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1. Introduction
1.1 Light trajectory through the solar system

• astrometry needs to determine light trajectory x (t)
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1.2 The geodesic equation
• light trajectory x (t) determined by geodesic equation

ẍ i (t)
c2 + Γi

µν

ẋµ (t)
c

ẋ ν (t)
c − Γ0

µν

ẋµ (t)
c

ẋ ν (t)
c

ẋ i (t)
c = 0 (1)

• Christoffel symbols are functions of metric tensor

Γαµν = 1
2 gαβ

(
∂gβµ
∂x ν + ∂gβν

∂xµ −
∂gµν
∂xβ

)
(2)

• sum convention: AµBµ =
3∑

µ=0
AµBµ and AiBi =

3∑
i=1

AiBi

• Talk is concerned with metric gµν of solar system bodies



1.3 The space-time as semi-Riemannian manifold
a) set of points P ∈M (Hausdorff space)
b) each point P ∈M is mapped by coordinates xµ (P)
c) locally at any P ∈M flat Minkowskian space-time

𝓜

𝓟

x1

x2
𝓟

locally flat

P ∈M possible space-time event iff gauge is fixed , i.e.:
• space-time described by manifold and metric (M, g)
• (M, g) not unique: two pairs (M, g1) and (M, g2) are

isometric if Φ∗g1 = g2 where Φ ∈ diff (M) is an element
of all diffeomorphisms diff (M) onM (equivalence class)
• space-time described by one member of equivalence class
• in practice: gauge is fixed by four coordinate conditions



1.3.1 Classical differential geometry
• C.F.Gauß, B. Riemann, E.B. Christoffel, G. Ricci, H. Weyl

T. Levi-Civita, A. Einstein, M. Grossmann, D. Hilbert
• illustrative approach for (local) basis vectors:

tangent vectors along coordinate lines b(µ) ∈ TPM

and their dual vectors b(µ) ∈ T∗PM
1.3.2 Subsequent developments in differential geometry
• E. Cartan, F. Hausdorff, J.A. Schouten, C. Chevalley,

J.L. Koszul, N. Nomizu
• abstract approach for (local) basis vectors:

partial derivatives (of some scalar function) ∂(µ) ∈ TPM
and their dual vectors (one-forms) dx (µ) ∈ T∗PM

educational representation of both approaches in Ref.[1]



1.3.3 Tangent space of semi-Riemannian manifold

𝓜

T𝓟𝓜

V

x2

𝓟

x1

b(1)

b(2)

e

e

e(N-1)

(1)

(0)

• TPM is Minkowskian space: n = dimTPM = dimM
• M and TPM assumed to be embedded in RN (N > n)
• basis in RN : e(µ) · e(ν) = ηµν = diag (−1,+1, . . . ,+1)︸ ︷︷ ︸

N

• b(µ) expanded in terms of e(µ), so b(µ) ·b(ν) and b(µ)⊗b(ν)
defined in terms of e(µ) · e(ν) and e(µ) ⊗ e(ν), respectively



Some comments are in order:
• embedding of manifoldM in RN is always possible:

(a) Riemann manifolds: Whitney(1936), Nash(1956)
(b) semi-Riemann manifolds: Clarke(1970), Greene(1970)
• embedding ofM in RN is a theoretical construction and

then tensor components w.r.t. basis vectors b(µ) and b(µ)

• however: manifoldM exists without embedding in RN and
then tensor components w.r.t. basis vectors ∂(µ) and dx (µ)

• both approaches, either b(µ) , b(µ) or ∂(µ) , dx (µ) , lead to
the same transformation law of tensor components as
given by the second equation in Section 1.5.2
• Ricci calculus (starting in Section 3) does not refer to

basis vectors explicitly and does not use embedding, but
just applies this transformation law of tensor components



1.4 The natural and dual basis
1.4.1 Example: 2-dimensional space

x 1

x 2

𝓟

b
( μ )

        dual basis

μ = 1,2

basis index  (which basis vector)

b( μ )

  natural basis

μ = 1,2

basis index  (which basis vector)

b(1)

b(2) b
(2)

b
(1)𝓜

curved space

V

x 1

x 2

𝓟
V

b(µ) · b
(ν) = δνµ where µ, ν = 1, 2 (3)

• b(µ) ∈ TPM . . . tangent space at P ∈M
• b(µ) ∈ T∗PM . . . dual tangent space at P ∈M



1.4.2 Example: 3-dimensional space

𝓜
curved space

V V

x 1

x 3

x 2

x 1
x 2

x 3

𝓟
𝓟

b(3)

b
( μ )

        dual basis

μ = 1,2,3

basis index  (which basis vector)

b( μ )

  natural basis

μ = 1,2,3

basis index  (which basis vector)

b(1)

b(2)

b
(2)

b
(1)

b
(3)

b(µ) · b
(ν) = δνµ where µ, ν = 1, 2, 3 (4)

• b(µ) ∈ TPM . . . tangent space at P ∈M

• b(µ) ∈ T∗PM . . . dual tangent space at P ∈M



• in general case: b(µ) and b(µ) are not unit vectors
• V developed in natural basis and dual basis

V = V µ b(µ) = Vµ b(µ) (5)

• in oblique and curvilinear coordinate systems:
natural and dual basis different b(µ) 6= b(µ)

contravariant and covariant components different V µ 6= Vµ

• only in Cartesian coordinate systems:
natural and dual basis coincide b(µ) = b(µ)

contravariant and covariant components coincide V µ = Vµ



1.5 Coordinate transformations from {x} to {x ′}
• How transform basis and vector components?

𝓟
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𝓜
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1.5.1 Transformation of basis and vector components

• natural basis and contravariant components

b(β′) = B ν
β′ b(ν) V α′ = Aα′

µ V µ (6)

• dual basis and covariant components

b(α′) = Aα′
µ b(µ) Vβ′ = B ν

β′ Vν (7)

• Jacobian and inverse Jacobian

Aα′
µ =

(
∂xα′

∂xµ

)
and B ν

β′ =
(
∂x ν
∂xβ′

)
(8)



1.5.2 Transformation of tensor components

• tensor T is a generalization of vector V in Eq. (5)
• T developed in natural basis and dual basis

T = T µ1...µk
ν1...νl︸ ︷︷ ︸

tensor components

b(µ1) ⊗ · · · ⊗ b(µk)︸ ︷︷ ︸
natural basis

b(ν1) ⊗ · · · ⊗ b(νl )︸ ︷︷ ︸
dual basis

• transformation of components of T

T α′
1...α

′
k β′

1...β
′
l

= Aα′
1
µ1 . . .Aα′

kµk B ν1
β′

1
. . .B νl

β′
l
T µ1...µk

ν1...νl

• T are called tensors of rank (k , l) (geometrical objects)



1.5.3 Usefulness of covariant and contravariant components

1. complete tensor contraction (k = l) yields scalars

S ′1 = T α′
1
α′

1
= T µ1

µ1 = S1

S ′2 = T α′
1α

′
2
α′

1α
′
2

= T µ1µ2
µ1µ2 = S2

...
S ′k = T α′

1...α
′
kα′

1...α
′
k

= T µ1...µk
µ1...µk = Sk

(9)

2. incomplete tensor contraction yields new tensors

T µ1...µn...µk
ν1...µn...νl (10)

3. tensor relations valid in any coordinate system, e.g.

Uα′
1α

′
2
β′

1
= W α′

1α
′
2
β′

1
⇐⇒ Uµ1µ2

ν1 = W µ1µ2
ν1 (11)



2. The metric tensor
2.1 Definition of metric tensor by line element

• definition of line element

ds2 = gµν dxµ dx ν (12)

𝓟

x μ

x ν

ds

xνd
xμd

𝓜

curved 

space-time

Q 𝓟 𝓟+ d=

• How to get gµν ?



• consider line element as norm ds2 = dx · dx of vector dx

xα
𝓟
𝓟(    )

x μ

x ν

dx

𝓜

curved 

space-time

𝓟 𝓟+ d=Q
b (ν)

b (μ)

• dx ... four-vector with components dxµ with µ = 0, 1, 2, 3
• b(µ) ... four basis vectors with µ = 0, 1, 2, 3 at P ∈M

dx = dxµ b(µ) (13)



• then the line element is given by

ds2 = b(µ) · b(ν) dxµ dx ν = b(µ) · b(ν) dxµ dxν (14)

• metric tensor components (Eq. (44) in [1])

gµν = b(µ) · b(ν) and gµν = b(µ) · b(ν) (15)

note that gµν = g−1
µν i.e. gµα gαν = δµν

• metric tensor (Eq. (47) in [1])

g = gµν b(µ) ⊗ b(ν) = gµν b(µ) ⊗ b(ν) (16)

often it is not distinguished between ds2 and gµν and g



• metric has n (n + 1) /2 independent components in
n-dimensional space because of symmetry gµν = gνµ

• e.g.: 10 independent components in 4-dimensional space

gµν =


g00 g01 g02 g03

g10 g11 g12 g13

g20 g21 g22 g23

g30 g31 g32 g33

 (17)



2.2 The metric tensor and angles
• consider two infinitesimal vectors dx, dy ∈ TPM

dx = dxµ b(µ) and dy = dy ν b(ν) (18)

𝓟

x μ

x ν

𝓜

curved 

space-time

α

yd

xd

b (ν)

b (μ)

)

cosα = dx · dy
||dx|| ||dy|| = gµν dxµdy ν√

gαβ dxαdxβ
√
gαβ dyαdyβ

(19)



2.3 The metric tensor and converting components

• contravariant in covariant components by metric tensor

Vµ = gµα V α

Tµν = gµα gνβ T αβ
(20)

• covariant in contravariant components by metric tensor

V µ = gµα Vα
T µν = gµα gνβ Tαβ

(21)

• mathematical foundation behind Eqs. (20) and (21)
Musical Isomorphism between TPM and T∗PM [2]



2.4 Examples for the metric tensor
2.4.1 Metric tensor of flat space R2 in Cartesian coordinates

• Cartesian coordinates: (x1, x2) = (x , y)

𝓟
x

y

2-dimensional 
space

Q 𝓟 𝓟+ d=b

dx

𝓜 = R2

xμ 𝓟(    ) = (x,y)

(2)

b (1)

b (1) =

b (2) =

1
0

0
1

( )
( )

= e x

= e y

• metric tensor

gµν = b(µ) · b(ν) =
(
1 0
0 1

)
(22)

• line element

ds2 = gµν dxµ dx ν = dx2 + dy 2 (23)



2.4.2 Metric tensor of flat space R2 in Polar coordinates
• Polar coordinates: (x1, x2) = (r , ϕ)

2-dimensional 
space

dx

𝓜

𝓟

Q 𝓟 𝓟+ d=
= R2

r

φ)

xμ 𝓟(    ) = (r,φ)

b (1) = (    )sin φ
cos φ

b (2) = (    )sin φ
cos φ

-r
r

b (1)

b (2)

= e r

= e φr

• metric tensor

gµν = b(µ) · b(ν) =
(1 0
0 r 2

)
(24)

• line element

ds2 = gµν dxµ dx ν = dr 2 + r 2 dϕ2 (25)



2.4.3 Some important conclusions
(1) metric components gµν different in different coordinates

gµν 6= gµν (26)

but distance in Eq. (23) is the same as in Eq. (25)

ds2
g (P,Q) = ds2

g (P,Q) (27)

i.e. distance is independent of chosen coordinates

(2) therefore: metric g as geometrical object remains
the same under (passive) change of coordinates

g = g (28)

• conclusions (1) and (2) are valid in general



2.4.4 Metric tensor of sphere S2 in spherical coordinates
• Spherical coordinates: (x1, x2) = (θ, ϕ)

2-dimensional 
space

𝓜 = S2

b (1) = (         )cos θ

b (2) =

cos φR
cos θ sin φR
sin θR-

sin θ sin φR
sin θ cos φR

0
(         )-

= e θ

= e φ

R

sin θR

b (1)

b (2)

θ

φ

dx

Q 𝓟 𝓟+ d=

𝓟

xμ 𝓟(    ) = (θ,φ)

• metric tensor

gµν = b(µ) · b(ν) =
(R2 0
0 R2 sin2 θ

)
(29)

• line element

ds2 = gµν dxµ dx ν = R2 dθ2 + R2 sin2 θ dϕ2 (30)



3. The field equations of gravity
3.1 Einstein’s field equations of gravity

• metric tensor gαβ is determined by the field equations

Rαβ −
1
2 gαβ R︸ ︷︷ ︸

curvature of space

= 8π G
c4 Tαβ︸ ︷︷ ︸
matter

(31)

• Ricci tensor ("Ricci curvature" of space-time)
Rαβ = Γµαβ , µ − Γµαµ , β + Γµµν Γναβ − Γναµ Γµνβ (32)

• Ricci scalar
R = Rαβ gαβ (33)

• Riemann-Christoffel tensor (curvature of space-time)
Rµ

ανβ = Γµαβ , ν − Γµαν , β + Γµνρ Γραβ − Γραν Γµρβ (34)



• stress-energy tensor of matter Tαβ

• Tαβ = Tβα hence only 10 independent components

Tαβ =


T00 T01 T02 T03

T10 T11 T12 T13

T20 T21 T22 T23

T30 T31 T32 T33

 (35)

• T00 . . . energy-density
• T0j . . . energy-flux in x j-direction
• Tjk . . . flux of x j -component of momentum in x k-direction



• Eqs. (31) represent 10 equations for 10 components of gαβ
but they are not independent of each other
• 4 Bianchi identities(

Rαβ − 1
2 gαβ R

)
;β

= 0 =⇒ T αβ
;β = 0 (36)

covariant derivative for scalar S , vector V α , tensor T αβ

S ;µ = S , µ
V α

;µ = V α
, µ + Γαµν V ν

T αβ
;µ = T αβ

, µ + Γαµν T νβ + Γβµν T αν

(37)

Therefore:
• Eqs. (31) represent only 6 independent equations
• Eqs. (31) determine gαβ up to (4 passive or 4 active)

coordinate transformations



3.2 Invariance of GR by passive coordinate transformations
• keep points ofM fixed and change coordinates

𝓟

x α

𝓟 (  )x

y μ

y 𝓟 (  )

x β

y ν

dx

𝓜

curved 

space-time

Q 𝓟 𝓟+ d=

• passive coordinate transformation implies four equations

x (P) =⇒ y (P) (38)



• passive coordinate transformations do not change ds2

of points P,Q ∈M

ds2 = gαβ (x (P)) dxαdxβ = gµν (y (P)) dyµdy ν (39)

• Eq. (39) means that these sets are physically equivalent
(i.e. these sets describe the very same physical system)

(M , gαβ (x))⇐⇒ (M , gµν (y)) (40)

• Eq. (39) implies transformation

gαβ (x (P)) = ∂yµ
∂xα

∂y ν
∂xβ gµν (y (P)) (41)

• gαβ and gµν components of same metric: g = g



3.3 Invariance of GR by active coordinate transformations
• keep coordinates fixed and change points ofM

x𝜇

x y

ℝ⁴ ℝ⁴

ᶲ

y 𝜇

𝓜

curved 
space-time

𝓟

ᶲ
ᶲ (   )

(   )𝓟

diffeomorphism

Q

Q

gαβ (x)*ᶲ gμν(y)

• active coordinate transformation implies four equations

x (P) =⇒ x (Φ (P)) = y (P) ∀P ∈ M (42)



• active coordinate transformations do not change ds2

of points P ,Q ∈M and their images Φ (P) ,Φ (Q) ∈M

ds2 =Φ∗gαβ(P ,Q) dxαdxβ =gµν(Φ(P) ,Φ(Q)) dyµdy ν (43)

• where Φ∗gαβ . . . pulled-back metric (Φ∗g = g )
• gαβ and gµν components of distinct metrics: g 6= g
• Eq. (43) means that these sets are isometric (p.227 in [3])

i.e.: they are physically equivalent (Leibniz equivalence)

(M , Φ∗gαβ (x))⇐⇒ (M , gµν (y)) (44)

• Eq. (43) implies transformation

Φ∗gαβ (x (P)) = ∂yµ
∂xα

∂y ν
∂xβ gµν (y (P)) (45)

• if Φ proceeds along congruence of Killing vector field
then g = g and in this case Φ is an isometry (p.43 in [3])
• one has carefully to distinguish isometric and isometry



3.4 Landau-Lifschitz formulation of gravity

• exact reformulation of Eqs. (31) by Landau-Lifschitz [4, 5]

Hαµβν
, µν = 16 π G

c4 (−g)
(
T αβ + tαβLL

)
(46)

• super potential
Hαµβν = gαβ gµν − gαν gβµ (47)

• metric density
g αβ =

√
−g gαβ (48)

• g = det (gµν) . . . determinant of metric tensor
• tαβLL . . . Landau-Lifschitz pseudo-tensor

given by Eq. (6.5) in Poisson and Will, Gravity (2014)



• LL formulation ( i.e. Eq. (46)) is a reformulation of GR as
a non-linear field theory in flat background space-timeM0

(diagrammatical representation is given in Section 4.1 )
• cf. text in

D. Keppel, D.A. Nichols, Y. Chen, K.S. Thorne,
Physical Review D 80 (2009) 124015:
"... one reformulates the Einstein equations as a nonlinear
field theory in the space of that flat auxiliary metric..."
"... Landau-Lifshitz formulation of general relativity as a
nonlinear field theory in flat space-time..."

• general-covariant LL formulation as non-linear field theory
in flat background space-time has been developed in [5]



• Eq. (46) is valid in any curvilinear coordinates
which cover the flat background manifoldM0

• Eq. (46) represents 10 equations for 10 components of gαβ

but they are not independent of each other
• 4 identity relations

Hαµβν
, µνβ = 0 =⇒

[
(−g)

(
T αβ + tαβLL

)]
, β

= 0︸ ︷︷ ︸
local law of conservation

(49)

• Eq. (46) represents only 6 independent equations
• Eq. (46) determines gαβ up to (4 passive or 4 active)

coordinate transformations

• Eq. (49) related to global energy-momentum conservation
as it will be discussed in Section 3.5



• metric density

g αβ =
√
−g gαβ with g = det (gµν) (50)

• orthogonality relation
gαµ gµβ = δαβ (51)

allows to switch between upper and lower components

• metric tensor

g αβ =
√
−g gαβ with g = det

(
gµν

)
(52)

• orthogonality relation
gαµ gµβ = δαβ (53)

allows to switch between upper and lower components



3.5 The energy-momentum conservation
• local conservation law (49) admits global conservation law

of energy-momentum for isolated systems

dPα

dt = d
dt

∫
d3x (−g)

(
T αβ + tαβLL

)
= 0︸ ︷︷ ︸

global law of conservation

(54)

• statements valid if (54) Minkowskian at spatial infinity:
1. integral (54) is convergent
2. integral (54) is coordinate-independent
3. integral (54) is global energy-momentum conservation

(i) E. Poisson, C. Will "Gravity" (Box 6.1)
(ii) C. Misner, K. Thorne, J. Wheeler "Gravitation" (§20.5)



4. Field equations of gravity in flat space
4.1 Einstein’s field equations of gravity in flat space

• as mentioned LL is reformulation of GR in flat space-time
• separation of gαβ in flat metric g0

αβ and perturbation hαβ

gαβ (x) = g0
αβ (x) + hαβ (x) (55)

• hαβ propagates in flat background space-time
• many physicists developed field-theoretical formulation:

M. Fierz, N. Rosen, A. Papapetrou, S.N. Gupta, S. Deser,
R. Kraichnan, W. Thirring, F.J. Belifante, L.D. Landau,
J.M. Lifschitz, R. Feynman, S. Weinberg, S.W. Hawking,
S.V. Babak, L.P. Grishchuk, A.N. Petrov, A.D. Popova,
• an excellent historical overview is given by:

J. Brian Pitts, W.C. Schieve (2018) in gr-qc/0111004
Null Cones in Lorentz-Covariant General Relativity



• Eq. (55) in language of differential geometry

(𝓟)

𝓜0𝓜

x𝜇

x y

y𝜇

ℝ⁴ ℝ⁴

g μν
αβ

-1ᶲ

ᶲ

*ᶲ g αβ

Field-theoretical formulation 
                 of GR

Geometrical formulation 
                of GR

*ᶲ gαβ hαβ= αβ +
𝓟

ᶲ

(y)

(x)

(x) (x)
0

0g
g

(x)
(x)

ᶲ … Di feomorphismf

Φ∗gαβ (x) = ∂yµ
∂xα

∂y ν
∂xβ gµν (y) (56)



• active coordinate transformations do not change ds2

ds2 = gµν (y) dyµdy ν︸ ︷︷ ︸
inM

= Φ∗gαβ (x) dxα dxβ︸ ︷︷ ︸
inM0

= g0
αβ (x) dxαdxβ︸ ︷︷ ︸

ds2
0 inM0

+ hαβ (x)︸ ︷︷ ︸
fields inM0

dxα dxβ︸ ︷︷ ︸
inM0

(57)

• Eq. (57) means that these sets

(M0 , Φ∗gαβ (x))⇐⇒ (M , gµν (y)) (58)

describe the same physical system equivalently
in spite that manifoldsM0 andM are not isometric

g0
αβ (x) 6= ∂yµ

∂xα
∂y ν
∂xβ gµν (y) (59)



4.2 Landau-Lifschitz formulation in flat space

• instead to insert (55) into Einstein’s field equations (31)
Landau-Lifschitz formulation (46) is more appropriate
to get field-theoretical formulation of GR in closed form

• separation of metric gαβ into flat metric g0
αβ = ηαβ and

perturbation hαβ implies in terms of metric density:

g αβ = ηαβ − h αβ (60)

• harmonic gauge

h αβ, β = 0 ⇐⇒ �gxα = 0 (61)

• curved d’Alembert: �g = (−g)−1/2 ∂µ
(

(−g)1/2 gµν
)
∂ν

• curved d’Alembert in harmonic coordinates: �g = gµν ∂µ ∂ν



• inserting (60) and (61) into (46) yields non-linear
wave-equation in flat background manifoldM0

� h αβ = −16 π G
c4

(
ταβ + tαβ

)
with � = ηµν ∂µ ∂ν (62)

• Eq. (62) so-called relaxed Einstein’s field equations
• ταβ = (−g)T αβ

• tαβ = (−g)
(
tαβLL + tαβH

)
• tαβH . . . harmonic gauge term

given by Eq. (6.53) in Poisson and Will, Gravity (2014)

• h αβ, β = 0 equivalent to local conservation law Eq. (49)(
ταβ + tαβ

)
, β

= 0 ⇐⇒ h αβ, β = 0 (63)



5. The residual gauge transformation
5.1 The class of harmonic coordinates

• harmonic coordinates not uniquely determined by Eq. (61)

�g xα = 0

• consider a coordinate transformation of the form
x ′α = xα + ϕα (x) (64)

• these new coordinates {x ′} are also harmonic if
�g ϕ

α (x) = 0 (65)

• Eq. (61) selects a class of infinitely many harmonic systems



• it is advantageous to adopt the following convention:

x ′α = xα + ϕα (x)

• {x ′} are curvilinear harmonic coordinates which mapM0

• {x} are Minkowskian coordinates which mapM0

• ϕα (x) are gauge functions in Minkowskian coordinates

• note that Eq. (65) implies gµν ∂µ ∂ν ϕα = 0
• hence Eq. (65) using Eq. (60) can be written in the form

�ϕα (x)− hµν ∂µ ∂ν ϕα (x) = 0 (66)



5.2 Diagramatical representation of Eq. (60) and Eq. (64)

𝓟

𝓜0𝓜

x𝜇

x y

y𝜇

ℝ⁴ ℝ⁴

g μν

αβ

-1ᶲ

ᶲ

*ᶲ

η

Field-theoretical formulation 
                 of GR

Geometrical formulation 
                of GR

ℝ⁴

𝜇x,
𝝋

x,

g αβ

*ᶲ g αβ h αβ
= αβη -

(𝓟)ᶲ

(x)

(y)

*ᶲ g αβ (   )x,

(x)(x)

(   )x,*ᶲ g αβ h αβ
= αβη -(   )x,

ᶲ … Di feomorphismf



5.3 The residual gauge transformation of metric density
• change of metric density under coordinate transformations

g ′αβ (x ′) = 1
|J (x)|

∂x ′α
∂xµ

∂x ′β
∂x ν gµν (x) (67)

• where J is Jacobian determinant of Eq. (64)
• series expansion yields in Minkowskian system {x}

g ′αβ = gαβ +
(

1
|J | − 1

)
gαβ

+ 1
|J |

(
ϕα, µ gµβ + ϕβ, ν gνα + ϕα, µ ϕ

β
, ν gµν

)
−
∞∑
n=1

1
n! g ′αβ, µ1...µn ϕ

µ1 . . . ϕµn

(68)

• the gauge terms have no impact on observables



5.4 The residual gauge transformation of metric tensor

• change of metric tensor under coordinate transformations

gαβ (x) = ∂x ′µ
∂xα

∂x ′ ν
∂xβ g ′µν (x ′) (69)

• series expansion yields in Minkowskian system {x}

gαβ = g ′αβ + ϕµ, α g ′µβ + ϕν, β g ′να + ϕµ, α ϕ
ν
, β g ′µν

+
(
δµα + ϕµ, α

) (
δνβ + ϕν, β

) ∞∑
n=1

1
n! g ′µν , µ1...µn ϕ

µ1 . . . ϕµn
(70)

• the gauge terms have no impact on observables



6. Post-Minkowskian formalism
6.1 Post-Minkowskian expansion of field equations

• exact field equations in Eq. (62) were given by:

� hαβ = −16 π G
c4

(
ταβ + tαβ

)
(71)

• perturbation of metric and metric density in powers of G

hαβ =
∞∑
n=1

Gn h(nPM)
αβ and hαβ =

∞∑
n=1

Gn hαβ(nPM) (72)

• "energy-momentum tensors" in powers of G

ταβ = T αβ +
∞∑
n=1

Gn ταβ(nPM)

tαβ =
∞∑
n=1

Gn tαβ(nPM)

(73)



• yields hierarchy of field equations in flat background
manifoldM0 covered by Cartesian coordinates {x}

� hαβ(1PM) = −16 π
c4 T αβ

� hαβ(2PM) = −16 π
c4

(
ταβ(1PM) + tαβ(1PM)

)
...

� hαβ(nPM) = −16 π
c4

(
ταβ((n−1)PM) + tαβ((n−1)PM)

)
(74)

• Eqs. (74) solved by iteration
• T αβ is stress-energy of matter in special relativity
• harmonic gauge must be satisfied order by order

h αβ(nPM) , β = 0 (75)

ensures local law of conservation due to Eq. (63)



6.2 Post-Minkowskian expansion of residual gauge fields

• post-Minkowskian series of residual gauge fields

ϕα (x) =
∞∑
n=1

Gn ϕα(nPM) (x) (76)

• inserting Eq. (76) and Eq. (72) into Eq. (66) yields

�ϕα (1PM) (x) = 0
�ϕα (2PM) (x) = hµν(1PM) ϕ

α (1PM)
, µν

...

�ϕα (nPM) (x) =
n−1∑
m=1

hµν((n−m)PM) ϕ
α (mPM)
, µν

(77)



6.2.1 The residual gauge transformation of metric tensor

• inserting (72) and (76) into (70) yields in {x}
∞∑
n=1

Gn h(nPM)
αβ =

∞∑
n=1

Gn
(
h′ (nPM)
αβ + ∂ϕ

(nPM)
αβ + Ω(nPM)

αβ

)
(78)

• linear gauge terms for metric tensor

∂ϕ
(nPM)
αβ = ϕµ (nPM)

, α ηµβ + ϕ
µ (nPM)
, β ηµα (79)

• non-linear gauge terms for metric tensor

Ω(nPM)
αβ = Ω(nPM)

αβ

[
ϕµ (mPM)

]
with m < n (80)



6.2.2 The residual gauge transformation of metric density

• inserting (72) and (76) into (68) yields in {x}
∞∑
n=1

Gnhαβ(nPM) =
∞∑
n=1

Gn
(
h ′αβ(nPM) + ∂ϕαβ(nPM) + Ωαβ

(nPM)

)
(81)

• linear gauge terms for metric density

∂ϕαβ(nPM) = ϕα (nPM)
, µ ηµβ + ϕβ (nPM)

, µ ηµα − ϕµ (nPM)
, µ ηαβ (82)

• non-linear gauge terms for metric density

Ωαβ

(nPM) = Ωαβ

(nPM)

[
ϕµ (mPM)

]
with m < n (83)



7. MPM formalism

1. iterative approach to solve Eq. (74) outside isolated
source in terms of symmetric tracefree multipoles

2. simplification by gauge transformation Eq. (81)

• pioneering work: K. Thorne (1980) [6]
• further developed: L. Blanchet and T. Damour (1986) [7]

• subsequent developments (1986 - 2008)
T. Damour, L. Blanchet, B. Iyer, G. Faye, P. Jaranowski,
G. Esposito-Farese, S. Sinha, S. Kopeikin, G. Schäfer



7.1 Definition of an isolated source of matter
1. compact source of matter inside sphere with radius r0

T αβ (t, x) = 0 for r > r0 (84)

where r = |x|

2. Fock-Sommerfeld boundary conditions:
(a) asymptotically Minkowski space

lim
r→∞

t+ r
c =const

hαβ (t, x) = 0 (85)

(b) no-incoming radiation

lim
r→∞

t+ r
c =const

(
∂

∂r r h
αβ (t, x) + ∂

∂ct r h
αβ (t, x)

)
= 0 (86)



7.2 General MPM solution of metric density
• general solution of metric density

ggenαβ = ηαβ −
∞∑
n=1

Gn hgenαβ(nPM) [IL, JL,WL,XL,YL,ZL] (87)

• simplification by gauge transformation

xαcan = xαgen +
∞∑
n=1

Gn ϕα(nPM) (xgen) (88)

g canαβ = ggenαβ +
∞∑
n=1

Gn ∂ϕαβ(nPM) +
∞∑
n=1

Gn Ωαβ

(nPM) (89)

• canonical solution of metric density

g canαβ = ηαβ −
∞∑
n=1

Gn hcanαβ(nPM) [ML, SL] (90)



7.3 Why MPM is focussed on metric density?

• determination of gravitational waves in far-zone

huge distance ( ~ 1025 m)
between body and observer

far wave zone

TT projection of metric relevant

=hαβ
T T

of gravitational system

h
T T

just plane waves

observer

body

αβ



7.4 Why do we need metric tensor?
• determination of light trajectories in near-zone

small distance ( ~ 1012 m)
between body and observer

near-zone

entire metric relevant

of gravitational system

not simply plane waves

body

observer
≠hαβ hαβ



7.5 General MPM solution of metric tensor
• general solution of metric tensor

ggenαβ = ηαβ +
∞∑
n=1

Gn h(nPM)
genαβ [IL, JL,WL,XL,YL,ZL] (91)

• simplification by gauge transformation

xαcan = xαgen +
∞∑
n=1

Gn ϕα(nPM) (xgen) (92)

gcanαβ = ggenαβ −
∞∑
n=1

Gn ∂ϕ
(nPM)
αβ −

∞∑
n=1

Gn Ω(nPM)
αβ (93)

• canonical solution of metric tensor

gcanαβ = ηαβ +
∞∑
n=1

Gn h(nPM)
canαβ [ML, SL] (94)



8. MPM formalism in 1PM approximation
8.1 The field equations

• field equation and gauge condition

� hαβ(1PM) = −16 π
c4 T αβ and h αβ(1PM) , β = 0 (95)

• solution

hαβ(1PM) (t, x) = −16π
c4 �−1

R T αβ (t , x) (96)

• inverse d’Alembert operator

�−1
R f (t, x) = − 1

4 π

∫
d3x ′ f (t ′, x ′)
|x − x ′| (97)



• graphical representation of Eq. (96)
• variable x ′ runs over three-dimensional space of source

x

x'
 x – x'

(t , x)

T    (t' , x')
α β

h (t,x )
α β

c
 |x – x'| 

t = t -  '

(1PM)

t , x … arbitrary but fixed



8.2 Solution in terms of time-independent multipoles
• for motivation consider simple case: T αβ (x ′) = const
• origin of spatial coordinates has to be near body’s CoM
• sphere with radius r0 and r = |x| , r ′ = |x ′|
• body enclosed in that sphere: T αβ (x ′) = 0 for r ′ > r0

x

 x – x'

h (x )
α β

(1PM)

x … arbitrary but fixed

T    (x')
α β

(t , x)

x'



• series expansion valid for r ′ < r
1

|x − x ′| =
∞∑
l=0

(−1)l

l ! x ′L ∂L
1
r (98)

• x ′L = x ′a1 . . . x
′
al and ∂L = ∂a1...al

• x ′L ∂L
1
r =

3∑
a1=1

3∑
a2=1
· · ·

3∑
al=1

x ′a1 . . . x
′
al ∂a1...al

1
r

• some examples reveal STF structure:

∂a1

1
r = (−1)1 xa1

r 3

∂a1a2

1
r = (−1)2

(
3 xa1xa2

r 5 − δa1a2

r 3

)
...

∂L
1
r = (−1)l (2 l − 1)!!

r l+1
x〈a1...al 〉

r l

(99)



• from n ′L n̂L = n̂ ′L n̂L follows

x ′L ∂ L
1
r = x̂ ′L ∂ L

1
r (100)

• where x̂ ′L = x ′<a1 . . . x
′
al> are STF with respect to a1 . . . al

• one obtains metric density in terms of STF multipoles

hαβ(1PM) (x) = 4
c4

∞∑
l=0

(−1)l

l ! ∂L
F̂αβL
r (101)

• these 10 time-independent STF multipoles are given by:

F̂αβL =
∫

d3x ′ x̂ ′LT αβ (x ′) (102)

• multipoles F̂αβL are STF with respect to a1 . . . al
• from now on: simpler notation for multipoles F̂αβL ≡ FαβL



8.3 Solution in terms of time-dependent multipoles
• sphere with radius r0 and r = |x| , r ′ = |x ′|
• body enclosed in that sphere: T αβ (x ′, t ′) = 0 for r ′ > r0

x

 x – x'

h (t,x )
α β

(1PM)

t,x … arbitrary but fixed

T    (t',x')α β

(t , x)

x'



• case of time-dependent multipoles is complicated [6, 7]

hαβ(1PM) (t, x) = 4
c4

∞∑
l=0

(−1)l

l ! ∂L
FαβL (s)

r (103)

retarded time s = t − |x|/c

• these 10 time-dependent STF multipoles are given by:

FαβL (s) =
∫

d3x ′ x̂ ′L
+1∫
−1

dz δl (z) T αβ

(
s + z r ′

c , x ′
)

(104)

• Eqs. (103) - (104) given in [10]
• detailed proof of Eqs. (103) - (104) in my manuscript [9]



8.4 Decomposition in irreducible STF multipoles

• metric density in Eq. (103) in terms of 10 multipoles

h00
(1PM) (t, x) = 4

c4

∞∑
l=0

(−1)l

l ! ∂L
FL (s)
r

h0i
(1PM) (t, x) = 4

c4

∞∑
l=0

(−1)l

l ! ∂L
GiL (s)

r

hij(1PM) (t, x) = 4
c4

∞∑
l=0

(−1)l

l ! ∂L
HijL (s)

r

(105)

• FL is irreducible (STF in L)
• GiL is reducible (STF in L but not STF in iL )
• HijL is reducible (STF in L but not STF in ijL )



• multipoles are integrals over stress-energy tensor

FL (s) =
∫

d3x ′ x̂ ′L
+1∫
−1

dz δl (z) T 00
(
s + z r ′

c , x ′
)

GiL (s) =
∫

d3x ′ x̂ ′L
+1∫
−1

dz δl (z) T 0i
(
s + z r ′

c , x ′
)

HijL (s) =
∫

d3x ′ x̂ ′L
+1∫
−1

dz δl (z) T ij
(
s + z r ′

c , x ′
)

(106)

• T 00 = T00 and T 0i = T 0
i = −T0i and T ij = Tij



• metric density in terms of 10 irreducible multipoles [10]

h00 = 4G
c4

∞∑
l=0

(−1)l

l ! ∂L
AL

r
(107)

h0i= 4G
c4

∞∑
l=0

(−1)l

l !

(
∂iL
BL
r +∂iL−1

CiL−1

r +εiab∂aL−1
DbL−1

r

)
(108)

hij = 4G
c4

∞∑
l=0

(−1)l

l !

(
∂ijL
EL
r + δij ∂L

IL
r + ∂L−1(i

Gj)L−1

r

+ εab(i∂j)aL−1
HbL−1

r + ∂L−2
JijL−2

r + ∂aL−2
εab(iTj)bL−2

r

) (109)

10 irreducible multipoles: AL,BL, CL,DL, EL, IL,GL,HL,JL, TL



• some examples:

AL =
∫

d3x ′ x̂ ′L
+1∫
−1

dz δl T 00

BL = − 1
l + 1

2l + 1
2l + 3

∫
d3x ′ x̂ ′aL

+1∫
−1

dz δl+1 T 0a

...

EL = 1
l + 1

1
l + 2

2l + 1
2l + 5

∫
d3x ′ x̂ ′abL

+1∫
−1

dz δl+2 T ab

...

(110)



8.5 The local law of conservation (gauge condition)

• these 10 multipoles in Eqs. (107) - (109) not independent
• 4 relations of 1PM local conservation law (cf. Eq. (63))

T αβ
, β = 0 ⇐⇒ hαβ(1PM) , β = 0 (111)

CL = −ȦL − B̈L for l ≥ 1
GL = −2 ḂL − 2 ËL − 2 IL for l ≥ 1
JL = 2 ȦL + 4 B̈L + 2 ËL + 2 İL for l ≥ 2
TL = −2 ḊL − ḦL for l ≥ 2

(112)

• only 6 independent STF multipoles: AL,BL,DL, EL, IL,HL

• detailed proof of Eqs. (112) is given in my manuscript [11]



8.6 Definition of new multipoles

• definition of new irreducible multipoles

IL = −
(
AL + 2 ḂL + IL

)
for l ≥ 0

JL = +
(
DL + 1

2 ḢL

)
for l ≥ 1

WL = −
(
BL + 1

2 ĖL
)

for l ≥ 0

XL = −1
2 ĖL for l ≥ 0

YL = +
(
ḂL + ËL + IL

)
for l ≥ 0

ZL = −1
2 ḢL for l ≥ 1

(113)

6 (new) independent STF multipoles: IL, JL,WL,XL,YL,ZL



8.7 The general 1PM solution of metric density

• general solution of 1PM metric density (cf. Eq. (87))

ggenαβ
(1PM) = ηαβ − G1 hgenαβ(1PM) [IL, JL,WL,XL,YL,ZL] (114)

• gauge transformation in 1PM approximation (Ωαβ

(1PM) = 0)

xαcan = xαgen + G1 ϕα(1PM) (xgen)

g canαβ
(1PM) = ggenαβ

(1PM) + G1 ∂ϕαβ(1PM)

• canonical 1PM metric density (cf. Eq. (90))

g canαβ
(1PM) = ηαβ − G1 hcanαβ(1PM) [ML, SL] (115)



• explicit form of 1PM canonical metric density perturbation:

hcan 00
(1PM) (t, x) = + 4

c2

∞∑
l=0

(−1)l

l ! ∂L
ML (s)

r

hcan 0i
(1PM) (t, x) = − 4

c3

∞∑
l=1

(−1)l

l ! ∂L−1
ṀiL−1 (s)

r

− 4
c3

∞∑
l=1

(−1)l l
(l + 1)! εiab ∂aL−1

SbL−1 (s)
r

hcan ij(1PM) (t, x) = + 4
c4

∞∑
l=2

(−1)l

l ! ∂L−2
M̈ijL−1 (s)

r

+ 8
c4

∞∑
l=2

(−1)l l
(l + 1)! ∂aL−2

εab<i Ṡj>bL−2 (s)
r

(116)



• 1PM gauge terms for metric density:

∂ϕαβ(1PM) = ϕα (1PM)
, µ ηµβ + ϕβ (1PM)

, µ ηµα − ϕµ (1PM)
, µ ηαβ (117)

• 1PM gauge functions for metric density:

ϕ0
(1PM) = +

∞∑
l=0

∂L
WL

r

ϕi
(1PM) = +

∞∑
l=0

∂iL
XL

r +
∞∑
l=1

∂L−1
YiL−1

r

+
∞∑
l=1

εiab∂aL−1
ZbL−1

r

(118)



8.8 The general 1PM solution of metric tensor

• general solution of 1PM metric tensor (cf. Eq. (91)):

g (1PM)
genαβ = ηαβ + G1 h(1PM)

genαβ [IL, JL,WL,XL,YL,ZL] (119)

• gauge transformation in 1PM approximation (Ω(1PM)
αβ = 0)

xαcan = xαgen + G1 ϕα(1PM) (xgen) (120)

g (1PM)
canαβ = g (1PM)

genαβ + G1 ∂ϕ
(1PM)
αβ (121)

• canonical 1PM metric tensor (cf. Eq. (94)):

g (1PM)
canαβ = ηαβ + G1 h(1PM)

canαβ [ML, SL] (122)



• explicit form of 1PM canonical metric tensor perturbation:

h(1PM)
can 00 (t, x) = + 2

c2

∞∑
l=0

(−1)l

l ! ∂L
ML (s)

r

h(1PM)
can 0i (t, x) = + 4

c3

∞∑
l=1

(−1)l

l ! ∂L−1
ṀiL−1 (s)

r

+ 4
c3

∞∑
l=1

(−1)l l
(l + 1)! εiab ∂aL−1

SbL−1 (s)
r

h(1PM)
can ij (t, x) = + 2

c2 δij
∞∑
l=0

(−1)l

l ! ∂L
ML (s)

r

+ 4
c4

∞∑
l=2

(−1)l

l ! ∂L−2
M̈ijL−2 (s)

r

+ 8
c4

∞∑
l=2

(−1)l l
(l + 1)! ∂aL−2

εab(i Ṡj)bL−2 (s)
r

(123)



• 1PM gauge terms for metric tensor:

∂ϕ
(1PM)
αβ = ϕµ (1PM)

, α ηµβ + ϕ
µ (1PM)
, β ηµα (124)

• 1PM gauge functions for metric density (cf. Eq. (118)):

ϕ0
(1PM) = +

∞∑
l=0

∂L
WL

r

ϕi
(1PM) = +

∞∑
l=0

∂iL
XL

r +
∞∑
l=1

∂L−1
YiL−1

r

+
∞∑
l=1

εiab∂aL−1
ZbL−1

r

(125)



9. MPM formalism in 2PM approximation
• sphere with radius r0 and r = |x| , r ′ = |x ′|
• body enclosed in that sphere: T αβ (x ′, t ′) = 0 for r ′ > r0

x

 x – x'

h (t,x )
α β

(2PM)

t,x … arbitrary but fixed

T    (t',x')α β

(t , x)

x'

h (t,x )
α β

(1PM)
0



9.1 The field equations
• field equations and gauge condition

�hαβ(2PM) = −16π
c4

(
ταβ(1PM) + tαβ(1PM)

)
and hαβ(2PM) , β = 0 (126)

• formal solution

hαβ(2PM) (t, x) = −16π
c4 �−1

R

(
ταβ(1PM) + tαβ(1PM)

)
(t , x) (127)

• inverse d’Alembert operator (x ′ runs over entire space)

�−1
R f (t, x) = − 1

4 π

∫
d3x ′ f (t ′, x ′)
|x − x ′| (128)



• ταβ(1PM) is non-zero for r ≤ r0

ταβ(1PM) = ηµν h
µν

(1PM) T αβ (129)

• tαβ(1PM) is non-zero for r ≤ r0

tαβ(1PM) = +hαµ(1PM),ν h
βν

(1PM),µ − hαβ(1PM),µν h
µν

(1PM)

+ 1
2 h(1PM),α

µν hµν , β(1PM) −
1
4η

ρσηµνh(1PM),α
µν h(1PM),β

ρσ

+ hαµ(1PM),ν h
β , ν

(1PM)µ + 1
8η

αβηρσηµνh(1PM),ω
µν h(1PM)

ρσ , ω

− 1
4η

αβh(1PM)
µν , ω hµν , ω(1PM) + 1

2η
αβh(1PM)

νρ , µ hµρ , ν(1PM)

− h(1PM) , α
µν hβν , µ(1PM) − h(1PM) , β

µν hαν , µ(1PM)

(130)

• problem: thus far hαβ(1PM) only determined for r > r0
therefore: treatment of 2PM different from 1PM



9.2 Separation of spatial space
• separation of spatial space into three areas

(t , x)
r i

re

De

Diexternal 
near-zone

i

internal 
near-zone

Di De

U

intermediate 
near-zone

Dm =

r0

• De : post-Minkowskian expansion hαβe (in vacuum)
• Di : post-Newtonian expansion hαβi (with matter)
• Dm :matching both solutions hαβe and hαβi valid



9.3 The 2PM solution in De

• 2PM field equations in vacuum

� hαβ(2PM) = −16 π
c4 tαβ(1PM) (131)

• formal 2PM solution in vacuum

hαβ(2PM) (t, x) = −16 π
c4 �−1

R tαβ(1PM) (t , x) (132)

• inverse d’Alembertian �−1
R in (132) runs over entire space

i.e. one needs tαβ(1PM) in entire space

i.e. one needs hαβ(1PM) in entire space



• 1PM field equations in vacuum

� hαβ(1PM) = 0 (133)

• 1PM solution in vacuum in entire space (r 6= 0) as function
of 10 field multipoles (FαβL are not integrals over T αβ) [6]

hαβ(1PM) (t, x) = 4
c4

∞∑
l=0

(−1)l

l ! ∂L
FαβL (s)

r (134)

• 1PM solution in vacuum in entire space (r 6= 0) as function
function of 6 STF field multipoles by Eqs. (105) - (118)

hαβ(1PM) (t, x) = hαβ(1PM) [IL, JL,WL,XL,YL,ZL] (135)

• i.e. IL, JL,WL,XL,YL,ZL are not integrals over T αβ



• (135) into (132) via (130) yields divergent integrals since
(135) is valid in R3

∗ × R (entire space-time with r 6= 0)

• finite integrals by Hadamard technique to cut r = 0
cf. inverse d’Alembertian in Eq. (128)

FPB=0
(
�−1

R f
)

(t, x)=− 1
4π lim

B→0

∫
d3x ′

(
r ′
r0

)Bf (t ′, x ′)
|x − x ′| (136)

• 2PM solution in vacuum as function of 6 field multipoles

hαβ(2PM) (t, x) = −16 π
c4 FPB=0 �

−1
R tαβ(1PM) (t , x) (137)

where tαβ(1PM) is given by Eq. (130) with hαβ(1PM) in Eq. (135)



• from Eqs. (135) and (137) one obtains for special case De

hαβe = G1hαβe (1PM) + G2hαβe (2PM) +O
(
G3
)

(138)

• with 1PM perturbation in De

hαβe (1PM) (t, x) = hαβe (1PM) [IL, JL,WL,XL,YL,ZL] (139)

• with 2PM perturbation in De

hαβe (2PM) (t, x) = hαβe (2PM) [IL, JL,WL,XL,YL,ZL] (140)

where IL, JL,WL,XL,YL,ZL are STF field multipoles, i.e.
they are not integrals over T αβ but general functions of s



9.4 The 2PN solution in Di

• exact field equations in Eq. (62) were given by:

� hαβ = −16 π G
c4

(
ταβ + tαβ

)
(141)

• post-Newtonian expansion v � c of Eq. (141) yields [12]

�h00
i = −16πG

c4

(
1− 4

c2V
)
T 00 + 14

c4 V, kV, k +O (6)

�h0i
i = −16πG

c4 T 0i +O (5)

�hiji = −16πG
c4 T ij − 4

c4

(
V, iV, j − V, kV, k

δij
2

)
+O (6)

(142)

• Eqs. (142) are 2PN approximation in MPM formalism [12]



• 2PN solution of Eqs. (142) [12]

h00
i = 4

c2 V − 4
c4

(
Wkk − 2V 2

)
+O (6)

h0i
i = 4

c3Vi +O (5)

hiji = 4
c4Wij +O (6)

(143)

• where the potentials are given by [12]

V = −4 π G �−1
R

T 00 + T ii

c2

Vi = −4 π G �−1
R

T 0i

c

Wij = −4 π G �−1
R

[
T ij

c2 + 1
G

(
V, i V, j − V, k V, k

δij
2

)] (144)



9.5 Matching
• matching: field multipoles (general functions of s)

into source multipoles (integrals over T αβ)

• matching condition in Dm (cf. Eq. (2.28) in [8] )

=𝓜 (h   ) 𝓜 (h   )αβ

of MPM expansion of h
post-Newtonian expansion

post-Newtonian expansion of

multipole-expansion of

h α βαβ

αβ
e i

e i

• hαβe is given by Eqs. (138) - (140)
• hαβi is given by Eqs. (143) - (144)



9.6 General 2PM solution of metric density
• general 2PM solution of metric density [12]

ggenαβ
(2PM) = ηαβ − G1 hgenαβ(1PM) [IL, JL,WL,XL,YL,ZL]

− G2 hgenαβ(2PM) [IL, JL,WL,XL,YL,ZL]
(145)

• gauge transformation in 2PM approximation
xαcan = xαgen + G1 ϕα(1PM) (xgen) + G2 ϕα(2PM) (xgen)

g canαβ
(2PM) = ggenαβ

(1PM) + G1∂ϕαβ(1PM) + G2
(
∂ϕαβ(2PM) + Ωαβ

(2PM)

)
• canonical metric density in 2PM approximation

g canαβ
(2PM) = ηαβ − G1 hcanαβ(1PM) [ML, SL]

− G2 hcanαβ(2PM) [ML, SL]
(146)



• canonical metric density perturbation [12]
in the order O (6, 5, 6)

hcan 00
(2PM) (t, x) = + 7

c4

( ∞∑
l=0

(−1)l

l ! ∂L
ML (s)

r

)2

hcan 0i
(2PM) (t, x) = 0

hcan ij(2PM) (t, x) = + 1
c4 δij

( ∞∑
l=0

(−1)l

l ! ∂L
ML (s)

r

)2

− 4
c4FPB=0�

−1
R

(
∂i
∞∑
l=0

(−1)l

l ! ∂L
ML (s)

r

)(
∂j
∞∑
l=0

(−1)l

l ! ∂L
ML (s)

r

)

• hcan ij(2PM) associated with Hadamard technique in Eq. (136)
• solution for time-dependent quadrupole-quadrupole [12]



9.7 General 2PM solution of metric tensor
• general solution of 2PM metric in my manuscript [13]

g (2PM)
genαβ = ηαβ + G1 h(1PM)

genαβ [IL, JL,WL,XL,YL,ZL]
+ G2 h(2PM)

genαβ [IL, JL,WL,XL,YL,ZL]
(147)

• gauge transformation in 2PM approximation
xαcan = xαgen + G1 ϕα(1PM) (xgen) + G2 ϕα(2PM) (xgen)

g (2PM)
canαβ = g (2PM)

genαβ + G1∂ϕ
(1PM)
αβ + G2

(
∂ϕ

(2PM)
αβ + Ω(2PM)

αβ

)
• canonical metric tensor in 2PM approximation

g (1PM)
canαβ = ηαβ + G1 h(1PM)

canαβ [ML, SL]
+ G2 h(2PM)

canαβ [ML, SL]
(148)



• canonical metric perturbation in my manuscript [13]
in the order O (6, 5, 6)

h(2PM)
can 00 (t, x) = − 2

c4

( ∞∑
l=0

(−1)l

l ! ∂L
ML (s)

r

)2

h(2PM)
can 0i (t, x) = 0

h(2PM)
can ij (t, x) = + 2

c4 δij

( ∞∑
l=0

(−1)l

l ! ∂L
ML (s)

r

)2

− 4
c4FPB=0�

−1
R

(
∂i
∞∑
l=0

(−1)l

l ! ∂L
ML (s)

r

)(
∂j
∞∑
l=0

(−1)l

l ! ∂L
ML (s)

r

)

• h(2PM)
can ij associated with Hadamard technique in Eq. (136)

• solution for time-independent quadrupole-quadrupole is
given in detail in my manuscript [13]



9.8 Impact of 2PN effects on light deflection and time delay
• 2PN light deflection (e.g. grazing ray at Jupiter)

ϕMA×MA
2PN ≤ 16 G2M2

A
c4P2

A

x1

PA

x0 x1

(x0 + x1)2 ≤ 16µas

ϕ
MA×Mab

A
2PN = 4ϕMA×MA

2PN

∣∣∣JA2 ∣∣∣ = 0.95µas [16]
(149)

• micro-arcsecond . . . 1µas ' 4.85× 10−12 radians
• MA and PA . . . mass and radius of body A
• JA2 . . . second zonal harmonics of body A
• x0 and x1 . . . distance body-source and body-observer
• ESA astrometry mission Gaia: launched December 2013

aimed precision in angular measurements: ϕ ∼ 5µas
Near-future astrometry able to detect 2PN effects beyond
monopole structure
• [16] S. Zschocke, Physical Review D 105 (2022) 024040



• 2PN time delay (e.g. grazing ray at Jupiter)

∆tMA×MA
2PN ≤ 8 G2M2

A
c4P2

A

x1

c
x0

x0 + x1
≤ 9.3 ps

∆tMA×Mab
A

2PN ∼ ∆tMA×MA
2PN

∣∣∣JA2 ∣∣∣ ∼ 0.6 ps (guess)
(150)

• pico-second . . . 1 ps = 10−12 seconds
• atomic clocks on Earth (optical clocks): ∆t/t = 10−18

• atomic clocks in Space (DSAC): ∆t/t = 10−15

e.g. precision for a signal t =104 s: ∆t =(0.01− 10) ps
1. ps-level in time-delay measurements achieved by VLBI [14]

(about subsequent discussions see also my manuscript [15])
2. note that today’s precision in distance Earth-Moon 10−3 m

by LLR corresponds to precision in time of ∆t = 3 ps
• Today’s VLBI facilities and atomic clocks are almost able

to detect 2PN effects beyond monopole structure



10. Summary
• MPM is an approach to determine metric density gαβ

• from metric density gαβ one may obtain metric gαβ

• MPM makes use of field-theoretical formulation of GR

• general solution depends on 10 irreducible multipoles
AL,BL, CL,DL, EL, IL,GL,HL,JL, TL
• 6 irreducible multipoles independent (local law of

conservation) IL, JL,WL,XL,YL,ZL

• 2 multipoles physically relevant (residual gauge) ML, SL

• In foreseeable future 2PN effects beyond monopole
structure are detectable
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