ∼ 0.001 pico-second, which one may
consider as maximal criterion for present-day accuracy of
time measurements for the time-of-flight of such a light
signal, being aware that in near future the precision of
optical atomic clocks will further be improved.
Accordingly, in consideration of these facts and being

aware of further rapid progress in the precisions of time
measurements in foreseen future [31], it seems necessary
to develop the theoretical model of Shapiro time delay
up to an accuracy of about ∆t = 0.001 pico-second. Also
regarding the fact that a theoretical model should be at
least one order of magnitude more precise than actual
real measurements, this magnitude should be assumed
as most upper accuracy threshold in theoretical consid-
erations for prospective astrometry missions.
In view of these considerations it becomes apparent

that the classical monopole formula (2) of time delay is by
far not sufficient to meet near-future accuracies in time
measurements and it is clear that the shape and inner
structure of the bodies as well as their rotational mo-
tions become relevant on such scale of accuracy [32, 33].
The expansion of the metric tensor in terms of mass-
multipoles, M̂L, and spin-multipoles, ŜL, of the mas-
sive solar system bodies allows one to account for these
effects. The multipole expansion of the metric tensor
implicates a corresponding multipole expansion of the
Shapiro time-delay in terms of mass-multipoles and spin-
multipoles. In particular, it is necessary to include some
post-Newtonian terms (1PN and 1.5PN) in the theory of
light propagation,

∆τ =

∞∑
l=0

∆τML

1PN +

∞∑
l=1

∆τSL

1.5PN +O
(
c−4
)
, (3)

where the first term (l = 0) is just the 1PN mass-
monopole term as given by (2). It is clear that some

of these higher mass-multipoles M̂L (describe shape and
inner structure of the massive body) and perhaps some

spin-multipoles ŜL (describe rotational motions and in-
ner currents of the massive body) are relevant on the
sub-pico-second level of accuracy. The mathematical ex-
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pressions for the 1PN mass-multipole and 1.5PN spin-
multipole terms in the Shapiro time delay, ∆τML

1PN and

∆τSL

1.5PN, were derived a long time ago [34]. It is one aim
of this investigation to quantify these terms and to clarify
which of these 1PN and 1.5PN terms need to be taken
into account for the assumed goal accuracy of about 0.001
pico-second.

Besides these 1PN and 1.5PN terms in (3) it might
well be that also some 2PN terms are relevant on the
sub-pico-second level of accuracy in time-delay measure-
ments. For a long time, the knowledge about 2PN ef-
fects in the Shapiro time delay was restricted to the case
of spherically symmetric bodies, that means in 2PN ap-
proximation only the mass-monopole term M has been
taken into account. The next subsequent term in the mul-
tipole decomposition is the mass-quadrupole term Mab.
Clearly, these terms are the most dominant 2PN terms
beyond the 2PN mass-monopole. Recently, the light tra-
jectory in 2PN approximation in the field of one body at
rest with mass-monopole and mass-quadrupole structure
was determined [35]. The investigation in [35] allows us
to determine these 2PN mass-quadrupole terms in the
Shapiro time-delay, that means

∆τ =∆τM1PN +∆τMab

1PN

+∆τM×M
2PN +∆τM×Mab

2PN +∆τMab×Mcd

2PN +O
(
c−6
)
. (4)

In this investigation we will examine the impact of the
2PN monopole-monopole term, ∆τM×M

2PN , the monopole-

quadrupole term, ∆τM×Mab

2PN , and the quadrupole-

quadrupole term, ∆τMab×Mcd

2PN , and will compare them
with the 1PN and 1.5PN terms in (3). Of course, the
1PN terms in (3) beyond the mass-quadrupole as well as
the 1.5PN terms in (3) can finally be added to (4) in an
appropriate manner.

The manuscript is organized as follows: In Section II
the exact geodesic equation and the exact metric tensor
for a body at rest is discussed. The 1PN and 1.5PN effect
on the Shapiro time delay is determined in Section III.
The initial value problem of the 2PN light propagation in
the quadrupole field of one body at rest is considered in
the Sections IV. The Shapiro time delay in 2PN approx-
imation is examined in Section V. Finally a summary
and outlook are given in Section VI. The notations as
well as details of the calculations are relegated to a set
of several Appendixes.

II. GEODESIC EQUATION AND METRIC
TENSOR

A unique interpretation of astrometric observations,
like the time-delay of light signals, requires the deter-
mination of light trajectory, x (t), as function of coor-
dinate time. In Minkowskian space-time, a light signal
would travel along a straight trajectory, the so-called
unperturbed light ray. If the flat space-time is cov-
ered by Cartesian coordinates, the components of the

Minkowskian metric read ηαβ = (−1,+1,+1,+1) and
then the trajectory of a light signal is given by

xN = x0 + c (t− t0)σ , (5)

where the subindex N stands for Newtonian. That means
a light signal, emitted at the spatial position of the light
source, x0, would propagate along a straight line in the
direction of some unit-vector σ. For graphical illustration
of the unperturbed light trajectory see Figure 1.
The trajectory of a light signal propagating in curved

space-time is determined by the geodesic equation (6)
and isotropic condition (7), which in terms of coordinate
time read as follows [2, 4, 5] (e.g. Eqs. (1.2.48) - (1.2.49)
in [4] or Eqs. (7.20) - (7.23) in [5]):

ẍi (t)

c2
+ Γi

µν

ẋµ (t)

c

ẋν (t)

c
− Γ0

µν

ẋµ (t)

c

ẋν (t)

c

ẋi (t)

c
= 0 ,

(6)

gαβ
ẋα (t)

c

ẋβ (t)

c
= 0 , (7)

where gαβ are the covariant components of the metric
tensor of space-time; for the signature (−,+,+,+) has
been chosen. The isotropic condition (7) states that light
trajectories are null rays, a condition which must be sat-
isfied at any point along the light trajectory. Further-
more, a dot denotes total derivative with respect to co-
ordinate time, and Γα

µν are the Christoffel symbols, given
by [2, 4, 5] (e.g. Eq.(21.27) in [2])

Γα
µν =

1

2
gαβ

(
∂gβµ
∂xν

+
∂gβν
∂xµ

− ∂gµν
∂xβ

)
. (8)

The Christoffel symbols are functions of the metric ten-
sor. For weak gravitational fields it is meaningful to sep-
arate the metric tensor into the flat metric and a metric
perturbation,

gαβ (t,x) = ηαβ + hαβ (t,x) . (9)

The geodesic equation is a differential equation of second
order of one variable, t, thus a unique solution of (6)
necessitates two initial-boundary conditions: the spatial
position of light source x0 and the unit-direction σ of the
light signal at past infinity [4, 32–34, 36, 37]:

σ =
ẋ (t)

c

∣∣∣∣
t=−∞

with σ · σ = 1 , (10)

x0 = x (t)

∣∣∣∣
t=t0

. (11)

Then, by inserting the decomposition (9) into (6) and
using the initial-boundary conditions (10) and (11), the
solution of the second integration of geodesic equation
(trajectory of light signal) (6) is given by

x (t) = x0 + c (t− t0)σ +∆x (t, t0) , (12)



4

where ∆x is the correction to the trajectory of the un-
perturbed light ray (5). The formal solution of the initial
value problem (12) implies the following limit,

lim
t→t0

∆x (t, t0) = 0 , (13)

in order to be consistent with the condition (11).
For solving the geodesic equation (6) one needs the

metric tensor (9) of the specific problem under consid-
eration. Usually, the metric tensor (9) is not known in
its exact form and one has to apply for some approxi-
mation scheme. If the gravitational fields are weak and
the speed of matter is slow compared to the speed of
light, then one can utilize the post-Newtonian expansion
(weak-field slow-motion expansion) of the metric tensor,
which is an expansion of the metric tensor in inverse pow-
ers of the speed of light [38, 39],

gαβ (t,x) = ηαβ +

∞∑
n=2

h
(n)
αβ (t,x, ln c) . (14)

In general, the post-Newtonian expansion (14) is a non-
analytic series, because at higher order n ≥ 8 non-
analytic terms involving powers of logarithms occur
[38, 39], while by definition the n-th post-Newtonian per-

turbation, h
(n)
αβ , is the factor of n-th inverse power of c.

s

exact light trajectory
light at 
t = - 8

unperturbed light ray

massive solar system body

light source

x 0

 x ( )t

sd
xN ( )t

x 1

s

observer

Figure 1: A geometrical representation of the propagation of
a light signal through the gravitational field of a massive solar
system body at rest. The light signal is emitted by the light
source at x0 and propagates along the exact light trajectory
x (t). The unit tangent vector along the light trajectory at
past null infinity is σ. The unperturbed light ray xN (t) is
given by Eq. (5) and propagates in the direction of σ along
a straight line through the position of the light source at x0.
The impact vector dσ of the unperturbed light ray is given
by Eq. (57). The impact vector d̂σ is defined by Eq. (I4) and
is parallel to the impact vector dσ but a tiny bit smaller and
not shown in the diagram.

In reality, a solar system body can be of arbitrary
shape, inner structure, rotational and oscillating motions
and can have inner currents of matter. From the Mul-
tipolar Post-Minkowskian (MPM) formalism [38–40] it
follows that the post-Newtonian solution for the metric

tensor for such a body can be given in terms of two kinds
of symmetric and trace-free (STF) multipoles: mass-

multipoles M̂L (describing shape, inner structure and os-

cillations of the body) and spin-multipoles ŜL (describing
rotational motions and inner currents of the body)

gαβ (t,x) = ηαβ +

∞∑
n=2

h
(n)
αβ (M̂L (s) , ŜL (s) , ln c) (15)

where the origin of spatial axes of the coordinate system
is located somewhere nearby the center of mass of the
source of matter (body), and s = t− x/c is the retarded
time which describes the fact that the metric at field
point (t,x) is determined by the multipoles at the ear-
lier time s because gravitational action propagates with
the finite speed of light. In case of a stationary source of
matter the multipoles and the metric perturbations are
time-independent and then the post-Newtonian expan-
sion of the metric tensor reads

gαβ (x) = ηαβ +

∞∑
n=2

h
(n)
αβ (M̂L, ŜL, ln c). (16)

These multipoles M̂L and ŜL in (15) and (16) are inte-
grals over the stress-energy tensor of the source of matter.
They are considered in Appendix B.

III. SHAPIRO EFFECT IN 1.5PN
APPROXIMATION

In 1.5PN approximation the expansion (16) reads

gαβ = ηαβ + h
(2)
αβ(M̂L) + h

(3)
αβ(ŜL) (17)

up to terms of the order O(c−4), and where the non-

vanishing metric perturbations h
(2)
αβ and h

(3)
αβ are given by

[34, 38, 39, 41, 42]

h
(2)
00 =+

2

c2

∞∑
l=0

(−1)
l

l!
M̂L ∂̂L

1

r
, (18)

h
(3)
0i =+

4

c3

∞∑
l=1

(−1)
l
l

(l + 1)!
ϵiab ŜbL−1 ∂̂aL−1

1

r
, (19)

h
(2)
ij =+

2

c2
δij

∞∑
l=0

(−1)
l

l!
M̂L ∂̂L

1

r
, (20)

where r = |x| and

∂̂L = STFi1...il ∂i1 . . . ∂il . (21)

The mass-multipoles and spin-multipoles in (18) - (20)
in case of stationary source of matter are given by

M̂L =

∫
d3x x̂L Σ , (22)

ŜL =

∫
d3x ϵjk<il x̂L−1> xj Σk , (23)



5

where the notation Σ =
(
T 00 + T kk

)
/c2 and Σk =

T 0k/c has been adopted, with Tαβ being the stress-
energy tensor of the body, and where the integrals run
over the three-dimensional volume of the body. The
geodesic equation in 1.5PN approximation can be de-
duced from the exact geodesic equation (6) and is given
by Eq. (2.2.49) in [4] (up to a global sign convention).
Inserting the metric perturbations (18) - (20) into the
geodesic equation in 1.5PN approximation yields

ẍ

c2
=

∞∑
l=0

ẍML

1PN

c2
+

∞∑
l=1

ẍSL

1.5PN

c2
(24)

up to terms of the order O(c−4), and where ẍML

1PN and

ẍSL

1.5PN are given by Eq. (13) in [34]. The solution of (24)
reads formally as follows:

x (t) = x0 + c (t− t0)σ +

∞∑
l=0

∆xML

1PN +

∞∑
l=1

∆xSL

1.5PN

(25)

up to terms of the order O(c−4), and where ∆xnPN =
O
(
c−2n

)
. In [34] advanced integration methods have

Table I: Numerical parameter for mass M , radius P , actual
zonal harmonic coefficients Jl, distance between observer and
body x1, of Sun, Jupiter and Saturn. The values for GM/c2

and P are taken from [48]. The value for Jl for the Sun
are taken from [49] and references therein. The values Jl

with n = 2, 4, 6 for Jupiter and Saturn are taken from [50],
while Jl with n = 8, 10 for Jupiter and Saturn are taken from
[51] and [52], respectively. The angular velocity Ω = 2π/T
(with rotational period T ) are taken from NASA planetary
fact sheets. The dimensionless moment of inertia κ2 is defined
by Eq. (B61) and their values are taken from [48]. For the dis-
tance between light-source and body we assume x0 = 1011 m
so that the light-source is within the near-zone of the So-
lar system, while x1 is computed under the assumption that
the observer (spacecraft) is located at Lagrange point L2, i.e.
1.5× 109 m from Earth.

Parameter Sun Jupiter Saturn

GM/c2 [m] 1476.8 1.41 0.42

P [m] 696× 106 71.5× 106 60.3× 106

J2 1.7× 10−7 14.696× 10−3 16.291× 10−3

J4 9.8× 10−7 −0.587× 10−3 −0.936× 10−3

J6 4× 10−8 0.034× 10−3 0.086× 10−3

J8 −4× 10−9 −2.5× 10−6 −10.0× 10−6

J10 −2× 10−10 0.21× 10−6 2.0× 10−6

Ω [sec−1] 2.865× 10−6 1.758× 10−4 1.638× 10−4

κ2 0.059 0.254 0.210

x1 [m] 0.150× 1012 0.59× 1012 1.20× 1012

been introduced which allow to integrate (24) exactly
and which lead to the exact expression of (25), given by

Eqs. (33), (36) and (38) in [34]. In that approach two
new parameters were introduced,

cτ =σ · xN , (26)

ξi = P i
j x

j
N , (27)

where P ij = δij − σiσj is a projection operator onto the
plane perpendicular to vector σ; note that P ij = Pij =
P i
j . Obviously, the unperturbed light ray (5) expressed

in terms of these new variables takes the form

xN = ξ + cτ σ . (28)

The three-vector ξ is laying in the two-dimensional plane
perpendicular to σ, hence only two components are in-
dependent, which implies ∂ξi/∂ξj = P i

j . But in practi-
cal calculations it is convenient to treat the spatial com-
ponents of this vector as formally independent, which
implies ∂ξi/∂ξj = δij . Therefore, a subsequent projec-

tion onto this two-dimensional plane by means of P ij

is necessary (cf. text above Eq. (31) in [36] as well as
Eqs. (11.2.12) and (11.2.13) in [23]). Then, for a spatial
derivative expressed in terms of these new variables, one
obtains

∂

∂xi
= P j

i

∂

∂ξj
+ σi

∂

∂cτ
. (29)

In case of time-independent functions, relation (33) in
[36] coincides with relation (29). Then, using (29) and
the binomial theorem, one finds the differential operator
in (21) expressed in terms of these new variables,

∂̂L =STFi1...il

l∑
p=0

l!

(l − p)! p!
σi1 ... σip

×P
jp+1

ip+1
... P jl

il

∂

∂ξjp+1
...

∂

∂ξjl

(
∂

∂cτ

)p

. (30)

Here we prefer to use the operator as given by Eq. (30)
where ∂ξi/∂ξj = δij , while if one applies the operator as

given by Eq. (24) in [34] then ∂ξi/∂ξj = P i
j . The results

of either these operations are identical. Then, using the
basic integral (25) in [34] one finds for the second in-
tegration the formulas given by Eq. (27) in [34], which
lead to the solution for the second integration of geodesic
equation (24).
The approach introduced in [34] for bodies at rest and

time-independent multipoles has further been developed
for the case of light propagation in the gravitational field
of a time-dependent source of matter at rest [36, 43, 44],
as well as in the gravitational field of N slowly moving
bodies with time-dependent multipoles in our investiga-
tions in [32, 33].
According to the solution for the light trajectory as

given by Eq. (31) with (33), (36), (38) in [34], the time-of-
flight in the gravitational field of a body with full mass-
multipole and spin-multipole structure is given by the
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following formula (cf. Eq. (40) in [34]),

c (t1 − t0) =R+

∞∑
l=0

∆cτML

1PN +

∞∑
l=1

∆cτSL

1.5PN (31)

up to terms of the order O(c−4). The mass-multipole
(gravitoelectric) term reads (cf. Eqs. (41) and (42) in
[34])

∆cτML

1PN =+
2G

c2
(−1)

l

l!
M̂L

×

(
∂̂L ln (rN + cτ)

∣∣∣∣
τ=t1

− ∂̂L ln (rN + cτ)

∣∣∣∣
τ=t0

)
,

(32)

and the spin-multipole (gravitomagnetic) term reads (cf.
Eq. (43) in [34]; note an overall sign error in Eq. (43) in
[34]; see also footnote 3 in [45] as well as Ref. [73] in [33])

∆cτSL

1.5PN =+
4G

c3
(−1)

l
l

(l + 1)!
σi ϵ

iab ŜbL−1

×

(
∂̂aL−1 ln (rN + cτ)

∣∣∣∣
τ=t1

− ∂̂aL−1 ln (rN + cτ)

∣∣∣∣
τ=t0

)
,

(33)

where rN = |xN| with xN in (28), that means rN =√
ξ2 + c2τ2. These equations were also given by

Eqs. (11.2.34) and (11.2.35) in [23]. In (32) and (33) the
differentiations have to be performed. Afterwards one
has to substitute the unperturbed light ray by the stan-
dard expression as given by Eq. (5) where the coordinate
time is either t1 or t0 as indicated by the sub-labels. In
particular, at the very end of the calculations one has to
replace cτ by σ ·xN and ξ by dσ. For details about how
to perform the differentiations the reader is referred to
[23, 34]. Because the mass-quadrupole is of specific rele-
vance in our investigation, we consider the application of
(32) for the mass-quadrupole explicitly in Appendix C.

The largest effect of Shapiro effect is expected from
the Sun and the giant planets of the solar system. In
order to determine the Shapiro time delay one needs
the explicit form for mass-multipoles (22) and for spin-
multipoles (23). For an estimation of the individual
terms in (32) and (33), one may approximate the Sun
and the giant planets by a rigid axisymmetric body with
radial dependent mass distribution and in uniform ro-
tational motion around the symmetry axis of the body,
which is aligned with the x3-axis of the coordinate sys-
tem. Then, the higher mass-multipoles for such a body
are given by Eqs. (B35) in Appendix B, while the spin-
dipole and higher spin-multipoles for such a body are

given by Eq. (B63) and Eq. (B57) in Appendix B:

M̂0 =M , (34)

M̂L =−M (P )
l
Jl δ

3
<i1 . . . δ3il> (35)

with l = 2, 4, 6, . . . ,

Ŝa = κ2 M ΩP 2 δ3a , (36)

ŜL =−M Ω (P )
l+1

Jl−1
l + 1

l + 4
δ3<i1 . . . δ3il> (37)

with l = 3, 5, 7, . . . ,

where M is the Newtonian mass of the body, P its equa-
torial radius, Jl are the actual zonal harmonic coeffi-
cients of index l, κ2 is the dimensionless moment of in-
ertia, Ω is the angular velocity of the rotating body and
δ3<i1

. . . δ3il> = STFi1...il δ3i1 . . . δ3il denotes products
of Kronecker symbols which are symmetric and traceless
with respect to indices i1 . . . il. These multipoles (35)
and (37) are in agreement with the multipoles for an
rigid axisymmetric body in uniform rotational motion as
given in the resolutions of the International Astronomi-
cal Union (IAU) [46]; that agreement is shown explicitly
in Appendix B for the mass-quadrupole as well as for the
spin-hexapole in case of a rigid axisymmetric body with
uniform mass-density.
The calculations can considerably be simplified by in-

serting the mass-multipoles and spin-multipoles (35) and
(37) into (32) and (33), respectively, and afterwards one
starts with the evaluation of the Shapiro time delay.
Then, one obtains the following upper limits of the in-
dividual terms of Shapiro time delay (cf. text below
Eq. (43) in [34]):∣∣∆τM1PN

∣∣≤ 2
GM

c3
ln

4x0 x1

(dσ)
2 , (38)

∣∣∣∆τML

1PN

∣∣∣≤Al
GM

c3
|Jl|

(
P

dσ

)l

(39)

with l = 2, 4, 6, . . . ,∣∣∆τS1.5PN

∣∣≤ 4
GM

c4
κ2 P Ω , (40)

∣∣∣∆τSL

1.5PN

∣∣∣≤Bl
GM

c4
P Ω |Jl−1|

(
P

dσ

)l

(41)

with l = 3, 5, 7, . . . ,

where in (40) we have used relation (B63). The non-
vanishing coefficients for the first few mass-multipoles
and spin-multipoles read

A2 =
11

5
, A4 =

7

6
, A6 =

3

5
, A8 =

3

10
, A10 =

3

20
,

(42)

B3 =
7

6
. (43)

The calculation of coefficient A2 is given in some detail
in Appendix C, while the determination of the other co-
efficients in (42) - (43) proceeds in very similar manner.
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Thus far, to the best of our knowledge, these upper lim-
its have only been determined for mass-monopole, mass-
quadrupole and spin-dipole, which were given in [47].
Numerical values of the upper limits in (38) - (41) are
presented in Table II for the first mass-multipoles and
spin-multipoles in case of grazing rays at the Sun and
the giant planets of the solar system.

In Table II for the Sun, Jupiter, and Saturn, time de-
lays of mass-quadrupole of 1.8 ps, 152.1 ps, and 50.6 ps
are given. These values differ from the values in Ta-
ble I in [47], where for Sun, Jupiter, and Saturn, time
delays of mass-quadrupole of 16 ps, 240 ps, and 73 ps
were given. These differences originate from different
upper limits. Here, according to Eq. (39), we have used

∆τM2

1PN ≤ 2.2 GM
c3 |J2| (which is in line with the state-

ment below Eq. (47) in [47]), while in Table I in [47] an

upper limit of ∆τM2

1PN ≤ 3.18 GM
c3 |J2| has been used (cf.

Eq. (47) in [47]). In addition, different values for the sec-
ond zonal harmonic coefficient J2 have been used for the
Sun. On the other side, the values for the time delay of
spin-dipole presented in Table II coincide with the values
given in Table II in [47].

Table II: The effect of 1PN mass-multipole ∆τ
Ml
1PN and 1.5PN

spin-multipole terms ∆τ
Sl
1.5PN of (one-way) Shapiro time de-

lay in the gravitational field of the Sun and giant planets of
the solar system according to the upper limits presented by
Eqs. (38) - (41). The time delay is given in units of pico-
seconds: 1 ps = 10−12 sec. The values are given for graz-
ing rays (impact parameter dσ equals body’s equatorial ra-

dius P ). Values for ∆τ
Ml
1PN with l ≥ 10 and ∆τ

Sl
1.5PN with

l ≥ 5 are not shown in the Table, because they are less than a
femto-second for any solar system body. The numerical val-
ues should be compared with the assumed goal accuracy of
0.001 pico-seconds in time-delay measurements. A blank en-
try means a delay of less than a femto-second.

Object ∆τM1PN ∆τM2
1PN ∆τM4

1PN ∆τM6
1PN ∆τM8

1PN ∆τS1
1.5PN ∆τS3

1.5PN

Sun 1.6×108 1.8 5.6 0.1 0.006 7.7 −
Jupiter 2.2×105 152.1 3.2 0.1 0.004 0.2 0.001

Saturn 6.8×104 50.6 1.5 0.07 0.004 0.04 −

Finally, an important comment should be in order. The
solutions for the light trajectory as well as Shapiro time
delay in the 1PN and 1.5PN approximation are given
in terms of the unit vector σ, which can immediately
be replaced by the unit vector k, because they differ
by terms beyond the 1PN and 1.5PN approximation:
σ = k + O

(
c−2
)
and σ · k = 1 + O

(
c−4
)
. However,

in 2PN approximation one has carefully to distinguish
among these vectors. In addition, in 2PN approximation
one must not replace xN (t1) by the spatial position of the
observer x1, because such a replacement causes an error
of the order O

(
c−4
)
which is of second post-Newtonian

order. These both aspects make the treatment of the de-
termination of Shapiro time delay in 2PN approximation
more involved and will be considered in the next sections.

IV. LIGHT PROPAGATION IN 2PN
APPROXIMATION: INITIAL VALUE PROBLEM

A unique solution of geodesic equation (6) is given by
the initial value problem as defined by Eqs. (10) and (11).
In order to get the geodesic equation one needs the metric
tensor in Eq. (16). In 2PN approximation the expansion
in Eq. (16) reads as follows,

gαβ = ηαβ + h
(2)
αβ(M̂L) + h

(3)
αβ(ŜL) + h

(4)
αβ(M̂L) (44)

up to terms of the order O(c−5), and where the mass-

multipoles M̂L and spin-multipoles ŜL are given by
Eqs. (B21) and (B38), respectively, and they are assumed
to be time-independent. The 1PN and 1.5PN metric per-

turbations, h
(2)
αβ and h

(3)
αβ , were given by Eqs. (18) - (20),

while the 2PN metric perturbations h
(4)
αβ have been de-

rived from the MPM formalism [38, 39] and were given
by Eqs. (115) - (117) and Eqs. (134) - (136) in our article
[42] for the case of time-independent multipoles.
For our considerations about the 2PN effect of time-

delay in the gravitational field of one body at rest, where
only the mass-monopole and mass-quadrupole will be
taken into account, that means

M̂L = 0 for l > 2 , (45)

ŜL = 0 for l ≥ 1 . (46)

But we will keep in mind the exact solution of geodesic
equation in 1.5PN approximation in (25) and the Shapiro
time delay in 1.5PN approximation in (31), and we may
finally add these terms at the very end of our calculations
of the Shapiro time delay in 2PN approximation.
Thus far, our knowledge about 2PN effects in the the-

ory of light propagation was restricted to the case of
light propagation in the field of monopoles [4, 37, 53].
In our recent article [35] the initial value problem of 2PN
light propagation in the field of one body at rest with
quadrupole structure has been solved. The metric (44)
for one massive solar system body at rest with monopole
and quadrupole structure takes the form (cf. Eq. (16) in
[35])

gαβ = ηαβ + h
(2)
αβ(M,M̂ab) + h

(4)
αβ(M, M̂ab) (47)

up to terms of the order O(c−6) (there are no terms
of the order O(c−5) because the spin-multipoles are ne-
glected), and where higher mass-multipoles as well as
spin-multipoles have been neglected; the origin of spatial
axes of the coordinate system is located at the center of
mass of the body and, therefore, the mass-dipole van-
ishes (cf. Eq. (8.14c) in [38]). The explicit expressions
for the metric perturbations in (47) have been derived by
Eqs. (145) and (147) as well as Eqs. (148) - (150) in our
article [42]. By inserting the 2PN metric tensor (47) in
the geodesic equation (6) one obtains the geodesic equa-
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tion in 2PN approximation (cf. Eq. (74) in [35])

ẍ

c2
=

ẍM
1PN

c2
+

ẍMab

1PN

c2
+

ẍM×M
2PN

c2
+

ẍM×Mab

2PN

c2
+

ẍMab×Mcd

2PN

c2

(48)

up to terms of the order O(c−6). The geodesic equation
(48) can be written in terms of time-independent ten-
sorial coefficients and time-dependent scalar functions.
For the explicit form of geodesic equation (48) we refer
to Eqs. (47) - (49) in [35] for the 1PN terms as well as
Eqs. (75) and (78) - (79) in [35] for the 2PN terms. The
solution of the second integration of the geodesic equa-
tion (48) reads (cf. Eq. (86) in [35])

x (t) = x0 + c (t− t0)σ +∆x1PN (t, t0) + ∆x2PN (t, t0)

(49)

up to terms of the order O(c−6), and where ∆x1PN =
O
(
c−2
)
and ∆x2PN = O

(
c−4
)
. In favor of a simpler

notation, the monopole and quadrupole terms in (49)
have been summarized as follows,

∆x1PN =∆xM
1PN +∆xMab

1PN , (50)

∆x2PN =∆xM×M
2PN +∆xM×Mab

2PN +∆xMab×Mcd

2PN , (51)

in obvious meaning: index M means terms proportional
to the monopole, index Mab means terms proportional to
the quadrupole, index M ×M means terms proportional
to the monopole times monopole, index M ×Mab means
terms proportional to the monopole times quadrupole
and index Mab × Mcd means terms proportional to the
quadrupole times quadrupole. In this Section we recon-
sider the solution of the second integration (49) as it has
been obtained in our article [35]. However, it is necessary
to rewrite this solution into a new form which is appro-
priate for subsequent considerations of the Shapiro time
delay.

A. Old representation

The iterative solution of the second integration of
geodesic equation in 2PN approximation (48) reads [35]:

xN = x0 + c (t− t0)σ , (52)

x1PN = xN +∆x1PN (xN)−∆x1PN (x0) , (53)

x2PN = xN +∆x1PN (xN)−∆x1PN (x0)

+∆x2PN (xN)−∆x2PN (x0) , (54)

where the spatial components of 1PN terms are given by

∆xi
1PN (xN) =

GM

c2

[
Ai

(3) W(3) (t) + Bi
(3) X(3) (t)

]
+
GM̂ab

c2

∑
n=5,7

[
Ci ab
(n) W(n) (t) +Di ab

(n) X(n) (t)

]
, (55)

and the spatial components of 2PN terms are given by

∆xi
2PN (xN) =

G2M2

c4

[ 6∑
n=3

E i
(n)W(n)(t) +

6∑
n=2

F i
(n)X(n)(t)

+Gi
(5) Y(5) (t) +

∑
n=3,5

Hi
(n) Z(n) (t)

]

+
G2MM̂ab

c4

[ 10∑
n=3

Ki ab
(n) W(n) (t) +

10∑
n=2

Li ab
(n) X(n) (t)

+

9∑
n=7

Mi ab
(n) Y(n) (t) +

9∑
n=5

N i ab
(n) Z(n) (t)

]

+
G2M̂abM̂cd

c4

[ 14∑
n=5

Pi abcd
(n) W(n) (t) +

14∑
n=4

Qi abcd
(n) X(n) (t)

]
.

(56)

In order to get ∆x1PN (x0) and ∆x2PN (x0) we notice
that x0 = xN (t0), that means one has to take the time-
argument t0 in the scalar functions in (55) and (56).
The tensorial coefficients Ai

(3), Bi
(3), Ci ab

(n) , Di ab
(n) are

given by Eqs. (52) - (57) in [35]. In what follows these
coefficients are essential and have, therefore, been given
by Eqs. (D1) - (D6) in Appendix D. The tensorial co-
efficients E i

(n), F
i
(n), G

i
(5), H

i
(n), and Ki ab

(n) , L
i ab
(n) , M

i ab
(n) ,

N i ab
(n) , as well as Pi abcd

(n) , Qi abcd
(n) are given by Eqs. (E28)

- (E39) and Eqs. (E41) - (E65) as well as Eqs. (E67) -
(E87) in [35] (note some corrections [64]).
The scalar functions W(n), X(n), Y(n), Z(n) are defined

by Eqs. (D20) - (D23) in [35] and can be solved in closed
form as given by Eqs. (D25) - (D28) in [35]. Some explicit
solutions for these functions are provided by Eqs. (D29) -
(D42) in [35]. In what follows, the scalar functions W(n)

and X(n) for n = 3, 5, 7 are essential and have been given
again by Eqs. (D8) - (D13) in Appendix D.
Both the scalar functions as well as the tensorial co-

efficients in (55) - (56) are functions of the unperturbed
light ray xN = xN (t) and x0 = xN (t0). In particular,
the tensorial coefficients as well as the scalar functions
contain the impact vector

dσ =σ × (x0 × σ) (57)

and its absolute value dσ = |dσ| which called impact
parameter dσ. The impact vector is perpendicular to the
spatial direction of the unperturbed light ray, that means
σ · dσ = 0, and points from the origin of the coordinate
system towards the unperturbed light ray at the moment
of closest approach; see also Figure 1. It is noticed that
the impact vector (57) can also be written in terms of
the unperturbed light ray (cf. Eq. (33) in [35])

dσ =σ × (xN × σ) (58)

which is a time-independent quantity as one may see by
inserting (5) into (58).
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B. New representation

For the solution of the Shapiro time delay it is nec-
essary to rewrite the 2PN solution, given by Eqs. (52) -
(56), in the following form,

xN = x0 + c (t− t0)σ , (59)

x1PN = xN +∆x1PN (xN)−∆x1PN (x0) , (60)

x2PN = xN +∆x1PN (x1PN)−∆x1PN (x0)

+∆x2PN (xN)−∆x2PN (x0) , (61)

where the spatial components of 1PN terms are given by

∆xi
1PN (x) =

GM

c2

2∑
n=1

(
U i
(n) F(n)

)
(x)

+
GM̂ab

c2

8∑
n=1

(
V i ab
(n) G(n)

)
(x) , (62)

and the spatial components of 2PN terms are given by

∆xi
2PN (x) =

G2M2

c4

2∑
n=1

(
U i
(n) X(n)

)
(x)

+
G2MM̂ab

c4

8∑
n=1

(
V i ab
(n) Y(n)

)
(x)

+
G2M̂abM̂cd

c4

28∑
n=1

(
W i abcd

(n) Z(n)

)
(x) . (63)

The tensorial coefficients U i
(n), V i ab

(n) , and W i abcd
(n) are

given by Eqs. (E2) - (E3), Eqs. (E4) - (E11), and
Eqs. (E12) - (E39) in Appendix E. The scalar func-
tions F(n) and G(n) are given by Eqs. (F8) - (F9) and
Eqs. (F10) - (F17) in Appendix F. The scalar functions
X(n), Y(n), and Z(n) are given by Eqs. (F18) - (F19),
Eqs. (F20) - (F27), and Eqs. (F28) - (F55) in Appendix F.

The difference between the old representation in (54)
and the new representation in (61) is the argument of
∆x1PN. In the old representation in (54) the argument
of this term is the light trajectory in Newtonian approx-
imation, xN, while in the new representation in (61) the
argument of this term is the light trajectory in 1PN ap-
proximation, x1PN. But it is emphasized that the new
representation (59) - (63) agrees with the old representa-
tion (52) - (56) up to terms beyond the 2PN approxima-
tion. The basic ideas of how to demonstrate the agree-
ment of the old representation and the new representa-
tion are given in Appendix G.

The terms proportional to M in (62) agree with
Eq. (50) in [53], and the terms proportional to M ×M in
(63) agree with Eq. (51) in [53]. The terms proportional

toM×M̂ab and M̂ab×M̂cd in (63) are the new quadrupole
terms of the second post-Newtonian approximation. In
the following we will investigate the influence of these
2PN quadrupole terms within the boundary value prob-
lem and in particular their impact on the Shapiro time
delay.

V. THE SHAPIRO TIME DELAY IN 2PN
APPROXIMATION

A. The boundary value problem

The initial value problem has been defined by Eqs. (10)
and (11). The solution of the initial value problem for
the propagation of a light signal in the monopole and
quadrupole field of one body at rest in 2PN approxi-
mation has been presented in the previous Section. In
order to determine the Shapiro time delay one needs the
solution of the boundary-value problem, where a unique
solution of geodesic equation is defined by the space-time
point (t0,x0) of the light source and by the space-time
point (t1,x1) of the observer [5, 17]:

x0 = x (t)

∣∣∣∣
t=t0

, (64)

x1 = x (t)

∣∣∣∣
t=t1

. (65)

The spatial position of the observer (t1,x1) is assumed
to be known, while the spatial position of the light source
(t0,x0) has to be determined by a unique interpretation
of astronomical observations which is the primary aim of
astrometric data reduction [4, 5, 17, 37, 54].
The solution of the boundary value problem (64) and

(65), that means a solution of the geodesic equation in
terms of the spatial position of source and observer, x0

and x1, can be obtained from the new representation
of the initial-boundary solution as given by Eq. (61) in
the following way. The spatial coordinates of the unper-
turbed light ray at the time of observation coincides with
the spatial coordinates of the observer up to terms of the
order O

(
c−2
)
,

x1 = xN (t1) +O
(
c−2
)
. (66)

Therefore, a replacement of xN (t1) by x1 in the expres-
sion ∆x2PN (xN) in (61) causes an error of the order
O
(
c−6
)
which would be in line with the 2PN approxi-

mation. Furthermore, the spatial coordinates of the light
ray in 1PN approximation at the time of observation co-
incides with the spatial coordinates of the observer up to
terms of the order O

(
c−4
)
,

x1 = x1PN (t1) +O
(
c−4
)
. (67)

Therefore, a replacement of x1PN (t1) by x1 in the ex-
pression ∆x1PN (x1PN) in (61) causes also an error of the
order O

(
c−6
)
which would be in line with the 2PN ap-

proximation. Finally, the spatial coordinates of the light
ray in 2PN approximation at the time of observation co-
incides with the spatial coordinates of the observer up to
terms of the order O

(
c−6
)
,

x1 = x2PN (t1) +O
(
c−6
)
. (68)
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Therefore, a replacement of x2PN (t1) by x1 in the l.h.s.
of equation (61) causes an error of the order O

(
c−6
)

which would be in line with the 2PN approximation.
The sequence of replacements (66) - (68) in (61) leads

to the following expression which is valid in 2PN ap-
proximation, that means valid up to terms of the order
O
(
c−6
)
:

c (t1 − t0)σ =Rk −∆x1PN (x1,x0)−∆x2PN (x1,x0) ,

(69)

with R = |x1 − x0| and where

∆x1PN (x1,x0) =∆x1PN (x1)−∆x1PN (x0) , (70)

∆x2PN (x1,x0) =∆x2PN (x1)−∆x2PN (x0) , (71)

with ∆x1PN (x) and ∆x2PN (x) given by (62) and (63).
It is emphasized that such a replacement would not be
possible in the old representation (54) because there the
corrections ∆x1PN are given in terms of the unperturbed
light ray, but a replacement according to (66) would cause
an error of the order O

(
c−4
)
in these terms which would

spoil the 2PN approximation.

B. The transformation σ to k

In the boundary value problem the unit-vector k,
pointing from light source towards observer, is of fun-
damental importance:

k=
x1 − x0

|x1 − x0|
. (72)

In order to get the expression for the time-delay, one
needs the transformation from σ to k. In Newtonian
approximation we have

σ = k +O
(
c−2
)
. (73)

In 1PN approximation one obtains from (69)

σ = k − 1

R

[
k ×

(
∆x1PN (x1,x0)× k

)]
+O

(
c−4
)
.

(74)

For later purposes it is noticed here that (74) implies

σ · k= 1 +O
(
c−4
)
. (75)

Because the three-vector σ appears in the Newtonian
terms in (69), one also needs the transformation σ to
k in 2PN approximation. By iteration, using (74), one
obtains from (69)

σ = k − 1

R

[
k ×

(
∆x1PN (x1,x0)× k

)]
− 1

R

[
k ×

(
∆x2PN (x1,x0)× k

)]
+

1

R2

[
∆x1PN (x1,x0)×

(
k ×∆x1PN (x1,x0)

)]
−3

2

1

R2
k

∣∣∣∣k ×∆x1PN (x1,x0)

∣∣∣∣2 +O
(
c−6
)

(76)

which generalizes Eq. (68) in [53] which was valid in the
field of one monopole at rest.

C. The Shapiro time delay

Using the expressions for the transformation σ to k in
Eqs. (73) - (76), one obtains from (69) the travel time
of a light signal in the field of one body at rest where
its monopole and quadrupole structure is taken into ac-
count,

c (t1 − t0) =R− k ·∆x1PN (x1,x0)− k ·∆x2PN (x1,x0)

+
1

2R
|k ×∆x1PN (x1,x0)|2 +O

(
c−6
)
, (77)

which generalizes Eq. (67) in [53] which was valid in the
field of one monopole at rest. However, formula (77) is
still implicit, because ∆x1PN and ∆x2PN are given in
terms of σ. Clearly, the last two terms in (77) are 2PN
terms which are of the order O

(
c−4
)
, hence one may

immediately replace the vector σ by the vector k. But
the term k ·∆x1PN in (77) is a 1PN term, hence one has
to use the transformation σ to k in 1PN approximation
(74) in order to achieve a formula for ∆x1PN in terms of
vector k rather than σ. Only in this way one arrives at
a formula for the time delay in 2PN approximation fully
in terms of vector k, which is the central topic of this
Section.
The term k · ∆x2PN is calculated in Appendix H

and given by Eq. (H5). The term k · ∆x1PN is calcu-
lated in Appendix I and given by Eq. (I36). The term

|k ×∆x1PN|2 is calculated in Appendix J and given by
Eq. (J2). According to these results, the light-travel-time
in 2PN approximation in the gravitational field of one
body at rest with monopole and quadrupole structure is
given as follows:

c (t1 − t0) =R+∆cτM1PN +∆cτMab

1PN

+∆cτM×M
2PN +∆cτM×Mab

2PN +∆cτMab×Mcd

2PN +O
(
c−6
)
,

(78)

where the individual terms are given by the following
expressions:

∆cτM1PN =−GM

c2
P(1) (x1,x0) , (79)

∆cτMab

1PN =−GM̂ab

c2

3∑
n=1

Sab
(n) Q(n) (x1,x0) , (80)

∆cτM×M
2PN =+

G2M2

c4
R(1) (x1,x0) , (81)

∆cτM×Mab

2PN =+
G2M M̂ab

c4

3∑
n=1

Sab
(n) S(n) (x1,x0) , (82)

∆cτMab×Mcd

2PN =+
G2M̂abM̂cd

c4

10∑
n=1

T abcd
(n) T(n) (x1,x0) .

(83)
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The tensors Sab
(n) and T abcd

(n) are defined by Eqs. (H3) and

(H4). The scalar functions P(1) and Q(n) for the 1PN
terms are given by Eqs. (I37) and Eqs. (I38) - (I40),
while the scalar functions R(1), S(n), and T(n) for the
2PN terms are given by Eqs. (K8), (K9), and (K10).

In order to determine the 2PN effect of the time-delay,
higher mass-multipoles beyond the mass-quadrupole as
well as spin-multipoles have been neglected, as indicated
by Eqs. (45) and (46). These higher mass-multipoles and
spin-multipoles can be taken into account just by adding
the other 1PN mass-multipole terms in (32) (beyond
mass-quadrupole) as well as the 1.5PN spin-multipole
terms in (33) to (78) in an appropriate manner; cf. text
below Eqs. (45) and (46) as well as in the introductory
Section. That means, one has to keep in mind that (78) is
given in terms of three-vector k, while (32) and (33) are
given in terms of three-vector σ. Therefore, in order to
do that consistently, one has to replace the three-vector
σ in (30) as well as in (32) and (33) by the three-vector
k. In view of relations (73) and (75) such a replacement
is correct up to higher 2PN multipole terms beyond the
mass-quadrupole.

D. The upper limits of 2PN terms in the Shapiro
time-delay

The upper limits for 1PN mass-monopole and mass-
quadrupole time delay were given by Eqs. (38) and (39),
while the upper limits for 2PN mass-monopole and mass-
quadrupole terms were derived by Eqs. (K15), (K19) and
(K22). They read∣∣∆τM1PN

∣∣≤ 2
GM

c3
ln

4x0x1

(dk)
2 , (84)

∣∣∣∆τMab

1PN

∣∣∣≤ 11

5

GM

c3
|J2|

(
P

dk

)2

, (85)

∣∣∆τM×M
2PN

∣∣≤ 8
G2M2

c5
x1

(dσ)
2 , (86)

∣∣∣∆τM×Mab

2PN

∣∣∣≤ 12
G2M2

c5
x1

(dσ)
2 |J2|

(
P

dk

)2

, (87)

∣∣∣∆τMab×Mcd

2PN

∣∣∣≤ 8
G2M2

c5
x1

(dσ)
2 |J2|2

(
P

dk

)4

. (88)

The upper limits of the 1PN mass-monopole term (84)
and 1PN mass-quadrupole term (85) were already given
by Eqs. (38) and (39) (with coefficient A2 in (42)), while
their numerical values have been presented in Table II
for grazing light rays at Sun, Jupiter, and Saturn.
The numerical values for the 2PN terms (86) - (88) are
presented in Table III for grazing light rays at Sun,
Jupiter, and Saturn. It is remarkable that the numer-
ical value of the 2PN monopole-quadrupole term (87) for
Jupiter and Saturn is of similar magnitude than the 1PN
spin-dipole term (40) for Jupiter and Saturn. Similarly,
the numerical value of the 2PN quadrupole-quadrupole

Table III: The effect of 2PN terms on the (one-way) Shapiro
time delay ∆τ in the gravitational field of the Sun and giant
planets of the solar system according to the upper limits pre-
sented by Eqs. (86), (87) and (88). The values are given for
grazing rays (impact parameter dk equals body’s equatorial
radius P ). The time delay is given in units of pico-seconds:
ps = 10−12 sec. The presented numerical values should be
compared with the goal accuracy of 0.001 pico-seconds in
time-delay measurements. A blank entry means a delay of
less than a femto-second.

Object ∆τM×M
2PN ∆τ

M×Mab
2PN ∆τ

Mab×Mcd
2PN

Sun 1.8× 104 0.004 −
Jupiter 6.1 0.14 0.001

Saturn 1.6 0.04 −

term for Jupiter and Saturn (88) is of similar magnitude
than the 1PN spin-octupole term (41) (with B3 = 7/6)
for Jupiter and Saturn.
Finally, by comparing the 2PN values presented in Ta-

ble III with the 1PN values given in Table I in [47],
one finds that the 2PN monopole-quadrupole effects for
Jupiter and Saturn are larger than the 1PN quadrupole
effects for Earth-like planets of the solar system.

VI. SUMMARY

The Shapiro time delay is the difference between the
travel time of a light-signal in the gravitational field of a
body and the Euclidean distance between source and ob-
server divided by the speed of light, which belongs to the
four classical tests of general relativity. For a spherically
symmetric body with mass M , the Shapiro time delay in
the 1PN approximation is given by

∆τM1PN =
2GM

c3
ln

x1 + k · x1

x0 + k · x0
. (89)

The first measurements of this effect (89) have been per-
formed by radar signals, which were emitted from Earth
and which were reflected either by the inner planets or
by spacecrafts. Since the early days of time-delay mea-
surements in the solar system, the accuracies have been
improved from a few micro-seconds in 1968 and 1971 by
radar echos from Mercury and Venus [6, 7] towards a few
nano-seconds in 2003 by radar echos from the Cassini
spacecraft which orbits Saturn [10].
Future time-delay measurements in the solar system

aim at the pico-second and sub-pico-second level of ac-
curacy, which will be performed by optical laser rather
than radar signals, as suggested by a series of several ESA
mission proposals [11–16]. These advancements make it
necessary to improve the theoretical models of time delay
measurements up to an accuracy of 0.001 pico-seconds.
On this level of precision the Shapiro time delay in 1PN
monopole approximation (89) is by far not sufficient. It
is necessary to take into account higher mass-multipoles
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M̂L (describe shape and inner structure of the massive

body) and some spin-multipoles ŜL (describe rotational
motions and inner currents of the massive body) in the
post-Newtonian (1PN and 1.5PN) approximation,

∆τ =

∞∑
l=0

∆τML

1PN +

∞∑
l=1

∆τSL

1.5PN . (90)

The mathematical expressions for the 1PN and 1.5PN
terms in the Shapiro time delay were derived a long time
ago [34]. In this investigation we have quantified these
terms and have clarified that only the first eight mass-
multipoles and the spin-dipole and the spin-hexapole
terms (for Jupiter) are required in order to achieve an
assumed accuracy of about 0.001 pico-seconds. The nu-
merical values for the 1PN mass-multipoles and 1.5PN
spin-dipole term were presented in Table II. It has been
shown that higher mass-multipoles l ≥ 10 as well as spin-
multipoles l ≥ 5 are not relevant for an accuracy of about
0.001 pico-seconds in time delay measurements in the so-
lar system.

It is clear that on the sub-pico-second level of accu-
racy in time-delay measurements some 2PN effects need
to be taken into account. Thus far, however, the knowl-
edge about 2PN effects in the Shapiro time delay was re-
stricted to the case of spherically symmetric bodies. The
next term in the multipole decomposition is the mass-
quadrupole term. In this investigation we have taken
into account the monopole and quadrupole structure of
a massive body at rest and have determined the 2PN
quadrupole effects on time delay for a light signal,

∆τ =∆τM1PN +∆τMab

1PN

+∆τM×M
2PN +∆τM×Mab

2PN +∆τMab×Mcd

2PN . (91)

The explicit expression of the 1PN terms in (91) were pre-
sented by Eqs. (79) and (80) and the 2PN terms in (91)
were presented by Eqs. (81) - (83). The 2PN quadrupole
effect amounts up to 0.004, 0.14, and 0.04 pico-second
for grazing light rays at the Sun, Jupiter, and Saturn,
respectively; see Table III. The values of the 2PN terms
are tiny but, nevertheless, they are comparable with the
1PN and 1.5PN terms of some higher mass-multipoles
and spin-dipoles on time-delay; see Table II.

In the expression for the time delay in 2PN approx-
imation (91) higher multipoles beyond the quadrupole
are not taken into account. It is, however, not certain
whether such higher multipole terms can be neglected in
2PN approximation on the level of 0.001 pico-second in
the accuracy of time delay measurements. Namely, the
next 2PN term beyond the monopole-quadrupole term,
M ×Mab, which is proportional to the second zonal har-
monic coefficient J2, would be the monopole-octupole
term, M × Mabcd, which is proportional to the fourth
zonal harmonic coefficient J4. Taking the ratio J4/J2
and multiplying with the 2PN monopole-quadrupole ef-
fect one obtains about 0.02, 0.006, and 0.002 pico-second
time delay for grazing rays at Sun, Jupiter, and Saturn.

These rough estimates show that the monopole-octupole
term might be relevant for time delay measurements on
the level of 0.001 pico-second. On the other side, these
2PN monopole-octupole terms scale with (P/dk)

4
where

P is the equatorial radius of the massive body and dk
is the impact parameter of the light ray. Thus, these
2PN effects decrease very rapidly with increasing dis-
tance from the massive body.
Finally, it is also mentioned that the impact of the

mass-monopole on a time delay has been determined in
the 3PN approximation for the case of one body at rest
[55], where it has been shown that on the pico-second
level such 3PN effects are relevant, but only in case of
grazing light ray at the Sun, that means light signals
which pass near the limb of the Sun.
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Appendix A: Notation

Throughout the investigation the same notation as in
Ref. [35] is in use:

• Lower case Latin indices i, j, . . . take values 1, 2, 3.

• ḟ denotes total time derivative of f .

• f , i = ∂f/∂xi denotes partial derivative of f with
respect to xi.

• Kronecker delta: δij=δij=δij=diag (+1,+1,+1).

• n! = n (n− 1) (n− 2) · · · 2 · 1 is the factorial for
positive integer (0! = 1).

• n!! = n (n− 2) (n− 4) · · · (2 or 1) is the double fac-
torial for positive integer (0!! = 1).

• εijk = εijk with ε123 = +1 is the fully anti-
symmetric Levi-Civita symbol.

• Triplet of three-vectors are in boldface, e.g. a, b,
σ, x.

• Contravariant components of three-vectors: ai =(
a 1, a2, a3

)
.

• Absolute value of a three-vector: a = |a| =√
a 1 a 1 + a2 a2 + a3 a3.
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• Scalar product of three-vectors: a · b = δij a
i bj .

• Vector product of two three-vectors: (a× b)
i
=

εijk a
j bk.

• Angle between three-vectors a and b is denoted by
δ (a, b).

• Lowercase Greek indices take values 0,1,2,3.

• f , µ = ∂f/∂xµ denotes partial derivative of f with
respect to xµ.

• ηαβ = ηαβ = diag (−1,+1,+1,+1) is the metric
tensor of flat space-time.

• gαβ and gαβ are the covariant and contravariant
components of the metric tensor.

• Contravariant components of four-vectors: aµ =(
a 0, a 1, a2, a3

)
.

• Repeated indices are implicitly summed over (Ein-
stein’s sum convention).

Appendix B: Mass and Spin multipoles

1. STF tensors

Here we will present only those few standard notations
about symmetric tracefree (STF) tensors, which are re-
ally necessary for our considerations, while further STF
relations can be found in [38, 39, 41, 56].

• L = i1i2...il is a Cartesian multi-index of a given
tensor T , that means TL ≡ Ti1i2 . . . il .

• two identical multi-indices imply summation:
AL BL ≡

∑
i1 . . . il

Ai1 . . . il Bi1 . . . il .

• The symmetric part of a Cartesian tensor TL is (cf.
Eq. (2.1) in [38]):

T(L) = T(i1...il) =
1

l!

∑
σ

Aiσ(1)...iσ(l)
, (B1)

where σ is running over all permutations of
(1, 2, ..., l).

• The symmetric tracefree part of a Cartesian tensor
TL (notation: T̂L ≡ STFL TL ≡ T<i1...il>) is (cf.
Eq. (2.2) in [38]):

T̂L =

[l/2]∑
k=0

alk δ(i1i2...δi2k−1i2k Si2k+1...il) a1a1...akak
,

(B2)

where [l/2] means the largest integer less than or
equal to l/2, and SL ≡ T(L) abbreviates the sym-
metric part of tensor TL. The coefficient in (B2) is
given by

alk = (−1)
k l!

(l − 2k)!

(2l − 2k − 1)!!

(2l − 1)!! (2k)!!
. (B3)

Three comments are in order about STF. First of all, the
Kronecker delta has no symmetric tracefree part,

STFab δ
ab = 0 . (B4)

Second, the symmetric tracefree part of any tensor which
contains Kronecker delta is zero, if the Kronecker delta
has not any summation (dummy) index, for instance,

STFabc δ
ab dcσ = 0 , (B5)

STFabc δ
ab σc = 0 . (B6)

And third, the following relation is very useful (cf.
Eq. (A1) in [56]),

ÂL B̂L =AL B̂L = ÂL BL (B7)

which often simplifies the analytical evaluations, because
the STF structure can be determined at the very end
of the calculations. In this Appendix the normalizations
and definitions as used in [3] will be applied. In particu-
lar, we need the following Cartesian STF tensor,

n̂L =
x< i1

r
. . .

xil >

r
, (B8)

where xi are the spatial coordinates of some arbitrary
field point and r = |x|; we note that xi = xi and n̂L =
n̂L.
A basis in the (2l + 1)-dimensional space of STF ten-

sors with L indices is provided by the tensors Ŷ lm
L . They

are given by (cf. Eqs. (A6.a) - (A6.c) in [39]; a few exam-
ples of these basis tensors are provided in Box 1.5 p. 33
in [3])

Ŷ lm
L =Alm Elm

<L> , (B9)

where Elm
<L> = STFi1...il E

lm
i1...il

with

Elm
L =

(
δ1i1 + i δ2i1

)
. . .
(
δ1im + i δ2im

)
δ3im+1

. . . δ3il
(B10)

and

Alm = (−1)
m
(2l − 1)!!

√
2l + 1

4π (l −m)! (l +m)!
.(B11)

These basis tensors are normalized by (cf. Eq. (2.26a) in
[38] or cf. Eq. (A7) in [39])

Ŷ lm
L Ŷ ∗ lm′

L = δmm′
(2l + 1)!!

4π l!
(B12)
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where Ŷ ∗ lm
L are the complex conjugate of the basis ten-

sors. Using the transformation between Cartesian coor-
dinates

(
x1, x2, x3

)
and spherical coordinates (r, θ, ϕ),

x1 = r sin θ cosϕ , x2 = r sin θ sinϕ , x3 = r cos θ ,

(B13)

one may show that the STF basis tensors Ŷ lm
L are related

to the spherical harmonics Ylm as follows (cf. Eq. (2.11)
in [38] or Eq.(A8) in [39])

Ŷ lm
L n̂L = Ylm , (B14)

which are normalized by (cf. Eq. (1.117) in [3])∫
Ylm Y ∗

l′m′ dΩ= δmm′ δll′ , (B15)

where Y ∗
lm are the complex conjugate of spherical har-

monics and dΩ = sin θ dθ dϕ is the infinitesimal solid an-
gle in the direction (θ, ϕ).

Any STF tensor T̂L can be expanded in terms of these
basis tensors

T̂L =
4π l!

(2l + 1)!!

l∑
m=−l

Tlm Ŷ lm
L . (B16)

The expansion coefficients Tlm are called moments of the
STF tensor T̂L and are obtained by the inverse of (B16).
That means, if both sides of (B16) are multiplied with

Ŷ ∗ lm′

L , then one obtains

Tlm = T̂L Ŷ ∗ lm
L , (B17)

where the normalization (B12) of the STF basis tensors
has been used. Let us notice that the normalization pref-

actor
4π l!

(2l + 1)!!
is convention and appears either in front

of (B16) or (B17). Only the combination of (B16) and
(B17) is relevant, which agrees with the combinations
of Eqs. (2.13a) and (2.13b) in [38]. Here we follow the
convention as used, for instance, in [3, 56].

In particular, we need the expansion of the STF part
x̂L = rl n̂L in terms of these basis tensors, which reads

x̂L =
4π l!

(2l + 1)!!

l∑
m=−l

xlm Ŷ lm
L . (B18)

According to (B17), the moments are given by

xlm = x̂L Ŷ ∗ lm
L = rl Y ∗

lm , (B19)

where the relation between the STF basis tensors (B14)
has been used. Hence, one obtains for the expansion of
the STF tensor x̂L the following expression (cf. Eq. (2.23)
in [56]):

x̂L =
4π l!

(2l + 1)!!
rl

l∑
m=−l

Y ∗
lm Ŷ lm

L , (B20)

which will be used in order to determine the mass-
multipole moments and spin-multipole moments.

2. Mass multipoles

The mass-multipoles M̂L have been obtained in [41].
In case of time-independent multipoles, they simplify to
the following form, up to terms of the order O

(
c−4
)
(cf.

Eq. (5.38) in [41])

M̂L =

∫
d3x x̂L Σ , (B21)

where Σ =
(
T 00 + T kk

)
/c2 is the gravitational mass-

energy density of the body with Tαβ being the stress-
energy tensor of the body. The integration runs over the
three-dimensional volume of the body. The zeroth term
l = 0 is the mass of the body: M̂0 = M . The first
term l = 1 is the mass-dipole moment which defines the
spatial position of the center of mass of the body. In
case the origin of the coordinate system coincides with
the center of mass of the body the mass-dipole moment
would vanish [3, 5, 38] (cf. Eq. (8.14c) in [38]). According
to Eq. (B16) the expansion of the STF mass-multipole

(B21) in terms of basis tensors Ŷ lm
L reads

M̂L =
4π l!

(2l + 1)!!

l∑
m=−l

Mlm Ŷ lm
L . (B22)

The mass-moments Mlm are obtained from the inverse of
(B22) and read (cf. Eq. (B17))

Mlm = M̂L Ŷ ∗ lm
L . (B23)

Let us notice that the combination of relations (B22) and
(B23) coincides with the combination of equations (4.6a)
and (4.7a) in [38] in case of time-independent multipoles.
By inserting (B21) into (B23) one obtains, with virtue of
(B20) and (B12), the following expression for the mass-
moments (cf. Eq.(1.139) in [3])

Mlm =

∫
d3x rl ΣY ∗

lm , (B24)

where the integration runs over the volume of the body.
The giant planets can be described by a rigid axisymmet-
ric body. Accordingly, in order to determine the impact
of mass-multipoles on the Shapiro time delay we consider
a Newtonian rigid axisymmetric body, having the shape(

x1
)2

A2
+

(
x2
)2

B2
+

(
x3
)2

C2
= 1 , (B25)

where A = B is the semi-major axis (i.e. equatorial
radius P ) and C is the semi-minor axis of the body. The
oblateness of the axisymmetric body is parameterized by
the ellipticity parameter ϵ2 =

(
A2 − C2

)
/A2 which is

also used in the IAU resolutions (p. 2698 in [46]). It is
assumed that the unit-vector e3 is the symmetry axis of
the massive body and the x3-direction of the coordinate
system is aligned with the symmetry axis of the body.
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Then, the multipole moments (B24) vanish for m ̸= 0,
that means we need

Ml0 =

∫
d3x rl ΣY ∗

l0 . (B26)

The spherical harmonics for m = 0 are real valued func-
tions, Y ∗

l0 = Yl0, and they are related to the Legendre
polynomials Pl (cf. Eq. (1.112) in [3])

Yl0 =

√
2l + 1

4π
Pl (cos θ) , (B27)

where θ is the angle between integration variable x and
the x3-direction of the coordinate system (azimuth an-
gle). Performing these integrals in (B26) one finds that
they are proportional to the mass M of the body and

the l-th power of the equatorial radius of the body, (P )
l

(which should not be confused with Legendre polynomial
Pl) and they are non-vanishing only for even l,

Ml0 = −
√

2l + 1

4π
M (P )

l
Jel
l (B28)

for l = 0, 2, 4, 6, . . . . Eq. (B28) coincides with Eq. (1.143)
in [3]. The dimensionless parameter Jel

l in (B28) are
the gravitoelectric zonal harmonic coefficients, and follow
from inserting (B28) into (B26) (cf. Eq. (17) in [57])

Jel
l = − 1

M (P )
l

∫
d3x rl ΣPl (cos θ) (B29)

for l = 0, 2, 4, 6 . . . . For an axisymmetric body ((B25)
with A = B) with uniform density one obtains (cf.
Eq. (56) in [54])

Jel
l = (−1)

l/2+1 3

(l + 1) (l + 3)
ϵl (B30)

for l = 0, 2, 4, 6 . . . . Obviously, higher mass-moments
(l > 0) vanish for ϵ = 0, that means for spherically sym-
metric bodies only the mass-monopole is non-zero. By
inserting (B28) into (B22) one obtains for the mass-
multipole (B21)

M̂L =−
√

2l + 1

4π

4π l!

(2l + 1)!!
M P l Jel

l Ŷ l0
L , (B31)

where P l means the l-th power of the equatorial radius,
while the suffix l in Jel

l is an index and denotes the l-

th zonal harmonic coefficient. The basis tensors Ŷ lm
L for

m = 0 are given by (cf. Eqs. (A6.a) - (A6.c) in [39])

Ŷ l0
L = (2l − 1)!!

√
2l + 1

4π l! l!
δ3<i1 . . . δ3il> . (B32)

Finally, inserting (B32) into (B31) yields for the mass-
multipoles for the case of an axisymmetric rigid body
with uniform density the following expression:

M̂L =−M P l Jel
l δ3<i1 . . . δ3il> (B33)

for l = 2, 4, 6, . . . . The STF terms are products of Kro-
necker symbols which are symmetric and traceless with
respect to indices i1 . . . il. They are given by the formula
(cf. Eq. (1.155) in [3]):

δ3<i1 . . . δ3il> =

[l/2]∑
p=0

(−1)
p (2l − 2p− 1)!!

(2l − 1)!!

×
[
δ2P δ3L−2P + sym. (q)

]
, (B34)

where [l/2] is equal to l/2 for even l and equal to
(l − 1)/2 for odd l. The symbol δ2P stands for the
product of p Kronecker deltas with indices running from
δi1i2 × · · · × δi2p−1i2p . The symbol δ3L−2P stands for the
product of l − 2p Kronecker deltas with indices running
from δ3i2p+1

× · · · × δ3il . The notation sym. (q) in (B34)

means symmetrization with respect to the 2p indices
i1 . . . i2p, where the total number of these symmetrized
terms is q = l! / [(l − 2p)! (2p)!!]. The terminology of the
first mass-multipoles reads:

• l = 0: mass-monopole,

• l = 2: mass-quadrupole,

• l = 4: mass-octupole,

• l = 6: mass-dodecapole,

• l = 8: mass-hexadecapole,

• l = 10: mass-icosadecapole.

Let us show that expression (B33) coincides with the
IAU resolutions [46] for the case of mass-quadrupole.

The equation (48) in [46] states M̂L = −ĈL where

ĈL = STFi1...il Ci1...il with the tensor Ci1...il given by
Eq. (46) in [46]. In case of an axisymmetric rigid body
with uniform density the explicit values CXX = CY Y =
M
(
A2 + C2

)
/5 and CZZ = 2MA2/5 were presented (see

text below Eq. (48) in [46]). Using (B2) one may de-
termine their STF expressions, which, using Eq. (48) in

[46], results in M̂XX = M̂Y Y = M
(
A2 − C2

)
/15 and

M̂ZZ = −2M
(
A2 − C2

)
/15, which is in agreement with

our expression given by Eq. (B33) for l = 2.
In reality the mass distribution Σ of the Sun and the

giant planets is not uniform but depends on the radial
distance. Therefore, the theoretical values of the zonal
harmonic coefficients, Jel

l , as calculated for a axisymm-
metric body with uniform density by Eq. (B30), are a bit
larger than their actual values. Instead to calculate these
actual values by relation (B29) with a model-dependent
assumption for the mass-density, the actual zonal har-
monic coefficients are deduced from real measurements
of the gravitational fields of the giant planets and are
denoted by Jl. These values are given in Table I. If one
replaces in (B33) the theoretical values of the zonal har-
monic coefficients, Jel

l , by these actual values from real
measurements, Jl, then one obtains the mass-multipoles
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for the case of an axisymmetric rigid body with radial-
dependent mass-density:

M̂L =−M P l Jl δ
3
<i1 . . . δ3il> (B35)

for l = 2, 4, 6, . . . . For estimations of the Shapiro time
delay only the first eight terms of the mass-multipoles
(B35) are needed, even on the sub-pico-second level. The
mass-quadrupole and the mass-octupole are given in their
explicit form as follows:

M̂ab =+M P 2 J2

[
1

3
δab − δ3a δ

3
b

]
, (B36)

M̂abcd =−M P 4 J4

[
1

35
(δab δcd + δac δbd + δad δbc)

+ δ3a δ
3
b δ

3
c δ

3
d −

1

7

(
δab δ

3
c δ

3
d + δac δ

3
b δ

3
d + δad δ

3
b δ

3
c

)
−1

7

(
δbc δ

3
a δ

3
d + δbd δ

3
a δ

3
c + δcd δ

3
a δ

3
b

) ]
. (B37)

3. Spin multipoles

The spin-multipoles ŜL have been obtained in [41]. In
case of time-independent multipoles, they simplify to the
following form, up to terms of the order O

(
c−4
)
(cf.

Eq. (5.40) in [41])

ŜL =

∫
d3x ϵjk<il x̂L−1> xj Σk (B38)

where the notation Σk = T 0k/c has been adopted, with
Tαβ being the stress-energy tensor of the body and the
integration runs over the three-dimensional volume of the
body. The first term l = 1 is the spin-dipole and de-
scribes the rotational motion of the body as a whole. In
case the body is rigid and spherically symmetric, then the
higher spin-multipoles would vanish. However, in case
the body is not spherically symmetric, then these higher
spin-multipoles l ≥ 3 account for the rotational motion
of the body as a whole. In addition, if there are inner
currents of the body, then the higher spin-multipoles ac-
count also for these inner circulations.

According to Eq. (B16) the expansion of the STF spin-

multipole (B38) in terms of basis tensors Ŷ lm
L reads

ŜL =
4π l!

(2l + 1)!!

l∑
m=−l

Slm Ŷ lm
L . (B39)

The spin-moments Slm are obtained from the inverse of
(B39) and read (cf. Eq. (B17))

Slm = ŜL Ŷ ∗ lm
L . (B40)

Let us notice that the combination of relations (B39) and
(B40) coincides with the combination of equations (4.6b)
and (4.7b) in [38] in case of time-independent multipoles.

By inserting (B38) into (B40) one obtains, with virtue of
(B20), the following expression for the spin-moments

Slm =
4π (l − 1)!

(2l − 1)!!

∫
d3x rl nj Σk

×
l−1∑

m′=−l+1

ϵjk <il Ŷ
l−1m′

L−1> Y ∗
l−1m′ Ŷ ∗ lm

L (B41)

where the integration runs over the volume of the body;
note that nj = xj/r and Ŷ ∗ lm

L = Ŷ ∗ lm
ilL−1. Now we make

use of the following relation (cf. Eq. (2.26b) in [38]):

Ŷ l−1m′

L−1 Ŷ ∗ lm
ilL−1 =

(2l + 1)!!

4π l!

√
l

2l + 1
(1 l − 1 0 m′|l m) eil3

(B42)

where (1 l − 1 0 m′|l m) are the Clebsch-Gordan coeffi-

cients [58] and eil3 is the il-component of unit three-vector
e3. By inserting (B42) into (B41) one encounters the vec-
tor spherical harmonics [38, 58] (cf. Eq. (2.16) in [38] or
Eq. (2.221) in [58])

Y ∗ l−1 , lm
il

=

l−1∑
m′=−l+1

(1 l − 1 0 m′|l m) Y ∗
l−1m′ eil3 .

(B43)

Thus, in view of (B42) and (B43) one obtains for the spin
moments (B41)

Slm =
2l + 1

l

√
l

2l + 1

∫
d3x rl ϵijk nj Σk Y ∗ l−1 , lm

i ,

(B44)

where the spatial dummy index il has been designated
into the new spatial dummy index i. Now we use a re-
lation between vector spherical harmonics and STF har-
monics (cf. Eq. (2.24a) in [38])

Y ∗ l−1 , lm
i =

√
l

2l + 1
Ŷ ∗ lm
iL−1 n̂L−1 , (B45)

as well as (cf. Eq. (2.23b) in [38])

ϵijk nj Ŷ ∗ lm
iL−1 n̂L−1 =−

√
l + 1

l
Y ∗B , lm
k , (B46)

where Y ∗B , lm
k is the complex conjugate of one of the

pure spin-vector harmonics (cf. Eq. (2.18b) in [38]) and
obtain

Slm =−
√

l + 1

l

∫
d3x rl Σk Y ∗B , lm

k . (B47)

Finally, we use the definition of the pure spin-vector har-
monics (cf. Eq. (2.18b) in [38])

Y ∗B , lm
k =

√
1

l (l + 1)
(x×∇)

k
Y ∗
lm , (B48)
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where∇ = er ∂r+eθ r
−1 ∂θ+eϕ (r sin θ)

−1
∂ϕ is the gra-

dient operator of Euclidean three-space in spherical coor-
dinates which acts on the complex conjugate of spherical
harmonics Y ∗

lm and the position vector in spherical coor-
dinates reads x = r er. Inserting (B48) into (B47) yields
the following expression for the spin-moments

Slm =
1

l

∫
d3x rl (x×Σ) ·∇Y ∗

lm , (B49)

where the integration runs over the three-dimensional
volume of the body. The steps from (B39) until (B49)
coincide with the steps from Eq. (5.17b) to Eq. (5.18b)
in [38] for the case of time-independent multipoles. Be-
low we will show, for the case of axisymmetric bodies,
that (B49) coincides with the IAU resolutions [46]. Let
us also notice that the combination of expressions (B39)
and (B49) coincides with the combination of Eqs. (10)
and (11) in [59].

In order to determine the impact of spin-multipoles on
the Shapiro time delay we consider a rigid Newtonian
body in uniform rotational motion and having axisym-
metric shape (B25), where the unit-vector e3 is the sym-
metry axis of the massive body and the x3-direction of
the coordinate system is aligned with the rotational axis
of the body. Then, the rotational angular velocity Ω is
independent of time and for the momentum-density of
the body one may write (cf. Eq. (12) in [59] and IAU
resolutions (p. 2698 in [46]) where spin-moments for the
model of a rigidly rotating Earth have been considered):

Σ = Σ (Ω× x) = ΣΩ r sin θ eϕ . (B50)

It has been shown in [59] that the only non vanishing
spin-moments (B49) are those for m = 0 and odd l (cf.
Eqs. (20) in [59]):

Sl0 =+
1

l

∫
d3x rl (x×Σ) ·∇Y ∗

l0 ,

=−1

l

√
2l + 1

4π
Ω

∫
d3xΣ rl+1 sin θ

∂ Pl (cos θ)

∂θ
,

(B51)

where the spherical harmonics for m = 0 are related
to the Legendre polynomials as given by Eq. (B27) and
where θ is again the angle between integration variable
x = r er and the x3-direction of the coordinate system
(azimuth angle) and er × eϕ = −eθ has been used. Per-
forming these integrals in (B51) one finds that they are
proportional to the angular velocity Ω, to the mass M
of the body and the (l + 1)-th power of the equatorial
radius P of the body and they are non-vanishing only for
odd l,

Sl0 =

√
2l + 1

4π
(l + 1)M Ω (P )

l+1
Jgm
l (B52)

for l = 1, 3, 5, . . . . The parameter Jgm
l in (B52) are the

gravitomagnetic zonal harmonic coefficients and follow

from inserting (B51) into (B52),

Jgm
l =− 1

M (P )
l+1

1

l (l + 1)

∫
d3x rl+1 Σ sin θ

∂ Pl (cos θ)

∂θ

(B53)

for l = 1, 3, 5, . . . . For an axisymmetric body ((B25) with
A = B) with uniform mass density they are given by (cf.
Eq. (25) in [59])

Jgm
l = (−1)

(l−1)/2 3

l (l + 2) (l + 4)
ϵl−1 (B54)

for l = 1, 3, 5, . . . . where the ellipticity parameter ϵ2 =(
A2 − C2

)
/A2 has already been defined above. The com-

binations of the equations (B39) with (B52) and (B54)
agrees with the combination of the equations (10) with
(22) and (25) in [59]. Obviously, higher spin-moments
(l > 1) vanish for ϵ = 0, that means for spherically sym-
metric bodies only the spin-dipole is non-zero. A com-
parison between (B54) and (B30) leads to the follow-
ing remarkable relation between the gravitomagnetic and
gravitoelectric zonal harmonic coefficients for an axisym-
metric body with uniform mass density and in uniform
rotational motion (cf. Eq. (28) in [59]):

Jgm
l = −

Jel
l−1

l + 4
. (B55)

Finally, in view of relation (B55) and by inserting (B54)
and (B52) into (B39) one obtains for the spin-multipoles
for the case of an axisymmetric rigid body with uniform
mass-density and in uniform rotational motion the fol-
lowing expression:

ŜL =−M ΩP l+1 Jel
l−1

l + 1

l + 4
δ3<i1 . . . δ3il> (B56)

for l = 1, 3, 5, . . . . The STF terms are products of Kro-
necker symbols which are symmetric and traceless with
respect to indices i1 . . . il. They are given by the for-
mula (B34). The terminology of the first spin-multipoles
reads:

• l = 1: spin-dipole,

• l = 3: spin-hexapole,

• l = 5: spin-decapole,

• l = 7: spin-quattuordecapole,

• l = 9: spin-octodecapole.

Let us show that expression (B56) coincides with the
IAU resolutions [46] for the case of spin-hexapole. The

equation (45) in [46] states ŜL = ĈLdΩ
d where ĈLd

is STF with respect to indices L but not with respect
to index d, that means ĈLd = STFi1...il Ci1...ild which
is given by Eq. (46) in [46]. Assuming Ωd = (0, 0,Ω)

the non-vanishing terms are ŜXXZ = ŜY Y Z = 3ηΩ and
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ŜZZZ = −6ηΩ with η = 4MA4ϵ2/525, which is in agree-
ment with our expression given by Eq. (B56) for l = 3.

The spin-multipoles in (B56) are valid for a rigid axi-
symmetric body with uniform mass-density and in uni-
form rotation with angular velocity Ω = 2π/T where
T is the rotational period around the spin axis of the
body. However, in reality the mass distribution of the
Sun and the giant planets is not uniform, but increas-
ing towards the center of the massive body. In case of
mass-multipoles this fact has been taken into account in
the step from (B33) to (B35), where the gravitoelectric
zonal harmonic coefficients Jel

l , for an axisymmetric body
with uniform mass-density given by (B30), have been re-
placed by the actual zonal harmonic coefficients Jl which
are determined by real measurements of the gravitational
fields of these bodies by space missions. Here, in similar
manner, the gravitoelectric zonal harmonic coefficients
Jem
l for an axisymmetric body with uniform density in

(B56) are replaced by their actual gravitoelectric zonal
harmonic coefficients Jl, as they are given in Table I.
In this way, one obtains for the spin-multipoles for the
case of a axisymmetric rigid body in uniform rotational
motion and with radial-dependent mass-density the fol-
lowing expression:

ŜL =−M ΩP l+1 Jl−1
l + 1

l + 4
δ3<i1 . . . δ3il> (B57)

for l = 1, 3, 5, . . . . Actually, for estimations of the
Shapiro time delay only the first two terms of the spin-
multipoles (B57) are needed, even on the sub-pico-second
level: spin-dipole and spin-hexapole. They are given in
their explicit form as follows:

Ŝa = +
2

5
M ΩP 2 δ3a , (B58)

Ŝabc = +
4

7
M ΩP 4 J2

×
[
1

5
(δab δ3c + δac δ3b + δbc δ3a)− δa3 δb3 δc3

]
.(B59)

In (B58) we have used Jel
0 = J0 = −1, that means for

l = 1 the theoretical gravitoelectric zonal harmonic co-
efficient for a body with uniform mass-density and the
actual zonal harmonic coefficient for a body with radius-
dependent mass-density are equal. Thus, a replacement
of either these terms from (B56) to (B57) has no impact
on the spin-dipole in (B58). Therefore, in order to ac-
count for the fact that the density of the massive bodies
is not uniform, one considers the following reasoning for
the spin-dipole. In general, the absolute value of the ex-
act spin-dipole |Sa| (i.e. l = 1 in Eq. (B38)) is the body’s
spin angular momentum, which is related to the body’s
moment of inertia I as follows,

|Sa|= I Ω . (B60)

For a solid sphere with uniform density the moment of

inertia is I =
2

5
M P 2 (cf. Eq. (1.20) in [48]), hence

|Sa| =
2

5
M P 2 Ω in agreement with absolute value of the

spin-dipole (B58). In order to take into account also for
the spin-dipole the fact that in reality the mass density
is increasing towards the center of these massive solar
system bodies, we implement the so-called dimensionless
moment of inertia κ2, which is defined as follows [48]

κ2 =
I

M P 2
. (B61)

Then, the spin angular momentum of the body (B60) is
given by [48, 60]

|Sa|= κ2 M P 2 Ω . (B62)

For κ2 = 0.4 one recovers the case of a solid sphere with
uniform density (cf. (B58)), while for real solar system
bodies κ2 < 0.4 because their mass-density increases to-
wards the center of the bodies. These realistic values for
κ2 have been determined for several solar system bodies
in [48] using the Darwin-Radau relation (e.g.. Eq. (18)
in [61]). Similar values are given in the planetary fact
sheets. For the Sun the value of κ2 fairly coincides with
helioseismology data of the Sun’s spin angular momen-
tum [62]. Accordingly, instead of (B58) we will adopt the
following expression for the spin-dipole:

Ŝa =+κ2 M P 2 Ω δ3a , (B63)

where κ2 is given in Table I for Sun, Jupiter, and Saturn.

Appendix C: The 1PN Shapiro effect of
mass-quadrupole

From (32) one obtains the following expression for the
impact of the 1PN mass-quadrupole on Shapiro time de-
lay:

∆cτMab

1PN = +
GM̂ab

c2

×

(
∂̂ab ln (rN + cτ)

∣∣∣∣
τ=t1

− ∂̂ab ln (rN + cτ)

∣∣∣∣
τ=t0

)
.

(C1)

The application of the differential operator (30), without
the STF procedure, yields

∂ab ln (rN + cτ) = P j1
a P j2

b

∂

∂ξj1
∂

∂ξj2
ln (rN + cτ)

+ 2σa P
j2
b

∂

∂cτ

∂

∂ξj2
ln (rN + cτ)

+σa σb
∂

∂cτ

∂

∂cτ
ln (rN + cτ) . (C2)

where the STF operation with respect to the indices ab
has been omitted in view of relation (B7). With rN =
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ξ2 + c2τ2 one gets

∂ab ln (rN + cτ) =+P j1
a P j2

b δj1j2
1

rN

1

rN + cτ

−P j1
a P j2

b ξj1 ξj2
1

(rN)
3

1

rN + cτ

−P j1
a P j2

b ξj1 ξj2
1

(rN)
2

1

(rN + cτ)
2

− 2σa P
j2
b ξj2

1

(rN)
3 − σa σb cτ

(rN)
3 . (C3)

Here we have used ∂ξi/∂ξj = δij , because we treat
the spatial components of vector ξ as formally indepen-
dent. Therefore, a subsequent projection onto the two-
dimensional plane perpendicular to the three-vector σ is
performed (cf. text above Eq. (31) in [36]). It is empha-
sized that this projection is automatically included here,
namely in the differential operator, which has been intro-
duced in the form given by Eq. (30). Using P j1

a ξj1 = ξa
(cf. Eq. (29) in [36]) and finally replacing cτ = σ · x
as well as ξa = daσ, one obtains for the 1PN quadrupole
Shapiro effect (C1):

∆cτMab

1PN =+
GM̂ab

c2

×

[
1

(dσ)
2

(
σ · x1

x1
− σ · x0

x0

)
−

(
σ · x1

(x1)
3 − σ · x0

(x0)
3

)]
σaσb

+
GM̂ab

c2

×

[
2

(dσ)
2

(
σ · x1

x1
− σ · x0

x0

)
+

(
σ · x1

(x1)
3 − σ · x0

(x0)
3

)]
daσd

b
σ

(dσ)
2

−GM̂ab

c2

[
2

(x1)
3 − 2

(x0)
3

]
σa dbσ , (C4)

where M̂ab δab = 0 has been used. In order to deter-
mine the upper limit of (C4) the mass-quadrupole for an
axisymmetric body (B36) is inserted, which yields (cf.
Eq. (46) in [47])

∆cτMab

1PN =+
GM

c2
J2

(
P

dσ

)2

×

[(
σ · x1

x1
− σ · x0

x0

)(
1− (σ · e3)2 − 2

(
dσ · e3
dσ

)2
)

+

(
σ · x1

x1

(
dσ
x1

)2

− σ · x0

x0

(
dσ
x0

)2
)
(σ · e3)2

−

(
σ · x1

x1

(
dσ
x1

)2

− σ · x0

x0

(
dσ
x0

)2
)(

dσ · e3
dσ

)2

+2

((
dσ
x1

)3

−
(
dσ
x0

)3
)
(σ · e3)

(
dσ · e3
dσ

)]
, (C5)

where σ ·e3 = σ3 and dσ ·e3 = d3σ are the x3-components
of these vectors, because the symmetry axis of the body

e3 is aligned with the x3-axis of the coordinate system. In
order to determine the upper limit of (C5), the relations
for the angles α0 = δ (σ,x0) and α1 = δ (σ,x1) are very
useful:

cosα0 =
σ · x0

x0
=

(x1)
2 − (x0)

2 −R2

2Rx0
, (C6)

cosα1 =
σ · x1

x1
=

(x1)
2 − (x0)

2
+R2

2Rx1
. (C7)

These relations can be shown by using (72) and (73)
and they are valid up to terms of the order O

(
c−2
)
.

Let us note that for the impact vectors one gets dσ =
x0 sinα0 = x1 sinα1. It is also meaningful to introduce
a further variable

z =
x1

x0
with 0 ≤ z ≤ ∞ , (C8)

as well as the angle

α= δ (x0,x1) with 0 ≤ α ≤ 2π . (C9)

Then one may rewrite (C5) in terms of these two indepen-
dent variables, z and α. By using the computer algebra
system Maple [63], one obtains for the upper limit of the
1PN quadrupole term in the Shapiro time delay:∣∣∣∆τMab

1PN

∣∣∣≤+
11

5

GM

c3
|J2|

(
P

dσ

)2

, (C10)

which coincides with coefficient A2 asserted by Eq. (42).
For a correct determination of the upper limit given by
(C10) one has to take care about the fact that the three-
vectors σ and dσ are perpendicular to each other, which
restricts their possible angles with rotational vector e3.
That means, one may rotate the coordinate system such
that σ is aligned with the x-axis and dσ is aligned with
the y-axis, while e3 = (ex3 , e

y
3, e

z
3) has three components

now (see also endnote [99] in [42]). Taking into account
that e3 is a unit-vector one obtains the upper limit as-
serted in (C10).

Appendix D: The tensorial coefficients and scalar
functions of the 1PN solution

The tensorial coefficients in Eqs. (55) and (56) are
given by (cf. Eqs. (52) - (57) in [35])

Ai
(3) (xN) =+2σi , (D1)

Bi
(3) (xN) =−2 d i

σ , (D2)

Ci ab
(5) (xN) =+6σa δbi + 3σa σb σi , (D3)

Ci ab
(7) (xN) =−15(dσ)

2σaσbσi + 15 d a
σ d b

σσ
i

−30σad b
σ d

i
σ , (D4)

Di ab
(5) (xN) =+6 d a

σ δbi − 15σaσbdiσ + 18σad b
σσ

i,(D5)

Di ab
(7) (xN) =−15 d a

σ d b
σ d

i
σ + 15 (dσ)

2 σaσbd i
σ

−30 (dσ)
2 σad b

σ σ
i , (D6)
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where (cf. Eqs. (57) and (58))

dσ =σ × (x0 × σ) = σ × (xN (t)× σ) . (D7)

Actually, the tensorial coefficients in (D1) and (D3) do
not depend on xN but only on σ. Nevertheless, we
will keep their arguments as is, in favor of a unique
notation for these tensorial coefficients (D1) - (D6).
We note that the tensorial coefficients Ai

(3) (xN) =

Ai
(3) (x0) , . . . ,Di ab

(7) (xN) = Di ab
(7) (x0).

The scalar functions in Eq. (56) are given by (cf.
Eqs. (D29), (D31), (D33), (D35), (D37), (D39) in [35])

W(3) (t) = ln (xN − σ · xN) , (D8)

W(5) (t) =−1

3

1

(dσ)
2

σ · xN

xN
, (D9)

W(7) (t) =− 2

15

1

(dσ)
2

(
σ · xN

xN

1

(dσ)
2 +

1

2

σ · xN

(xN)
3

)
,

(D10)

X(3) (t) =
1

(dσ)
2 (xN + σ · xN) , (D11)

X(5) (t) =
2

3

1

(dσ)
2

(
xN + σ · xN

(dσ)
2 − 1

2

1

xN

)
, (D12)

X(7) (t) =
8

15

1

(dσ)
2

×

(
xN + σ · xN

(dσ)
4 − 1

2

1

xN

1

(dσ)
2 − 1

8

1

(xN)
3

)
, (D13)

where xN = xN (t) and xN = xN (t). One also needs
the scalar functions W(3) (t0) , . . . , X(7) (t0) which one
obtains from (D8) - (D13) by replacing xN and xN by x0

and x0, respectively, because xN (t0) = x0 and xN (t0) =
x0; note that dσ is time-independent.

Appendix E: Tensorial coefficients in (62) and (63)

It is convenient to introduce the impact vector,

d=σ × (x× σ) , (E1)

where the spatial variable x can either be the unper-
turbed light ray xN in (59) or the light ray in 1PN ap-
proximation x1PN in (60); the spatial components of this
impact vector are di.
The tensorial coefficients of monopole-monopole term

of the new representation of light trajectory in (62) and
(63) are

U i
(1) (x) = σi . (E2)

U i
(2) (x) = di . (E3)

The tensorial coefficients of monopole-quadrupole term
of the new representation of light trajectory in (62) and

(63) are

V i ab
(1) (x) = σaδbi . (E4)

V i ab
(2) (x) = daδbi . (E5)

V i ab
(3) (x) = σaσbσi . (E6)

V i ab
(4) (x) = σadbσi . (E7)

V i ab
(5) (x) = dadbσi . (E8)

V i ab
(6) (x) = dadbdi . (E9)

V i ab
(7) (x) = σaσbdi . (E10)

V i ab
(8) (x) = σadbdi . (E11)

The tensorial coefficients of quadrupole-quadrupole term
of the new representation of light trajectory in (63) are

W i abcd
(1) (x) = δacσbδdi . (E12)

W i abcd
(2) (x) = δacdbδdi . (E13)

W i abcd
(3) (x) = σaσbσcδdi . (E14)

W i abcd
(4) (x) = σaσbdcδdi . (E15)

W i abcd
(5) (x) = σadbσcδdi . (E16)

W i abcd
(6) (x) = σadbdcδdi . (E17)

W i abcd
(7) (x) = dadbσcδdi . (E18)

W i abcd
(8) (x) = dadbdcδdi . (E19)

W i abcd
(9) (x) = δacδbdσi . (E20)

W i abcd
(10) (x) = δacσbσdσi . (E21)

W i abcd
(11) (x) = δacσbddσi . (E22)

W i abcd
(12) (x) = δacdbddσi . (E23)

W i abcd
(13) (x) = σaσbσcσdσi . (E24)

W i abcd
(14) (x) = σaσbσcddσi . (E25)

W i abcd
(15) (x) = σaσbdcddσi . (E26)

W i abcd
(16) (x) = σadbσcddσi . (E27)

W i abcd
(17) (x) = σadbdcddσi . (E28)

W i abcd
(18) (x) = dadbdcddσi . (E29)

W i abcd
(19) (x) = δacδbddi . (E30)

W i abcd
(20) (x) = δacσbσddi . (E31)

W i abcd
(21) (x) = δacσbdddi . (E32)

W i abcd
(22) (x) = δacdbdddi . (E33)

W i abcd
(23) (x) = σaσbσcσddi . (E34)

W i abcd
(24) (x) = σaσbσcdddi . (E35)

W i abcd
(25) (x) = σaσbdcdddi . (E36)

W i abcd
(26) (x) = σadbσcdddi . (E37)

W i abcd
(27) (x) = σadbdcdddi . (E38)

W i abcd
(28) (x) = dadbdcdddi . (E39)
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Appendix F: Scalar functions in (62) and (63)

To simplify the notation, it is appropriate to introduce
the following scalar functions,

a(n) (x) = (x+ σ · x)n , (F1)

b(n) (x) =
1

(x)
n , (F2)

c(n) (x) =
σ · x
(x)

n , (F3)

d(1) (x) = ln (x− σ · x) , (F4)

d(2) (x) = arctan
σ · x
d

+
π

2
, (F5)

d(3) (x) = arctan
σ · x
d

, (F6)

d(4) (x) =
σ · x
d

(
arctan

σ · x
d

+
π

2

)
. (F7)

Then, the scalar functions in the new representation in
(62) and (63) can be expressed in terms of these functions
(F1) - (F7).

The scalar functions of the monopole term of the new
representation in (62) are given by

F(1) (x) =+2 d(1) . (F8)

F(2) (x) =−2
a(1)

(d)
2 . (F9)

The scalar functions of the quadrupole term of the new
representation in (62) are given by

G(1) (x) =−2
c(1)

(d)
2 . (F10)

G(2) (x) =+4
a(1)

(d)
4 − 2

b(1)

(d)
2 . (F11)

G(3) (x) =+
c(1)

(d)
2 + c(3) . (F12)

G(4) (x) =−4
a(1)

(d)
4 + 2

b(1)

(d)
2 + 2 b(3) . (F13)

G(5) (x) =−2
c(1)

(d)
4 −

c(3)

(d)
2 . (F14)

G(6) (x) =− 8

(d)
6 a(1) + 4

b(1)

(d)
4 +

b(3)

(d)
2 . (F15)

G(7) (x) =− 2

(d)
4 a(1) +

b(1)

(d)
2 − b(3) . (F16)

G(8) (x) =+4
c(1)

(d)
4 + 2

c(3)

(d)
2 . (F17)

The scalar functions of the monopole-monopole term of
the new representation in (63) are given by

X(1) (x) =+4
a(1)

(dσ)
2 +

c(2)

4
− 15

4

d(3)

d
. (F18)

X(2) (x) =+4
a(2)

(dσ)
4 +

b(2)

4
− 15

4

d(4)

(d)
2 . (F19)

These functions in combination with the coefficients (E2)
and (E3) are in agreement with Eq. (51) in [53].

The scalar functions of the monopole-quadrupole term
of new representation in (63) are given by

Y(1) (x) =+12
a(1)

(d)
4 − 4

b(1)

(d)
2 − 93

32

c(2)

(d)
2 − 7

16
c(4)

−285

32

d(3)

(d)
3 . (F20)

Y(2) (x) =−16
a(2)

(d)
6 − 91

32

b(2)

(d)
2 − 7

16
b(4) + 4

c(1)

(d)
4

+
465

32

d(4)

(d)
4 . (F21)

Y(3) (x) =−8
a(1)

(d)
4 + 2

b(1)

(d)
2 + 2 b(3) +

29

64

c(2)

(d)
2

+
111

32
c(4) −

5

8
(d)

2
c(6) +

285

64

d(3)

(d)
3 . (F22)

Y(4) (x) =+16
a(2)

(d)
6 +

155

32

b(2)

(d)
2 +

199

16
b(4) −

5

4
(d)

2
b(6)

−8
c(1)

(d)
4 − 4

c(3)

(d)
2 − 465

32

d(4)

(d)
4 . (F23)

Y(5) (x) =+8
a(1)

(d)
6 − 4

b(1)

(d)
4 − 2

b(3)

(d)
2 − 209

64

c(2)

(d)
4

−91

32

c(4)

(d)
2 +

5

8
c(6) −

465

64

d(3)

(d)
5 . (F24)

Y(6) (x) =+48
a(2)

(d)
8 +

263

64

b(2)

(d)
4 +

883

32

b(4)

(d)
2 +

5

8
b(6)

−16
c(1)

(d)
6 − 4

c(3)

(d)
4 − 2325

64

d(4)

(d)
6 . (F25)

Y(7) (x) =+16
a(2)

(d)
6 +

235

64

b(2)

(d)
2 − 71

32
b(4) −

5

8
(d)

2
b(6)

+4
c(3)

(d)
2 − 855

64

d(4)

(d)
4 . (F26)

Y(8) (x) =−32
a(1)

(d)
6 + 12

b(1)

(d)
4 + 8

b(3)

(d)
2 +

81

32

c(2)

(d)
4

+
91

16

c(4)

(d)
2 +

5

4
c(6) +

465

32

d(3)

(d)
5 . (F27)

The scalar functions of the quadrupole-quadrupole term
of the new representation in (63) are given by
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Z(1) (x) =+8
a(1)

(d)
6 − 8

b(1)

(d)
4 − 327

128

c(2)

(d)
4 − 7

192

c(4)

(d)
2 +

13

48
c(6) +

185

128

d(3)

(d)
5 . (F28)

Z(2) (x) =−16
a(2)

(d)
8 − 985

384

b(2)

(d)
4 − 5

192

b(4)

(d)
2 +

13

48
b(6) + 8

c(1)

(d)
6 +

985

128

d(4)

(d)
6 . (F29)

Z(3) (x) =+4
a(1)

(d)
6 + 4

b(1)

(d)
4 − 2103

512

c(2)

(d)
4 +

451

256

c(4)

(d)
2 +

23

64
c(6) +

9

32
(d)

2
c(8) −

5175

512

d(3)

(d)
5 . (F30)

Z(4) (x) =−16
a(2)

(d)
8 − 27019

1536

b(2)

(d)
4 +

1585

768

b(4)

(d)
2 +

5

96
b(6) +

9

32
(d)

2
b(8) + 20

c(1)

(d)
6 − 8

c(3)

(d)
4 +

5515

512

d(4)

(d)
6 . (F31)

Z(5) (x) =+16
a(2)

(d)
8 − 3859

768

b(2)

(d)
4 +

1609

384

b(4)

(d)
2 +

79

96
b(6) +

9

16
(d)

2
b(8) − 8

c(1)

(d)
6 − 2285

256

d(4)

(d)
6 . (F32)

Z(6) (x) =−16
a(1)

(d)
8 + 24

b(1)

(d)
6 − 16

b(3)

(d)
4 +

6381

256

c(2)

(d)
6 − 2323

384

c(4)

(d)
4 − 119

96

c(6)

(d)
2 − 9

16
c(8) +

2285

256

d(3)

(d)
7 . (F33)

Z(7) (x) =+16
a(1)

(d)
8 + 16

b(1)

(d)
6 − 1419

512

c(2)

(d)
6 − 2443

768

c(4)

(d)
4 − 143

192

c(6)

(d)
2 − 9

32
c(8) −

5515

512

d(3)

(d)
7 . (F34)

Z(8) (x) =+
4831

512

b(2)

(d)
6 − 877

256

b(4)

(d)
4 − 43

64

b(6)

(d)
2 − 9

32
b(8) + 8

c(3)

(d)
6 − 2205

512

d(4)

(d)
8 . (F35)

Z(9) (x) =+
1

128

c(2)

(d)
4 +

1

192

c(4)

(d)
2 +

5

48
c(6) +

1

128

d(3)

(d)
5 . (F36)

Z(10) (x) =−8
a(1)

(d)
6 + 8

b(1)

(d)
4 +

839

256

c(2)

(d)
4 +

199

384

c(4)

(d)
2 − 85

96
c(6) +

15

16
(d)

2
c(8) −

185

256

d(3)

(d)
5 . (F37)

Z(11) (x) =+16
a(2)

(d)
8 +

2521

384

b(2)

(d)
4 +

197

192

b(4)

(d)
2 − 85

48
b(6) +

15

8
(d)

2
b(8) − 8

c(1)

(d)
6 − 985

128

d(4)

(d)
6 . (F38)

Z(12) (x) =−985

256

c(2)

(d)
6 − 217

384

c(4)

(d)
4 − 5

96

c(6)

(d)
2 − 15

16
c(8) −

985

256

d(3)

(d)
7 . (F39)

Z(13) (x) =−4
a(1)

(d)
6 − 4

b(1)

(d)
4 + 14

b(3)

(d)
2 +

3237

2048

c(2)

(d)
4 − 969

1024

c(4)

(d)
2 +

395

256
c(6) −

369

128
(d)

2
c(8) +

15

16
(d)

4
c(10) +

15525

2048

d(3)

(d)
5 .

(F40)

Z(14) (x) =+
8507

512

b(2)

(d)
4 − 1217

256

b(4)

(d)
2 +

393

64
b(6) −

369

32
(d)

2
b(8) +

15

4
(d)

4
b(10) − 12

c(1)

(d)
6 + 8

c(3)

(d)
4 − 945

512

d(4)

(d)
6 . (F41)

Z(15) (x) =−16
a(1)

(d)
8 − 2677

1024

c(2)

(d)
6 +

5515

1536

c(4)

(d)
4 +

335

384

c(6)

(d)
2 +

249

64
c(8) −

15

8
(d)

2
c(10) +

5515

1024

d(3)

(d)
7 . (F42)

Z(16) (x) =+16
a(1)

(d)
8 − 24

b(1)

(d)
6 + 16

b(3)

(d)
4 − 10477

512

c(2)

(d)
6 +

5395

768

c(4)

(d)
4 +

311

192

c(6)

(d)
2 +

249

32
c(8) −

15

4
(d)

2
c(10) −

2285

512

d(3)

(d)
7 .

(F43)
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Z(17) (x) =−7667

512

b(2)

(d)
6 +

2153

256

b(4)

(d)
4 +

143

64

b(6)

(d)
2 +

261

32
b(8) −

15

4
(d)

2
b(10) − 8

c(3)

(d)
6 +

2205

512

d(4)

(d)
8 . (F44)

Z(18) (x) =+
2205

2048

c(2)

(d)
8 − 3361

1024

c(4)

(d)
6 − 365

256

c(6)

(d)
4 − 129

128

c(8)

(d)
2 +

15

16
c(10) +

2205

2048

d(3)

(d)
9 . (F45)

Z(19) (x) =− 5

384

b(2)

(d)
4 − 1

192

b(4)

(d)
2 +

5

48
b(6) +

5

128

d(4)

(d)
6 . (F46)

Z(20) (x) =−3997

768

b(2)

(d)
4 − 569

384

b(4)

(d)
2 − 95

96
b(6) +

15

16
(d)

2
b(8) +

925

256

d(4)

(d)
6 . (F47)

Z(21) (x) =−48
a(1)

(d)
8 + 40

b(1)

(d)
6 + 8

b(3)

(d)
4 +

985

128

c(2)

(d)
6 +

601

192

c(4)

(d)
4 +

5

48

c(6)

(d)
2 − 15

8
c(8) +

985

128

d(3)

(d)
7 . (F48)

Z(22) (x) =+64
a(2)

(d)
10 +

13039

768

b(2)

(d)
6 +

611

384

b(4)

(d)
4 +

5

96

b(6)

(d)
2 − 15

16
b(8) −

48

(d)
8 c(1) −

6895

256

d(4)

(d)
8 . (F49)

Z(23) (x) =+12
a(2)

(d)
8 +

31153

2048

b(2)

(d)
4 − 2371

1024

b(4)

(d)
2 − 37

256
b(6) −

111

128
(d)

2
b(8) +

15

16
(d)

4
b(10) − 4

c(1)

(d)
6 + 8

c(3)

(d)
4 − 25875

2048

d(4)

(d)
6 .

(F50)

Z(24) (x) =+24
a(1)

(d)
8 − 36

b(1)

(d)
6 + 16

b(3)

(d)
4 − 11343

512

c(2)

(d)
6 +

59

256

c(4)

(d)
4 − 65

64

c(6)

(d)
2 − 9

32
c(8) −

15

4
(d)

2
c(10) +

945

512

d(3)

(d)
7 .

(F51)

Z(25) (x) =+64
a(2)

(d)
10 +

93133

3072

b(2)

(d)
6 − 11479

1536

b(4)

(d)
4 − 433

384

b(6)

(d)
2 − 9

64
b(8) −

15

8
(d)

2
b(10) − 48

c(1)

(d)
8 + 16

c(3)

(d)
6 − 19405

1024

d(4)

(d)
8 .

(F52)

Z(26) (x) =−64
a(2)

(d)
10 +

5893

1536

b(2)

(d)
6 − 5887

768

b(4)

(d)
4 − 457

192

b(6)

(d)
2 − 9

32
b(8) −

15

4
(d)

2
b(10) + 48

c(1)

(d)
8 +

6395

512

d(4)

(d)
8 . (F53)

Z(27) (x) =−48
b(1)

(d)
8 +

48

(d)
6 b(3) −

26781

512

c(2)

(d)
8 +

7457

256

c(4)

(d)
6 +

493

64

c(6)

(d)
4 +

129

32

c(8)

(d)
2 +

15

4
c(10) −

2205

512

d(3)

(d)
9 . (F54)

Z(28) (x) =−47575

2048

b(2)

(d)
8 +

10965

1024

b(4)

(d)
6 − 445

256

b(6)

(d)
4 +

129

128

b(8)

(d)
2 +

15

16
b(10) − 24

c(3)

(d)
8 +

19845

2048

d(4)

(d)
10 . (F55)

Appendix G: Agreement of (55)-(56) and (62)-(63)

In this Appendix some basic ideas are presented about
how to get from the old representation (54) with (55) and
(56), to the new representation (61) with (62) and (63).
For that demonstration one needs the following relations
which are valid up to terms of the order O

(
c−4
)
:

x1PN (t) = xN (t) + ∆x1PN (t, t0) , (G1)

x1PN (t) = xN (t) +
xN (t) ·∆x1PN (t, t0)

xN (t)
, (G2)

1

(x1PN (t))
n =

1

(xN (t))
n − n

(xN (t))
n
xN (t) ·∆x1PN (t, t0)

(xN (t))
2 .

(G3)

Let us notice here that

x0 = xN (t0) = x1PN (t0) (G4)

which follow from (5) and (13). Furthermore, one en-

counters the following impact vector

d̂σ =σ × (x1PN (t)× σ) (G5)

and its absolute value d̂σ = |d̂σ|. This impact vector

d̂σ in (G5) is related to the impact vector dσ in (58) as
follows (up to terms of the order O

(
c−4
)
):

d̂σ = dσ + σ × (∆x1PN (t, t0)× σ) , (G6)

d̂σ = dσ +
dσ ·∆x1PN (t, t0)

dσ
, (G7)

1

(d̂σ)n
=

1

(dσ)
n − n

(dσ)
n
dσ ·∆x1PN (t, t0)

(dσ)
2 . (G8)

In relations (G1) - (G3) as well as (G6) - (G8) one
needs the light ray perturbation in 1PN approxima-
tion, ∆x1PN (t, t0), where it is advantageous to take
Eqs. (G11) and (G12).
The entire procedure is separated into four steps:
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First step: The 1PN terms in Eq. (55) contain 6 tenso-
rial coefficients given in (D1) - (D6):

Ai
(3) (xN) , Bi

(3) (xN) , Ci ab
(n) (xN) , Di ab

(n) (xN) . (G9)

These tensorial coefficients (G9) consist of 10 different
tensors as given by (E2) - (E11) with the argument x =
xN:

U i
(1) (xN) , U i

(2) (xN) , V i ab
(n) (xN) . (G10)

Accordingly, one may rewrite the 1PN terms in Eq. (55)
in terms of these 10 individual tensors:

∆xi
1PN (t, t0) =∆xi

1PN (t)−∆xi
1PN (t0) (G11)

with

∆xi
1PN (t) =

GM

c2

2∑
n=1

(
U i
(n) F(n)

)
(xN)

+
GM̂ab

c2

8∑
n=1

(
V i ab
(n) G(n)

)
(xN) , (G12)

where the scalar functions F(n) and G(n) are given by
Eqs. (F8) - (F9) and Eqs. (F10) - (F17), respectively,
where the argument x = xN. One may easily show that
(G11) with (G12) is identical with (55).
Second step: Similarly, the 2PN terms in Eq. (56) con-
tain 51 tensorial coefficients given by Eqs. (E28) - (E39)
and Eqs. (E41) - (E65) as well as Eqs. (E67) - (E87) in
[35]:

E i
(n) (xN) ,F i

(n) (xN) ,Gi
(5) (xN) ,Hi

(n) (xN) ,

Ki ab
(n) (xN) ,Li ab

(n) (xN) ,Mi ab
(n) (xN) ,N i ab

(n) (xN) ,

Pi abcd
(n) (xN) ,Qi abcd

(n) (xN) . (G13)

These 51 tensorial coefficients (G13) consist of 38 differ-
ent tensors given by (E2) - (E11) and (E12) - (E39):

U i
(1) (xN) , U

i
(2) (xN) , V

i ab
(n) (xN) , W

i abcd
(n) (xN) . (G14)

Accordingly, one may rewrite the 2PN terms in Eq. (56)
in terms of these 38 individual tensors:

∆xi
2PN (t, t0) =∆xi

2PN (t)−∆xi
2PN (t0) (G15)

with

∆xi
2PN (t) =+

G2M2

c4

2∑
n=1

(
U i
(n) X̃(n)

)
(xN)

+
G2MM̂ab

c4

8∑
n=1

(
V i ab
(n) Ỹ(n)

)
(xN)

+
G2M̂abM̂cd

c4

28∑
n=1

(
W i abcd

(n) Z̃(n)

)
(xN) . (G16)

The scalar functions in (G16) can be deduced just by
inserting these 51 tensorial coefficients (G13) into (56)

and then combining all those scalar terms belonging to
one and the same tensorial coefficient in (G14). However,
these scalar functions are an intermediate step and will
not be given in their explicit form here, in order to sim-
plify the representation. It is noticed again that (G15)
and (G16) is identical with (56).
The form of (G15) and (G16) resembles already the

structure of (62) and (63), respectively. However, the
arguments in (G15) are the unperturbed light rays, xN,
while in (62) the arguments are the light rays in 1PN
approximation, x1PN. Furthermore, the scalar functions
X̃(n), Ỹ(n), Z̃(n) in (G16) are not identical with the scalar
functions X(n), Y(n), Z(n) in (63). In order to arrive at
(62) and (63) two further steps are necessary.
Third step: In order to arrive at (62) and (63) the
argument in the tensorial coefficients as well as in the
scalar functions in (G12) have to be replaced by the light
ray in 1PN approximation. Then one obtains:

∆xi
1PN (t) =

GM

c2

2∑
n=1

(
U i
(n) F(n)

)
(x1PN)

+
GM̂ab

c2

8∑
n=1

(
V i ab
(n) G(n)

)
(x1PN) + δxi

2PN , (G17)

where δxi
2PN is just the difference (G12) minus (G17):

δxi
2PN =

+
GM

c2

2∑
n=1

[(
U i
(n) F(n)

)
(xN)−

(
U i
(n) F(n)

)
(x1PN)

]

+
GM̂ab

c2

[ 8∑
n=1

(
V i ab
(n) G(n)

)
(xN)−

(
V i ab
(n) G(n)

)
(x1PN)

]
.

(G18)

Eq. (G17) is identical with (G12).
Fourth step: In order to determine the expression in
(G18), one has to perform a series expansion of those
terms in (G18) having as argument the light ray in 1PN
approximation. For that calculation one needs the same
relations as given previously by Eqs. (G1) - (G3) and
Eqs. (G6) - (G8).
The determination of δxi

2PN in (G18) has been assisted
by the computer algebra system Maple [63]. One finally
arrives at the following form,

δxi
2PN =+

G2M2

c4

2∑
n=1

(
U i
(n) X̂(n)

)
(xN)

+
G2MM̂ab

c4

8∑
n=1

(
V i ab
(n) Ŷ(n)

)
(xN)

+
G2M̂abM̂cd

c4

28∑
n=1

(
W i abcd

(n) Ẑ(n)

)
(xN) , (G19)

which is separated into three terms proportional
to monopole-monopole, monopole-quadrupole and
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quadrupole-quadrupole. The tensorial coefficients are
defined by (E2) - (E3), (E4) - (E11), and (E12) - (E39),
respectively. The scalar functions in (G19) are an
intermediate step and will not be given in their explicit
form here, in favor of a clear representation.

The term δxi
2PN, defined by Eq. (G18) and determined

by Eq. (G19), is obviously of second post-Newtonian or-
der and should, therefore, be added to (G16) rather than
(G17). Accordingly, the sum of (G16) and (G17) can be
written in the form

x2PN (t) = x0 + c (t− t0)σ +∆x1PN (t)−∆x1PN (t0)

+∆x2PN (t)−∆x2PN (t0) , (G20)

∆xi
1PN (t) =

GM

c2

2∑
n=1

(
U i
(n) F(n)

)
(x1PN)

+
GM̂ab

c2

8∑
n=1

(
V i ab
(n) G(n)

)
(x1PN) , (G21)

∆xi
2PN (t) =

G2M2

c4

2∑
n=1

(
U i
(n) X(n)

)
(xN)

+
G2MM̂ab

c4

8∑
n=1

(
V i ab
(n) Y(n)

)
(xN)

+
G2M̂abM̂cd

c4

28∑
n=1

(
W i abcd

(n) Z(n)

)
(xN) , (G22)

where, by taking account of (G16) and(G19), the new
scalar functions

X(n) = X̃(n) + X̂(n) , (G23)

Y(n) = Ỹ(n) + Ŷ(n) , (G24)

Z(n) = Z̃(n) + Ẑ(n) , (G25)

have been introduced. The solution (G20) with (G21)
and (G22) agrees with expression (61) with (62) and (63),
where the scalar functions (G23) - (G25) are given by
Eqs. (F18) - (F55) in their explicit form.

Appendix H: Calculation of k ·∆x2PN in terms of k

In this Appendix we consider the term

k ·∆x2PN (x1,x0) = k ·∆x2PN (x1)− k ·∆x2PN (x0)

(H1)

in Eq. (77) which needs fully to be expressed in terms
of vector k. The expression of ∆x2PN (x) is given by

Eq. (63), hence one obtains

k ·∆x2PN (x) =+
G2M2

c4

2∑
n=1

(
kiU i

(n) X(n)

)
(x)

+
G2MM̂ab

c4

8∑
n=1

(
kiV i ab

(n) Y(n)

)
(x)

+
G2M̂abM̂cd

c4

28∑
n=1

(
kiW i abcd

(n) Z(n)

)
(x) . (H2)

The tensorial coefficients in (E2) - (E39) as well as the
scalar functions in (F18) - (F55) are given in terms of
vector σ rather than vector k. But in view of relation
(73) we have σ = k+O

(
c−2
)
. Thus, a replacement σ by

k in the tensorial coefficients as well as in the scalar func-
tions in (H2) would cause an error of the order O

(
c−6
)

in line with the 2PN approximation. The tensorial coef-
ficients in (H2) are contracted with ki. For instance one
obtains up to terms of the order O

(
c−2
)
: kiU i

(1) = 1,

kiU i
(2) = 0, kiV i ab

(1) = ka kb , . . . , kiW i abcd
(28) = 0. After

performing these contractions one may distinguish the
following tensors:

Sab
(1) = ka kb, Sab

(2) = ka dbk, S
ab
(3) = dak d

b
k, (H3)

T abcd
(1) = δac kb kd, T abcd

(2) = δac kb ddk, T
abcd
(3) = ka kb kc kd,

T abcd
(4) = ka kb kc ddk, T

abcd
(5) = ka dbk k

c ddk,

T abcd
(6) = ka kb dck d

d
k, T

abcd
(7) = ka dbk d

c
k d

d
k,

T abcd
(8) = δac δbd, T abcd

(9) = δac dbk d
d
k, T

abcd
(10) = dak d

b
k d

c
k d

d
k,

(H4)

where the symmetries a ↔ b and c ↔ d as well as a ↔
c ∧ b ↔ d and a ↔ d ∧ b ↔ c have been taken into
account, according to the corresponding symmetries of
the quadrupole tensors in front of the individual terms
in (H2). As mentioned, in the scalar functions (F18) -
(F55) one may replace σ by k. Then, one obtains the
following expression:

k ·∆x2PN (x1,x0) =
G2M2

c4
u(1) (x1,x0)

+
G2MM̂ab

c4

3∑
n=1

Sab
(n) v(n) (x1,x0)

+
G2M̂ab M̂cd

c4

10∑
n=1

T abcd
(n) w(n) (x1,x0) (H5)

where the scalar functions are given by
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u(1) (x1,x0) =+
4

(dk)
2 e(1) +

g(2)

4
− 15

4

h(1)

dk
. (H6)

v(1) (x1,x0) =+
4

(dk)
4 e(1) −

2

(dk)
2 f(1) + 2 f(3) −

157

64

g(2)

(dk)
2 +

97

32
g(4) −

5

8
(dk)

2
g(6) −

285

64

h(1)

(dk)
3 . (H7)

v(2) (x1,x0) =+
2

(dk)
2 f(2) + 12 f(4) −

5

4
(dk)

2
f(6) −

4

(dk)
4 g(1) −

4

(dk)
2 g(3) . (H8)

v(3) (x1,x0) =+
8

(dk)
6 e(1) −

4

(dk)
4 f(1) −

2

(dk)
2 f(3) −

209

64

g(2)

(dk)
4 − 91

32

g(4)

(dk)
2 +

5

8
g(6) −

465

64

h(1)

(dk)
5 . (H9)

w(1) (x1,x0) =+
185

256

g(2)

(dk)
4 +

185

384

g(4)

(dk)
2 − 59

96
g(6) +

15

16
(dk)

2
g(8) +

185

256

h(1)

(dk)
5 . (H10)

w(2) (x1,x0) =+
4

(dk)
4 f(2) +

f(4)

(dk)
2 − 3

2
f(6) +

15

8
(dk)

2
f(8) . (H11)

w(3) (x1,x0) =+
14

(dk)
2 f(3) −

5175

2048

g(2)

(dk)
4 +

835

1024

g(4)

(dk)
4 +

487

256
g(6) −

333

128
(dk)

2
g(8) +

15

16
(dk)

4
g(10) −

5175

2048

h(1)

(dk)
5 .

(H12)

w(4) (x1,x0) =− 6

(dk)
4 f(2) +

3

2

f(4)

(dk)
2 +

449

64
f(6) −

171

16
(dk)

2
f(8) +

15

4
(dk)

4
f(10) . (H13)

w(5) (x1,x0) =+
2285

512

g(2)

(dk)
6 +

749

768

g(4)

(dk)
4 +

73

192

g(6)

(dk)
2 +

231

32
g(8) −

15

4
(dk)

2
g(10) +

2285

512

h(1)

(dk)
7 . (H14)

w(6) (x1,x0) =+
16

(dk)
6 f(1) −

5515

1024

g(2)

(dk)
6 +

629

1536

g(4)

(dk)
4 +

49

384

g(6)

(dk)
2 +

231

64
g(8) −

15

8
(dk)

2
g(10) −

5515

1024

h(1)

(dk)
7 .(H15)

w(7) (x1,x0) =−709

128

f(2)

(dk)
6 +

319

64

f(4)

(dk)
4 +

25

16

f(6)

(dk)
2 +

63

8
f(8) −

15

4
(dk)

2
f(10) . (H16)

w(8) (x1,x0) =+
1

128

g(2)

(dk)
4 +

1

192

g(4)

(dk)
2 +

5

48
g(6) +

1

128

h(1)

(dk)
5 . (H17)

w(9) (x1,x0) =−985

256

g(2)

(dk)
6 − 217

384

g(4)

(dk)
4 − 5

96

g(6)

(dk)
2 − 15

16
g(8) −

985

256

h(1)

(dk)
7 . (H18)

w(10) (x1,x0) =+
2205

2048

g(2)

(dk)
8 − 3361

1024

g(4)

(dk)
6 − 365

256

g(6)

(dk)
4 − 129

128

g(8)

(dk)
2 +

15

16
g(10) +

2205

2048

h(1)

(dk)
9 ,

(H19)

where the abbreviations

e(n) (x1,x0) = (x1 + k · x1)
n − (x0 + k · x0)

n
,(H20)

f(n) (x1,x0) =
1

(x1)
n − 1

(x0)
n , (H21)

g(n) (x1,x0) =
k · x1

(x1)
n − k · x0

(x0)
n , (H22)

h(1) (x1,x0) = arctan
k · x1

dk
− arctan

k · x0

dk
, (H23)

h(2) (x1,x0) =+
k · x1

dk

(
arctan

k · x1

dk
+

π

2

)
−k · x0

dk

(
arctan

k · x0

dk
+

π

2

)
, (H24)

have been introduced.

Appendix I: Calculation of k ·∆x1PN in terms of
vector k

In this Appendix we consider the term

k ·∆x1PN (x1,x0) = k ·∆x1PN (x1)− k ·∆x1PN (x0)

(I1)

in Eq. (77) which needs fully to be expressed in terms
of vector k. The expression of ∆x1PN (x) is given by
Eq. (62). One obtains

k ·∆x1PN (x) =+
GM

c2

2∑
n=1

(
kiU i

(n) F(n)

)
(x)

+
GM̂ab

c2

8∑
n=1

(
kiV i ab

(n) G(n)

)
(x) (I2)
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where the spatial variable x can either be x1 or x0. The
tensorial coefficients in Eqs. (E2) - (E11) and the scalar
functions in Eqs. (F8) - (F17) are given in terms of vector
σ and need to be expressed in terms of vector k.

The boundary value problem is defined by Eqs. (64)
and (65), that means the spatial position of the source,
x0, and the spatial position of the observer, x1. Hence, in
(I1) - (I2) one naturally encounters both impact vectors

dσ =σ × (x0 × σ) , (I3)

d̂σ =σ × (x1 × σ) . (I4)

For the treatment of the boundary value problem a fur-
ther impact vector in terms of k is needed, defined by

dk = k × (x0 × k) = k × (x1 × k) . (I5)

In order to rewrite (I1) fully in terms of vector k one
needs a relation between the impact vector (I3) and (I5)
and between the impact vector (I4) and (I5). These re-
lations can be obtained by inserting (74) into Eqs. (I3)
and (I4):

dσ = dk +
dk ·∆x1PN

R
k +

k · x0

R
k × (∆x1PN × k) ,

(I6)

d̂σ = dk +
dk ·∆x1PN

R
k +

k · x1

R
k × (∆x1PN × k) ,

(I7)

where ∆x1PN = ∆x1PN (x1,x0). These relations are
valid up to terms of the order O

(
c−4
)
. The subsequent

relations will be applied which are valid up to terms of
the order O

(
c−4
)
:

k · σ = 1 , (I8)

k · dσ =
dk ·∆x1PN

R
, (I9)

k · d̂σ =
dk ·∆x1PN

R
, (I10)

1

(dσ)
n =

1

(dk)
n − n

R

(k · x0) (dk ·∆x1PN)

(dk)
n+2 , (I11)

1

(d̂σ)n
=

1

(dk)
n − n

R

(k · x1) (dk ·∆x1PN)

(dk)
n+2 , (I12)

σ · x0 = k · x0 −
dk ·∆x1PN

R
, (I13)

σ · x1 = k · x1 −
dk ·∆x1PN

R
, (I14)

where ∆x1PN = ∆x1PN (x1,x0). These relations follow
from (74) and (I6) and (I7). Here it useful to notice that
(k × x) · (k ×∆x1PN) = dk ·∆x1PN.

Using (74) and (I6) - (I10) one obtains for the tensorial
coefficients in (I2) when expressed in terms of vector k
the following expressions, which are valid up to terms of
the order O

(
c−4
)
:

kiU i
(1) (x) = 1 , (I15)

kiU i
(2) (x) =

1

R
(dk ·∆x1PN) , (I16)

kiV i ab
(1) (x) = ka kb − kb

R
∆xa

1PN +
kakb

R
(k ·∆x1PN) ,(I17)

kiV i ab
(2) (x) = dak k

b +
1

R
(k · x)∆xa

1PN kb

+
1

R
(dk ·∆x1PN) k

a kb − 1

R
(k · x) (k ·∆x1PN) k

a kb ,

(I18)

kiV i ab
(3) (x) = ka kb − 2

R
k(a ∆x

b)
1PN + 2

kakb

R
(k ·∆x1PN) ,

(I19)

kiV i ab
(4) (x) = ka dbk +

1

R
(k · x) ka ∆xb

1PN

+
1

R
(dk ·∆x1PN) k

a kb − 1

R
(k · x) (k ·∆x1PN) k

a kb

− 1

R
∆xa

1PN dbk +
1

R
(k ·∆x1PN) k

a dbk , (I20)

kiV i ab
(5) (x) = dak d

b
k +

2

R
(k · x) d(ak ∆x

b)
1PN

+
2

R
(dk ·∆x1PN) d

(a
k kb) − 2

R
(k · x) (k ·∆x1PN) d

(a
k kb) ,

(I21)

kiV i ab
(6) (x) =

dak d
b
k

R
(dk ·∆x1PN) , (I22)

kiV i ab
(7) (x) =

ka kb

R
(dk ·∆x1PN) , (I23)

kiV i ab
(8) (x) =

ka dbk
R

(dk ·∆x1PN) , (I24)

where in (I16) - (I24) the abbreviation
∆x1PN = ∆x1PN (x1,x0) is used, and A(a Bb) =(
Aa Bb +Ab Ba

)
/2 denotes symmetrization. Similarly,

using (I11) - (I14) one obtains for the scalar functions in
(I2) when expressed in terms of vector k the following
expressions:
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F(1) (x) =+2 ln (x− k · x) + 2

(dk)
2 (x+ k · x) dk ·∆x1PN

R
+O

(
c−4
)
, (I25)

F(2) (x) =− 2

(dk)
2 (x+ k · x) +O

(
c−2
)
, (I26)

G(1) (x) =− 2

(dk)
2

k · x
x

+
4

(dk)
4

(k · x)2 (dk ·∆x1PN)

Rx
+

2

(dk)
2

dk ·∆x1PN

Rx
+O

(
c−4
)
, (I27)

G(2) (x) =+
4

(dk)
4 (x+ k · x)− 2

(dk)
2

1

x
− 4

(dk)
4

dk ·∆x1PN

R

(
1− k · x

x
+ 4

k · x
(dk)

2 (x+ k · x)

)
+O

(
c−4
)
, (I28)

G(3) (x) =+
1

(dk)
2

k · x
x

+
k · x
(x)

3 − dk ·∆x1PN

Rx

(
1

(dk)
2 +

1

(x)
2 + 2

(k · x)2

(dk)
4

)
+O

(
c−4
)
, (I29)

G(4) (x) =− 4

(dk)
4 (x+ k · x) + 2

(dk)
2

1

x
+

2

(x)
3 +

4

(dk)
4

dk ·∆x1PN

R

(
1− k · x

x
+ 4

k · x
(dk)

2 (x+ k · x)

)
+O

(
c−4
)
,

(I30)

G(5) (x) =− 2

(dk)
4

k · x
x

− 1

(dk)
2

k · x
(x)

3 − 1

(dk)
2

dk ·∆x1PN

Rx

(
4

(dk)
2 +

1

(x)
2 − 8

(x)
2

(dk)
4

)
+O

(
c−4
)
, (I31)

G(6) (x) =− 8

(dk)
6 (x+ k · x) + 4

(dk)
4

1

x
+

1

(dk)
2

1

(x)
3 +O

(
c−2
)
, (I32)

G(7) (x) =− 2

(dk)
4 (x+ k · x) + 1

(dk)
2

1

x
− 1

(x)
3 +O

(
c−2
)
, (I33)

G(8) (x) =+
4

(dk)
4

k · x
x

+
2

(dk)
2

k · x
(x)

3 +O
(
c−2
)
, (I34)

where the functions in (I26) and (I32) - (I34) need to be
calculated up to terms of the order O

(
c−2
)
because their

corresponding tensorial coefficients in (I16) and (I22) -

(I24) contain only terms of the order O
(
c−2
)
. By insert-

ing (I15) - (I24) and (I25) - (I34) into (I2) one obtains:

k ·∆x1PN (x) =+
2GM

c2
ln (x− k · x)

−2GM̂ab

c2

[
1

(dk)
4

k · x
x

dak d
b
k +

1

2

1

(dk)
2

k · x
(x)

3 dak d
b
k +

1

2

1

(dk)
2

k · x
x

kakb − 1

2

k · x
(x)

3 kakb − 1

(x)
3 dak k

b

]

−2GM̂ab

c2
1

(dk)
4

k · x
x

[
4

(dk)
2 (dk ·∆x1PN) d

a
k d

b
k + (dk ·∆x1PN) k

a kb + 2 (k ·∆x1PN) d
a
k k

b − 2 dak ∆xb
1PN

]
+O

(
c−6
)
,

(I35)

where ∆x1PN = ∆x1PN (x1,x0) and the spatial argu-
ment x in (I35) can either be x1 or x0. By inserting

(70) with (62) into (I35) and taking account of (I1), one
finally arrives at



29

k ·∆x1PN (x1,x0) =+
GM

c2
P(1) (x1,x0) +

GM̂ab

c2

3∑
n=1

Sab
(n) Q(n) (x1,x0)

+
G2M2

c4
r(1) (x1,x0) +

G2M M̂ab

c4

3∑
n=1

Sab
(n) s(n) (x1,x0) +

G2M̂abM̂cd

c4

10∑
n=1

T abcd
(n) t(n) (x1,x0) +O

(
c−6
)
, (I36)

where the tensors have been defined by Eqs. (H3) - (H4)
and the scalar functions are

P(1) (x1,x0) =+2 ln
x1 − k · x1

x0 − k · x0
= −2 ln

x1 + k · x1

x0 + k · x0
.

(I37)

Q(1) (x1,x0) =−
g(1)

(dk)
2 + g(3) . (I38)

Q(2) (x1,x0) =+2 f(3) . (I39)

Q(3) (x1,x0) =− 2

(dk)
4 g(1) −

g(3)

(dk)
2 . (I40)

r(1) (x1,x0) = 0 . (I41)

s(1) (x1,x0) =+
4

(dk)
4 e(1) g(1) . (I42)

s(2) (x1,x0) = 0 . (I43)

s(3) (x1,x0) =+
8

(dk)
6 e(1) g(1) . (I44)

t(1) (x1,x0) = 0 . (I45)

t(2) (x1,x0) =− 8

(dk)
6 g(1) g(1) . (I46)

t(3) (x1,x0) =+
4

(dk)
6 e(1) g(1) −

2

(dk)
4 f(1) g(1)

+
2

(dk)
2 f(3) g(1) . (I47)

t(4) (x1,x0) =+
4

(dk)
6 g(1) g(1) −

4

(dk)
4 g(1) g(3) . (I48)

t(5) (x1,x0) =− 16

(dk)
8 e(1) g(1) +

8

(dk)
6 f(1) g(1) . (I49)

t(6) (x1,x0) =+
16

(dk)
8 e(1) g(1) −

8

(dk)
6 f(1) g(1)

− 4

(dk)
4 f(3) g(1) . (I50)

t(7) (x1,x0) =− 8

(dk)
6 g(1) g(3) . (I51)

t(8) (x1,x0) = 0 . (I52)

t(9) (x1,x0) =+
16

(dk)
8 e(1) g(1) −

8

(dk)
6 f(1) g(1) . (I53)

t(10) (x1,x0) =− 4

(dk)
6 f(3) g(1) . (I54)

The scalar functions e(n), f(n), g(n), h(n) were introduced
by Eqs. (H20) - (H24).

Appendix J: Calculation of |k ×∆x1PN|2

In this Appendix we consider the term

|k ×∆x1PN (x1,x0)|2 =∆x1PN (x1,x0) ·∆x1PN (x1,x0)

− (k ·∆x1PN (x1,x0))
2

(J1)

in Eq. (77). The calculation of (J1) can considerably be
simplified by omitting all terms proportional to vector k
in ∆x1PN. Then, by inspection of (62) one obtains

|k ×∆x1PN (x1,x0)|2 =
G2M2

c4
x(1) (x1,x0)

+
G2M M̂ab

c4

3∑
n=1

Sab
(n) y(n) (x1,x0)

+
G2M̂abM̂cd

c4

10∑
n=1

T abcd
(n) z(n) (x1,x0) (J2)

where the tensors have been defined by Eqs. (H3) - (H4)
and scalar functions are
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x(1) (x1,x0) =+
4

(dk)
2 e(1) e(1) . (J3)

y(1) (x1,x0) =+
8

(dk)
4 e(1)e(1) −

4

(dk)
2 e(1)f(1) + 4e(1)f(3) . (J4)

y(2) (x1,x0) =− 8

(dk)
4 e(1) g(1) −

8

(dk)
2 e(1) g(3) . (J5)

y(3) (x1,x0) =+
16

(dk)
6 e(1) e(1) −

8

(dk)
4 e(1) f(1) −

4

(dk)
2 e(1) f(3) . (J6)

z(1) (x1,x0) =+
4

(dk)
4 g(1) g(1) . (J7)

z(2) (x1,x0) =− 16

(dk)
6 e(1) g(1) +

8

(dk)
4 f(1) g(1) . (J8)

z(3) (x1,x0) =+
4

(dk)
6 e(1) e(1) −

4

(dk)
4 g(1) g(1) −

4

(dk)
4 e(1) f(1) +

1

(dk)
2 f(1) f(1) +

4

(dk)
2 e(1) f(3) − 2 f(1) f(3)

+(dk)
2
f(3) f(3) . (J9)

z(4) (x1,x0) =+
8

(dk)
6 e(1) g(1) −

4

(dk)
4 f(1) g(1) −

8

(dk)
4 e(1) g(3) −

4

(dk)
2 f(3) g(1) +

4

(dk)
2 f(1) g(3) − 4 f(3) g(3). (J10)

z(5) (x1,x0) =− 16

(dk)
8 e(1) e(1) +

16

(dk)
6 e(1) f(1) +

8

(dk)
4 g(1) g(3) −

4

(dk)
4 f(1) f(1) +

4

(dk)
2 g(3) g(3) . (J11)

z(6) (x1,x0) =+
16

(dk)
8 e(1) e(1) −

16

(dk)
6 e(1) f(1) +

4

(dk)
4 e(1) f(3) +

4

(dk)
4 f(1) f(1) −

2

(dk)
2 f(1) f(3) − 2 f(3) f(3). (J12)

z(7) (x1,x0) =− 16

(dk)
6 e(1) g(3) −

8

(dk)
4 f(3) g(1) +

8

(dk)
4 f(1) g(3) . (J13)

z(8) (x1,x0) = 0 . (J14)

z(9) (x1,x0) =+
16

(dk)
8 e(1) e(1) −

16

(dk)
6 e(1) f(1) +

4

(dk)
4 f(1) f(1) . (J15)

z(10) (x1,x0) =− 8

(dk)
6 e(1) f(3) +

4

(dk)
4 f(1) f(3) +

1

(dk)
2 f(3) f(3) . (J16)

The scalar functions e(n), f(n), g(n), h(n) are given by
Eqs. (H20) - (H24).

Appendix K: Estimation of Shapiro time-delay

1. The expression of the Shapiro time-delay

According to Eq. (77) the time delay of a light signal
in the field of one body at rest, where its monopole and
quadrupole structure is taken into account, is given by

c (t1 − t0) =R− k ·∆x1PN (x1,x0)− k ·∆x2PN (x1,x0)

+
1

2R
|k ×∆x1PN (x1,x0)|2 +O

(
c−6
)
.(K1)

The term k ·∆x2PN has been given by Eq. (H5) in Ap-
pendix H. The term k·∆x1PN has been given by Eq. (I36)

in Appendix I. The term |k ×∆x1PN|2 has been given by
Eq. (J2) in Appendix J. According to these results the

Shapiro time delay in 2PN approximation in the grav-
itational field of one body at rest with monopole and
quadrupole structure is given as follows (cf. Eq. (78)):

c (t1 − t0) =R+∆cτM1PN +∆cτMab

1PN

+∆cτM×M
2PN +∆cτM×Mab

2PN +∆cτMab×Mcd

2PN , (K2)

up to terms of the orderO
(
c−6
)
and where the individual

terms are

∆cτM1PN =−GM

c2
P(1) (x1,x0) , (K3)

∆cτMab

1PN =−GM̂ab

c2

3∑
n=1

Sab
(n) Q(n) (x1,x0) , (K4)
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∆cτM×M
2PN =+

G2M2

c4
R(1) (x1,x0) , (K5)

∆cτM×Mab

2PN =+
G2M M̂ab

c4

3∑
n=1

Sab
(n) S(n) (x1,x0) ,(K6)

∆cτMab×Mcd

2PN =+
G2M̂abM̂cd

c4

10∑
n=1

T abcd
(n) T(n) (x1,x0) .

(K7)

The tensors Sab
(n) and T abcd

(n) are defined by Eqs. (H3) and

(H4) and the scalar functions are introduced:

R(1) =−r(1) − u(1) +
1

2R
x(1) , (K8)

S(n) =−s(n) − v(n) +
1

2R
y(n) , (K9)

T(n) =−t(n) − w(n) +
1

2R
z(n) . (K10)

The functions in (K8) are defined by Eqs. (I41) and (H6)
and (J3). The functions in (K9) are defined by Eqs. (I42)
- (I44) and (H7) - (H9) and (J4) - (J6). The functions in
(K10) are defined by Eqs. (I45) - (I54) and (H10) - (H19)
and (J7) - (J16). In these functions the abbreviations as
given by Eqs. (H20) - (H24) have been used.

In this Appendix we will determine the upper limits of
the individual terms in Shapiro time delay formula (K2).
One may distinguish two scenarios of Shapiro time delay
measurements: one-way and two-way scenario. In the
one-way scenario a signal is emitted from the celestial
object (e.g. spacecraft, pulsar) and received by the ob-
server. In the two-way scenario a signal is emitted from
the observer, then reflected off the celestial object (e.g.
planet or spacecraft), and finally received back by the ob-
server. If one assumes that the gravitating body as well
as observer and celestial object are at rest, then both
these scenarios just differ by a factor 2. Here the upper
limits are given for the one-way Shapiro effect.

2. Estimation of 2PN monopole-monopole term

The 2PN monopole-monopole term in (K2) reads

∆cτM×M
2PN =

G2M2

c4
R(1) (x1,x0) , (K11)

where the scalar function R(1) has been defined by
Eq. (K8). Eq. (K11) agrees with the 2PN term in
Eq. (3.2.51) in [4] as well as Eq. (69) in [53] (for PPN
parameter the values of GR, γ = 1, must be chosen);
note that Rdk = |x0 × x1|. Inserting the abbreviations
(I41) and (H6) and (J3) into (K8) one obtains for the

function R(1):

R(1) =+
2

(dk)
2

(x1 − x0)
2 −R2

R
− 1

4

(
k · x1

(x1)
2 − k · x0

(x0)
2

)

+
15

4

1

dk

(
arctan

k · x1

dk
− arctan

k · x0

dk

)
. (K12)

In order to determine the upper limit of (K12), the rela-
tions for the angle β0 = δ (k,x0) and β1 = δ (k,x1) are
very useful:

cosβ0 =
k · x0

x0
=

(x1)
2 − (x0)

2 −R2

2Rx0
, (K13)

cosβ1 =
k · x1

x1
=

(x1)
2 − (x0)

2
+R2

2Rx1
. (K14)

These relations are exactly valid and can be shown by
using (72). The impact parameters are dk = x0 sinβ0 =
x1 sinβ1. Then, the expression in (K12) can be rewrit-
ten in terms of variable z in (C8) as well as angle
α = δ (x0,x1) in (C9). By using the computer algebra
system Maple [63] one obtains for the upper of (K11)

∣∣∆cτM×M
2PN

∣∣≤ 8

(dk)
2 x1

G2M2

c4
. (K15)

Numerical values of (K15) are presented in Table III for
the Sun and giant planets. If one implements the inequal-
ity

R
x1 x0

(x1 + x0)
2 ≤ x1 (K16)

into the first term on the r.h.s. of Eq. (70) in [53], one
verifies that the estimation in (K15) is in agreement with
that estimation in our article [53]. Here we note that the
term which was estimated by Eq. (71) in [53] has been
absorbed in our upper limit given in (K15).

3. Estimation of 2PN monopole-quadrupole term

The 2PN monopole-quadrupole term in (K2) reads

∆cτM×Mab

2PN =
G2M M̂ab

c4

3∑
n=1

Sab
(n) S(n) (x1,x0) , (K17)

where the tensorial coefficients Sab
(n) are given by

Eqs. (H3) and the scalar functions S(n) have been de-
fined by Eq. (K9). Their explicit form is obtained by
inserting the abbreviations (H20) - (H24) into the scalar
functions s(n) (given by Eqs. (I42) - (I44)) and v(n) (given
by Eqs. (H7) - (H9)) and y(n) (given by Eqs. (J4) -
(J6)) into (K9). In order to estimate the upper limit of
the individual terms in (K17) the assumption is adopted
that to a good approximation the giant planets can be
considered as axially symmetric bodies, that means the
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STF quadrupole tensor in the following form is used (cf.
Eq. (B36))

M̂ab = M J2 P
2

(
1

3
δab − δa3 δb3

)
, (K18)

where it is assumed that the x3-axis of the coordinate sys-
tem is aligned with the symmetry axis e3 of the massive
body. The parameter in (K18), that means M (mass of
the body) J2 (actual second zonal harmonic coefficient),
P (equatorial radius of the body) are given in Table I
for the Sun and giant planets of the solar system. It is
advisable to apply relations (K13) - (K14) as well as the
parameter (C8) - (C9), which considerably simplify the
expressions in (K17). Then, the estimation proceeds in
very similar way as for (K11) and one finds, by means
of the computer algebra system Maple [63] the following
upper limit:∣∣∣∆cτM×Mab

2PN

∣∣∣≤ 12

(dk)
2 x1

G2M2

c4
P 2

(dk)
2 |J2| . (K19)

Numerical values of (K19) are presented in Table III for
the Sun and giant planets. In order to get correct upper
limits one has to take into account that k and dk are
perpendicular to each other, which restricts their possible
values and angles with e3 (see also endnote [99] in [35]).

4. Estimation of 2PN quadrupole-quadrupole term

The 2PN quadrupole-quadrupole term in (K2) reads

∆cτMab×Mcd

2PN =
G2M̂abM̂cd

c4

10∑
n=1

T abcd
(n) T(n) (x1,x0) ,

(K20)

where the tensorial coefficients T abcd
(n) are given by

Eqs. (H4) and the scalar functions T(n) have been defined
by Eq. (K10). In order to estimate the upper limit of the
individual terms in (K20) the assumption is adopted that
to a good approximation the giant planets can be con-
sidered as axially symmetric bodies, that means for the
product of two mass-quadrupole tensors (cf. Eq. (B36))
the following expression is used

M̂ab M̂cd =M2 |J2|2 P 4

×
(
1

9
δabδcd −

1

3
δabδc3δd3 −

1

3
δa3δb3δcd + δa3δb3δc3δd3

)
,

(K21)

where it is assumed that the x3-axis of coordinate sys-
tem is aligned with the symmetry axis e3 of the massive
body. It is advisable to introduce the parameter (C8) -
C9) as well as relations K13) - (K14), which considerably
simplify the expressions in (K20). Then, the estimation
proceeds in very similar way as for (K11) and one finds,
by means of the computer algebra system Maple [63] the
following upper limit:∣∣∣∆cτMab×Mcd

2PN

∣∣∣≤ 8

(dk)
2 x1

G2M2

c4
P 4

(dk)
4 |J2|2 .(K22)

Numerical values of (K22) are presented in Table III for
the Sun and giant planets. In order to get correct upper
limits one has to take into account that k and dk are
perpendicular to each other, which restricts their possible
values and angles with e3 (see also endnote [99] in [35]).
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[14] P. Wolf, Ch. J. Bordé, A. Clairon, et al. Quantum physics
exploring gravity in the outer Solar system: the Sagas
project, Experimental Astronomy 23 (2009) 651.

[15] E. Samain, One way laser ranging in the solar system:
Tipo, in Proceedings of European Geophysical Science
XXVII General Assembly, Nice/France, 21-26 April 2002,



33

Geowissenschaftliche Mitteilungen 69 (2004) p. 80, TU
Vienna/Austria.

[16] S. Schiller, G.M. Tino, P. Gill, Einstein Gravity Ex-
plorer: a medium-class fundamental physics mission, Ex-
perimental Astronomy 23 (2009) 573.

[17] C.M. Will, Theory and Experiment in Gravitational
Physics, Cambridge University Press, UK (1993).

[18] T.W. Murphy, Lunar Laser Ranging: the millimeter
challenge, Reports on Progress in Physics 76 (2013)
076901.

[19] T.W. Murphy, Apollo: millimeter lunar laser ranging,
Classical and Quantum Gravity 29 (2012) 184005.

[20] Y. Liang, T.W. Murphy Jr., N.R. Colmenares, J.B.R.
Battat, APOLLO clock performance and normal point
corrections, Classical and Quantum Gravity 34 (2017)
245009.

[21] J.J. Degnan, Millimeter accuracy satellite laser ranging:
a review, Geodynamical Technology 25 (1993) 133.

[22] M. Wilkinson, U. Schreiber, I. Prochazka, et al., The next
generation of satellite laser ranging systems, Journal of
Geodesy 93 (2019) 2227.

[23] M. Soffel, W.B. Han, Applied General Relativity,
Springer, 2019, Cham, Switzerland.

[24] C. Munghemezulu, L. Combrinck, J.O. Botai, A review of
lunar laser ranging technique and contribution of timing
systems, South Africa Journal of Science 112 (2016) 1.

[25] J. Seubert, T.A. Ely, J. Stuart, Results of the Deep Space
Atomic Clock Deep Space Navigation Analog Experiment,
Journal of Spacecraft and Rockets (2022).

[26] E.A. Burt, J.D. Prestage, R.L. Tjoelker, et al., Demon-
stration of a trapped-ion atomic clock in space, Nature
595 (2021) 43.

[27] S. Reichert, In space for the long run, Nature Physics 17
(2021) 878.

[28] B.K. Stuhl, Atmospheric refraction corrections in
ground-to-satellite optical time transfer, Optics Express
29 (2021) 13706.

[29] S.R. Jefferts, T.P. Heavner, T.E. Parker, J.H. Shirley,
NIST Caesium Fountains - Current status and future
prospects, Acta Physica Polonica A 112 (2007) 759.

[30] S.M.Brewer, J.S. Chen, A.M. Hankin, et al., 27Al
+

Quantum-logic clock with a systematic uncertainty below
10−18, Physical Review Letters 123 (2019) 033201.

[31] A.D. Ludlow, M.M. Boyd, J. Ye, Optical atomic clocks,
Review of Modern Physics 87 (2015) 637.

[32] S. Zschocke, Light propagation in the gravitational field
of N arbitrarily moving bodies in 1PN approximation for
high-precision astrometry, Physical Review D 92 (2015)
063015.

[33] S. Zschocke, Light propagation in the gravitational field
of N arbitrarily moving bodies in the 1.5PN approxima-
tion for high-precision astrometry, Physical Review D 93
(2016) 103010.

[34] S.M. Kopeikin, Propagation of light in the stationary field
of multipole gravitational lens, Journal of Mathematical
Physics 38 (1997) 2587.

[35] S. Zschocke, Light propagation in 2PN approximation in
the monopole and quadrupole field of a body at rest: Ini-
tial value problem, Physical Review D 105 (2022) 024040.
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