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ABSTRACT

The light deflection of one component of a binary system due to the gravitational field of the other component is
investigated. While this relativistic effect has not been observed thus far, the question arises of whether this effect
can become detectable in view of today’s high-precision astrometry, which soon will reach the microarcsecond
level of accuracy. The effect is studied and its observability is investigated. It turns out that in total there are about
103 binaries having orbital parameters such that the light deflection amounts to at least 1 μas. Two stringent criteria
for the orbital parameters are presented, by means of which one can easily determine the maximal value of light
deflection effect for a given binary system. It is found that for relevant binaries their orbital parameters must take
rather extreme values in order to have a light deflection of the order of a few microarcseconds. Only in a very few
and rather extreme binary systems might the light deflection effect be detectable by today’s astrometry, but their
existence is highly improbable. Thus, the detection of this subtle effect of relativity still remains a challenge for
future astrometric missions.
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1. INTRODUCTION

Astrometric space missions, especially the ESA cornerstone
mission Gaia (see, e.g., Perryman et al. 2001), are in prepa-
ration to attain a microarcsecond (μas) level of accuracy in
absolute positional measurements of stars and other celestial
objects. This unprecedented accuracy of astrometric observa-
tions makes it necessary to account for many subtle effects that
were totally negligible before. A practical model for astrometric
observations with an accuracy of 1 μas has been formulated by
Klioner (2003), where the influence of the gravitational fields
inside the solar system were taken into account. Furthermore,
a number of additional effects potentially observable at this
level of accuracy due to various gravitational fields generated
outside of the solar system were also briefly discussed in that
investigation. One of them is the gravitational light deflection
of one companion of a binary system in the gravitational field
of the other companion. This effect would change the apparent
position of one component of a binary system. (Without the
loss of generality, throughout the investigation the light deflec-
tion of component B at component A is considered, and hence,
component A is considered to be the massive body, while com-
ponent B is the light source). While it is clear that this effect
is relatively small and even at the level of 1 μas observable
only for edge-on binary systems, the huge amount of binaries
generate some hope that there are relevant systems where this
light deflection effect becomes detectable. For instance, Gaia
will observe 109 stars brighter than the 20th apparent magni-
tude. Detailed numerical simulations predict the detection of
about 108 (resolved, astrometric, eclipsing, and spectroscopic)
binary systems by Gaia mission (see Zwitter & Munari 2004,
which is a considerable increase compared to the 105 binary
systems known so far see the Washington Double Star Catalog
2011).

Let us consider this argument a bit more quantitatively. For
a simple estimate of the expected order of magnitude in light
deflection, we apply the classical lens equation (in the form
given by Equation (67) in Fritelli et al. 2000, Equation (24)
in Bozza 2008, or Equation (23) in Zschocke 2011). In terms
of orbital elements of a binary system, it can be written

as follows:
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Here, ϕ is the light deflection angle, i is the inclination, A is the
semimajor axis, and r is the distance of center of mass (CMS)
of the binary system from the observer, and the Schwarzschild
radius is m = (GM/c2), where G is the gravitational constant
and c is the speed of light, and M is the stellar mass of component
A of the binary system. From Equation (1) one obtains the
maximal possible light deflection for edge-on binaries, i.e.,
attained for the case when the inclination is exactly 90◦:

ϕ � 200 μas
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Here, AU = 1.496 × 1011 m is the astronomical unit, pc =
3.086 × 1016 m stands for parallax of 1′′, and M� is the solar
mass. According to this formula, the choice of moderate values
like M = M� and A ∼ 100 AU would result in a significant
light deflection effect at a microarcsecond level even at large
distances of about r ∼ 100 pc. A meaningful value for the
density of stars in the solar neighborhood, 0.025 binaries pc−3,
already implies 105 binaries inside a sphere of r = 100 pc. Thus,
one might conclude that there are a few relevant edge-on binary
systems.

However, in order to estimate quantitatively the number
of relevant systems, one needs to know the probability for
the occurrence of such edge-on binaries that have a given
light deflection depending on their orbital parameters such as
inclination, mass, distance and semimajor axis. Such a relation
between a given light deflection and orbital parameters is
given by a so-called inclination formula. Since the inclinations
of binary systems are of course randomly distributed it is
meaningful to resolve such an inclination formula in terms of
inclination. As has been shown by S. A. Klioner, F. Mignard,
& M. Soffel (2003, private communication; see Appendix D
for some basic steps, since their manuscript has not been
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published),1 such an inclination formula can be obtained by
means of the analytical solution of light deflection in standard
post-Newtonian approximation, and is given as follows:
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For a better illustration of the inclination formula, relation (3)
is rewritten in terms of angular degrees instead of radians:

| 90◦ − i | � 2.◦25
M

M�

μas

ϕ

pc

r
, (4)

where arctan x = x + O(x3) has also been used. According to
this relation, the inclination i of a binary system with stellar
mass M and at distance r must not deviate from the edge-on
value of 90◦ too much in order to have a given light deflection
ϕ. For example, for a hypothetical binary star with M = M�
situated at a distance of r = 10 pc the light deflection effect
attains 1 μas only if | 90◦ − i | < 0.◦225, which means that the
probability of observing this binary at a favorable inclination is
only about 0.2%.

But even this estimation is still much too optimistic. As
a concrete example of today’s high-precision astrometry, let
us consider one important parameter about the astrometric
accuracy of the Gaia mission: the accuracy of one individual
positional measurement, which in the most ideal case (bright
star, i.e., 10th magnitude) amounts to 25 μas, which implies
ϕ � 25 μas. Furthermore, inside a sphere of 10 pc around the
Sun almost every star and binary system is known already by
the data of the Research Consortium on Nearby Stars (RECONS
2012). Since inside that sphere there is no binary system having
a light deflection on a microarcsecond level, one has to take at
least r > 10 pc. By taking into account both of these points, one
obtains (μas/ϕ)(pc/r) = 1/250 in relation (4). Therefore, even
in the best case one can conclude |90◦ − i| � 0.◦01 M/M�,
which means that for M = M� the probability of observing
such a binary at a favorable inclination is practically only about
0.01%. And the binaries must be, in fact, almost edge-on in
order to have a light deflection that can be detected by today’s
astrometry. Accordingly, while relation (2) triggers hope about
the existence of many relevant binary systems, from relation (4)
one concludes that the number of relevant binary systems is
considerably reduced.

An estimation of the total amount of binaries depends on
many different parameters such as mass, semimajor axis, incli-
nation and distances of the binaries. Therefore, a simple estima-
tion is not so straightforward as one might believe. Moreover,
relation (2) has been obtained with the aid of a classical lens
equation, while relation (4) has been obtain by means of the
standard post-Newtonian approach. Both approaches have dif-
ferent regions of validity. However, a rigorous treatment of the
problem of light deflection in binary systems implies the need
of an analytical formula that is valid for such kinds of extreme
astrometric configurations such as binary systems. Recently, a
generalized lens equation has been derived by Zschocke (2011),
which allows us to determine the light deflection of binary sys-
tems on a microarcsecond level. One aim of this study is, there-
fore, to reobtain criteria (2) and (4) as stringent conditions from
one and the same approach, i.e., with the aid of a generalized

1 Klioner, S. A., Mignard, F., & Soffel, M. 2003, Astrometric Signature of
Gravitational Microlensing on the Components of Edge-On Binary Systems,
unpublished.

lens equation. This is possible because in the corresponding
limits the generalized lens equation agrees with the classical
lens equation and the standard post-Newtonian solution. An-
other aim is to derive an inclination formula like Equation (3)
for binary systems which allows us to determine the needed
inclination for a given light deflection angle and as a function
of the orbital parameters. For that, one has to take into account
the distribution of stellar masses and the distribution of semi-
major axes in binary systems. Finally, the aim of this study is
to determine the total number of relevant binaries having a light
deflection on a microarcsecond level, and to investigate the pos-
sibility of detecting this effect of light deflection with today’s
high-precision astrometry.

The article is organized as follows: in Section 2 some ba-
sics about orbital elements of binary systems are given. The
generalized lens equation and the inclination formula are pre-
sented in Section 3. In Section 4 two stringent conditions on the
orbital elements of binary systems (astrometric, spectroscopic,
eclipsing, and resolved binaries) are presented, which allow us
to determine whether or not the binary system will have the light
deflection of a given magnitude. The total number of binaries
which have a given light deflection for an infinite time of obser-
vation is estimated in Section 5, while the more practical case
of a finite time of observation is considered in Section 6. The
special case of resolved binaries is considered in Section 7. For
that, the specific instrumentation of Gaia mission is considered
in some detail as the most modern astrometric mission with the
present-day highest possible accuracy. A summary is given in
Section 8.

2. ORBITAL ELEMENTS OF A BINARY SYSTEM

Consider a binary system, component A with mass MA at
coordinate rA and component B with mass MB at coordinate rB .
In order to express the light deflection effect in terms of orbital
elements, spherical coordinates are introduced, illustrated by
Figure 1.

The center of the coordinate system is located at the CMS,
i.e.,

rCMS = 1

MA + MB

(MA rA + MB rB) . (5)

Thus, the vector r , which points from CMS to the observer, is
given by

r =
⎛
⎝r cos ω sin i

r sin ω sin i

r cos i

⎞
⎠ , (6)

where r = | r |, the argument of periapsis is denoted by ω, and
i is the inclination (see Figure 1). The solution of the equation
of motion yields for vectors rA and rB the expression given by
Equations (A22)–(A26). Vector x1 points from the mass center
of the massive body to the observer, and vector x0 points from
the mass center of the massive body to the source (see also
Figure 1). The coordinates of these vectors can be expressed by
the orbital elements of the binary star as follows:

x1 = r − rA =
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, (7)
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Figure 1. Seven orbital elements which define the orbit of a binary system:
distance vector r , semimajor axis A, inclination i, eccentricity e, eccentric
anomaly E, periapsis ω, and mass ration MA/MB . The orbit of the binary
system spans the (x, y)-plane and the z-axis is perpendicular to the orbital
plane. The x-axis is oriented along the semimajor axis of the orbit of the binary
system, while the y-axis is perpendicular to the x-axis. The vector r is directed
from the center of mass (CMS) of the binary system, see Equation (5), to the
observer. The center of spherical coordinate system is located at the CMS of
binary system, i.e., rCMS = 0. The inclination 0 � i � π is the angle between
r and z-axis; i = π/2 is called edge-on and i > π/2 corresponds to retrograde
orbit. The dotted line indicates the projection of r onto orbital (x, y)-plane, i.e.,
z-component of r equals zero. The angle between this projection and x-axis
is called argument of periapsis 0 � ω � π . The orbital elements semimajor
axis A, eccentricity 0 � e � 1 and mass ratio MA/MB govern uniquely the
geometric shape of both ellipses. The eccentric anomaly 0 � E � 2 π (not
plotted here), is defined in Equation (A16) of Appendix A and determines the
actual position of the bodies A and B on their orbit.

x0 = rB − rA = −

⎛
⎜⎝

A(cos E − e)

A
√

1 − e2 sin E

0

⎞
⎟⎠ . (8)

Here, A is the semimajor axis, e is the eccentricity, and E is the
eccentric anomaly (see Appendix A). Vectors (7) and (8) will be
used to express the light deflection in terms of orbital elements
of the binary system.

3. INCLINATION FORMULA FROM GENERALIZED
LENS EQUATION

A scheme of light propagation of a signal emitted at com-
ponent B in the gravitational field of component A is shown in
Figure 2. Vector x1 points from the mass center of the massive
body to the observer, and vector x0 points from the mass center
of the massive body to the source, and we define R = x0 − x1,
the absolute value R = |R|, and the unit vector by k = R/R.
Furthermore, the impact vector d = k × (x1 × k) and its abso-
lute value is denoted by d = |d|. The Schwarzschild radius of
the massive body, i.e., of component A of the binary system, is
denoted by m = (GM/c2).

For determining the light deflection in weak gravitational
fields there are two essential approaches: the standard post-
Newtonian approach, e.g., Brumberg (1991), and the classi-
cal lens equation (e.g., Equation (67) in Fritelli et al. 2000,
Equation (24) in Bozza 2008, or Equation (23) in Zschocke
2011). While the first approach is restricted by the condition
m � d, the second approach is only valid in the case that the
source and observer are far from the massive body, especially
for a = k · x1 � d and b = −k · x0 � d (for a geometrical

illustration of a, b and d see Figure 2). However, in binary sys-
tems extreme configurations are possible such as d = 0 or b =
0. Therefore, in order to investigate the light deflection in binary
systems one needs a generalized lens equation that is valid in
such extreme configurations where the standard post-Newtonian
approach as well as the classical lens equation cannot be applied.
Recently, Zschocke (2011) derived a generalized lens equation,
which allows us to determine the light deflection in such extreme
astrometric configurations as binary systems:

ϕ = 1

2

[(
d2

x2
1

+ 8
m

x1

x0 x1 − x0 · x1

R x1

)1/2

− d

x1

]
. (9)

Actually, the lens equation has two solutions, but here only one
solution is considered, while the second solution represents just
the second image of one and the same source, which is not
relevant in our investigation. The generalized lens equation is
valid up to terms of the order of O(m2/d ′2), and the absolute
value of their total sum can be shown to be smaller or equal to
(15 π/4)(m2/d ′2). Here, d ′ = L/E is Chandrasekhar’s impact
parameter (see Chandrasekhar 1983), with L being the orbital
momentum and E the energy of the photon in the gravitational
field of massive body. Basically, the light-ray of component
B cannot be observed if d ′ is smaller than the radius of
massive body A. For stars, the radius is much larger than the
Schwarzschild radius m, and hence (m2/d ′2) 	 1. Furthermore,
the generalized lens equation (9) is finite for d → 0 and
b = −k · x0 → 0, both of which are possible astrometric
configurations in binary systems. Furthermore, in Zschocke
(2011) it has been shown that the generalized lens equation (9)
yields within the appropriate limits the correct standard post-
Newtonian solution and the classical lens equation, and hence
provides a bridge between these essential approaches.

In the following, Equation (9) is applied in order to determine
the light deflection in binary systems. For that, the coordinates
x0 and x1 are used in the form as given by Equations (7) and (8),
respectively. A typical light curve of a binary system, calculated
by means of generalized lens equation (9), is shown in Figure 3.

Then, an inclination formula is derived from the generalized
lens equation (9). The impact of eccentricity is neglected, and
circular orbits e = 0 are considered, implying ω = 0. Thus,
the coordinates x0 and x1 are simplified to the expressions (B1)
and (B2) given in Appendix B. Furthermore, the maximal value
of light deflection of a binary system is of interest, i.e., the
astrometric configuration E = 0 is considered here. Then, by
inserting these coordinates in the generalized lens equation (9)
one obtains (see Equation (B14) in Appendix B) up to terms of
the order of O(

√
(m/r)(A/r)A/r)
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The minimal value ϕmin = ϕ(i = 0) and maximal value
ϕmax = ϕ(i = π/2) of light deflection for the astrometric
position E = 0 follow from Equation (10):
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3



The Astronomical Journal, 144:77 (12pp), 2012 September Zschocke

observer

component A (deflecting body)

component B (source)

light path

a bk

n
d

σ
light at
t =−∞

x1 x0

Figure 2. Binary star composed of component A as the massive body, and component B considered to be the light-source.

2.0

1.5

1.0

0.5

0.00
2 π3/2 ππ1/2 π0.0

ϕ 
 [μ

as
]

E    [rad] 

Figure 3. Typical light curve of a binary system, determined using generalized
lens equation (9) or (B11), respectively. The parameters chosen are: distance
r = 1 pc, semimajor axis A = 100 AU inclination i = 31/64 π , mass
MA = 2 M�, mass ratio MA/MB = 2.0, eccentricity e = 0.25, argument
of periapsis ω = π/4.

ϕmax = 2
(m A)1/2

r
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r
, (12)

where in Equation (11) terms of the order of O(m2/r A) have
been neglected. Expression (10) can be reconverted in terms of
inclination (see Appendix C):
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q = − A2 r2 ϕ2 + 4 mAr2 ϕ2 − 4 m2 A2 − r4 ϕ4

A2(r2 ϕ2 + 4 m2)
. (15)

The inclination formula (13) yields the upper limit for |(π/2)−i|
of a binary system in order to have a given value of light
deflection ϕ. Note that the values of ϕ cannot be chosen
arbitrarily, but they are restricted by ϕmin and ϕmax given by
Equations (11) and (12), respectively.

The inclination formula (13) can considerably be simplified.
From Equations (14) and (15) one obtains by series expansion

p = − 4
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By means of Equation (12), the last term in Equation (17) can
be estimated to be smaller than 4(m/A) 	 1. Here, it should
be underlined that (m/A) 	 (m/r ϕ) even at large distances of
r � 103 pc and small values for the semimajor axis A � 1 AU.
Thus, one obtains∣∣∣π
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up to terms of the order of O(m3/r3 ϕ3) and O(m/A); here the
relation arccos(1 − 8 x2) = 2 arctan 2 x + O(x3) for x 	 1
has been used. It should be underlined that the applicability
of Equation (18) is restricted by the condition (D5) given in
Appendix D and by d � m. Here, it should be noticed that
x = 2(m/r ϕ) 	 1, even in such an extreme case like r = 1 pc,
m = m� and ϕ � 1 μas one obtains a small number of
x = 0.019; for an analytical proof use the exact expression
for ϕmin. Due to (m/A) 	 (m/r ϕ), the impact of the semimajor
axis is of a lower order and can be neglected in the inclination
formula. The inclination formula (18) can be expressed in terms
of dimensionless quantities as follows:∣∣∣π
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Note that expression (19) agrees with the inclination formula (3)
derived at the first time by S. A. Klioner, F. Mignard, & M. Soffel
(2003, private communication) the arguments of their work are
represented in Appendix D. The simplified inclination formula
(19) is not only useful for straightforward estimations about
the order of magnitude, but it’s simple structure provides also
an obvious comprehension about the interplay of the individual
terms.

4. STRINGENT CONDITIONS ON ORBITAL
PARAMETERS FOR BINARY SYSTEMS

In this section, two stringent conditions on the orbital ele-
ments are highlighted for binaries having a given light deflec-
tion. These strict conditions are valid for any binary system:
astrometric, spectroscopic, eclipsing and resolved binaries.

The first stringent condition follows from the maximal light
deflection angle (12), given by

ϕ � 200 μas

√
M

M�

A

AU

pc

r
. (20)

It represents a strict criterion for the maximal light deflection
of a binary system with a given Schwarzschild radius of
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component A, a given semimajor axis A, and a given distance r
between the binary system and the observer.

The second stringent condition on the orbital elements follows
from the inclination formula in the simplified form as given
by Equation (19). For a better illustration, this condition is
given in terms of angular degrees instead of radians. Using
arctan x = x + O(x3) one obtains

| 90◦ − i | � 2.◦25
M

M�

μas

ϕ

pc

r
. (21)

According to this strict condition, the inclination i of a bi-
nary system with mass M (recall M is the stellar mass of
component A) and at distance r must not exceed the given value
in order to have a light deflection ϕ.

Both these stringent conditions, Equations (20) and (21),
were already stated in the introductory section by Equations (2)
and (4), respectively. However, is should be underlined here that
both Equations (20) and (21) were obtained with the aid of one
and the same approach, namely the generalized lens equation,
while Equations (2) and (4) were obtained by means of the
classical lens equation and the post-Newtonian solution, i.e., by
two different approaches.

The observability of light deflection effect in binaries implies
the realization of both these stringent conditions (20) and (21)
simultaneously for a given binary system. But even if a given
binary system satisfies both conditions, the observability of
light deflection effect is not guaranteed, because the astrometric
position E = 0 has to be reached during the time of observation.
Nonetheless, as soon as the orbital elements r, A, m and i of the
binaries are known, both stringent conditions (20) and (21) allow
us to find a possible candidate for being a relevant binary system
for a given light deflection ϕ depending on the instrumentation
of the observer. However, as will be shown in Sections 5 and 6,
the existence of such systems is highly improbable.

5. TOTAL NUMBER OF BINARIES WITH A GIVEN LIGHT
DEFLECTION FOR INFINITE TIME OF OBSERVATION

In the previous section, the conditions on orbital parameters
for a binary system have been determined in order to have a given
magnitude of light deflection ϕ. In this section, the total number
of such relevant binaries is determined. In order to estimate the
total number of binaries having a given light deflection ϕ, the
following formula is applied:

N (ϕ) =
∫ Rmax

Rmin

d3r ρ(r)
∫ Amax

Amin

dA f (A)
∫ μmax

μmin

dμ f (μ) P (i).

(22)

Here, ρ(r) is the density of binaries, f (A) is the semimajor
axis distribution of binary systems, and f (μ) is the mass
distribution of stars where μ = (M/M�) is the mass-ratio
of the massive body (component A) and solar mass. The
probability distribution P (i) of finding a binary system with
a given inclination 0 � i � π , is a function of distance r, semi-
major axis A, mass ratio μ, and the given light deflection angle
ϕ. According to Equation (13), the probability distribution P (i)
is given by (the inclination of binary systems is of course a
random distribution)

P (i) = 2

π
arccos

(
−p

2
+

√
p2

4
− q

)
, (23)

where p and q are given by Equations (14) and (15).

For the minimal distance of a binary system from the Sun one
can safely assume Rmin = 1 pc. From Equation (12) it follows
that beyond a sphere with radius Rmax = 2000 pc only a very
few exceptional binary systems might have a light deflection of
more than 1 μas. The Sun is located in the Orion arm which
has about 1000 pc across and approximately 3000 pc in length.
For the estimate according to Equation (22), it is meaningful to
assume that the stars are homogeneously distributed inside the
Orion arm. For the uniform star density, ρstars = 0.1 star pc−3,
a value which is in line with the data of RECONS (2012).
Furthermore, a common presumption is that about 50% of
all stars are components of a binary or multiple system (see
Duquennoy & Mayor 1991 and Halbwachs et al. 2003). Then
one obtains for the density of binaries

ρ(r) � 0.025 binaries pc−3. (24)

Let us now consider the distribution of semimajor axis A in
binary systems. Statistical investigations show that the distribu-
tion of binary semimajor axis is flat in a logarithmic scale over
the range of six orders of magnitude that is assumed to be valid
in the large range Amin = 10 R� � A � 104 AU = Amax; see
Kouwenhoven & de Grijs (2008). The lower limit Amin is de-
termined by the semimajor axis at which Roche lobe overflow
occurs, while the upper limit Amax depends on how large the
average star density is. The logarithmic distribution is known as
“Öpik’s law” (1924) after its discoverer and given by f (A) ∼
(1/A), a law which has also been confirmed by recent investi-
gations, e.g., Poveda et al. (2006). This distribution is a conse-
quence of the process of star formation as well as of the dynami-
cal history of the binary system, and one can take Öpik this law as
a given fact for numerical studies. Accordingly, see Appendix E:

f (A) = 1

A

(
ln

Amax

Amin

)−1

. (25)

Furthermore, for the mass distribution f (μ) let us recall the
initial mass function (IMF), which is the probability that a star
is newly formed with a stellar mass M and is frequently as-
sumed to be a power law f (M) ∼ M−α . Originally, the IMF
was introduced by Salpeter (1955) for solar neighborhood re-
gion who assumed the value α = 2.35 and a validity region
for stars with masses between 0.4 M� and 10 M�. During the
past decades the IMF has been refined by several investiga-
tions. In particular, the numerical values of slope parameter α
and regions of validity have been proposed in subsequent in-
vestigations, e.g., Scalo (1986), Robin et al. (2003), Ninkovic
& Trajkovska (2006), Ninkovic (1995), Kroupa (2001); for a
review see Kroupa (2002). Moreover, the IMF does not neces-
sarily coincide with the real mass distribution of stars because
the IMF describes the mass distribution of a star formation,
while the solar neighborhood mainly consists of evolved stars
of main sequence. Here, for simplicity this distribution is used
as a given fact with α = 2.35 and the proposed region of validity
is assumed to be μmin = 0.4 and μmax = 10. According to the
IMF, one finds for α = 1 (see Appendix E)

f (μ) = (1 − α) μ−α

μ
(1−α)
max − μ

(1−α)
min

. (26)

In order to motivate that distribution further, one can compare
Equation (26) with the RECONS (2012) data where one finds
a fair agreement. Using Equations (23)–(26), the results of the
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Figure 4. Total number of binaries according to Equation (22), having
parameters such that the light deflection of component B at component A is
larger than a given value for ϕ. Note that for one individual observation the
astrometric accuracy of Gaia is about 25 μas and the end-of-mission accuracy
is about 5 μas in the most ideal case (bright star).

estimate (22) are shown in Figure 4; recall that by evaluating this
integral one has to take into account the boundary conditions
given by Equations (11) and (12). According to Figure 4, in total
there are about N ∼ 103 binaries having a light deflection of at
least ϕ = 1 μas.

6. TOTAL NUMBER OF BINARIES WITH A GIVEN LIGHT
DEFLECTION FOR FINITE TIME OF OBSERVATION

In Equation (22) the number of binaries with a given maximal
possible light deflection ϕ has been determined, just by taking
for eccentric anomaly the value E = 0, i.e., the ideal configu-
ration where the light deflection takes its maximal value (note,
the eccentricity e = 0). It is, however, obvious that during the
most of the orbital motion one will have E = 0 and the light de-
flection will be much smaller than the maximum possible light
deflection angle ϕ. On the other side, the orbital period T of
relevant binaries, given by Equation (A21), will easily exceed
the time of observation; for instance, the Gaia mission time is
about Tmission � 5 years. Therefore, it is not very probable that
the component B will be just at the relevant position near the
value E = 0, where the light deflection becomes observable on
the microarcsecond level. In order to determine that number of
observable relevant binaries, one has to extend Equation (22) as
follows:

N (ϕ) =
∫ Rmax

Rmin

d3r ρ(r)
∫ Amax

Amin

dA f (A)

×
∫ μmax

μmin

dμ f (μ) P (i) P (E). (27)

Here, P (E) is the probability for the binary system to be in the
region E, where the light deflection is larger than a given value
for ϕ.

In the very same way, as applied for the derivation of the
inclination formula (13), one can reconvert Equations (B15)
in terms of eccentric anomaly E and one finds the eccentric
anomaly formula:

E = ± arccos

(
−p

2
+

√
p2

4
− q

)
, (28)

where p and q are given by Equations (14) and (15). For a
given value of light deflection ϕ, the formula (28) yields the
value of eccentric anomaly E of a binary system characterized
by semimajor axis A and Schwarzschild radius (or mass) m
at a distance r. However, the values of ϕ cannot be chosen
arbitrarily, instead they are restricted by ϕmin = ϕ(E = ±π/2)
and ϕmax = ϕ(E = 0) given by (of course, only astrometric
positions with 0 � E � π/2 are taken into account because for
the area π/2 � E � π the light deflection is negligible):

ϕmin = 1

2

(√
A2

r2
+ 8

m

r

A

r
− A

r

)
≈ 2

m

r

= 0.0197 μas
M

M�

pc

r
, (29)

ϕmax = 2

√
m A

r
= 200 μas

√
M

M�

A

AU

pc

r
, (30)

where in Equation (29) terms of the order of O(m2/r A) have
been neglected. These expressions resemble the corresponding
expressions in Equations (11) and (12). According to Equa-
tion (28), the region where the binary system has a light deflec-
tion larger than or equal to ϕ is given by 2 E. One also has to
take into account that during the Gaia mission time Tmission com-
ponent B moves along the orbit and could move into the region
2 E. Therefore, the probability P (E) that the binary system is
during the Gaia mission time, at least once inside the relevant
astrometric position with the value E in Equation (28), is given
by

P (E) = P1

(
1

π
arccos

(
−p

2
+

√
p2

4
− q

)
+

Tmission

T

)
,

(31)

where the operator P1 is defined by

P1 (x) = x if x < 1,
1 if x � 1.

(32)

The probability distribution (31) has to be implemented in
Equation (27) in order to determine the number of binary
systems having a given light deflection ϕ and to be observable
during Gaia mission time Tmission. The results of Equation (27)
are shown in Figure 5; recall that by evaluating this integral
one has to take into account the boundary conditions given by
Equations (11) and (12). Accordingly, there are only very few
binaries ∼102 having a light deflection of at least ϕ = 1 μas
because only this number of binaries will reach the optimal
astrometric position E = 0 during an assumed observation time
of Tmission = 5 years.

7. SPECIAL CASE: CONDITIONS ON ORBITAL
PARAMETERS FOR RESOLVED BINARIES

In this section, the special case of a resolved binary system is
considered. In order to investigate the detectability of the light
deflection effect in binaries, today’s most modern astrometric
mission, the ESA cornerstone mission Gaia, and its instrumen-
tation, which provides the highest possible astrometric accuracy
at the moment, will be considered here as a concrete example.
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Figure 5. Total number of binaries according to Equation (27) where the binary
system reaches the optimal configuration E = 0 during an assumed observation
time of Tmission = 5 yr, and having orbital parameters such that the light
deflection of component B at component A is larger than a given value for ϕ.
Note that for one individual observation the astrometric accuracy of Gaia is
about 25 μas and the end-of-mission accuracy is about 5 μas in the most ideal
case (bright star).

7.1. Resolving Power of Gaia

The core of Gaia optical instrumentation consists of two
identical mirror telescopes, ASTRO-1 and ASTRO-2, with a
rectangular pupil whose dimensions are A = 0.50 m, B =
1.45 m, and f = 35 m is the effective focal length. The intensity
is given by (see Lattanzi et al. 1998 and Lindgren 1998):

I (zA, zB) = I0

(
sin2(zA)

z2
A

sin2(zB)

z2
B

)
, (33)

where zA = π A/λ sinΘA, zB = π B/λ sinΘB, A and B are the
width and length of rectangular mirror, λ is the wavelength of the
incident light-ray, and ΘA, ΘB are the angles of observation, i.e.,
the angle between the axis of the rectangular aperture and the
line between aperture center and observation point, respectively.
The intensity of incident light-ray at ΘA = 0, ΘB = 0 is
denoted by I0. The function I (zA, zB)/I0 in Equation (33) is
the (by ΘA = ΘB = 0 normalized) point-spread function
(PSF) for monochromatic incident light with wavelength λ
for a rectangular aperture. The optical spectrum of stars is
λ = (350–750) nm. In Figure 6 the PSF for an incident
monochromatic light-ray with λ = 350 nm is represented for
Gaia telescopes.

Most of the light is concentrated in the central bright rectan-
gular shaped pattern. The length lA and width lB of this rect-
angle is determined by the first zero-roots of Equation (33) at
zA � π and zB � π , respectively. From this it follows that
sinΘA = π λ/(π A) = λ/A and sinΘB = π λ/(π B) = λ/B.
Furthermore, if the diffraction pattern is shown on a screen at a
distance f, then the length and width are given by (see Hog et al.
1997):

LA = 2
f λ

A
, (34)

LB = 2
f λ

B
, (35)

where f is the focal length of the optic, i.e., of the rectan-
gular Gaia mirror. Accordingly, the given numerical values

+ 2
+1

0
-1

-2

ΘA  [ 106 rad ]

+ 2

+1

0

-1

-2

ΘB  [ 106 rad ]

1

0.5

0

I / I0

Figure 6. Point-spread function (PSF) for a rectangular telescope according
to Equation (33). The incident monochromatic light-ray has a wavelength of
λ = 350 nm. The parameters of the rectangular telescope are: A = 0.5 m,
B = 1.45 m.

A = 0.50 m, B = 1.45 m, and λ = 350 nm result in
LA = 49.0 μm and LB = 16.9 μm for the length and width
of the “Airy rectangle” of the Gaia optics. Note that the “Airy
rectangle” has the same order of magnitude as the pixel size
(10 μm × 30 μm) of the 110 CCD (Charge-Coupled Device)
sensors of the astrometric field part of the focal plane. In order
to separate two pointlike sources, the distance between their
centers and the rectangle has to be larger than either LA or LB.
Since LB < LA, in this study the better resolution value LB is
used, which corresponds to a resolution angle of

δ = LB

2 f
= λ

B
. (36)

The resolving power is the minimal angular distance between
two objects to be separable by Gaia instrumentation. With the
parameters given above one obtains the resolving power δ of
Gaia optics:

δ = 0.24 × 10−6 rad = 49.7 mas. (37)

In what follows this parameter is of fundamental importance
in order to determine the ability of Gaia to determine the light
deflection in binary systems.

7.2. Orbital Parameters of Resolved Binaries
Observable by Gaia

In this section, the question is addressed of which and how
many binary systems can be separated by Gaia instrumentation
among all those relevant binaries found in the previous section;
see Figure 5. On average, Gaia will observe each object 80
times, but will not constantly observe these objects during
mission time. However, for simplicity the scanning law of Gaia
is approximated by assuming a permanent observation of all
objects during the whole mission time.

Furthermore, visual binaries are considered in this section,
i.e., binaries which are separable by Gaia telescopes. Both
of the largest telescopes of Gaia have a resolution angle δ
discussed in the previous section (see Equations (36) and (37)).
For binary systems, this resolution angle δ corresponds to a
minimal distance between the components A and B to get
separable within Gaia optics. Using Equations (B6) and (36)
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one obtains the condition

d = A |cos i| � δ r = λ

B
r, (38)

where r is the distance between the remote objects and Gaia
observer. This condition is by far much more important than
taking into account the effect of finite radius of the stars,
which would imply A |cos i| � RA, where RA is the radius
of component A. By inserting the extreme case A |cos i| = δ r
into Equation (10), one obtains

ϕ = 1

2

(√
δ2 + 8 (1 + sin i)

m

r

A

r
− δ

)
� 4

m

r

A

r

1

δ
, (39)

where sin i � 1 has been used, and terms of higher order
O(m2) are neglected. Relation (39) is an expression for the
maximal light deflection angle of a binary system when taking
into account the resolving power of Gaia. Equation (39) is a
much stricter restriction than the generalized lens equation (10)
because Equation (39) determines the light deflection angle
only of those binary systems having a resolution angle δ of
Gaia optical instrumentation, while Equation (10) determines
the light deflection angle of any possible binary system. Note
that from Equation (39) follows the maximal possible distance
of visual binaries for a given light deflection ϕ:

r �
(

4
m A

ϕ δ

)1/2

= 0.18 pc

(
M

M�

A

AU

)1/2

, (40)

where in the last expression the optimal values δ = 0.24 ×
10−6 rad and ϕ = 25 μas have been used. The condition (40)
can also be written as

A � 30 AU
M�
M

r2

pc2
. (41)

Both conditions (40) and (41) imply rather extreme orbital
parameters on visual binaries. For instance, condition (40)
implies a maximal distance of r � 18 pc for solar-mass-type
binaries even with a huge semimajor axis of A = 104 AU, while
condition (41) implies a large semimajor axis for solar-mass-
type binaries outside a sphere of r � 10 pc. It is almost certain
that such extreme parameters will not be realized in nature.

8. SUMMARY

In this study, the light deflection in binary systems has
been considered. While there is absolutely no doubt about the
existence of this relativistic effect, it has not been observed thus
far. To investigate this effect of light deflection, an inclination
formula (13) has been derived by means of the generalized lens
equation (9) obtained recently by Zschocke (2011), and both
equations are the theoretical basis for investigating the light
deflection effect in binary systems. A simplified inclination
formula has been presented by Equation (19) and its validity
has been discussed in some detail. This simplified inclination
formula has also been obtained by S. A. Klioner, F. Mignard,
& M. Soffel (2003, private communication) by an independent
approach. Furthermore, two stringent conditions on the orbital
parameters have been given by Equations (20) and (21). Both
stringent conditions are relations between the orbital elements of
a (resolved, astrometric, eclipsing, spectroscopic) binary system

for a given magnitude of light deflection, and allow us to find a
relevant binary system in a straightforward way.

In Section 5, the total number of binaries with a given light
deflection has been determined by means of the semimajor
axis distribution according to “Öpik’s law” and the mass
distribution according to “Salpeter’s mass distribution”. Since
the inclinations are randomly distributed, the inclination formula
allows us to estimate the total number of relevant binaries with
the aid of Equation (22). It turns out that in total about 103

binaries exist that have orbital parameters such that the light
deflection amounts to at least 1 μas (see Figure 4).

In Section 6, a finite time of observation of five years (Gaia
mission time) has been considered, which considerably reduces
the total number of relevant binaries. Clearly, this case is of
more practical importance, since a restricted time window of
observation is in better agreement with reality than the first
scenario. By taking into account the probability of finding the
system in the ideal astrometric position E = 0 where the light
deflection becomes maximal, it has been found by evaluating
the corresponding integral (27) that there are no relevant binary
systems in the ideal position E = 0 during Gaia mission time
(see Figure 5). Thus, while in principle a few binaries will have
a significant light deflection, the effect could not be detected
due to the restricted finite time window of observation.

Furthermore, the special case of resolved binaries has been
considered in Section 7. The astrometric instrumentation of
the ESA cornerstone mission Gaia (see e.g., Perryman et al.
2001), has been considered in some detail in order to decide
whether or not this subtle effect of light deflection can be
observed. Two conditions for resolved binaries were presented
in Equations (40) and (41) for such a special kind of binary
systems. It has been shown, however, that even for the Gaia
mission, which is an outstanding milestone of progress in
astrometry, such binary systems must have rather extreme orbital
parameters in order to reach today’s level of detectability, i.e., on
the microarcsecond level. The existence of such exotic binaries
is, however, highly improbable.

In summary, the main results are presented by the inclination
formulae (13) and its simplified version (19), the stringent
conditions (20) and (21), and by the diagrams in Figures 4 and 5.
Accordingly, one comes to the conclusion that the detectability
of light deflection in binary systems reaches the technical limit
of today’s high-precision astrometry and might be detected
only in case of a very few and highly exotic binary systems.
It is, however, very unlikely that such extreme binaries might
exist. It seems that the detection of the light deflection effect in
binary systems needs an astrometric accuracy of better than
about 0.1 μas. Thus, only astrometric missions of the next
generation can accept the challenge of detecting this subtle effect
of relativity.

This work was partially supported by the BMWi grants
50 QG 0601 and 50 QG 0901 awarded by the Deutsche Zentrum
für Luft- und Raumfahrt e.V. (DLR). Enlighting discussions
with Prof. Sergei A. Klioner, Prof. Michael H. Soffel, and Prof.
Francois Mignard are gratefully acknowledged.

APPENDIX A

TWO-BODY PROBLEM

The calculations in this appendix mainly follow Landau &
Lifshitz (1976). Consider two massive bodies, one component
having a mass MA and spatial coordinate rA, and a second
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component with a mass MB and spatial coordinate rB , respec-
tively. They orbit around their common center of mass rCMS,

rCMS = 1

MA + MB

(MA rA + MB rB) . (A1)

The Lagrangian L of the two-body problem is given by

L = MA

2
ṙ2
A +

MB

2
ṙ2

B − U (|rA − rB |), (A2)

where U is the potential. With the aid of relative coordinate
rAB = rA−rB and reduced mass M = MA MB/(MA+MB), the
two-body problem can be transformed into a one-body problem,

L = M

2
ṙ2
AB − U (rAB). (A3)

Polar coordinates (rAB, φ) yield

L = 1

2

(
M ṙ2

AB + r2
AB φ̇2

) − U (rAB) . (A4)

The orbital angular momentum L is conserved,

L = M r2
AB φ̇ = constant, (A5)

by means of which one obtains for the total energy of the two-
body system the expression

E = M

2
ṙ2
AB +

L2

2 M r2
AB

+ U (rAB) . (A6)

From Equation (A6) one deduces

ṙAB =
(

2

M
[E − U (rAB)] − L2

M
2

r2
AB

)
, (A7)

and from Equation (A7) one obtains up to an integration constant

t =
∫

drAB

(
2

M
[E − U (rAB)] − L2

M
2

r2
AB

)−1/2

, (A8)

φ =
∫

drAB

M

r2
AB

(
2 M [E − U (rAB)] − L2

r2
AB

)−1/2

, (A9)

where in the second relation Equation (A5) has been used; note
that Equation (A9) is the relation between rAB and φ and is
called the orbital equation. Equations (A8) and (A9) are the
general integral solutions of a two-body problem. In order to
integrate these equations ((A8) and (A9)) one has to specify the
potential U. In the case of the Kepler problem one has

U (r) = − α

rAB

with α = GMA MB. (A10)

Equation (A9) can be integrated and yields

φ = arccos

(
L

rAB

− γ M MA MB

L

)

×
(

2M E +
γ 2 M

2
M2

A M2
B

L2

)−1/2

, (A11)

where the axes are chosen such that the mentioned integration
constant vanishes. Furthermore, by introducing the eccentricity
e (possible values of eccentricity are between 0 � e < 1; e = 0
corresponds to a circular orbit),

e =
(

1 +
2 E L2 (MA + MB)

γ 2 M3
A M3

B

)1/2

, (A12)

the solution (A11) can be written as

1

rAB

L2

γ M MA MB

= 1 + e cos φ. (A13)

Note the expressions of semimajor axis A and semiminor
axis B,

A = L2

(1 − e2) γ M MA MB

, (A14)

B = L2

√
1 − e2 γ M MA MB

. (A15)

To solve the integral (A8), one substitutes

rAB − A = −A e cos E, (A16)

where E is called eccentric anomaly. Then, one obtains for the
integral in Equation (A8) the expression

t =
(

A3

γ (MA + MB)

)1/2 ∫
dE (1 − e cos E), (A17)

and the solution is given by

t =
(

A3

γ (MA + MB)

)1/2

(E − e sin E) , (A18)

where the integration constant vanishes, i.e., the particle at t = 0
is in periastron. The Equations (A13) and (A18) are the general
solutions of the two-body problem. They can be rewritten as

rAB = A(1 − e cos E), (A19)

t =
(

A3

γ (MA + MB)

)1/2

(E − e sin E) . (A20)

In the case of an ellipse, E = 0 in periastron, E = π in apastron,
and for a complete orbit E runs from E = 0 to E = 2 π . Thus,
one obtains for the orbital period the expression

T = 2 π

(
A3

γ (MA + MB)

)1/2

. (A21)

Note the solution r in Cartesian coordinates x = rAB cos φ and
y = rAB sin φ:

rAB =
(

x
y

)
, (A22)

x = A (cos E − e) , (A23)

y = A(1 − e2)1/2 sin E. (A24)
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Figure 7. Geometrical representation of the coordinates of a binary star. In
the example considered, the masses are MA = 1.5 M� and MB = 1.0 M�,
respectively. The semimajor axis of the binary system is chosen to be A = 2 AU
and the eccentricity is taken to be e = 0.5. The coordinates of mass center are
rCMS = 0. The massive bodies A and B are always in opposition to each other.

The coordinates of bodies A and B, i.e., their orbits, are given
by

rA = rCMS +
rAB

1 + MA

MB

, (A25)

rB = rCMS − rAB

1 + MB

MA

. (A26)

Accordingly, the geometry of the orbit is determined by two
orbital parameters: semimajor axis A and eccentricity e. In order
to know the position of one celestial body, either component A
or component B, two additional orbital parameters are needed,
namely orbital period T and true anomaly ν. A geometrical
representation of the coordinates of the components of a binary
star is given in Figure 7 for the case of MA = 1.5 M�,MB =
1.0 M�, e = 0.5, A = 2 AU.

APPENDIX B

DERIVATION OF EQUATION (10)

For the inclination formula the impact of eccentricity on
light deflection is neglected, thus e = 0, implying that ω = 0
is assumed. Then, for the vectors from the massive body to
observer x1 and from the massive body to source x0, one has

x1 = r

(
sin i − ε1 cos E

−ε1 sin E
cos i

)
, (B1)

x0 = −A

(
cos E
sin E

0

)
, (B2)

where the small parameter

ε1 = A

r

mB

mA + mB

	 1 (B3)

has been introduced. From Equations (B1) and (B2) one obtains
for vector k = R/R, where R = x1 − x0, the expression

k = (
1 + 2 ε2 sin i cos E + ε2

2

)−1/2

(
sin i + ε2 cos E

ε2 sin E
cos i

)
,

(B4)

where the small parameter

ε2 = A

r

mA

mA + mB

	 1 (B5)

has been introduced. Note that Equations (B2) and (B4) yield

d = |k × x0| = A |cos i| (1 + O (ε2)) . (B6)

Using Equations (B1)–(B5), the generalized lens equation (9)
reads

ϕ = 1

2

1

T1 T2

(√
W 2

1 + 8
m

r

A

r
(T0 + T1 − ε1) T2 − W1

)
, (B7)

where W1 = A/r
√

1−T 2
0 and

T0 = sin i cos E, (B8)

T1 = (
1 − 2 ε1 sin i cos E + ε2

1

)1/2
, (B9)

T2 = (
1 + 2 ε2 sin i cos E + ε2

2

)1/2
. (B10)

By series expansion one obtains up to terms of the order of
O((A/r)

√
(m/r)(A/r)):

ϕ = 1

2

(√
W 2

2 + 8
m

r

A

r
(1 + w) − W2

)
, (B11)

where W2 = A
r

√
1 − w2 with w = sin i cos E. The minimal

and maximal light deflection angles are

ϕmin = ϕ
(
i = π

2
, E = π

)
= 0, (B12)

ϕmax = ϕ
(
i = π

2
, E = 0

)
= 2

√
m A

r
. (B13)

In this study, the maximal possible light deflection effect is of
interest. Accordingly, two configurations are relevant:

ϕ (E = 0) = 1

2

(√
A2

r2
cos2 i + 8

m

r

A

r
(1 + sin i) − A

r
| cos i|

)
,

(B14)

up to the order of O((A/r)
√

(m/r)(A/r)) which is just
Equation (10), and

ϕ
(
i = π

2

)

= 1

2

(√
A2

r2
sin2 E + 8

m

r

A

r
(1 + cos E) − A

r
|sin E|

)
,

(B15)

up to the order of O(A/r
√

(m/r)(A/r)). Furthermore, it is
useful to take into account only astrometric positions with
0 � E � (π/2), because otherwise the light deflection is
certainly negligible.
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APPENDIX C

DERIVATION OF EQUATION (13)

From Equation (B14) one obtains(
2 ϕ +

A

r
|cos i|

)2

= A2

r2
cos2 i + 8

m

r

A

r
(1 + sin i) . (C1)

From Equation (C1) one obtains(
ϕ2 + 4

m2

r2

)
A2

r2
sin2 i + 4

m

r

A

r

(
2

m

r

A

r
− ϕ2

)
sin i

=
(

A2

r2
+ 4

m

r

A

r

)
ϕ2 − 4

m2

r2

A2

r2
− ϕ4. (C2)

Equation (C2) represents an quadratic equation for the expres-
sion | sin i |, which has the following both solutions for the
inclination i:

sin i =
(

−p

2
±

√
p2

4
− q

)
, (C3)

where

p = 8 m2 A − 4 m r2 ϕ2

A
(
r2 ϕ2 + 4 m2

) , (C4)

q = −A2 r2 ϕ2 + 4 mAr2 ϕ2 − 4 m2 A2 − r4 ϕ4

A2(r2 ϕ2 + 4 m2)
. (C5)

Equation (C3) represents two solutions; however, only the one
with the plus sign is valid. This can be shown as follows. For
the value i = π/2 the light deflection has to be ϕ = ϕmax =
2
√

m A/r , according to Equation (12). By inserting ϕmax in
Equations (C4) and (C5) one obtains p = −2 m/(A + m) and
q = −(A − m)/(A + m). If one inserts i = π/2 for p and q into
Equation (C3) one obtains the relation

1 = m

A + m
±

(
m2

(A + m)2 +
A − m

A + m

)1/2

= m

A + m
± A

A + m
.

(C6)

Obviously, relation (C6) is only correct for the upper sign. A
very similar proof can also be done using ϕmin, which also yields
that the upper sign is the correct and only solution. Therefore,
the inclination formula is given by (note that in the region under
consideration sin i = sin (π − i))

i =
arcsin

(
−p

2 +
√

p2

4 − q

)
for 0 � i � π

2 ,

π − arcsin

(
−p

2 +
√

p2

4 − q

)
for π

2 < i � π.

(C7)

For the complete region 0 � i � π one obtains for the
inclination formula the following expression:

∣∣∣ π

2
− i

∣∣∣ = arccos

(
−p

2
+

√
p2

4
− q

)
, (C8)

where p and q are given by Equations (C4) and (C5).

APPENDIX D

DERIVATION OF EQUATION (3)

In this appendix, a recalculation of some basic steps of S. A.
Klioner, F. Mignard, & M. Soffel (2003, private communication)
are given. A scheme of the light propagation in a binary system
is presented by Figure 2. The light signal from component B,
considered to be the light source, is deflected by component
A, considered to be the massive body which curves the space-
time. The vector x1 points from the mass center of the massive
body to the observer, and vector x0 points from the mass center
of massive body to the source; R = x0 − x1 and its absolute
value R = |R|, and m = GM/c2 is the Schwarzschild radius
of massive body; the explicit label A is omitted. Furthermore,
we define the impact vector d = k × (x1 × k), and its absolute
value d = |d|; see also Figure 2.

According to Klioner & Zschocke (2010), the transformation
of k to the unit tangent vector n of the light-trajectory at the
observer is in standard post-Newtonian approach given by

n = k − 2 m
k × (x0 × x1)

x1 (x0 x1 + x0 · x1)
+ O(m2). (D1)

Note, the PPN parameter of the parameterized post-Newtonian
formalism, which characterizes a possible deviation of the
physical reality from the general theory of gravity, is set equal to
1 here for simplicity. This expression is valid as long as d � m,
but diverges for d → 0. Thus, it is not valid for all possible
binary configurations, but instead one has take care to consider
only such astrometric configurations with d � m. By means of
Equation (D1) one obtains for the light deflection angle ϕ, i.e.,
for the angle between n and k, the expression

ϕ = 2
m

r
tan

ψ

2
, (D2)

where sin ψ/(1 + cos ψ) = tan ψ/2, x1 = r + O(A) has been
used, and ψ is the angle between x0 and x1. The expression (D2)
diverges for ψ → π , which corresponds with the mentioned
divergence of Equation (D1) for d → 0. Obviously, ψ � i+π/2
(from Equation (28) it is obvious that eccentric anomaly E of
binary system should be very close to zero for the light deflection
effect to be observable at the microarcsecond level, i.e., we
actually could even assume ψ � i + π/2) and one obtains

ϕ � 2
m

r
tan

(
i

2
+

π

4

)
= 2

m

r
cot

(
π

4
− i

2

)
, (D3)

where tan(α + π/2) = − cot α, cot α = tan−1 α, and the
asymmetry of function cot α has been used. From Equation (D3)
one obtains

∣∣∣π
2

− i

∣∣∣
KMS

� 2 arctan

(
0.0197

M

M�

μas

ϕ

pc

r

)
, (D4)

where (m/m�) = (M/M�) has been used (recall M is the
mass of component A and M� is the solar mass), and the
numerical values m� � 1.476 × 103 m, 1 μas � 4.848 ×
10−12 rad and 1 pc � 3.086 × 1016 m have been inserted,
so that 2 m�/(μas pc) � 0.0197. The simplified inclina-
tion formula (D4) has first been obtained by S. A. Klioner,
F. Mignard, & M. Soffel (2003, private communication); here we
notice the fact that due to the divergence of the post-Newtonian
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solution (D1) for d → 0, which corresponds to ψ → π , the
applicability of Equation (D4) is restricted by the condition
d � m. Using d = A |cos i| one obtains the validity condition
for the applicability of Equation (D4):∣∣∣π

2
− i

∣∣∣
KMS

� arcsin
m

A
. (D5)

Equation (D4) provides a relation between inclination i and light
deflection ϕ for a binary system characterized by its distance r
from the observer and its stellar mass M; note that (D4) agrees
with the simplified inclination formula given by Equation (19).

APPENDIX E

PROBABILITY DISTRIBUTION

Assume a probability distribution of quantity x is given by
f (x). The probability P of finding a system in the interval
xi � x � xi + Δx is given by

P (xi � x � xi + Δx) =
∫ xi+Δx

xi
dz f (z)∫ xmax

xmin
dz f (z)

, (E1)

where the region of validity of probability distribution f (x) is
given by xmin and xmax. In the infinitesimal limit Δx → dx, one
obtains by series expansion the following explicit form for the
probability distributions used here: for a power law f (x) ∼ x−α

with α = 1 one finds

f (x) = (1 − α) x−α

x
(1−α)
max − x

(1−α)
min

, (E2)

and for a logarithmic law f (x) ∼ x−1 one has

f (x) = 1

x

(
ln

xmax

xmin

)−1

. (E3)

The normalization is
∫ xmax

xmin
f (x) dx = 1 and the averaged value

x = ∫ xmax

xmin
f (x) x dx.
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