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In a recent investigation, the initial value problem of light propagation in the gravitational field
of a body at rest with monopole and quadrupole structure has been determined in the second post-
Newtonian (2PN) approximation. In reality, the light source as well as the observer are located at
finite distances from the solar system bodies. This fact requires to solve the boundary value problem
of light propagation. In this investigation, the solution of the boundary value problem is deduced
from the initial value problem of light propagation in 2PN approximation. These results are a basic
requirement for subsequent investigations aiming at ultra-highly precise tests of light deflection and
time delay in the solar system.

I. INTRODUCTION

The precision in astrometric angular measurements has
made a giant step from the milli-arcsecond (mas) level,
as achieved by the astrometry mission Hipparcos [1] to
the micro-arcsecond (µas) scale of accuracy, as achieved
by the astrometry mission Gaia [2]. These astrometry
missions of the European Space Agency (ESA) were the
first space missions developed for highly precise astro-
metric measurements of positions, distances, and proper
motions of celestial objects. Meanwhile, there are sev-
eral development proposals, both space-based astrometry
missions [3–11] and ground-based facilities [12], which are
aiming at the sub-micro-arcsecond (sub-µas) and even at
the nano-arcsecond (nas) scale of accuracy. The science
cases of sub-µas astrometry are overwhelming, like de-
tection of Earth-like exoplanets, measurements of dark
matter distributions, tests of general relativity (GR) in
the solar system, progress in determining natural con-
stants, considerable extension of a model-independent
cosmic distance ladder, and even detection of gravita-
tional waves by astrometric measurements [13–17].

A fundamental problem in relativistic astrometry con-
cerns the precise determination of the trajectory of a
light signal, emitted by some celestial light source and
propagating through the curved space-time of the solar
system towards the observer. The importance of this
fact has also been emphasized by the ESA-Senior-Survey-
Committee (SSC) in response of the selection of near-
future space missions. In particular, the SSC has rec-
ommended a further development of the GR framework
to model photon trajectories to the required accuracy of
high-precision astrometry of the next generation [18].

There are several difficult and serious issues regarding
a general-relativistic modeling of light propagation aim-
ing at the sub-µas level of accuracy. Let us consider three
of these aspects:

(a) Solar system bodies can be of complicated shape
and inner structure, which can be described by the mul-

tipole expansion of the metric tensor of these bodies [19–
21]. The light trajectories in the gravitational field of
such arbitrarily shaped bodies at rest have been deter-
mined in the 1PN and 1.5PN approximation, both for
stationary multipoles [22] as well as for time-dependent
multipoles [23].

(b) The second problem concerns the motion of solar
system bodies along their complicated world lines. Sev-
eral investigations have demonstrated, that on the µas-
level it is sufficient to determine the light trajectories in
the gravitational fields of bodies at rest, if one imple-
ments their retarded positions in the GR model [24–28].
In order to investigate this problem further, the light tra-
jectories in the gravitational field of slowly moving solar
system bodies with full multipole structure have been de-
termined in the 1PN and 1.5PN approximation [29, 30]
by means of the approach developed in [22, 23].

(c) Higher orders of the post-Newtonian (PN) expan-
sion of metric tensor of the solar system need to be taken
into account, both for defining highly accurate reference
systems as well as for highly precise GR modeling of light
trajectories in the solar system. Regarding this problem,
it can be stated that the metric tensor for solar system
bodies at rest is, in principle, well-known up to the sec-
ond post-Newtonian approximation (2PN) [19–21, 31–
33]. However, such an understanding has by far not been
achieved for the light propagation in 2PN approximation.
In fact, 2PN light trajectories have only been solved for
gravitational fields generated by monopoles, that means
spherically symmetric bodies at rest [34, 35]. This prob-
lem has later been reconsidered under several aspects in
a series of subsequent investigations [36–49]. The next
term in the multipole decomposition of the metric tensor
of solar system bodies is the quadrupole term. Accord-
ingly, the impact of the quadrupole structure of solar
system bodies on light trajectories is the most signifi-
cant effect beyond the monopole. Such a rigorous 2PN
solution for light trajectories has been obtained only re-
cently in our investigation [50]. In that investigation it
has also been found that the 2PN quadrupole light de-
flection amounts up to 0.95 µas and 0.29 µas for grazing
light rays at the giant planets Jupiter and Saturn, re-
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spectively.

Another aspect of astrometric science concerns the
progress in ultra-highly precise time-measurements, both
by ground-based facilities as well as space-based atomic
clocks. In our recent investigation in [51], the impact
of the quadrupole structure of solar system bodies on
time-delay has been determined in the 2PN approxima-
tion, which amounts up to 0.14 and 0.04 pico-seconds
(ps) for grazing rays at the giant planets Jupiter and
Saturn. These results can be compared with present-
days technological achievements in time measurements.
For instance, the atomic clocks on-board of the Euro-
pean Galileo navigation system have a standard devia-
tion of ∆t/t ∼ 10−14. The todays most precise atomic
clock on-board of a satellite is the Deep Space Atomic
Clock (DSAC) [52] (launched 2019) by National Aero-
nautics and Space Administration (NASA). The DSAC
mission is testing a new navigation technology for future
space explorers. The DSAC has a standard deviation
of ∆t/t ∼ 10−15 and it is at least 10 times more stable
than atomic clocks of the satellites of the Global Posi-
tioning System (GPS). In order to illustrate and to com-
pare the standard deviation with the precision in time
measurements, one may consider the light travel time
between Earth and Mercury, which is less than 103 s.
Then, these standard deviations of DSAC would corre-
spond to an accuracy of about ∆t ∼ 1 ps in measure-
ments of light travel time. Further examples are the
Earth-based atomic clocks NIST-F1 and NIST-F2 at the
National Institute of Standard and Technology (NIST),
having a standard deviation of ∆t/t ∼ 10−16 [53], which
corresponds to an accuracy of about ∆t ∼ 0.1 ps for such
a light signal. The highest accuracies for Earth-bound
atomic clocks have been achieved with optical atomic
clocks, having a standard deviation of only ∆t/t ∼ 10−19

[54], which implies an absolute accuracy of ∆t ∼ 10−4 ps
for light signals, for instance, between Earth and Mer-
cury.

Thus, in view of advancements of the precision in an-
gular observations as well as in time-measurements, it is
clear that in near-future the quadrupole effects in 2PN
approximation become relevant for high precision tests of
relativity in the solar system. As mentioned above, the
2PN solution of the initial value problem for the light tra-
jectory in the quadrupole field of solar system bodies has
been achieved in our recent investigation in [50]. The ini-
tial value problem (Cauchy problem) is characterized by
two given initial values: the initial direction of the light
ray and the spatial position of the light source. However,
for high precision tests of relativity in the solar system
it is necessary to determine the 2PN light ray solution of
the boundary value problem. The boundary value prob-
lem is characterized by two given boundary values: the
spatial position of the light source and the spatial posi-
tion of the observer. The solution of the boundary value
problem is considerably more involved than the initial
value problem. Some parts of the boundary value prob-
lem have been considered in [51]. A fundamental and

important step towards a comprehensive solution of the
boundary value problem will be given in this investiga-
tion, where the light trajectory is written in a new form,
which contains the spatial positions of the light source
and of the observer.

The manuscript is organized as follows: The 2PN so-
lution of the initial value problem of light propagation in
the monopole and quadrupole field of a body at rest is
summarized in Section II. The problem and the proce-
dure of how to rewrite the initial value solution of light
propagation into a new form, which is required to solve
the boundary value problem, is described in Sections III
and IV. The 2PN solution of the initial value problem,
which is appropriate to implement the spatial positions
of source and observer, is given in Section V. The solu-
tion of the boundary value problem of light propagation,
that means the coordinate velocity and trajectory of the
light signal in terms of the spatial positions of source and
observer, is presented in Section VI. A summary and
outlook is given in Section VII. The notations, some de-
tails of the calculations, the tensorial coefficients as well
as the scalar functions are shifted into a set of several
appendices.

II. INITIAL VALUE PROBLEM OF LIGHT
PROPAGATION IN THE OLD FORM

We consider the gravitational field generated by a
massive solar system body. The curved space-time is
assumed to be covered by harmonic four-coordinates(
x0, x1, x2, x3

)
, in line with the resolutions of the Interna-

tional Astronomical Union (IAU) [55]. They are treated
like Cartesian coordinates [19, 35]; see also Section III
in [32]. The origin of the spatial axes is assumed to be
located at the barycenter of this body. In case of weak
gravitational fields and slow motions of the bodies, the
metric tensor can be series expanded in inverse powers of
the speed of light. This post-Newtonian (PN) expansion
reads in the 2PN approximation

gαβ = ηαβ + h
(2)
αβ + h

(3)
αβ + h

(4)
αβ +O

(
c−5
)
, (1)

where h
(n)
αβ = O(c−n). In the general case, the solar sys-

tem body can be of arbitrary shape and inner structure
and can also be in arbitrary rotational motions. In or-
der to describe the gravitational field generated by such
bodies, the metric tensor is decomposed in terms of sym-
metric trace-free (STF) mass-multipoles ML and spin-
multipoles SL [19–21, 31]. The mass-multipoles describe
the shape and inner structure of the body, while the spin-
multipoles account for the rotational motions and inner
currents of the body. In the stationary case these multi-
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poles are time-independent and then they are given by

ML =

∫
d3x x<L>

T 00 + T kk

c2
, (2)

SL =

∫
d3x x<L−1 ϵil>jk xj T 0k

c
, (3)

where Tαβ is the stress-energy tensor of the body and
x<L> is the symmetric and trace-free part of xL with
respect to the spatial indices, where L = i1i2 . . . il is
a multi-index for these spatial indices. A solar system
body, described by these multipoles in (2) and (3), can
still be of arbitrary shape, inner structure, and can also
be in rotational motions, but the body cannot oscillate
and the rotational motions and inner currents have to be
time-independent. Then, the post-Newtonian expansion
of the metric tensor in (1) reads

gαβ = ηαβ + h
(2)
αβ (ML) + h

(3)
αβ (SL) + h

(4)
αβ (ML) (4)

up to terms of the order O
(
c−5
)
. The metric pertur-

bations in (4) have been deduced in [32] from the metric
density achieved in the basic investigations in [19, 20, 33].
In our investigation [50] we have considered the prob-
lem of light propagation in 2PN approximation in the
gravitational field of a body at rest and have taken into
account the mass-monopole, M , and mass-quadrupole
terms, Mab,

M =

∫
d3x

T 00 + T kk

c2
, (5)

Mab =

∫
d3xx<ab>

T 00 + T kk

c2
, (6)

where the integrals run over the three-dimensional vol-
ume of the body, and x<ab> = xaxb − 1

3 |x|
2 δab. The

mass-dipole terms vanish, Mi = 0, because the origin
of the spatial axes is located the center of mass of the
source. Then, the metric (4) simplifies to the form

gαβ = ηαβ + h
(2)
αβ (M,Mab) + h

(4)
αβ (M,Mab) (7)

up to terms of the order O
(
c−6
)
. The metric perturba-

tions in (7) were explicitly given in [32, 56].
Light trajectories are null-geodesics and they are gov-

erned by the geodesic equation, which in terms of coor-
dinate time reads [35, 57, 58]:

ẍi (t)

c2
+ Γi

µν

ẋµ (t)

c

ẋν (t)

c
=Γ0

µν

ẋµ (t)

c

ẋν (t)

c

ẋi (t)

c
, (8)

where Γα
µν = gαβ (gβµ,ν + gβν,µ − gµν,β) /2 are the

Christoffel symbols, which are functions of the metric
tensor gαβ . The geodesic equation is a differential equa-
tion of second order, thus a unique solution requires two
initial conditions,

σ =
ẋ (t)

c

∣∣∣∣
t=−∞

, (9)

x0 = x (t)

∣∣∣∣
t=t0

, (10)

with σ and x0 being the unit-direction of the light ray at
past infinity and the spatial position of the light source
at the moment of emission of the light signal. The first
integration of the geodesic equation yields the coordi-
nate velocity of the light signal, and the second integra-
tion of the geodesic equation yields the trajectory of the
light signal. By inserting the metric tensor (4) into the
geodesic equation (8) one arrives at the geodesic equa-
tion in 2PN approximation for the light propagation, as
given for instance in the Refs. [36, 46, 50].

s
exact light trajectory

light at 
t = - 8

unperturbed light ray

massive solar system body

light source

x 0 x ( )t

sd
xN ( )t

x 1

s

observer

Figure 1: A geometrical representation of the propagation
of a light signal through the gravitational field of a massive
solar system body at rest. The light signal is emitted by
the light source at x0 and propagates along the exact light
trajectory x (t). The three-vector x1 points from the origin
of the coordinate system towards the spatial position of the
observer. The unit tangent vector along the light trajectory
at past infinity is σ. The unperturbed light ray xN (t) is
given by Eq. (12) and propagates in the direction of σ along
a straight line through the position of the light source at x0.
The impact vector dσ of the unperturbed light ray is given
by Eq. (21).

The solutions of the first and second integration of
geodesic equation in 2PN approximation have recently
been determined for light rays propagating in the gravi-
tational field of a body at rest by means of an iterative
approach [50], where the monopole and quadrupole struc-
ture of the body have been taken into account. These
iterative solutions are given in the following form:

ẋN

c
=σ , (11)

xN = x0 + c (t− t0)σ , (12)

ẋ1PN

c
=σ +

∆ẋ1PN (xN)

c
, (13)

x1PN = xN +∆x1PN (xN)−∆x1PN (x0) , (14)

ẋ2PN

c
=σ +

∆ẋ1PN (xN)

c
+

∆ẋ2PN (xN)

c
, (15)

x2PN = xN +∆x1PN (xN)−∆x1PN (x0)

+∆x2PN (xN)−∆x2PN (x0) , (16)

where the time-arguments have been omitted. The first
two equations, (11) and (12), represent the homogeneous
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solution of geodesic equation (vanishing Christoffel sym-
bols), which yields the unperturbed light ray propagating
along a straight line. The 1PN perturbations ∆ẋ1PN and
∆x1PN are terms of the order O(c−2) which have been
determined long time ago in [59], while the 2PN pertur-
bations ∆ẋ2PN and ∆x2PN are terms of the orderO(c−4),
which were the primary results of our recent investigation
[50].

The integration of geodesic equation simplifies consid-
erably, if one separates the time-dependent scalar func-
tions from the time-independent tensorial coefficients.
This procedure has been applied in [50] and has lead
to eight master integrals, which can be solved in their
exact form. However, this approach leads to tensorial co-
efficients, which contain linearly dependent tensors. For
the subsequent investigations, it would be more appropri-
ate, to rearrange these tensorial terms into such a form,
that the tensorial coefficients contain only tensors which
are linearly independent of each other. In this way, we
achieve the following expressions for the perturbations:
the spatial components of 1PN terms in (13) - (16) are
given by

∆ẋi
1PN (xN)

c
=

GM

c2

2∑
n=1

U i
(n) (xN) Ḟ(n) (xN)

+
GMab

c2

8∑
n=1

V ab i
(n) (xN) Ġ(n) (xN) , (17)

∆xi
1PN (xN) =

GM

c2

2∑
n=1

U i
(n) (xN) F(n) (xN)

+
GMab

c2

8∑
n=1

V ab i
(n) (xN) G(n) (xN) , (18)

and the spatial components of 2PN terms are given by

∆ẋi
2PN (xN)

c
=

GM

c2
GM

c2

2∑
n=1

U i
(n) (xN) Ȧ(n) (xN)

+
GM

c2
GMab

c2

8∑
n=1

V ab i
(n) (xN) Ḃ(n) (xN)

+
GMab

c2
GMcd

c2

28∑
n=1

W abcd i
(n) (xN) Ċ(n) (xN) , (19)

∆xi
2PN (xN) =

GM

c2
GM

c2

2∑
n=1

U i
(n) (xN) A(n) (xN)

+
GM

c2
GMab

c2

8∑
n=1

V ab i
(n) (xN) B(n) (xN)

+
GMab

c2
GMcd

c2

28∑
n=1

W abcd i
(n) (xN) C(n) (xN) . (20)

The terms ∆x1PN (x0) and ∆x2PN (x0) in Eqs. (14) and
(16) are obtained from Eqs. (18) and (20) by replac-
ing the arguments xN by x0. The tensorial coefficients,

U i
(n), V

ab i
(n) ,W

abcd i
(n) , are given in Appendix B. The scalar

functions in (17) - (18) are given in Appendix C. The
scalar functions in Eqs. (19) - (20) can straightforwardly
be deduced from [50], namely by comparison of the ten-
sorial coefficients in Eqs. (83) - (85) and Eqs. (89) - (91)
in [50] with Eqs. (19) and (20), respectively. These scalar
functions are of simple but extensive algebraic structure.
Therefore, in favor of a simpler representation, only the
functions A(n) and B(1), B(8) as well as C(1), C(28) and
their time derivatives are given in Appendix D, while the
full set of these functions is represented as supplementary
material [60].
The tensorial coefficients contain the impact vector dσ

of the unperturbed light ray,

dσ =σ × (xN × σ) = σ × (x0 × σ) , (21)

and its absolute value dσ = |dσ| which is called im-
pact parameter dσ. The impact vector in (21) is time-
independent and points from the origin of the coordinate
system towards the unperturbed light ray at the moment
of its closest encounter; see also Figure 1.

III. STATEMENT OF THE PROBLEM

The solution of the initial value problem, defined by
Eqs. (9) and (10), can only be the first step, because
in reality the light source and the observer are located
at finite distances from the gravitating body. Therefore,
real astrometric measurements require the solution of the
boundary value problem, that means solving the geodesic
equation for light rays in terms of the boundary values,

x0 = x (t)

∣∣∣∣
t=t0

, (22)

x1 = x (t)

∣∣∣∣
t=t1

, (23)

where x0 is the spatial position of the light source at the
moment of emission of the light signal t0, while x1 is the
spatial position of the observer at the moment of recep-
tion of the light signal t1. These equations state, that the
spatial position of the exact trajectory of the light signal,
x (t), is in coincidence with the spatial positions of light
source and observer at the moment of emission and the
moment of reception, respectively; see also Figure 1.

The solution of the boundary value problem can
uniquely be deduced from the solution of the initial value
problem derived in our investigation [50] and represented
by Eqs. (11) - (16). The iterative approach in [50] im-
plies, that coordinate velocity and trajectory of the light
signal are given in terms of the unperturbed light ray
xN. It is essential to realize, that the 1PN perturba-
tions in Eqs. (15) and (16) are terms of the order O(c−2).
Therefore, in the arguments of these 1PN perturbations
in Eqs. (15) and (16) one cannot replace the unperturbed
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light ray at the moment of reception by the spatial coor-
dinate of the observer, because such a replacement

x1 = xN (t1) +O
(
c−2
)

(24)

would cause terms of the order O(c−4), that means,
such a replacement would spoil the 2PN approxima-
tion. Therefore, one has to rewrite the 2PN solution in
Eqs. (15) and (16) into such a form, where the arguments
of these 1PN perturbations are the spatial positions of
the 1PN light ray, x1PN, while the arguments of the 2PN
perturbations are the spatial position of the unperturbed
light ray xN. Afterwards, one may replace the arguments
of the 1PN terms according to the following relation,

x1 = x1PN (t1) +O
(
c−4
)
. (25)

Such a replacement in these 1PN perturbations would
cause terms of the order O(c−6) which are neglected, in
line with the 2PN approximation. The procedure of how
to arrive at this new form of the 2PN solution of the ini-
tial value problem is described in the subsequent Section.

IV. DESCRIPTION OF THE PROCEDURE

The procedure, to rewrite the initial value problem into
such a new form as described in the previous Section, is
relevant for calculations in 2PN approximation and cal-
culations of higher order, but is not necessary in the 1PN
or 1.5PN approximation. Furthermore, if one takes into
account only the monopole structure of a massive solar
system body, then the performance of this technique is
more or less straightforward. That might be the reason,
that this treatment has almost not been discussed explic-
itly in the literature. It might well be, that the comments
in the text below Eq. (3.2.42) in [35], in the text below
Eq. (6.8) in [36], as well as in the text below Eq. (52)
in [37] are just three of only a very few explicit hints in
the literature about this specific issue. However, if one
takes account for the quadrupole structure of a massive
solar system body, then the calculations become rather
involved. This Section is devoted to represent the method
of how to treat that specific problem of 2PN calculations.
The procedure is subdivided into three steps.
First step: One changes the arguments of the 1PN per-
turbations in Eqs. (15) and (16) from the unperturbed
light ray, xN, to the light ray in 1PN approximation,
x1PN. Such a replacement generates additional terms of
2PN order. In order to identify these additional terms,
one has to consider the difference between these 1PN per-
turbations, formally given by,

δẋ2PN (xN)

c
=

∆ẋ1PN (xN)

c
− ∆ẋ1PN (x1PN)

c
, (26)

δx2PN (xN) =∆x1PN (xN)−∆x1PN (x1PN) , (27)

where label 2PN on the left-hand side in (26) and (27)
indicates, that these differences are terms of second post-
Newtonian order. The first terms on the right-hand side

in (26) and (27) are given by Eqs. (17) and (18), while
the second terms on the right-hand side in (26) and (27)
read

∆ẋi
1PN (x1PN)

c
=

GM

c2

2∑
n=1

U i
(n) (x1PN) Ḟ(n) (x1PN)

+
GMab

c2

8∑
n=1

V ab i
(n) (x1PN) Ġ(n) (x1PN) , (28)

∆xi
1PN (x1PN) =

GM

c2

2∑
n=1

U i
(n) (x1PN) F(n) (x1PN)

+
GMab

c2

8∑
n=1

V ab i
(n) (x1PN) G(n) (x1PN) , (29)

where the tensorial coefficients are given in Appendix E
and the scalar functions are given in Appendix F.

Second step: In order to obtain the terms δẋ2PN in (26)
and δx2PN in (27), one has to perform a series expansion
of ∆ẋ1PN (x1PN) and ∆x1PN (x1PN) in (28) and (29), re-
spectively. The tensorial coefficients and the scalar func-
tions in (28) and (29) contain the light ray in 1PN ap-
proximation, x1PN, and its absolute value, x1PN. There-
fore, for performing that series expansion, one needs the
following relations, which are valid up to terms of the
order O(c−4),

x1PN = xN +∆x1PN (xN)−∆x1PN (x0) , (30)

1

(x1PN)
n =

1

(xN)
n − n

xN · (∆x1PN (xN)−∆x1PN (x0))

(xN)
n+2 ,

(31)

where n is an arbitrary integer. It is noticed, that relation
(31) can also be written in the form

1

(x1PN)
n =

1

(xN)
n − n

dσ · (∆x1PN (xN)−∆x1PN (x0))

(xN)
n+2

−n (σ · xN)
σ · (∆x1PN (xN)−∆x1PN (x0))

(xN)
n+2 , (32)

where the unperturbed light ray (12) has been used in
the form xN = dσ +(σ · xN) σ, which follows from (21).

The 1PN perturbations (28) and (29) do also contain
the impact vector with respect to the light ray in 1PN
approximation (cf. Eq. (J4) in [50]),

d̂σ =σ × (x1PN × σ) , (33)

as well as its absolute value d̂σ = |d̂σ|. This impact
vector, like the impact vector with respect to the unper-
turbed light ray (21), is perpendicular to three-vector σ.
By inserting (30) into (33), one finds that these impact
vectors in (21) and (33) and their absolute values are re-
lated to each other as follows (cf. Eqs. (J5) and (J7) in
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[50]),

d̂σ = dσ + σ ×
[
(∆x1PN (xN)−∆x1PN (x0))× σ

]
,

(34)

1

(d̂σ)n
=

1

(dσ)
n

− n

(dσ)
n
dσ · (∆x1PN (xN)−∆x1PN (x0))

(dσ)
2 , (35)

up to terms of the order O(c−4); n is an arbitrary integer.
The relation (35) represents the first term of an infinite
series expansion (cf. text below Eq. (J7) in [50]). This
series expansion has a convergence radius determined by
the condition n |dσ ·∆x1PN| ≤ (dσ)

2
. Using the same

arguments as given in text below Eq. (J7) in [50], one
finds that this convergence condition is satisfied for any
realistic observer, which is naturally assumed to be lo-
cated in the solar system. Nevertheless, this convergence
condition is even satisfied for observers which are located
at far distances of more than a few hundred astronomical
units from the solar system. The impact vector in (33)
is only needed as an intermediate step, because later the
replacement in (25) will be performed, where the interme-
diate impact vector in (33) becomes literally the impact
vector of the boundary value problem in Eq. (58), up to
terms of the order O(c−4).
Third step: The terms in (26) and (27) are 2PN terms,
hence they can be decomposed into terms of the same
set of linearly independent tensors like the 2PN terms in
(19) and (20), that means

δẋi
2PN (xN)

c
=

GM

c2
GM

c2

2∑
n=1

U i
(n) (xN)

˙̃
A(n) (xN)

+
GM

c2
GMab

c2

8∑
n=1

V ab i
(n) (xN)

˙̃
B(n) (xN)

+
GMab

c2
GMcd

c2

28∑
n=1

W abcd i
(n) (xN)

˙̃
C(n) (xN) , (36)

and

δxi
2PN (xN) =

GM

c2
GM

c2

2∑
n=1

U i
(n) (xN) Ã(n) (xN)

+
GM

c2
GMab

c2

8∑
n=1

V ab i
(n) (xN) B̃(n) (xN)

+
GMab

c2
GMcd

c2

28∑
n=1

W abcd i
(n) (xN) C̃(n) (xN) , (37)

where the tensorial coefficients are given in Appendix B.
The calculations in order to get these terms in (36) and
(37) are not complicated but lengthy, and the scalar func-

tions
˙̃
A(n),

˙̃
B(n),

˙̃
C(n), as well as Ã(n), B̃(n), C̃(n) are of

extensive algebraic structure. In view of this fact and

because these functions are considered as an intermedi-
ate step, they will not be presented here in their explicit
form. Instead, the full set of these functions is repre-
sented as supplementary material [60].

As final step, these expressions in (36) and (37) have to
be added to the 2PN terms in (19) and (20), respectively,
which leads to the following expressions:

△ẋ2PN (xN)

c
=

∆ẋ2PN (xN)

c
+

δẋ2PN (xN)

c
, (38)

△x2PN (xN) =∆x2PN (xN) + δx2PN (xN) . (39)

The symbol △ (Laplace) instead of ∆ (Delta) on the left-
hand side in (38) and (39) indicates, that these functions
have carefully to be distinguished from the 2PN functions
in (19) and (20).

V. INITIAL VALUE PROBLEM OF LIGHT
PROPAGATION IN THE NEW FORM

By performing this procedure, which has been de-
scribed in the previous Section, one arrives at a new
representation of the same iterative solution as given by
Eqs. (11) - (16), but in the following form:

ẋN

c
=σ , (40)

xN = x0 + c (t− t0)σ , (41)

ẋ1PN

c
=σ +

∆ẋ1PN (xN)

c
, (42)

x1PN = xN +∆x1PN (xN)−∆x1PN (x0) , (43)

ẋ2PN

c
=σ +

∆ẋ1PN (x1PN)

c
+

△ẋ2PN (xN)

c
, (44)

x2PN = xN +∆x1PN (x1PN)−∆x1PN (x0)

+ △x2PN (xN)−△x2PN (x0) , (45)

where the time-arguments have been omitted. The only
differences between Eqs. (11) - (16) and Eqs. (40) - (45)
are the arguments x1PN in the 1PN terms in (44) and
(45) and the new scalar functions △ẋ2PN and △x2PN in
(44) and (45). It is, however, essential to realize that the
iterative solution in Eqs. (40) - (45) is identical to the
iterative solution given above by Eqs. (11) - (16), up to
terms beyond the 2PN approximation.

These equations (42) - (45) represent a generalization
of Eqs. (3.2.35) - (3.2.38) in [35], which are valid for the
2PN light propagation in the monopole field of a body,
while the equations presented here are valid for the 2PN
light propagation in the monopole and quadrupole field
of a body.

The 1PN terms in (42) and (43) are given by Eqs. (17)
and (18). The 1PN terms in (44) and (45) are given by
Eqs. (28) and (29). The 2PN perturbations in (44) - (45)
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are given by

△ẋi
2PN (xN)

c
=

GM

c2
GM

c2

2∑
n=1

U i
(n) (xN) Ẋ(n) (xN)

+
GM

c2
GMab

c2

8∑
n=1

V ab i
(n) (xN) Ẏ(n) (xN)

+
GMab

c2
GMcd

c2

28∑
n=1

W abcd i
(n) (xN) Ż(n) (xN) , (46)

and

△xi
2PN (xN) =

GM

c2
GM

c2

2∑
n=1

U i
(n) (xN) X(n) (xN)

+
GM

c2
GMab

c2

8∑
n=1

V ab i
(n) (xN) Y(n) (xN)

+
GMab

c2
GMcd

c2

28∑
n=1

W abcd i
(n) (xN) Z(n) (xN) . (47)

It is noticed here, that the 2PN monopole terms in (46)
and (47) are in agreement with the results obtained in
[35–37]. The tensorial coefficients in (46) and (47) are
the same as in Eqs. (19) and (20) and they are given
in Appendix B. The scalar functions are presented in
Appendix J (arguments x1 in Appendix J substituted by
the arguments xN). The 2PN terms ∆x2PN (x0) in (45)
are obtained from (47) by the replacements xN by x0.

The final step of this procedure concerns the replace-
ment of the arguments in Eqs. (40) - (45) by the spatial
positions of source and observer. This issue will be the
subject of the subsequent Section.

VI. BOUNDARY VALUE PROBLEM OF LIGHT
PROPAGATION

From Eqs. (41), (43), and (45) follows that the position
of the light source is given by the position of the light ray
at emission time t0, in any order of the post-Newtonian
expansion, that means

x0 = xN (t0) = x1PN (t0) = x2PN (t0) , (48)

represent exact relations.
On the other side, the spatial position of the observer,

x1, coincides with the spatial position of the light sig-
nal, propagating along the exact light trajectory, at the
moment of reception, x (t1), which is determined up to
the given order in the post-Newtonian expansion. There-
fore, the position of the observer can be obtained by re-
placing the spatial coordinate of the light signal at the
moment of observation by accounting for the correct or-
der, that means according to Eqs. (24) and (25); see also
[37, 50, 51]. Only that new representation of the initial
value problem, as represented by Eqs. (40) - (45), al-
lows one to insert in these relations (24) and (25). This

procedure leads finally to the 1PN and 2PN expressions,
which are given in their explicit form in the following two
subsections.

A. The 1PN terms

The coordinate velocity and spatial position of the light
signal in the 1PN approximation are given by Eqs. (42)
and (43). According to relation (24), one may replace the
arguments at the moment of reception of the light signal
by the spatial position of the observer. In this way, one
obtains for the coordinate velocity and spatial position
of the light ray in the 1PN approximation:

ẋ1PN (t1)

c
=σ +

∆ẋ1PN (x1)

c
, (49)

x1PN (t1) = x0 + c (t1 − t0)σ

+∆x1PN (x1)−∆x1PN (x0) , (50)

where the 1PN perturbation terms in (49) and (50) are
given by

∆ẋi
1PN (x1)

c
=

GM

c2

2∑
n=1

U i
(n) (x1) Ḟ(n) (x1)

+
GMab

c2

8∑
n=1

V ab i
(n) (x1) Ġ(n) (x1) , (51)

∆xi
1PN (x1) =

GM

c2

2∑
n=1

U i
(n) (x1) F(n) (x1)

+
GMab

c2

8∑
n=1

V ab i
(n) (x1) G(n) (x1) . (52)

The tensorial coefficients and scalar functions are given
in Appendices G and I. Clearly, the term ∆x1PN (x0) in
(50) is obtained from (52) by substituting the argument
x1 by the argument x0.

B. The 2PN terms

The coordinate velocity and spatial position of the light
signal in the 2PN approximation are given by Eqs. (44)
and (45). One may replace the arguments at the moment
of reception of the light signal by the spatial position of
the observer according to relations (24) and (25). In this
way, one obtains for the coordinate velocity and spatial
position of the light ray in the 2PN approximation:

ẋ2PN (t1)

c
=σ +

∆ẋ1PN (x1)

c
+

△ẋ2PN (x1)

c
, (53)

x2PN (t1) = x0 + c (t1 − t0)σ

+∆x1PN (x1)−∆x1PN (x0)

+△x2PN (x1)−△x2PN (x0) , (54)
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where the 2PN perturbation terms in (53) and (54) are
given by

△ẋi
2PN (x1)

c
=

GM

c2
GM

c2

2∑
n=1

U i
(n) (x1) Ẋ(n) (x1)

+
GM

c2
GMab

c2

8∑
n=1

V ab i
(n) (x1) Ẏ(n) (x1)

+
GMab

c2
GMcd

c2

28∑
n=1

W abcd i
(n) (x1) Ż(n) (x1) , (55)

and

△xi
2PN (x1) =

GM

c2
GM

c2

2∑
n=1

U i
(n) (x1) X(n) (x1)

+
GM

c2
GMab

c2

8∑
n=1

V ab i
(n) (x1) Y(n) (x1)

+
GMab

c2
GMcd

c2

28∑
n=1

W abcd i
(n) (x1) Z(n) (x1) . (56)

The tensorial coefficients are given in the Appendices G
and H, while the scalar functions are presented in Ap-
pendix J. Clearly, the term △x2PN (x0) in (54) is ob-
tained from (56) by substituting the argument x1 by the
argument x0.

Finally, it should be noticed that the replacements (24)
and (48) into the impact vector (21), as well as the re-
placements in (25) and (48) into the impact vector (33)
imply the occurrence of two new impact vectors,

d 0
σ =σ × (x0 × σ) , (57)

d 1
σ =σ × (x1 × σ) , (58)

where their absolute values are d 0
σ = |d 0

σ | and d 1
σ = |d 1

σ |.
These two impact vectors appear in a natural way if one
considers the boundary value problem. It is not surpris-
ing, that the impact vector in (57) is actually identical to
the impact vector in (21). The reason, that this impact
vector appears both in the boundary value problem as
well as in the initial value problem, is based in the fact
that the initial condition (10) of the initial value prob-
lem is identical to the boundary condition (22) of the
boundary value problem.

VII. SUMMARY AND OUTLOOK

In our recent investigation [50] the coordinate velocity
and the trajectory of a light signal in the gravitational
field of a body at rest has been determined in the 2PN ap-
proximation, where the monopole and quadrupole terms
of the gravitational field have been taken into account.
The unique solution of the geodesic equation has been de-
termined in the scheme of the initial value problem. In
reality, however, the light source as well as the observer

are located at finite distances x0 and x1 from the gravi-
tating solar system body. This fact requires to solve the
boundary value of the geodesic equation. The solution of
2PN light propagation in terms of these boundary values
x0 and x1 is represented in Section VI. Notably the 2PN
terms in Eqs. (53) and (54) with Eqs. (55) - (56), are the
primary results of this investigation. These results are
a basic requirement for highly precise measurements of
light deflection on the sub-µas scale and time delay on
sub-pico-second level in the solar system.
The final ambition of the boundary value problem is

the determination of three fundamental transformations
[37, 61]: k → σ, σ → n, k → n, where k is the unit
direction from the source towards the observer, σ is the
unit tangent vector of light trajectory at minus infinity,
and n is the unit tangent vector of the light ray at the
spatial position of the observer. These transformations
represent the basis of the Gaia rlativistic model (GREM)
[61], which has later been refined by our investigations in
[37] and [62]. These transformations would also be imple-
mented in relativistic models for data reduction of possi-
ble future space astrometry missions, like the Gaia suc-
cessor GaiaNIR [3] or Theia [4], planned to be launched
in an optimistic case in 2045 as medium-sized mission of
ESA [63]. The determination of these transformations
will be represented in a subsequent investigation.
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Appendix A: Notation

Throughout the investigation the following notation is
in use:

• G is the Newtonian constant of gravitation.

• c is the vacuum speed of light in Minkowskian
space-time.

• M is the rest mass of the body.

• Mab is the symmetric trace-free quadrupole mo-
ment of the body.

• Lower case Latin indices i, j, . . . take values 1, 2, 3.
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• ḟ denotes total derivative of f with respect to
global coordinate time.

• δij = δij = diag (+1,+1,+1) is Kronecker delta.

• Three-vectors are in boldface: e.g. a, b, σ, x.

• Contravariant components of three-vectors: ai =(
a 1, a2, a3

)
.

• Scalar product of three-vectors: a · b = δij a
i bj .

• Absolute value of three-vector: |a| =
√

δij ai aj .

• Levi-Civita symbol: εijk = εijk with ε123 = +1.

• Vector product of two three-vectors: (a× b)
i
=

εijk a
j bk.

• Lower case Greek indices take values 0,1,2,3.

• ηαβ = ηαβ = diag (−1,+1,+1,+1) is the metric
tensor of flat space-time.

• gαβ and gαβ are the covariant and contravariant
components of the metric tensor.

• Contravariant components of four-vectors: aµ =(
a 0, a 1, a2, a3

)
.

• milli-arcsecond (mas): 1mas = π/(180×60×60) ×
10−3 rad.

• micro-arcsecond (µas): 1µas = π/(180×60×60) ×
10−6 rad.

• nano-arcsecond (nas): 1 nas = π/(180× 60× 60) ×
10−9 rad.

• pico-second (ps): 1 ps = 10−12 second.

• repeated indices are implicitly summed over (Ein-
stein’s sum convention).

Appendix B: Tensorial coefficients of 1PN and 2PN
solution in (17) - (20)

The tensorial coefficients of the 1PN perturbation
terms in (17) and (18) are given by

U i
(1) (xN) = σi , (B1)

U i
(2) (xN) = diσ , (B2)

V ab i
(1) (xN) = σaδbi , (B3)

V ab i
(2) (xN) = daσδ

bi , (B4)

V ab i
(3) (xN) = σaσbσi , (B5)

V ab i
(4) (xN) = σadbσσ

i , (B6)

V ab i
(5) (xN) = daσd

b
σσ

i , (B7)

V ab i
(6) (xN) = daσd

b
σd

i
σ , (B8)

V ab i
(7) (xN) = σaσbdiσ , (B9)

V ab i
(8) (xN) = σadbσd

i
σ . (B10)

The coefficients in (B3) - (B10) represent a complete set
of linearly-independent tensors with three spatial indices,
which can be constructed from two independent three-
vectors, σa and dbσ, and the Kronecker symbol. Note,
that a permutation of the indices (a ↔ b) is of no rele-
vance, because of the symmetry of the quadrupole tensor.
For instance, there is no need to distinguish between the
tensors σaδbi and σbδai, because they yield same result:
σaδbi Mab = σbδai Mab.
The tensorial coefficients of the 2PN perturbation

terms in (19) and (20) are given by

W abcd i
(1) (xN) = δacσbδdi , (B11)

W abcd i
(2) (xN) = δacdbσδ

di , (B12)

W abcd i
(3) (xN) = σaσbσcδdi , (B13)

W abcd i
(4) (xN) = σaσbdcσδ

di , (B14)

W abcd i
(5) (xN) = σadbσσ

cδdi , (B15)

W abcd i
(6) (xN) = σadbσd

c
σδ

di , (B16)

W abcd i
(7) (xN) = daσd

b
σσ

cδdi , (B17)

W abcd i
(8) (xN) = daσd

b
σd

c
σδ

di , (B18)

W abcd i
(9) (xN) = δacδbdσi , (B19)

W abcd i
(10) (xN) = δacσbσdσi , (B20)

W abcd i
(11) (xN) = δacσbddσσ

i , (B21)

W abcd i
(12) (xN) = δacdbσd

d
σσ

i , (B22)

W abcd i
(13) (xN) = σaσbσcσdσi , (B23)

W abcd i
(14) (xN) = σaσbσcddσσ

i , (B24)

W abcd i
(15) (xN) = σaσbdcσd

d
σσ

i , (B25)

W abcd i
(16) (xN) = σadbσσ

cddσσ
i , (B26)

W abcd i
(17) (xN) = σadbσd

c
σd

d
σσ

i , (B27)

W abcd i
(18) (xN) = daσd

b
σd

c
σd

d
σσ

i , (B28)

W abcd i
(19) (xN) = δacδbddiσ , (B29)

W abcd i
(20) (xN) = δacσbσddiσ , (B30)

W abcd i
(21) (xN) = δacσbddσd

i
σ , (B31)

W abcd i
(22) (xN) = δacdbσd

d
σd

i
σ , (B32)

W abcd i
(23) (xN) = σaσbσcσddiσ , (B33)

W abcd i
(24) (xN) = σaσbσcddσd

i
σ , (B34)

W abcd i
(25) (xN) = σaσbdcσd

d
σd

i
σ , (B35)

W abcd i
(26) (xN) = σadbσσ

cddσd
i
σ , (B36)

W abcd i
(27) (xN) = σadbσd

c
σd

d
σd

i
σ , (B37)

W abcd i
(28) (xN) = daσd

b
σd

c
σd

d
σd

i
σ . (B38)

The coefficients in (B11) - (B38) represent a complete
set of tensors with five spatial indices, which can be con-
structed from two independent three-vectors, σa and dbσ,
and the Kronecker symbol, and where the symmetry of
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the quadrupole tensor is accounted for. That means,
the permutations (a ↔ b ∧ c ↔ d), (a ↔ b ∨ c ↔ d),
(a ↔ c ∧ b ↔ d), (a ↔ d ∧ b ↔ c) have no relevance; cf.
text below Eq. (B10).

Appendix C: Scalar functions of 1PN and 2PN
solution in (17) - (18)

1. Scalar functions of the 1PN Monopole term in
(17) and (18)

By comparing with Eqs. (62) and (66) in [50] one ob-
tains the scalar functions of the 1PN monopole terms in
Eqs. (17) and (18):

Ḟ(1) (xN) =+2 Ẇ(3) (xN) , (C1)

Ḟ(2) (xN) =−2 Ẋ(3) (xN) , (C2)

with

Ẇ(3) (xN) =− 1

xN
, (C3)

Ẋ(3) (xN) =+
1

(dσ)
2

(
1 +

σ · xN

xN

)
, (C4)

and

F(1) (xN) =+2W(3) (xN) , (C5)

F(2) (xN) =−2X(3) (xN) , (C6)

with

W(3) (xN) =+ ln (xN − σ · xN) , (C7)

X(3) (xN) =+
1

(dσ)
2 (xN + σ · xN) , (C8)

where xN = xN (t).

2. Scalar functions of the 1PN Quadrupole term in
(17) and (18)

By comparing with Eqs. (63) and (67) in [50] one ob-
tains the scalar functions of the 1PN quadrupole terms
in Eqs. (17) and (18):

Ġ(1) (xN) =+6 Ẇ(5) (xN) , (C9)

Ġ(2) (xN) =+6 Ẋ(5) (xN) , (C10)

Ġ(3) (xN) =+3 Ẇ(5) (xN)− 15 (dσ)
2 Ẇ(7) (xN) ,

(C11)

Ġ(4) (xN) =+18 Ẋ(3) (xN)− 30 (dσ)
2 Ẋ(7) (xN) ,

(C12)

Ġ(5) (xN) =+15 Ẇ(7) (xN) , (C13)

Ġ(6) (xN) =−15 Ẋ(7) (xN) , (C14)

Ġ(7) (xN) =−15 Ẋ(5) (xN) + 15 (dσ)
2 Ẋ(7) (xN) ,

(C15)

Ġ(8) (xN) =−30 Ẇ(7) (xN) , (C16)

with

Ẇ(5) (xN) =−1

3

1

(xN)
3 , (C17)

Ẇ(7) (xN) =−1

5

1

(xN)
5 , (C18)

Ẋ(5) (xN) =+
2

3

1

(dσ)
2

×

(
1

(dσ)
2 +

1

(dσ)
2

σ · xN

xN
+

1

2

σ · xN

(xN)
3

)
, (C19)

Ẋ(7) (xN) =+
8

15

1

(dσ)
2

(
1

(dσ)
4 +

1

(dσ)
4

σ · xN

xN

+
1

2

1

(dσ)
2

σ · xN

(xN)
3 +

3

8

σ · xN

(xN)
5

)
, (C20)

and

G(1) (xN) =+6W(5) (xN) , (C21)

G(2) (xN) =+6X(5) (xN) , (C22)

G(3) (xN) =+3W(5) (xN)− 15 (dσ)
2 W(7) (xN) ,

(C23)

G(4) (xN) =+18X(3) (xN)− 30 (dσ)
2 X(7) (xN) ,

(C24)

G(5) (xN) =+15W(7) (xN) , (C25)

G(6) (xN) =−15X(7) (xN) , (C26)

G(7) (xN) =−15X(5) (xN) + 15 (dσ)
2 X(7) (xN) ,

(C27)

G(8) (xN) =−30W(7) (xN) , (C28)

with

W(5) (xN) =−1

3

1

(dσ)
2

σ · xN

xN
, (C29)

W(7) (xN) =− 2

15

1

(dσ)
2

(
1

(dσ)
2

σ · xN

xN
+

1

2

σ · xN

(xN)
3

)
,

(C30)

X(5) (xN) =+
2

3

1

(dσ)
2

(
xN + σ · xN

(dσ)
2 − 1

2

1

xN

)
, (C31)

X(7) (xN) =+
8

15

1

(dσ)
2

×

(
xN + σ · xN

(dσ)
4 − 1

2

1

(dσ)
2

1

xN
− 1

8

1

(xN)
3

)
, (C32)

where xN = xN (t).
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Appendix D: The scalar functions in (19) - (20)

1. Scalar functions of the 2PN Monopole-Monopole term in (19) and (20)

By comparing with Eqs. (83) and (89) in [50] one obtains the scalar functions for the 2PN monopole-monopole
terms in Eqs. (19) and (20):

Ȧ(1) (xN) =−4 Ẇ(4) − 12 (x0 + σ · x0) Ẇ(5) − 2 (dσ)
2 Ẇ(6) + 4 Ẋ(3) − 8 Ż(3) + 12 (dσ)

2 Ż(5) , (D1)

Ȧ(2) (xN) =−4 Ẇ(3) − 12 Ẇ(5) −
4

(dσ)
2 Ẋ(2) −

4

(dσ)
2 (x0 + σ · x0) Ẋ(3) + 6 Ẋ(4) + 12 (x0 + σ · x0) Ẋ(5)

−2 (dσ)
2 Ẋ(6) + 12 Ẏ(5) , (D2)

and

A(1) (xN) =−4W(4) − 12 (x0 + σ · x0)W(5) − 2 (dσ)
2 W(6) + 4X(3) − 8Z(3) + 12 (dσ)

2 Z(5) , (D3)

A(2) (xN) =−4W(3) − 12W(5) −
4

(dσ)
2 X(2) −

4

(dσ)
2 (x0 + σ · x0)X(3) + 6X(4) + 12 (x0 + σ · x0)X(5)

−2 (dσ)
2 X(6) + 12Y(5) , (D4)

where the scalar functions Ẇ(n), Ẋ(n), Ẏ(n), Ż(n) and W(n), X(n), Y(n), Z(n) are given in [50]; the argument xN (t) of
these functions has been omitted here.

2. Scalar functions of the 2PN Monopole-Quadrupole term in (19) and (20)

By comparing with Eqs. (84) and (90) in [50] one obtains the scalar functions for the 2PN monopole-quadrupole
terms in Eqs. (19) and (20):

Ḃ(1) (xN) =+
4

(dσ)
2 Ẇ(4) + 22 Ẇ(6) − 60 (x0 + σ · x0) Ẇ(7) +

21

2
(dσ)

2 Ẇ(8) −
4

(dσ)
2

σ · x0

x0
Ẋ(3) + 60 Ẋ(5)

−60 (dσ)
2 Ẋ(7) − 48 Ż(5) + 60 (dσ)

2 Ż(7) , (D5)

... (D6)

Ḃ(8) (xN) =− 8

(dσ)
4 Ẇ(4) −

12

(x0)
3 Ẇ(5) +

32

(dσ)
2 Ẇ(6) − 63 Ẇ(8) + 420 (x0 + σ · x0) Ẇ(9) − 60 (dσ)

2 Ẇ(10)

+
8

(dσ)
4

σ · x0

x0
Ẋ(3) +

4

(dσ)
2

σ · x0

(x0)
3 Ẋ(3) +

24

(dσ)
2 Ẋ(5) −

12

(dσ)
2

σ · x0

x0
Ẋ(5) − 12

σ · x0

(x0)
3 Ẋ(5)

−420 Ẋ(7) + 420 (dσ)
2 Ẋ(9) + 360 Ż(7) − 420 (dσ)

2 Ż(9) , (D7)

and

B(1) (xN) =+
4

(dσ)
2 W(4) + 22W(6) − 60 (x0 + σ · x0)W(7) +

21

2
(dσ)

2 W(8) −
4

(dσ)
2

σ · x0

x0
X(3) + 60X(5)

−60 (dσ)
2 X(7) − 48Z(5) + 60 (dσ)

2 Z(7) , (D8)

... (D9)

B(8) (xN) =− 8

(dσ)
4 W(4) −

12

(x0)
3 W(5) +

32

(dσ)
2 W(6) − 63W(8) + 420 (x0 + σ · x0)W(9) − 60 (dσ)

2 W(10)

+
8

(dσ)
4

σ · x0

x0
X(3) +

4

(dσ)
2

σ · x0

(x0)
3 X(3) +

24

(dσ)
2 X(5) −

12

(dσ)
2

σ · x0

x0
X(5) − 12

σ · x0

(x0)
3 X(5)

−420X(7) + 420 (dσ)
2 X(9) + 360Z(7) − 420 (dσ)

2 Z(9) , (D10)

where the scalar functions Ẇ(n), Ẋ(n), Ẏ(n), Ż(n) and W(n), X(n), Y(n), Z(n) are given in [50]; the argument xN (t) of
these functions has been omitted here.
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3. Scalar functions of the 2PN Quadrupole-Quadrupole term in (19) and (20)

By comparing with Eqs. (85) and (91) in [50] one obtains the scalar functions for the 2PN quadrupole-quadrupole
terms in (19) and (20):

Ċ(1) (xN) =− 12

(dσ)
2 Ẇ(6) + 9 Ẇ(8) − 13 (dσ)

2 Ẇ(10) +
12

(dσ)
2

σ · x0

x0
Ẋ(5) , (D11)

... (D12)

Ċ(28) (xN) =+
120

(dσ)
6 Ẇ(7) −

420

(dσ)
4 Ẇ(9) +

210

(dσ)
4

σ · x0

x0
Ẇ(9) +

105

(dσ)
2

σ · x0

(x0)
3 Ẇ(9) +

120

(dσ)
6 Ẋ(6) +

180

(dσ)
4

Ẋ(7)

x0

+
45

(dσ)
2

Ẋ(7)

(x0)
3 − 360

(dσ)
6 (x0 + σ · x0) Ẋ(7) −

690

(dσ)
4 Ẋ(8) +

300

(dσ)
2 Ẋ(10) +

1005

2
Ẋ(12) −

225

2
(dσ)

2 Ẋ(14) ,

(D13)

and

C(1) (xN) =− 12

(dσ)
2 W(6) + 9W(8) − 13 (dσ)

2 W(10) +
12

(dσ)
2

σ · x0

x0
X(5) , (D14)

... (D15)

C(28) (xN) =+
120

(dσ)
6 W(7) −

420

(dσ)
4 W(9) +

210

(dσ)
4

σ · x0

x0
W(9) +

105

(dσ)
2

σ · x0

(x0)
3 W(9) +

120

(dσ)
6 X(6) +

180

(dσ)
4

X(7)

x0

+
45

(dσ)
2

X(7)

(x0)
3 − 360

(dσ)
6 (x0 + σ · x0)X(7) −

690

(dσ)
4 X(8) +

300

(dσ)
2 X(10) +

1005

2
X(12) −

225

2
(dσ)

2 X(14) ,

(D16)

where the scalar functions Ẇ(n), Ẋ(n), Ẏ(n), Ż(n) and W(n), X(n), Y(n), Z(n) are given in [50]; the argument xN (t) of
these functions has been omitted here.

Appendix E: Tensorial coefficients in (28) - (29)

The tensorial coefficients in (28) - (29) are given by

U i
(1) (x1PN) = σi , (E1)

U i
(2) (x1PN) = d̂σ

i
. (E2)

V ab i
(1) (x1PN) = σaδbi , (E3)

V ab i
(2) (x1PN) = d̂σ

a
δbi , (E4)

V ab i
(3) (x1PN) = σaσbσi , (E5)

V ab i
(4) (x1PN) = σad̂σ

b
σi , (E6)

V ab i
(5) (x1PN) = d̂σ

a
d̂σ

b
σi , (E7)

V ab i
(6) (x1PN) = d̂σ

a
d̂σ

b
d̂σ

i
, (E8)

V ab i
(7) (x1PN) = σaσb d̂σ

i
, (E9)

V ab i
(8) (x1PN) = σa d̂σ

b
d̂σ

i
. (E10)

Appendix F: Scalar functions in (28) - (29)

The scalar functions for the monopole term in Eqs. (28)
- (29) are given by

Ḟ(1) (x1PN) =+2 Ẇ(3) (x1PN) , (F1)

Ḟ(2) (x1PN) =−2 Ẋ(3) (x1PN) , (F2)

with

Ẇ(3) (x1PN) =− 1

x1PN
, (F3)

Ẋ(3) (x1PN) =+
1

(d̂σ)2

(
1 +

σ · x1PN

x1PN

)
, (F4)

and

F(1) (x1PN) =+2W(3) (x1PN) , (F5)

F(2) (x1PN) =−2X(3) (x1PN) , (F6)

with

W(3) (x1PN) =+ ln (x1PN − σ · x1PN) , (F7)

X(3) (x1PN) =+
1

(d̂σ)2
(x1PN + σ · x1PN) , (F8)
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where x1PN = x1PN (t).

The scalar functions for the quadrupole term in
Eqs. (28) - (29) are given by

Ġ(1) (x1PN) =+6 Ẇ(5) (x1PN) , (F9)

Ġ(2) (x1PN) =+6 Ẋ(5) (x1PN) , (F10)

Ġ(3) (x1PN) =+3 Ẇ(5) (x1PN)− 15(d̂σ)
2 Ẇ(7) (x1PN) ,

(F11)

Ġ(4) (x1PN) =+18 Ẋ(3) (x1PN)− 30(d̂σ)
2 Ẋ(7) (x1PN) ,

(F12)

Ġ(5) (x1PN) =+15 Ẇ(7) (x1PN) , (F13)

Ġ(6) (x1PN) =−15 Ẋ(7) (x1PN) , (F14)

Ġ(7) (x1PN) =−15 Ẋ(5) (x1PN) + 15(d̂σ)
2 Ẋ(7) (x1PN) ,

(F15)

Ġ(8) (x1PN) =−30 Ẇ(7) (x1PN) , (F16)

with

Ẇ(5) (x1PN) =−1

3

1

(x1PN)
3 , (F17)

Ẇ(7) (x1PN) =−1

5

1

(x1PN)
5 , (F18)

Ẋ(5) (x1PN) =+
2

3

1

(d̂σ)2

×

(
1

(d̂σ)2
+

1

(d̂σ)2

σ · x1PN

x1PN
+

1

2

σ · x1PN

(x1PN)
3

)
, (F19)

Ẋ(7) (x1PN) =+
8

15

1

(d̂σ)2

(
1

(d̂σ)4
+

1

(d̂σ)4

σ · x1PN

x1PN

+
1

2

1

(d̂σ)2

σ · x1PN

(x1PN)
3 +

3

8

σ · x1PN

(x1PN)
5

)
, (F20)

and

G(1) (x1PN) =+6W(5) (x1PN) , (F21)

G(2) (x1PN) =+6X(5) (x1PN) , (F22)

G(3) (x1PN) =+3W(5) (x1PN)− 15(d̂σ)
2 W(7) (x1PN) ,

(F23)

G(4) (x1PN) =+18X(3) (x1PN)− 30(d̂σ)
2 X(7) (x1PN) ,

(F24)

G(5) (x1PN) =+15W(7) (x1PN) , (F25)

G(6) (x1PN) =−15X(7) (x1PN) , (F26)

G(7) (x1PN) =−15X(5) (x1PN) + 15(d̂σ)
2 X(7) (x1PN) ,

(F27)

G(8) (x1PN) =−30W(7) (x1PN) , (F28)

with

W(5) (x1PN) =−1

3

1

(d̂σ)2

σ · x1PN

x1PN
, (F29)

W(7) (x1PN) =− 2

15

1

(d̂σ)2

(
1

(d̂σ)2

σ · x1PN

x1PN
+

1

2

σ · x1PN

(x1PN)
3

)
,

(F30)

X(5) (x1PN) =+
2

3

1

(d̂σ)2

×

(
x1PN + σ · x1PN

(d̂σ)2
− 1

2

1

x1PN

)
, (F31)

X(7) (x1PN) =+
8

15

1

(d̂σ)2

×

(
x1PN + σ · x1PN

(d̂σ)4
− 1

2

1

(d̂σ)2

1

x1PN
− 1

8

1

(x1PN)
3

)
,(F32)

where x1PN = x1PN (t).

Appendix G: The tensorial coefficients in (51) and
(52)

The tensorial coefficients of the 1PN perturbation
terms in (51) and (52) are given by

U i
(1) (x1) = σi , (G1)

U i
(2) (x1) = d 1 i

σ , (G2)

V ab i
(1) (x1) = σaδbi , (G3)

V ab i
(2) (x1) = d 1 a

σ δbi , (G4)

V ab i
(3) (x1) = σaσbσi , (G5)

V ab i
(4) (x1) = σad 1 b

σ σi , (G6)

V ab i
(5) (x1) = d 1 a

σ d 1 b
σ σi , (G7)

V ab i
(6) (x1) = d 1 a

σ d 1 b
σ d 1 i

σ , (G8)

V ab i
(7) (x1) = σaσbd 1 i

σ , (G9)

V ab i
(8) (x1) = σad 1 b

σ d 1 i
σ , (G10)

where the impact vector d 1
σ is defined by Eq. (58).
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Appendix H: The tensorial coefficients in (55) and
(56)

The tensorial coefficients of the 2PN perturbation
terms in (55) and (56) are given by

W abcd i
(1) (x1) = δacσbδdi , (H1)

W abcd i
(2) (x1) = δacd 1 b

σ δdi , (H2)

W abcd i
(3) (x1) = σaσbσcδdi , (H3)

W abcd i
(4) (x1) = σaσbd 1 c

σ δdi , (H4)

W abcd i
(5) (x1) = σad 1 b

σ σcδdi , (H5)

W abcd i
(6) (x1) = σad 1 b

σ d 1 c
σ δdi , (H6)

W abcd i
(7) (x1) = d 1 a

σ d 1 b
σ σcδdi , (H7)

W abcd i
(8) (x1) = d 1 a

σ d 1 b
σ d 1 c

σ δdi , (H8)

W abcd i
(9) (x1) = δacδbdσi , (H9)

W abcd i
(10) (x1) = δacσbσdσi , (H10)

W abcd i
(11) (x1) = δacσbd 1 d

σ σi , (H11)

W abcd i
(12) (x1) = δacd 1 b

σ d 1 d
σ σi , (H12)

W abcd i
(13) (x1) = σaσbσcσdσi , (H13)

W abcd i
(14) (x1) = σaσbσcd 1 d

σ σi , (H14)

W abcd i
(15) (x1) = σaσbd 1 c

σ d 1 d
σ σi , (H15)

W abcd i
(16) (x1) = σad 1 b

σ σcd 1 d
σ σi , (H16)

W abcd i
(17) (x1) = σad 1 b

σ d 1 c
σ d 1 d

σ σi , (H17)

W abcd i
(18) (x1) = d 1 a

σ d 1 b
σ d 1 c

σ d 1 d
σ σi , (H18)

W abcd i
(19) (x1) = δacδbdd 1 i

σ , (H19)

W abcd i
(20) (x1) = δacσbσdd 1 i

σ , (H20)

W abcd i
(21) (x1) = δacσbd 1 d

σ d 1 i
σ , (H21)

W abcd i
(22) (x1) = δacd 1 b

σ d 1 d
σ d 1 i

σ , (H22)

W abcd i
(23) (x1) = σaσbσcσdd 1 i

σ , (H23)

W abcd i
(24) (x1) = σaσbσcd 1 d

σ d 1 i
σ , (H24)

W abcd i
(25) (x1) = σaσbd 1 c

σ d 1 d
σ d 1 i

σ , (H25)

W abcd i
(26) (x1) = σad 1 b

σ σcd 1 d
σ d 1 i

σ , (H26)

W abcd i
(27) (x1) = σad 1 b

σ d 1 c
σ d 1 d

σ d 1 i
σ , (H27)

W abcd i
(28) (x1) = d 1 a

σ d 1 b
σ d 1 c

σ d 1 d
σ d 1 i

σ , (H28)

where the impact vector d 1
σ is defined by Eq. (58).

Appendix I: Scalar functions of 1PN solution in (51)
and (52)

In order to simplify the notation, it is useful to intro-
duce the following abbreviations:

a(n) = (x1 + σ · x1)
n
, (I1)

b(n) =
1

(x1)
n , (I2)

c(n) =
σ · x1

(x1)
n , (I3)

d(1) = ln (x1 − σ · x1) , (I4)

d(2) = arctan
σ · x1

d 1
σ

+
π

2
, (I5)

d(3) = arctan
σ · x1

d 1
σ

, (I6)

d(4) =
σ · x1

d 1
σ

(
arctan

σ · x1

d 1
σ

+
π

2

)
, (I7)

where n = 1, 2, 3, . . . in Eqs. (I1) - (I3) is a natural num-
ber.

1. Scalar functions of the 1PN Monopole term in
(51) and (52)

The scalar functions of the 1PN monopole term in
Eqs. (51) and (52) are given by

Ḟ(1) (x1) =−2 b(1) , (I8)

Ḟ(2) (x1) =− 2

(d 1
σ )

2

(
1 + c(1)

)
, (I9)

F(1) (x1) =+2 d(1) , (I10)

F(2) (x1) =− 2

(d 1
σ )

2
a(1) . (I11)
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2. Scalar functions of the 1PN Quadrupole term in
(51) and (52)

The scalar functions of the 1PN quadrupole term in
Eqs. (51) and (52) are given by

Ġ(1) (x1) =−2 b(3) , (I12)

Ġ(2) (x1) =+
4

(d 1
σ )

4

(
1 + c(1)

)
+

2

(d 1
σ )

2
c(3) , (I13)

Ġ(3) (x1) =−b(3) + 3 (d 1
σ )

2 b(5) , (I14)

Ġ(4) (x1) =− 4

(d 1
σ )

4

(
1 + c(1)

)
− 2

(d 1
σ )

2
c(3) − 6 c(5) , (I15)

Ġ(5) (x1) =−3 b(5) , (I16)

Ġ(6) (x1) =− 8

(d 1
σ )

6

(
1 + c(1)

)
− 4

(d 1
σ )

4
c(3) −

3

(d 1
σ )

2
c(5) ,

(I17)

Ġ(7) (x1) =− 2

(d 1
σ )

4

(
1 + c(1)

)
− 1

(d 1
σ )

2
c(3) + 3 c(5) , (I18)

Ġ(8) (x1) =+6 b(5) , (I19)

and

G(1) (x1) =− 2

(d 1
σ )

2
c(1) , (I20)

G(2) (x1) =+
4

(d 1
σ )

4
a(1) −

2

(d 1
σ )

2
b(1) , (I21)

G(3) (x1) =+
c(1)

(d 1
σ )

2
+ c(3) , (I22)

G(4) (x1) =− 4

(d 1
σ )

4
a(1) +

2

(d 1
σ )

2
b(1) + 2 b(3) , (I23)

G(5) (x1) =− 2

(d 1
σ )

4
c(1) −

c(3)

(d 1
σ )

2
, (I24)

G(6) (x1) =− 8

(d 1
σ )

6
a(1) +

4

(d 1
σ )

4
b(1) +

b(3)

(d 1
σ )

2
, (I25)

G(7) (x1) =− 2

(d 1
σ )

4
a(1) +

b(1)

(d 1
σ )

2
− b(3) , (I26)

G(8) (x1) =+
4

(d 1
σ )

4
c(1) +

2

(d 1
σ )

2
c(3) . (I27)

Appendix J: The scalar functions of the 2PN
solution in (55) and (56)

The scalar functions of the monopole-monopole term
in (55) and (56) are given by

Ẋ(1) (x1) =− 4

(d 1
σ )

2

(
1 + c(1)

)
+ 4 b(2) +

b(4)

2

(
d 1
σ

)2
,(J1)

Ẋ(2) (x1) =+
8

(d 1
σ )

4 a(1) +
4

(d 1
σ )

2 b(1) +
17

4

c(2)

(d 1
σ )

2 −
c(4)

2

−15

4

d(2)

(d 1
σ )

3 , (J2)

and

X(1) (x1) =+
4

(d 1
σ )

2 a(1) +
c(2)

4
− 15

4

d(3)

d 1
σ

, (J3)

X(2) (x1) =+
4

(d 1
σ )

4 a(2) +
b(2)

4
− 15

4

d(4)

(d 1
σ )

2 . (J4)
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The scalar functions of the monopole-quadrupole term in (55) and (56) are given by

Ẏ(1) (x1) =+
4

(d 1
σ )

4

(
1 + c(1)

)
+

2

(d 1
σ )

2 b(2) +
7

2
b(4) −

7

4

(
d 1
σ

)2
b(6) +

4

(d 1
σ )

2 c(3) , (J5)

Ẏ(2) (x1) =− 32

(d 1
σ )

6 a(1) −
8

(d 1
σ )

4 b(1) +
4

(d 1
σ )

2 b(3) −
303

32

c(2)

(d 1
σ )

4 − 37

16

c(4)

(d 1
σ )

2 +
7

4
c(6) +

465

32

d(2)

(d 1
σ )

5 , (J6)

Ẏ(3) (x1) =− 12

(d 1
σ )

4

(
1 + c(1)

)
+

21

2
b(4) − 7

(
d 1
σ

)2
b(6) −

15

4

(
d 1
σ

)4
b(8) −

6

(d 1
σ )

2 c(3) + 6 c(5) , (J7)

Ẏ(4) (x1) =+
32

(d 1
σ )

6 a(1) +
8

(d 1
σ )

4 b(1) −
8

(d 1
σ )

2 b(3) + 12 b(5) +
303

32

c(2)

(d 1
σ )

4 − 27

16

c(4)

(d 1
σ )

2 +
81

4
c(6) +

15

2

(
d 1
σ

)2
c(8)

−465

32

d(2)

(d 1
σ )

5 , (J8)

Ẏ(5) (x1) =− 16

(d 1
σ )

6

(
1 + c(1)

)
+

4

(d 1
σ )

4 b(2) −
2

(d 1
σ )

2 b(4) +
19

2
b(6) +

15

4

(
d 1
σ

)2
b(8) −

4

(d 1
σ )

4 c(3) −
6

(d 1
σ )

2 c(5) , (J9)

Ẏ(6) (x1) =+
96

(d 1
σ )

8 a(1) −
8

(d 1
σ )

4 b(3) +
6

(d 1
σ )

2 b(5) +
747

64

c(2)

(d 1
σ )

6 +
121

32

c(4)

(d 1
σ )

4 +
101

8

c(6)

(d 1
σ )

2 − 15

4
c(8) −

2325

64

d(2)

(d 1
σ )

7 ,

(J10)

Ẏ(7) (x1) =+
32

(d 1
σ )

6 a(1) −
4

(d 1
σ )

4 b(1) +
10

(d 1
σ )

2 b(3) − 6 b(5) −
87

64

c(2)

(d 1
σ )

4 +
355

32

c(4)

(d 1
σ )

2 − 121

8
c(6) +

15

4

(
d 1
σ

)2
c(8)

−855

64

d(2)

(d 1
σ )

5 , (J11)

Ẏ(8) (x1) =− 16

(d 1
σ )

6

(
1 + c(1)

)
− 4

(d 1
σ )

4 b(2) +
20

(d 1
σ )

2 b(4) −
63

2
b(6) +

15

2

(
d 1
σ

)2
b(8) −

12

(d 1
σ )

4 c(3) +
12

(d 1
σ )

2 c(5) , (J12)

and

Y(1) (x1) =+12
a(1)

(d 1
σ )

4 − 4
b(1)

(d 1
σ )

2 − 93

32

c(2)

(d 1
σ )

2 − 7

16
c(4) −

285

32

d(3)

(d 1
σ )

3 , (J13)

Y(2) (x1) =−16
a(2)

(d 1
σ )

6 − 91

32

b(2)

(d 1
σ )

2 − 7

16
b(4) + 4

c(1)

(d 1
σ )

4 +
465

32

d(4)

(d 1
σ )

4 , (J14)

Y(3) (x1) =−8
a(1)

(d 1
σ )

4 + 2
b(1)

(d 1
σ )

2 + 2 b(3) +
29

64

c(2)

(d 1
σ )

2 +
111

32
c(4) −

5

8

(
d 1
σ

)2
c(6) +

285

64

d(3)

(d 1
σ )

3 , (J15)

Y(4) (x1) =+16
a(2)

(d 1
σ )

6 +
27

32

b(2)

(d 1
σ )

2 +
111

16
b(4) −

5

4

(
d 1
σ

)2
b(6) − 8

c(1)

(d 1
σ )

4 − 4
c(3)

(d 1
σ )

2 − 465

32

d(4)

(d 1
σ )

4 , (J16)

Y(5) (x1) =+8
a(1)

(d 1
σ )

6 − 4
b(1)

(d 1
σ )

4 − 2
b(3)

(d 1
σ )

2 − 209

64

c(2)

(d 1
σ )

4 − 91

32

c(4)

(d 1
σ )

2 +
5

8
c(6) −

465

64

d(3)

(d 1
σ )

5 , (J17)

Y(6) (x1) =+48
a(2)

(d 1
σ )

8 +
263

64

b(2)

(d 1
σ )

4 +
91

32

b(4)

(d 1
σ )

2 +
5

8
b(6) − 16

c(1)

(d 1
σ )

6 − 4
c(3)

(d 1
σ )

4 − 2325

64

d(4)

(d 1
σ )

6 , (J18)

Y(7) (x1) =+16
a(2)

(d 1
σ )

6 +
285

64

b(2)

(d 1
σ )

2 − 71

32
b(4) −

5

8

(
d 1
σ

)2
b(6) + 4

c(3)

(d 1
σ )

2 − 855

64

d(4)

(d 1
σ )

4 , (J19)

Y(8) (x1) =−32
a(1)

(d 1
σ )

6 + 12
b(1)

(d 1
σ )

4 + 8
b(3)

(d 1
σ )

2 +
81

32

c(2)

(d 1
σ )

4 +
91

16

c(4)

(d 1
σ )

2 +
5

4
c(6) +

465

32

d(3)

(d 1
σ )

5 . (J20)
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The scalar functions of the quadrupole-quadrupole term in (55) and (56) are given by

Ż(1) (x1) =+
8

(d 1
σ )

6

(
1 + c(1)

)
− 4

(d 1
σ )

4 b(2) −
b(4)

(d 1
σ )

2 − 3

2
b(6) +

13

8

(
d 1
σ

)2
b(8) , (J21)

Ż(2) (x1) =− 32

(d 1
σ )

8 a(1) +
16

(d 1
σ )

6 b(1) +
985

128

c(2)

(d 1
σ )

6 +
217

192

c(4)

(d 1
σ )

4 +
5

48

c(6)

(d 1
σ )

2 − 13

8
c(8) +

985

128

d(2)

(d 1
σ )

7 , (J22)

Ż(3) (x1) =− 4

(d 1
σ )

6

(
1 + c(1)

)
+

6

(d 1
σ )

4 b(2) −
3

2

b(4)

(d 1
σ )

2 +
37

4
b(6) −

189

16

(
d 1
σ

)2
b(8) +

9

4

(
d 1
σ

)4
b(10) +

4

(d 1
σ )

4 c(3) ,

(J23)

Ż(4) (x1) =− 32

(d 1
σ )

8 a(1) +
16

(d 1
σ )

6 b(1) −
28

(d 1
σ )

4 b(3) +
24

(d 1
σ )

2 b(5) +
5515

512

c(2)

(d 1
σ )

6 − 19061

768

c(4)

(d 1
σ )

4 +
2255

192

c(6)

(d 1
σ )

2

+
329

32
c(8) −

9

4

(
d 1
σ

)2
c(10) +

5515

512

d(2)

(d 1
σ )

7 , (J24)

Ż(5) (x1) =+
32

(d 1
σ )

8 a(1) −
16

(d 1
σ )

6 b(1) −
2285

256

c(2)

(d 1
σ )

6 − 749

384

c(4)

(d 1
σ )

4 − 73

96

c(6)

(d 1
σ )

2 +
305

16
c(8) −

9

2

(
d 1
σ

)2
c(10)

−2285

256

d(2)

(d 1
σ )

7 , (J25)

Ż(6) (x1) =+
16

(d 1
σ )

6 b(2) −
56

(d 1
σ )

4 b(4) +
22

(d 1
σ )

2 b(6) +
41

2
b(8) −

9

2

(
d 1
σ

)2
b(10) +

16

(d 1
σ )

6 c(3) −
48

(d 1
σ )

4 c(5) , (J26)

Ż(7) (x1) =+
8

(d 1
σ )

6 b(2) −
4

(d 1
σ )

4 b(4) −
1

(d 1
σ )

2 b(6) +
19

2
b(8) −

9

4

(
d 1
σ

)2
b(10) +

8

(d 1
σ )

6 c(3) , (J27)

Ż(8) (x1) =+
16

(d 1
σ )

6 b(3) −
24

(d 1
σ )

4 b(5) −
2205

512

c(2)

(d 1
σ )

8 +
3361

256

c(4)

(d 1
σ )

6 − 1171

64

c(6)

(d 1
σ )

4 − 255

32

c(8)

(d 1
σ )

2 +
9

4
c(10)

−2205

512

d(2)

(d 1
σ )

9 , (J28)

Ż(9) (x1) =−
b(6)

2
+

5

8

(
d 1
σ

)2
b(8) , (J29)

Ż(10) (x1) =− 8

(d 1
σ )

6

(
1 + c(1)

)
+

4

(d 1
σ )

4 b(2) +
b(4)

(d 1
σ )

2 +
5

2
b(6) −

95

8

(
d 1
σ

)2
b(8) +

15

2

(
d 1
σ

)4
b(10) , (J30)

Ż(11) (x1) =+
32

(d 1
σ )

8 a(1) −
16

(d 1
σ )

6 b(1) −
8

(d 1
σ )

4 b(3) −
985

128

c(2)

(d 1
σ )

6 +
1319

192

c(4)

(d 1
σ )

4 +
187

48

c(6)

(d 1
σ )

2 +
85

8
c(8)

−15
(
d 1
σ

)2
c(10) −

985

128

d(2)

(d 1
σ )

7 , (J31)

Ż(12) (x1) =− 16

(d 1
σ )

8

(
1 + c(1)

)
+

6

(d 1
σ )

4 b(4) +
2

(d 1
σ )

2 b(6) +
25

4
b(8) −

15

2

(
d 1
σ

)2
b(10) −

8

(d 1
σ )

6 c(3) , (J32)

Ż(13) (x1) =− 6

(d 1
σ )

4 b(2) −
9

(d 1
σ )

2 b(4) +
33

2
b(6) +

39

16

(
d 1
σ

)2
b(8) −

27

2

(
d 1
σ

)4
b(10) +

75

8

(
d 1
σ

)6
b(12)

− 6

(d 1
σ )

4 c(3) +
6

(d 1
σ )

2 c(5) , (J33)

Ż(14) (x1) =+
16

(d 1
σ )

4 b(3) −
12

(d 1
σ )

2 b(5) −
945

512

c(2)

(d 1
σ )

6 +
3781

256

c(4)

(d 1
σ )

4 − 319

64

c(6)

(d 1
σ )

2 − 411

32
c(8) +

81

4

(
d 1
σ

)2
c(10)

−75

2

(
d 1
σ

)4
c(12) −

945

512

d(2)

(d 1
σ )

7 , (J34)

Ż(15) (x1) =− 16

(d 1
σ )

8

(
1 + c(1)

)
− 8

(d 1
σ )

6 b(2) −
16

(d 1
σ )

4 b(4) − 4 b(8) + 12
(
d 1
σ

)2
b(10) −

75

4

(
d 1
σ

)4
b(12) −

16

(d 1
σ )

6 c(3)

+
6

(d 1
σ )

4 c(5) , (J35)

Ż(16) (x1) =+
16

(d 1
σ )

8

(
1 + c(1)

)
− 16

(d 1
σ )

6 b(2) +
50

(d 1
σ )

4 b(4) −
24

(d 1
σ )

2 b(6) −
35

4
b(8) + 24

(
d 1
σ

)2
b(10) −

75

2

(
d 1
σ

)4
b(12)

− 8

(d 1
σ )

6 c(3) +
48

(d 1
σ )

4 c(5) , (J36)
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Ż(17) (x1) =− 32

(d 1
σ )

6 b(3) +
48

(d 1
σ )

4 b(5) +
2205

512

c(2)

(d 1
σ )

8 − 7457

256

c(4)

(d 1
σ )

6 +
2195

64

c(6)

(d 1
σ )

4 +
447

32

c(8)

(d 1
σ )

2

+
39

4
c(10) +

75

2

(
d 1
σ

)2
c(12) +

2205

512

d(2)

(d 1
σ )

9 , (J37)

Ż(18) (x1) =− 12

(d 1
σ )

6 b(4) +
6

(d 1
σ )

4 b(6) +
15

2

b(8)

(d 1
σ )

2 +
3

2
b(10) +

75

8

(
d 1
σ

)2
b(12) −

12

(d 1
σ )

6 c(5) , (J38)

Ż(19) (x1) =+
5

128

c(2)

(d 1
σ )

6 +
5

192

c(4)

(d 1
σ )

4 +
1

48

c(6)

(d 1
σ )

2 − 5

8
c(8) +

5

128

d(2)

(d 1
σ )

7 , (J39)

Ż(20) (x1) =+
925

256

c(2)

(d 1
σ )

6 +
925

384

c(4)

(d 1
σ )

4 +
185

96

c(6)

(d 1
σ )

2 +
95

16
c(8) −

15

2

(
d 1
σ

)2
c(10) +

925

256

d(2)

(d 1
σ )

7 , (J40)

Ż(21) (x1) =− 48

(d 1
σ )

8

(
1 + c(1)

)
+

16

(d 1
σ )

6 b(2) +
10

(d 1
σ )

4 b(4) +
4

(d 1
σ )

2 b(6) +
55

4
b(8) − 15

(
d 1
σ

)2
b(10) −

8

(d 1
σ )

6 c(3) , (J41)

Ż(22) (x1) =+
128

(d 1
σ )

10 a(1) −
64

(d 1
σ )

8 b(1) −
32

(d 1
σ )

6 b(3) +
24

(d 1
σ )

4 b(5) −
6895

256

c(2)

(d 1
σ )

8 − 13039

384

c(4)

(d 1
σ )

6 − 227

96

c(6)

(d 1
σ )

4

− 5

16

c(8)

(d 1
σ )

2 +
15

2
c(10) −

6895

256

d(2)

(d 1
σ )

9 , (J42)

Ż(23) (x1) =+
24

(d 1
σ )

8 a(1) −
12

(d 1
σ )

6 b(1) +
14

(d 1
σ )

4 b(3) −
6

(d 1
σ )

2 b(5) −
25875

2048

c(2)

(d 1
σ )

6 +
8783

1024

c(4)

(d 1
σ )

4 − 701

256

c(6)

(d 1
σ )

2

−2577

128
c(8) +

399

16

(
d 1
σ

)2
c(10) −

75

8

(
d 1
σ

)4
c(12) −

25875

2048

d(2)

(d 1
σ )

7 , (J43)

Ż(24) (x1) =+
24

(d 1
σ )

8

(
1 + c(1)

)
− 24

(d 1
σ )

6 b(2) +
15

(d 1
σ )

4 b(4) −
6

(d 1
σ )

2 b(6) −
609

8
b(8) +

207

2

(
d 1
σ

)2
b(10) −

75

2

(
d 1
σ

)4
b(12)

− 12

(d 1
σ )

6 c(3) +
12

(d 1
σ )

4 c(5) , (J44)

Ż(25) (x1) =+
128

(d 1
σ )

10 a(1) −
64

(d 1
σ )

8 b(1) +
48

(d 1
σ )

6 b(3) −
30

(d 1
σ )

4 b(5) −
19405

1024

c(2)

(d 1
σ )

8 +
78899

1536

c(4)

(d 1
σ )

6 − 41

384

c(6)

(d 1
σ )

4

+
49

64

c(8)

(d 1
σ )

2 − 279

8
c(10) +

75

4

(
d 1
σ

)2
c(12) −

19405

1024

d(2)

(d 1
σ )

9 , (J45)

Ż(26) (x1) =− 128

(d 1
σ )

10 a(1) +
64

(d 1
σ )

8 b(1) +
8

(d 1
σ )

6 b(3) +
6395

512

c(2)

(d 1
σ )

8 +
251

768

c(4)

(d 1
σ )

6 − 1025

192

c(6)

(d 1
σ )

4 +
73

32

c(8)

(d 1
σ )

2

−279

4
c(10) +

75

2

(
d 1
σ

)2
c(12) +

6395

512

d(2)

(d 1
σ )

9 , (J46)

Ż(27) (x1) =− 16

(d 1
σ )

10

(
1 + c(1)

)
− 48

(d 1
σ )

8 b(2) +
96

(d 1
σ )

6 b(4) −
30

(d 1
σ )

4 b(6) −
6

(d 1
σ )

2 b(8) −
147

2
b(10) +

75

2

(
d 1
σ

)2
b(12)

− 56

(d 1
σ )

8 c(3) +
72

(d 1
σ )

6 c(5) , (J47)

Ż(28) (x1) =− 24

(d 1
σ )

8 b(3) +
36

(d 1
σ )

6 b(5) +
19845

2048

c(2)

(d 1
σ )

10 − 17961

1024

c(4)

(d 1
σ )

8 +
7467

256

c(6)

(d 1
σ )

6 +
1719

128

c(8)

(d 1
σ )

4 +
159

16

c(10)

(d 1
σ )

2

−75

8
c(12) +

19845

2048

d(2)

(d 1
σ )

11 , (J48)

and
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Z(1) (x1) =+8
a(1)

(d 1
σ )

6 − 8
b(1)

(d 1
σ )

4 − 327

128

c(2)

(d 1
σ )

4 − 7

192

c(4)

(d 1
σ )

2 +
13

48
c(6) +

185

128

d(3)

(d 1
σ )

5 , (J49)

Z(2) (x1) =−16
a(2)

(d 1
σ )

8 − 985

384

b(2)

(d 1
σ )

4 − 5

192

b(4)

(d 1
σ )

2 +
13

48
b(6) + 8

c(1)

(d 1
σ )

6 +
985

128

d(4)

(d 1
σ )

6 , (J50)

Z(3) (x1) =+4
a(1)

(d 1
σ )

6 + 4
b(1)

(d 1
σ )

4 − 2103

512

c(2)

(d 1
σ )

4 +
451

256

c(4)

(d 1
σ )

2 +
23

64
c(6) +

9

32

(
d 1
σ

)2
c(8) −

5175

512

d(3)

(d 1
σ )

5 , (J51)

Z(4) (x1) =−16
a(2)

(d 1
σ )

8 − 27019

1536

b(2)

(d 1
σ )

4 +
1585

768

b(4)

(d 1
σ )

2 +
55

192
b(6) +

9

32

(
d 1
σ

)2
b(8) + 20

c(1)

(d 1
σ )

6 − 8
c(3)

(d 1
σ )

4

+
5515

512

d(4)

(d 1
σ )

6 , (J52)

Z(5) (x1) =+16
a(2)

(d 1
σ )

8 − 3859

768

b(2)

(d 1
σ )

4 +
1609

384

b(4)

(d 1
σ )

2 +
79

96
b(6) +

9

16

(
d 1
σ

)2
b(8) − 8

c(1)

(d 1
σ )

6 − 2285

256

d(4)

(d 1
σ )

6 , (J53)

Z(6) (x1) =−16
a(1)

(d 1
σ )

8 + 24
b(1)

(d 1
σ )

6 − 16
b(3)

(d 1
σ )

4 +
6381

256

c(2)

(d 1
σ )

6 − 2323

384

c(4)

(d 1
σ )

4 − 119

96

c(6)

(d 1
σ )

2 − 9

16
c(8)

+
2285

256

d(3)

(d 1
σ )

7 , (J54)

Z(7) (x1) =+16
a(1)

(d 1
σ )

8 − 1419

512

c(2)

(d 1
σ )

6 − 2443

768

c(4)

(d 1
σ )

4 − 143

192

c(6)

(d 1
σ )

2 − 9

32
c(8) −

5515

512

d(3)

(d 1
σ )

7 , (J55)

Z(8) (x1) =+
4831

512

b(2)

(d 1
σ )

6 − 877

256

b(4)

(d 1
σ )

4 − 43

64

b(6)

(d 1
σ )

2 − 9

32
b(8) + 8

c(3)

(d 1
σ )

6 − 2205

512

d(4)

(d 1
σ )

8 , (J56)

Z(9) (x1) =+
1

128

c(2)

(d 1
σ )

4 +
1

192

c(4)

(d 1
σ )

2 +
5

48
c(6) +

1

128

d(3)

(d 1
σ )

5 , (J57)

Z(10) (x1) =−8
a(1)

(d 1
σ )

6 + 8
b(1)

(d 1
σ )

4 +
839

256

c(2)

(d 1
σ )

4 +
199

384

c(4)

(d 1
σ )

2 − 85

96
c(6) +

15

16

(
d 1
σ

)2
c(8) −

185

256

d(3)

(d 1
σ )

5 , (J58)

Z(11) (x1) =+16
a(2)

(d 1
σ )

8 +
2521

384

b(2)

(d 1
σ )

4 +
197

192

b(4)

(d 1
σ )

2 − 85

48
b(6) +

15

8

(
d 1
σ

)2
b(8) − 8
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