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ABSTRACT. The total light deflection represents a concept, which allows one to decide which
multipoles need to be implemented in the light trajectory for a given astrometric accuracy. The
fundamental quantity of total light deflection is the tangent vector of the light trajectory at
future infinity. It has been found that this tangent vector is naturally given by Chebyshev
polynomials. It is just this remarkable fact, which allows to determine strict upper limits of
total light deflection for each individual multipole of solar system bodies. Special care is taken
about the gauge terms. It is found that these gauge terms vanish at spatial infinity. The results
are applied to the case of light deflection in the gravitational fields of Jupiter and Saturn.

1. INTRODUCTION

Angular measurements of stellar objects have made impressive advancements during recent
decades. In particular, the astrometry missions Hipparcos and Gaia of European Space Agency
(ESA) have reached the milli-arcsecond (mas) and the micro-arcsecond (µas) level of accuracy,
respectively. The next goal in astrometric science is to arrive at the sub-micro-arcsecond (sub-
µas) or even the nano-arcsecond (nas) scale of accuracy. The objectives of such highly precise
measurements are overwhelming, e.g.: detection of earth-like planets, stringent tests of relativity,
mapping of dark matter from areas beyond the Milky Way, and direct distance measurements
of stellar standard candles up to the closest galaxy clusters; see also (Johnston, 2000).

In fact, several missions have been proposed to ESA, aiming at such levels in astrometric
precision, like Theia and Gaia-NIR, which are primarily designed to study local dark matter
properties, to detect Earth-like exoplanets, and to study the physics of highly compact ob-
jects (white dwarfs, neutron stars, black holes). A further promising candidate is NEAT (Near
Infrared Astrometric Telescope), originally designed for an precision of about 50 nas.

The fundamental assignment in relativistic astrometry is the precise interpretation of obser-
vational data, which requires an accurate modeling of trajectories of light signals through the
curved space-time of the solar system. In view of recent achievements in astrometric angular
observations as well as in view of missions proposed to ESA, a corresponding development in
the theory of light propagation is indispensable. The investigation of the total light deflection
is a further step towards these directions.

2. THE METRIC TENSOR

The curved space-time is described by the pair (M, gµν) where M is a four-dimensional
differentiable manifold, while gµν is the metric tensor of the manifold, and each point P ∈ M
represents a space-time event. The metric tensor is governed by the field equations of gravity
(Einstein, 1915), which relate the metric tensor gαβ of the physical manifold M to the stress-
energy tensor of matter Tαβ. These exact field equations can only be solved in closed form
for highly symmetric bodies, like spherically symmetric bodies or bodies of ellipsoidal shape,
but not for realistic bodies of the solar system. Therefore, approximative approaches of general
relativity are essential for further progress in the theory of gravity and in the theory of light
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propagation. In the solar system the gravitational fields are weak and, therefore, one may apply
the theory of linearized gravity. In that approximation, the covariant components of the metric
tensor are decomposed into the flat Minkowski metric ηαβ = (−1,+1,+1,+1) plus a metric
perturbation hαβ,

gαβ = ηαβ + hαβ =⇒ gαβ = ηαβ − h
αβ

, (1)

where gαβ =
√
−g gαβ are the contravariant components of the metric density, with g = det (gµν)

being the determinant of the metric. The decomposition (1) implies that the metric perturba-
tions hαβ can be thought of as symmetric tensorial fields which propagate in the flat background
manifold M0. The metric of the flat background manifold is given by ηαβ. Thus, the flat back-
ground space-time is described by the pair (M0, ηµν), and the diffeomorphism between the
physical manifold M and the flat background manifold M0 implies a one-to-one correspondence
of the points Q ∈ M0 to the points P ∈ M.

The metric perturbation hαβ and the metric density perturbation hαβ are uniquely related
to each other: hαβ = hαβ − 1

2 h ηαβ with h = h
µν
ηµν . The weak-field condition |hαβ| ≪ 1

inherits |hαβ| ≪ 1. In linearized gravity, the tensor indices are lowered and raised by the flat
Minkowskian metric, e.g. hαβ = hµν η

µα ηµβ.
Inserting (1) into the field equations of gravity and keeping terms linear in the metric per-

turbation, yields the field equations of linearized gravity (cf. Eq. (18.5) in (Misner, Thorne,
Wheeler, 1973)). They are considerably be simplified by the harmonic gauge, which implies
that the coordinates {x}, which cover the flat background manifold M0, satisfy the equation
□xµ = 0. Then, the linearized field equations of gravity read

□hαβ = −16πG

c4
Tαβ , (2)

where □ = ηµν∂µ∂ν is the flat d’Alembertian. Imposing Fock-Sommerfeld boundary conditions
ensures a unique solution of (2) in the coordinates {x}. Though, the harmonic gauge, □xµ = 0,
does not uniquely determine these coordinates, but allows for small deformations (Box 18.2 in
(Misner, Thorne, Wheeler, 1973) or Eq. (3.521) in (Kopeikin, Efroimsky & Kaplan, 2012))

xαcan = xα + ξα(xβ), (3)

if the vector fields ξα satisfy □ ξα = 0. The label of these new coordinates {xcan} abbreviates
the term ”canonical”. The transformation (3) implies a transformation of the metric tensor,

gαβ (t,x) =
∂xµcan
∂xα

∂xνcan
∂xβ

gcanµν (tcan,xcan) . (4)

By inserting (3) into (4) and performing a series expansion of the metric tensor on the r.h.s.
around the old coordinates {x}, one obtains (with notation ∂α f ≡ f , α ≡ ∂f/∂xα):

gαβ (t,x) = gcanαβ (t,x) + ∂αξβ (t,x) + ∂βξα (t,x) , (5)

up to terms of higher order, i.e. up to non-linear terms. As stated above, by imposing the
Fock-Sommerfeld boundary condition, the solution for the metric tensor gαβ in (5) is unique.
This unique solution can be expressed in terms of six Cartesian symmetric and tracefree (STF)
multipoles {M̂L, ŜL, ŴL, X̂L, ŶL, ẐL} (Thorne, 1980); the hat over the multipoles indicates STF.
The canonical piece gcanαβ in (5) depends on two multipoles only: mass-multipoles and spin-

multipoles {M̂L, ŜL}. Accordingly, the gauge transformation of the metric tensor, as given by
Eq. (5), results in the following form for the metric perturbations ((Thorne, 1980) and (Blanchet
& Damour, 1986) and (Damour & Iyer, 1991)):

hαβ (t,x) = hcanαβ

[
M̂L, ŜL

]
+ ∂αξβ

[
ŴL, X̂L, ŶL, ẐL

]
+ ∂βξα

[
ŴL, X̂L, ŶL, ẐL

]
. (6)
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The metric of the curved space-time in the exterior of the massive body is assumed to be time-
independent. Then, the canonical metric perturbations in (6) are separated into two pieces,

hcanαβ = h
(2) can
αβ + h

(3) can
αβ , which are given by

h
(2) can
00 =

2G

c2

∞∑
l=0

(−1)l

l!
M̂L ∂̂L

1

r
and h

(3) can
0i =

4G

c3

∞∑
l=1

(−1)l l

(l + 1)!
ϵiab ŜbL−1 ∂̂aL−1

1

r
, (7)

while h
(2) can
ij = h

(2) can
00 δij and the multipoles M̂L and ŜL are given by Eqs. (5.33) and (5.35) in

(Damour & Iyer, 1991). The gauge functions in (6) have been determined by (Thorne, 1980)
and (Blanchet & Damour, 1986) and (Damour & Iyer, 1991) and read:

ξ0 = +
4G

c3

∞∑
l=0

(−1)l

l!
∂̂L

ŴL

r
, (8)

ξi = −4G

c2

∞∑
l=0

(−1)l

l!
∂̂iL

X̂L

r
− 4G

c2

∞∑
l=1

(−1)l

l!
∂̂L−1

ŶiL−1

r
− 4G

c2

∞∑
l=1

(−1)l

l!

l

l + 1
ϵiab ∂aL−1

ẐbL−1

r
.

(9)
Here, r = |x|, and

∂̂L = STFi1...il

∂

∂xi1
. . .

∂

∂xil
, (10)

where the hat in ∂̂L indicates STF operation with respect to the indices L = i1 . . . il. The
multipoles ŴL, X̂L, ŶL, ẐL of the gauge functions in (8) and (9 are given in (Damour & Iyer,
1991), but their explicit form is not relevant here, because we will show that the gauge terms
in (6) have no impact on the unit tangent vector and, therefore, no impact on the total light
deflection. This result is an example of the general fact that gαβ and gcanαβ in (5) are physically
equivalent, because they lead to same observables.

3. THE GEODESIC EQUATION

The light signal is assumed to propagate in the flat background manifoldM0 which is covered
by harmonic coordinates, xµ =

(
x0, x1, x2, x3

)
, where the origin of the spatial axes is located at

the center of mass of the body. The exact light trajectory can be written in the following form,

x (t) = x0 + c (t− t0)σ +∆x (t) , (11)

where ∆x denotes the corrections to the unperturbed light trajectory, xN (t) = x0+ c (t− t0)σ,
and N stands for Newtonian (e.g. Kopeikin, Efroimsky & Kaplan, 2012). Furthermore, we
introduce the unit tangent vectors along the light trajectory at past and future infinity,

σ =
ẋ (t)

c

∣∣∣∣
t→−∞

and ν =
ẋ (t)

c

∣∣∣∣
t→+∞

, (12)

where a dot means total derivative with respect to coordinate time, and from (12) follows
σ · σ = 1 and ν · ν = 1. The total light deflection is the angle between these unit vectors,

δ (σ,ν) = arcsin |σ × ν| . (13)

The evaluation of this quantity is essential, in order to decide which multipoles need to be
implemented in the relativistic model of light propagation for a given astrometric accuracy.
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Figure 1: The light signal is emitted by the celestial light source at x0 in the direction of unit-
vector µ and propagates along the exact trajectory x (t). The origin of the spatial coordinates
is located at the center of mass of the body, and the spatial coordinate axes are aligned with
the principal axes of the body. The body is in rotational motion around some axis with angular
velocity Ω. The unit tangent vectors σ and ν of the light trajectory at past infinity and future
infinity are defined by Eqs. (12), while dσ is the impact vector of the unperturbed light ray.

The geodesic equation for light rays in the post-Newtonian (PN) scheme in 1.5PN approxi-
mation reads (Kopeikin, Efroimsky & Kaplan, 2012) (with notation f , i ≡ ∂f/∂xi):

ẍi (t)

c2
=

1

2
h00,i − h00,j σ

iσj − hij,k σ
jσk +

1

2
hjk,i σ

jσk − h0i,j σ
j + h0j,i σ

j − h0j,k σ
i σjσk , (14)

where the double-dot means twice the total derivative with respect to the coordinate time.
Eq. (14) is valid up to terms of the post-post-Newtonian order O

(
c−4
)
, and all those terms

have been omitted which contain a derivative of the metric perturbations with respect to time,
because we consider the stationary case, that is the case of time-independent metric. Note,
that in stationary case the geodesic equation in 1.5PN approximation in (14) and the geodesic
equation in 1PM approximation of the post-Minkowskian (PM) scheme agree with each other;
cf. Eqs. (A.4) and (A.6) in (Klioner & Peip, 2003). If one inserts the metric perturbation (6)
into the geodesic equation (14), one may separate the geodesic equations into a canonical term,
ẍcan, plus a gauge term, ẍgauge, as follows:

ẍ (t)

c2
=

ẍcan (t)

c2
+

ẍgauge (t)

c2
, (15)

where the spatial components of these terms are

ẍican (t)

c2
= h

(2) can
00,i − 2h

(2) can
00,j σiσj − h

(3) can
0i,j σj + h

(3) can
0j,i σj − h

(3) can
0j,k σi σjσk , (16)

ẍigauge (t)

c2
= ∂j ξ

0
, k σ

iσjσk − ∂j ξ
i
, k σ

jσk . (17)

The metric perturbations in (16) are given by (7), while the gauge functions in (17) are given
by (8) and (9); notice x = xN +O(c−2) and r = |xN|+O(c−2) according to Eq. (11). The first
integration of (15) yields the coordinate velocity of the light signal,

ẋ (t)

c
= σ +

ẋcan (t)

c
+

ẋgauge (t)

c
, (18)
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and the unit tangent vectors (12) are obtained from (18) by taking the limit at plus and minus
infinity. In the Appendix it is shown that the gauge terms (17) do not contribute to these unit
tangent vectors, because their first time derivative vanishes at plus and minus infinity,

lim
t→±∞

ẋgauge (t)

c
= 0 . (19)

Accordingly, only the canonical terms in (16) contribute to the unit tangent vector and, therefore,
contribute to the total light deflection.

4. TOTAL LIGHT DEFLECTION IN FIELD OF ARBITRARY BODY

As stated above, the gauge terms in (17) do not contribute to the unit tangent vectors at
plus and minus infinity (see Appendix), and there is no need to account for these terms. The
first integration of the canonical terms (16) in the geodesic equation has been performed in
(Kopeikin, 1997). Taking the limit at plus infinity one arrives at the following expression for
the unit tangent vector in (12),

ν = σ +

∞∑
l=0

νML
1PN +

∞∑
l=1

νSL
1.5PN +O

(
c−4
)
. (20)

The individual terms in (20) are given by (limits of Eqs. (34) and (37) in (Kopeikin, 1997)),

νiML
1PN = −4G

c2
(−1)l

l!
M̂L P ij ∂

∂ξj
∂̂L ln |ξ|, (21)

νi SL
1.5PN = −8G

c3
(−1)l

l!

l

l + 1
σcϵilbc ŜbL−1 P

ij ∂

∂ξj
∂̂L ln |ξ| , (22)

where P ij = δij − σiσj , and ξi = P i
j x

j
N which will later be identified with the impact vector dσ

(cf. text below Eq. (32)). The differential operator in (21) and (22) is given by (cf. Eq. (24) in
(Kopeikin, 1997) or Eq. (30) in (Zschocke, 2022))

∂̂L = STFi1...il

l∑
p=0

l!

(l − p)! p!
σi1 ... σip P

jp+1

ip+1
... P jl

il

∂

∂ξjp+1
...

∂

∂ξjl

(
∂

∂cτ

)p

. (23)

The operator (10) is w.r.t. spatial coordinates xa, while the operator (23) is w.r.t. new variables
cτ and ξa, and the notation hat in (10) and wide hat in (23) refers to this fact.

Because ln |ξ| in (21) and (22) is independent of variable cτ , only the term p = 0 in (23)
is relevant, which considerable simplifies the differential operator in (23). A longer algebraic
calculation leads finally to the following remarkable result (Zschocke, 2023):

∂̂L ln |ξ| = (−1)l+1

|ξ|l
STFi1...il

[l/2]∑
n=0

Gl
n Pi1i2 . . . Pi2n−1i2n

ξi2n+1 . . . ξil

|ξ|l−2n
, (24)

which is valid for any natural number l ≥ 1. The scalar coefficients in (24) are given by

Gl
n = (−1)n 2l−2n−1 l!

n!

(l − n− 1)!

(l − 2n)!
. (25)

Remarkably, these coefficients coincide with the coefficients of the power series representation of
Chebyshev polynomials of first kind Tl in (28) up to a constant factor (l − 1)! . In other words,
the expression in (24) is the generator of the coefficients of Chebyshev polynomials of first kind.

5. TOTAL LIGHT DEFLECTION IN FIELD OF AXISYMMETRIC BODY
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In order to determine the mass-multipoles M̂L and spin-multipoles ŜL in (12), the solar sys-
tem bodies are described by a rigid axisymmetric structure and with arbitrary radial-dependent
mass-density. Furthermore, the body is assumed to be in uniform rotational motion around
its symmetry axis e3. For such an axisymmetric body the mass-multipoles and spin-multipoles
have been calculated in (Zschocke, 2022) and depend on four physical parameters of the body:
mass M , equatorial radius P , zonal harmonic coefficients Jl, angular velocity Ω. Then, it has
been shown in (Zschocke, 2023) that for such an axisymmetric body the mass-multipole and
spin-multipole terms in (21) are given by Chebyshev polynomials of first kind and second kind,

νiML
1PN = −4GM

c2
Jl
l

[
1− (σ · e3)2

][l/2]
P ij ∂

∂ξj

(
P

|ξ|

)l

Tl (x) , (26)

νi SL
1PN = −8GM

c3
ΩP

Jl−1

l + 4

[
1− (σ · e3)2

][l/2]
P ij ∂

∂ξj
(σ × dσ) · e3

dσ

(
P

|ξ|

)l

Ul−1 (x) , (27)

where the power representations of the Chebyshev polynomials read (Arfken & Weber, 1995),

Tl (x) =
l

2

[l/2]∑
n=0

(−1)n

n!

(l − n− 1)!

(l − 2n)!
(2x)l−2n and Ul (x) =

[l/2]∑
n=0

(−1)n

n!

(l − n)!

(l − 2n)!
(2x)l−2n ,

(28)
with T0 = 1. The real variable x in (26) and (27) is defined by

x =
(
1− (σ · e3)2

)−1/2
(
dσ · e3
dσ

)
where − 1 ≤ x ≤ +1 . (29)

It is just this highly remarkable fact, that the tangent vector ν is given by Chebyshev poly-
nomials, which allows for a strict determination of the upper limits of the angle of total light
deflection in (13). This is because the upper limits of Chebyshev polynomials are given by

|Tl| ≤ 1 and |Ul−1| ≤ l . (30)

Accordingly, in the 1.5PN approximation the total light deflection (13) is given by

δ (σ,ν) =

∞∑
l=0

δ
(
σ,νML

1PN

)
+

∞∑
l=1

δ
(
σ,νSL

1.5PN

)
. (31)

The individual terms are given by ((Kopeikin, 1997), (Klioner, 1991), (Zschocke, 2023))

δ
(
σ,νML

1PN

)
= −νML

1PN · dσ

dσ
and δ

(
σ,νSL

1.5PN

)
= −νSL

1.5PN · dσ

dσ
, (32)

where dσ = σ× (x0 × σ) is the impact vector, pointing from the body towards the unperturbed
light ray at their closest distance. The absolute value, dσ = |dσ|, is the impact parameter.
By inserting (26) and (27) into (32) one obtains the following expressions for the individual
mass-multipole and spin-multipole terms in the angle of total light deflection (31)

δ
(
σ,νML

1PN

)
= −4GM

c2dσ
Jl

(
P

dσ

)l [
1− (σ · e3)2

][l/2]
Tl (x) , (33)

δ
(
σ,νSL

1.5PN

)
= −8GM

c3
Jl−1

Ω l

l + 4

(
P

dσ

)l+1 (σ × dσ) · e3
dσ

[
1− (σ · e3)2

][l/2]
Ul−1 (x),(34)

where (33) is valid for l ≥ 0, while (34) is valid for l ≥ 3. Thus far, it has not been possible
to determine the upper limits of the total light deflection terms in (33) and (34), because these
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scalar functions are pretty much involved. In order to determine their upper limits, one actually
would have to calculate their first derivatives with respect to variable x, and then to solve the
corresponding algebraic equation of some order n, which is increasing with increasing multipole
order l. However, according to the group theory of (Galois, 1846) there exist, in the general case,
no radicals for solving such equations for orders n > 4. Therefore, it is essential to recognize
that the angle of total light deflection is just given in terms of Chebyshev polynomials of first
and second kind. Only because of this important fact it is possible to determine the upper limits
of (33) and (34) by means of relations (30). Because the impact parameter is larger or equal to
the equatorial radius of the body, dσ ≥ P , one obtains from (33) and (34),∣∣∣δ (σ,νML

1PN

)∣∣∣ ≤ 4GM

c2
|Jl|
P

and
∣∣∣δ (σ,νSL

1.5PN

)∣∣∣ ≤ 8GM

c3
Ω

l2

l + 4
|Jl−1| , (35)

where the inequality on the l.h.s. and r.h.s. are valid for l ≥ 0 and l ≥ 3, respectively; for

the case of spin-dipole (l = 1) one finds
∣∣∣δ (σ,νS1

1.5PN

)∣∣∣ ≤ 4GM

c3
Ωκ2 (Klioner, 1991). These

inequalities (35) for the total light deflection are strictly valid in the 1PN and 1.5PN, and can
be used to decide, whether a specific multipole term needs to be taken into account in the light
propagation model for a given goal accuracy of future astrometry missions aiming at the sub-
micro-arcsecond and nano-arcsecond level. Some numerical values are presented in Table 1 for
the case of light deflection of the giant planets Jupiter and Saturn.

Table 1: The upper limits of total light deflection at giant planets Jupiter and Saturn caused by
their mass-multipoles and spin-multipoles according to Eqs. (35). All values are given in micro-
arcsecond (µas). A blank entry indicates the light deflection is smaller than a nano-arcsecond
(nas). For the physical parameters M,P, Jl,Ω standard values are used (Zschocke, 2023).

Light deflection Jupiter Saturn Light deflection Jupiter Saturn

|δ(σ,νM0
1PN)| 16.3× 103 5.8× 103 |δ(σ,νS1

1.5PN)| 0.17 0.04

|δ(σ,νM2
1PN)| 239 94 |δ(σ,νS3

1.5PN)| 0.026 0.008

|δ(σ,νM4
1PN)| 9.6 5.41 |δ(σ,νS5

1.5PN)| 0.001 −
|δ(σ,νM6

1PN)| 0.55 0.50 |δ(σ,νS7
1.5PN)| − −

|δ(σ,νM8
1PN)| 0.04 0.06 |δ(σ,νS9

1.5PN)| − −
|δ(σ,νM10

1PN)| 0.003 0.01 |δ(σ,νS11
1.5PN)| − −

6. CONCLUSION

The determination of the upper limits of the angle of total light deflection provides a criterion,
up to which order in l the mass-multipoles M̂L and the spin-multipoles ŜL need to be taken into
account. Such a criterion simplifies considerably the relativistic modeling of light trajectories
for future ultra-high precision astrometry missions on the sub-µas level of accuracy. In our
investigation we have determined the unit tangent vector of the light ray at future infinity of the
light trajectory by Eqs. (26) and (27) as well as strict upper limits for the total light deflection
angle by Eqs. (35) for higher mass-multipoles and spin-multipoles. The remarkable fact, that the
unit tangent vector of the light ray at future infinity is naturally given by Chebyshev polynomials,
allows for a strict mathematical statement about the upper limits of the total light deflection.
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APPENDIX

In this appendix we will demonstrate the limit (19). The gauge terms in the geodesic equation
(17) consist of two pieces, ẍgauge = ẍg1 + ẍg2. Their spatial components are given by

ẍig1 (t)

c2
= + ∂j ξ

0
, k σ

iσjσk and
ẍig2 (t)

c2
= − ∂j ξ

i
, k σ

jσk , (36)

where the gauge vectors are given by Eqs. (8) and (9). Let us consider the first term in (36).
Using

(
r−1
)
, jk

= 3xjxk/r
5 − δjk/r

3, one obtains

ẍg1 (t)

c2
= +

8G

c3

∞∑
l=0

(−1)l

l!
∂̂L

ŴL

r3
σ − 12G

c3

∞∑
l=0

(−1)l

l!
∂̂L

ŴL

r5
(dσ)

2 σ , (37)

where (σ · x)2 = r2 − (dσ)
2 has been used. This expression has to be integrated over the time

variable. To apply the advanced integration methods developed by (Kopeikin, 1997), we have
to transform (37) from (ct,x) into terms of two new variables, cτ = σ · xN and ξi = P ij xjN,

which are independent of each other, and obtain (note that ξ = dσ hence (dσ)
2 = ξ · ξ = ξ2)

ẍg1 (τ)

c2
= +

4G

c3

∞∑
l=0

(−1)l

l!
ŴL ∂̂L

(
2

(rN)
3 − 3 (ξ)2

(rN)
5

)
σ , (38)

where the double-dot in (38) means twice the total derivative with respect to variable τ . The
differential operator (38) has been given by Eq. (23). To get the coordinate velocity of the light
signal, one has to integrate (38) over variable cτ and obtains for the spatial components

ẋig1
c

= +
4G

c3
∂

∂cτ

∞∑
l=0

(−1)l

l!
∂̂L

ŴL

r
σi . (39)

A similar calculation can be performed for the second gauge term in (36), which yields

ẋig2
c

= −4G

c2
∂

∂cτ

( ∞∑
l=0

(−1)l

l!
∂̂iL

X̂L

r
+

∞∑
l=1

(−1)l

l!
∂̂L−1

ŶiL
r

+
∞∑
l=1

(−1)l

l!

l

l + 1
ϵiab ∂̂aL−1

ẐbL−1

r

)
.

(40)
By inserting (23) into (39) and (40) one finds that these terms vanish at infinity, and we get

lim
τ=±∞

ẋgauge (τ)

c
= lim

τ=±∞

ẋg1 (τ)

c
+ lim

τ=±∞

ẋg2 (τ)

c
= 0 . (41)

Thus, by transforming (41) back from (cτ, ξ) into (ct,x), we have shown the validity of (19).
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