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A b s t r a c t

Nu m e r ic a l in te g r a tio n o f th e d iff e r e n tia l e q u a tio n s o f lig h t p r o p a g a tio n in

th e Sc h w a r z s c h ild m e tr ic s h o w s th a t in s o m e s itu a tio n s r e le v a n t f o r p r a c tic a l

o b s e r v a tio n s th e w e ll- k n o w n p o s t-Ne w to n ia n s o lu tio n f o r lig h t p r o p a g a tio n

h a s a n e r r o r u p to 1 6 µa s . Th e a im o f th is w o r k is to d e m o n s tr a te th is fa c t,

id e n tif y th e r e a s o n f o r th is e r r o r a n d to d e r iv e a n a n a ly tic a l f o r m u la a c c u r a te

a t th e le v e l o f 1 µa s a s n e e d e d f o r h ig h - a c c u r a c y a s tr o m e tr ic p r o je c ts ( e .g .,

Ga ia ) . An a n a ly tic a l p o s t- p o s t-Ne w to n ia n s o lu tio n f o r th e lig h t p r o p a g a tio n

f o r b o th Ca u c h y a n d b o u n d a r y p r o b le m s is g iv e n f o r th e Sc h w a r z s c h ild m e tr ic

a u g m e n te d b y th e p a r a m e tr iz e d p o s t-Ne w to n ia n a n d p o s t- lin e a r p a r a m e te r s β,

γ a n d ε. Us in g a n a ly tic a l u p p e r e s tim a te s o f e a c h te r m w e in v e s tig a te w h ic h

p o s t- p o s t-Ne w to n ia n te r m s m a y p la y a r o le f o r a n o b s e r v e r in th e s o la r s y s te m a t

th e le v e l o f 1 µa s a n d c o n c lu d e th a t o n ly o n e p o s t- p o s t-Ne w to n ia n te r m r e m a in s

im p o r ta n t f o r th is n u m e r ic a l a c c u r a c y . In th is w a y , a n a n a ly tic a l s o lu tio n

f o r th e b o u n d a r y p r o b le m f o r lig h t p r o p a g a tio n is d e r iv e d . Th a t s o lu tio n

c o n ta in s te r m s o f b o th p o s t-Ne w to n ia n a n d p o s t- p o s t-Ne w to n ia n o r d e r, b u t is

v a lid f o r th e g iv e n n u m e r ic a l le v e l o f 1 µa s . Th e d e r iv e d a n a ly tic a l s o lu tio n

h a s b e e n v e r ifi e d u s in g th e r e s u lts o f a h ig h - a c c u r a c y n u m e r ic a l in te g r a tio n

o f d iff e r e n tia l e q u a tio n s o f lig h t p r o p a g a tio n a n d f o u n d to b e c o r r e c t a t th e

le v e l w e ll b e lo w 1 µa s f o r a n a r b itr a r y o b s e r v e r s itu a te d w ith in th e s o la r

s y s te m . F u r th e r m o r e , th e o r ig in o f th e p o s t- p o s t-Ne w to n ia n te r m s r e le v a n t f o r

th e m ic r o a r c s e c o n d a c c u r a c y is e lu c id a te d . W e d e m o n s tr a te th a t th e s e te r m s

r e s u lt f r o m a n in a d e q u a te c h o ic e o f th e im p a c t p a r a m e te r in th e s ta n d a r d p o s t-

Ne w to n ia n f o r m u la e . In tr o d u c in g a n o th e r im p a c t p a r a m e te r, th a t c a n b e c a lle d

‘ c o o r d in a te in d e p e n d e n t’ , w e d e m o n s tr a te th a t a ll th e s e te r m s d is a p p e a r f r o m

th e f o r m u la e .
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1 . I n t r o d u c t io n

I t is w ell know n that adeq uate relativistic modeling is indisp ensab le for the success of

microarcsecond sp ace astrometry . O ne of the most imp ortant relativistic effects for astrometric

ob servations in the solar sy stem is the g ravitational lig ht defl ection. T he larg est contrib ution

in the lig ht defl ection comes from the sp herically sy mmetric (Schw arz schild) p arts of the

g ravitational fi elds of each solar sy stem b ody . Althoug h the p lanned astrometric satellites

Gaia, SIM , etc w ill not ob serve very close to the Sun, they can ob serve very close to the g iant

p lanets also p roducing sig nifi cant lig ht defl ection. T his p oses the p rob lem of modeling this

lig ht defl ection w ith a numerical accuracy of b etter than 1 µas.

T he ex act differential eq uations of motion for a lig ht ray in the Schw arz schild fi eld

can b e solved numerically as w ell as analy tically . H ow ever, the ex act analy tical solution

is g iven in terms of ellip tic integ rals, imp ly ing numerical efforts comp arab le w ith direct

numerical integ ration, so that ap p rox imate analy tical solutions are usually used. In fact, the

standard p arametriz ed p ost- N ew tonian (P P N ) solution is suffi cient in many cases and has b een

w idely ap p lied. So far, there w as no doub t that the p ost- N ew tonian order of ap p rox imation

is suffi cient for astrometric missions even up to microarcsecond level of accuracy , b esides

astrometric ob servations close to the edg e of the Sun. H ow ever, a direct comp arison reveals

a deviation b etw een the standard p ost- N ew tonian ap p roach and the hig h-accuracy numerical

solution of the g eodetic eq uations. In p articular, w e have found a difference of up to 16 µas

in lig ht defl ection for solar sy stem ob jects ob served close to g iant p lanets. T his error has

trig g ered detailed numerical and analy tical investig ation of the p rob lem.

U sually , in the framew ork of g eneral relativity or the P P N formalism analy tical orders of

smallness of various terms are considered. H ere the role of the small p arameter is p lay ed b y

c−1, w here c is the lig ht velocity . Standard p ost- N ew tonian and p ost- p ost- N ew tonian solutions

are derived b y retaining terms of relevant analy tical orders of mag nitude. O n the other hand,

for p ractical calculations only numerical mag nitudes of various terms are relevant. In this w ork

w e attemp t to close this g ap and comb ine the analy tical p arametriz ed p ost- p ost- N ew tonian

solution w ith ex act analy tical estimates of the numerical mag nitudes of various terms. In

this w ay w e derive a comp act analy tical solution for lig ht p rop ag ation w here all terms are

indeed relevant at the level of 1 µas. T he derived analy tical solution is then verifi ed using

the hig h-accuracy numerical integ ration of the differential eq uations of lig ht p rop ag ation and

found to b e correct at the level w ell b elow 1 µas.

W e use fairly standard notations as follow s.

• G is the N ew tonian constant of g ravitation.

• c is the velocity of lig ht.

• β and γ are the p arameters of the P P N formalism w hich characteriz e p ossib le deviation

of the p hy sical reality from g eneral relativity theory (β = γ = 1 in g eneral relativity ).

• L ow er case L atin indices i, j , . . . take values 1, 2, 3.

• L ow er case Greek indices µ, ν, . . . take values 0, 1, 2, 3.

• R ep eated indices imp ly E instein’s summation irresp ective of their p ositions (e.g . aibi =

a1b1 + a2b2 + a3b3 and aαbα = a0b0 + a1b1 + a2b2 + a3b3).

• A dot over any q uantity desig nates the total derivative w ith resp ect to the coordinate time

of the corresp onding reference sy stem e.g . ȧ = da
dt

.

• T he three-dimensional coordinate q uantities (‘3-vectors’) referred to the sp atial ax es of

the corresp onding reference sy stem are set in b oldface: a = ai .

• T he ab solute value (E uclidean norm) of a ‘3-vector’ a is denoted as |a| or, simp ly , a and

can b e comp uted as a = |a| = (a1a1 + a2a2 + a3a3)1/2.
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• T he scalar p roduct of any tw o ‘3-vectors’ a and b w ith resp ect to the E uclidean metric

δij is denoted b y a · b and can b e comp uted as a · b = δija
ibj = aibi .

• T he vector p roduct of any tw o ‘3-vectors’ a and b is desig nated b y a × b and can b e

comp uted as (a × b)i = εijka
jbk , w here εijk = (i − j)(j − k)(k − i)/2 is the fully

antisy mmetric L evi-Civita sy mb ol.

• F or any tw o vectors a and b, the ang le b etw een them is desig nated as δ(a, b). Clearly ,

for an ang le b etw een tw o vectors one has 0 6 δ(a, b) 6 π . T he ang le δ(a, b) can b e

comp uted in many w ay s, for ex amp le, as δ(a, b) = arccos a·b
ab

.

T his p ap er is a concise ex p osition of the w ork p erformed in the framew ork of the E SA

p roject Gaia and p ub lished in a series of p rep rints [11, 12, 21, 22]. T he p ap er is org aniz ed

as follow s. In section 2 w e p resent the ex act differential eq uations for lig ht p rop ag ation in

the Schw arz schild fi eld in harmonic g aug e. H ig h-accuracy numerical integ rations of these

eq uations are discussed in section 3. In section 4 w e discuss the standard p ost- N ew tonian

ap p rox imation and demonstrate its errors b y a direct comp arison w ith numerical results. In

section 5 the analy tical p ost- p ost- N ew tonian solution for lig ht p rop ag ation is g iven. Section 6

is devoted to the b oundary p rob lem for lig ht p rop ag ation in the p ost- p ost- N ew tonian

ap p rox imation. Investig ations of the p ost- p ost- N ew tonian terms in the formulae for the

lig ht defl ection reveal that these terms can b e divided into tw o g roup s: ‘reg ular’ (those w hich

can b e estimated as const · m2

d2 , w here m is the Schw arz schild radius of the defl ecting b ody

and d is the imp act p arameter) and ‘enhanced’ (those w hich cannot b e estimated like this and

may b ecome sub stantially larg er than the ‘reg ular’ terms). In section 7 w e clarif y the p hy sical

orig in of the ‘enhanced’ p ost- p ost- N ew tonian terms. T he results are summariz ed in section 8.

2. S c h w a r z s c h ild m e t r ic a n d n u ll g e o d e s ic s in h a r m o n ic c o o r d in a t e s

W e need a tool to calculate the real numerical accuracy of some analy tical formulae for lig ht

p rop ag ation in various situations. T o this end, w e consider the ex act Schw arz schild metric and

its null g eodesics in harmonic g aug e. T hose ex act differential eq uations for the null g eodesics

w ill b e solved numerically w ith hig h accuracy (see b elow ) and that numerical solution p rovides

the req uired reference.

2 .1 . M e tr ic te n s o r

In the harmonic g aug e

∂ (
√

−ggα β)

∂ xβ
= 0, (1)

the comp onents of the covariant metric tensor of the Schw arz schild solution are g iven b y

g00 = −
1 − a

1 + a
,

g0i = 0,

gij = (1 + a)2δij +
a2

x2

1 + a

1 − a
xixj ,

(2)

w here

a =
m

x
, (3)
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and m = GM
c2 is the Schw arz schild radius of a b ody w ith mass M. T he contravariant comp onents

of the metric read

g00 =
1 + a

1 − a
,

g0i = 0,

gij =
1

(1 + a)2
δij −

a2

x2

1

(1 + a)2
xixj .

(4)

Considering that the determinant of the metric can b e comp uted as

g = −(1 + a)4, (5)

one can easily check that this metric satisfi es the harmonic conditions (1).

2 .2 . C h r is to ffe l s y m b o ls

T he Christoffel sy mb ols of second kind are defi ned as

0
µ
αβ =

1

2
gµν

(

∂ gνα

∂ xβ
+

∂ gνβ

∂ xα
−

∂ gαβ

∂ xν

)

. (6 )

U sing (2) and (4) one g ets

00
0i =

a

x2

1

1 − a2
xi,

0i
00 =

a

x2

1 − a

(1 + a)3
xi, (7)

0i
jk =

a

x2
xiδjk −

a

x2

1

1 + a
(xjδik + xkδij ) −

a2

x4

2 − a

1 − a2
xixjxk.

All other Christoffel sy mb ols vanish.

2 .3 . I s o tr o p ic c o n d itio n

T he conditions that a p hoton follow s an isotrop ic g eodesic can b e formulated as an eq uation

for the four comp onents of the coordinate velocity ẋα of that p hoton:

gαβ

dxα

dλ

dxβ

dλ
= 0, (8 )

λ b eing the canonical p arameter, or

g00 +
2

c
g0i ẋ

i +
1

c2
gij ẋ

i ẋj = 0, (9)

w here ẋi = dxi/dt is the coordinate velocity of the p hoton. E q uation (9) is a fi rst integ ral of

motion for the differential eq uation for lig ht p rop ag ation and must b e valid for any p oint of an

isotrop ic g eodesic. Sub stituting the ansatz ẋ = csµ, w here µ is a unit coordinate direction of

lig ht p rop ag ation (µ · µ = 1) and s = |ẋ|/c, into (9) one g ets for metric (2)

s =
1 − a

1 + a

(

1 − a2 +
a2

x2
(x · µ)2

)−1/2

. (10)

T his formula allow s one to comp ute the ab solute value of the coordinate velocity of lig ht in

the chosen reference sy stem if the p osition of the p hoton xi and the coordinate direction of its

p rop ag ation µ are g iven.

4
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2.4. Equation of isotropic geodesics

T he g eodetic eq uations

d2xµ

dλ2
+ 0

µ
αβ

dxα

dλ

dxβ

dλ
= 0 (11)

can b e re-p arametriz ed b y coordinate time t to g ive

ẍi
= −c20i

00 − 2c0i
0j ẋ

j
− 0i

jk ẋ
j ẋk + ẋi

(

c00
00 + 200

0j ẋ
j +

1

c
00

jk ẋ
j ẋk

)

. (12)

Sub stituting the Christoffel sy mb ols one g ets the differential eq uations for lig ht p rop ag ation

in metric (2):

ẍ =

a

x2

[

−c2 1 − a

(1 + a)3
− ẋ · ẋ + a

2 − a

1 − a2

(

x · ẋ

x

)2
]

x + 2
a

x2

2 − a

1 − a2
(x · ẋ)ẋ. (13)

E q uation (10) for the isotrop ic condition tog ether w ith ẋ · ẋ = c2s2 could b e used to avoid

the term containing ẋ · ẋ, b ut this does not simp lif y the eq uations and w e p refer not to do this

here.

3 . N u m e r ic a l in t e g r a t io n o f t h e e q u a t io n s o f lig h t p r o p a g a t io n

O ur g oal is to integ rate (13) numerically to g et a solution for the trajectory of a lig ht ray w ith

an accuracy much hig her than the g oal accuracy of 1 µas ≈ 4.8 × 10−12 radians. F or these

numerical integ rations a simp le F O R T R AN 9 5 code using q uadrup le (128 b it) arithmetic has

b een w ritten. N umerical integ rator O D E X [7] has b een adap ted to the q uadrup le p recision.

O D E X is an ex trap olation alg orithm b ased on the ex p licit midp oint rule. It has automatic

order selection, local accuracy control and dense outp ut. U sing forth and b ack integ ration

to estimate the accuracy , each numerical integ ration is automatically checked to achieve a

numerical accuracy of at least 10−24 in the comp onents of b oth p osition and velocity of the

p hoton at each moment of time.

T he numerical integ ration is fi rst used to solve the initial-value (Cauchy ) p rob lem for

differential eq uations (13). E q uation (10) should b e used to choose the initial conditions. T he

p rob lem of lig ht p rop ag ation has thus only fi ve deg rees of freedom: three deg rees of freedom

corresp ond to the p osition of the p hoton and tw o other deg rees of freedom corresp ond to the

unit direction of lig ht p rop ag ation (of course, in the Schw arz schild fi eld w ith its sy mmetry

one also has further integ rals of motion, b ut here w e ig nore this; see section 5.4 b elow ). T he

ab solute value of the coordinate lig ht velocity can b e comp uted from (10). F ix ing initial

p osition of the p hoton x(t0) and initial (unit) direction of p rop ag ation µ one g ets the initial

velocity of the p hoton as a function of µ and s comp uted for g iven µ and x as g iven b y (10):

x(t0) = x0,

ẋ(t0) = csµ.
(14)

T he numerical integ ration y ields the p osition x and velocity ẋ of the p hoton as a function of

the time t. T he dense outp ut of O D E X allow s one to ob tain the p osition and velocity of the

p hoton on a selected g rid of moments of time. E q uation (10) must hold for any moment of

time as soon as it is satisfi ed b y the initial conditions. T herefore, eq uation (10) can also b e

used to check the accuracy of the numerical integ ration.

F or the p urp oses of this w ork w e need to have an accurate solution of tw o-value b oundary

p rob lem. T hat is, a solution of eq uation (13) w ith b oundary conditions

x(t0) = x0,

x(t1) = x1,
(15)

5
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ob server

deflecting b ody

source

light p ath

k

n
d

dσ

σ

light at
t =−∞

x
1

x
0

F ig u r e 1 . D efi nitions of the vectors x1, x0, k, n, σ. T he vectors d (defi ned in section 4 .1) and

dσ (defi ned in section 5.4 ) are also show n.

w here x0 and x1 are tw o g iven constants, t0 is assumed to b e fi x ed and t1 is unknow n and

should b e determined b y solving (13). Instead of using some numerical methods to solve

this b oundary p rob lem directly , w e g enerate solutions of a family of b oundary p rob lems from

our solution of the initial value p rob lem (14 ). E ach intermediate result comp uted during

the numerical integ ration w ith initial conditions (14 ) g ives us a hig h-accuracy solution of

the corresp onding tw o-value b oundary p rob lem (15): t1 and x1 are simp ly taken from the

numerical integ ration.

As discussed in [10], lig ht p rop ag ation is characteriz ed b y three unit vectors (see

fi g ure 1): the coordinate direction n of lig ht p rop ag ation at the p oint of recep tion

n =
ẋ(t1)

|ẋ(t1)|
, (16)

the coordinate direction σ of lig ht p rop ag ation for time g oing to minus infi nity :

σ = lim
t→ −∞

1

c
ẋ(t), (17)

and the coordinate direction k from the p oint of lig ht emission to the p oint of recep tion:

k =
R

R
, R = x1 − x0. (18 )

In the follow ing discussion w e w ill comp are p redictions of various analy tical models for

n in the framew ork of the b oundary p rob lem (15). T he reference value for these comp arisons

can b e comp uted using (16) and ẋ(t1) from the numerical integ ration. T he accuracy of this n

comp uted from our numerical integ rations is g uaranteed to b e of the order of 10−24 radians

and can b e considered as ex act for our p urp oses.

4 . T h e d e fi c ie n c y o f t h e s t a n d a r d p o s t - N e w t o n ia n a p p r o a c h

L et us now demonstrate that the standard p ost- N ew tonian formulae for lig ht p rop ag ation have

too larg e numerical errors w hen comp ared to the accurate numerical solution of the g eodetic

eq uations describ ed in the p revious section.

4 .1 . E q u a tio n s o f th e p o s t- N e w to n ia n a p p r o a c h

T he w ell-know n eq uations of lig ht p rop ag ation in the fi rst p ost- N ew tonian ap p rox imation w ith

P P N p arameters have b een discussed b y many authors (see, for ex amp le, [3, 17, 20]). L et

6
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us here summariz e the standard p ost- N ew tonian formulae. T he differential eq uations for the

lig ht ray s read (see also section 5.1.4 b elow )

ẍ = −(c2 + γ ẋk ẋk)
ax

x2
+ 2(1 + γ )

aẋ(ẋkxk)

x2
+ O(c−2). (19 )

T he analy tical solution of (19 ) can b e w ritten in the form

x(t) = xp N + O(c−4), (20)

xp N = x0 + c(t − t0)σ + 1x(t), (21)

w here

1x(t) = −(1 + γ )m

(

σ × (x0 × σ)

(

1

x − σ · x
−

1

x0 − σ · x0

)

+ σ log
x + σ · x

x0 + σ · x0

)

.

(22)

Solution (20)– (22) satisfi es the follow ing initial conditions:

x(t0) = x0,

lim
t→ −∞

ẋ(t) = cσ.
(23)

F rom (20)– (22) it is easy to derive the follow ing ex p ression for the unit tang ent vector at the

ob server’s p osition x1 for the b oundary p rob lem (15) (the standard techniq ue to do this is

g iven, e.g ., in [3] and used b elow in section 6 in the p ost- p ost- N ew tonian ap p rox imation):

np N = k − (1 + γ )m
d

d2

x0x1 − x0 · x1

x1R
, (24)

w here R and k are defi ned b y (18 ), and d = k × (x0 × k) = k × (x1 × k) is the imp act

p arameter of the straig ht line connecting x0 and x1.

4.2. Comparison of the post-Newtonian formula and the numerical solution

In order to investig ate the accuracy of the standard p ost- N ew tonian formulae w e have comp ared

the p ost- N ew tonian p redictions of the lig ht defl ection w ith the results of the numerical solution

of g eodetic eq uations. H ere, w e calculate the ang le b etw een the unit tang ent vector np N defi ned

b y (24) and the vector n comp uted using (16) from the numerical integ ration of (13).

H aving p erformed ex tensive tests, w e have found that, in the real solar sy stem, the error

of np N for ob servations made b y an ob server situated in the vicinity of the E arth attains

16 µas. T hese results are illustrated b y tab le 1 and fi g ure 2. T ab le 1 contains the p arameters

w e have used in our numerical simulations as w ell as the max imal ang ular deviation b etw een

np N and n in each set of simulations. W e have p erformed simulations w ith different b odies

of the solar sy stems assuming that the minimal imp act distance d is eq ual to the radius of the

corresp onding b ody , and the max imal distance x1 = |x1| b etw een the g ravitating b ody and

the ob server is g iven b y the max imal distance b etw een the g ravitating b ody and the E arth.

T he simulation show s that the error of np N is g enerally increasing for larg er x1 and decreasing

for larg er d. T he dep endence of the error of np N for fi x ed d and x1 and increasing distance

x0 b etw een the g ravitating b ody and the source is g iven in fi g ure 2 for the case of J up iter,

w here the minimal d and max imal x1 (according to tab le 1) w ere used. M oreover, the error

of np N is found to b e p rop ortional to m2 w hich leads us to the necessity to deal w ith the

p ost- p ost- N ew tonian ap p rox imation for lig ht p rop ag ation.

7
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F ig u r e 2. T he ang le b etw een np N and n for J up iter. T he vector np N is evaluated b y means

of the standard p ost- N ew tonian formula (24), w hile n is taken from the numerical integ ration as

describ ed in section 3. T he imp act p arameter d is taken to b e the radius of J up iter and the distance

x1 b etw een J up iter and the ob server is 6 au.

T a b le 1 . N umerical p arameters of the Sun and g iant p lanets are taken from [8, 19]. dmin is

the minimal value of the imp act p arameter d that w as used in the simulations. F or each b ody ,

dmin is eq ual to the radius of the b ody . F or the Sun at 45◦ the imp act p arameter is comp uted as

d = sin 45◦
× 1au. xmax

1 is the max imal ab solute value of the distance x1 b etw een the g ravitating

b ody and the ob server that w as used in the simulations. δmax is the max imal ang le b etw een np N

and n found in our numerical simulations.

Sun Sun at 45◦ J up iter Saturn U ranus N ep tune

m = G M / c2 (m) 1476.6 1476.6 1.409 87 0.422 15 0.064 473 0.076 067

dmin (106 m) 696.0 105 781.7 71.492 60.268 25.559 24.764

xmax
1 (au) 1 1 6 11 21 31

δmax (µas) 3187.8 6.32 × 10−4 16.13 4.42 2.58 5.84

5 . A n a ly t ic a l p o s t - p o s t - N e w t o n ia n s o lu t io n

T he g oal of this section is to derive a rig orous analy tical p ost- p ost- N ew tonian solution for lig ht

p rop ag ation in the g ravitational fi eld of one sp herically sy mmetric b ody in the framew ork of

the P P N formalism ex tended b y a non-linear p arameter for the terms of order c−4 in gij. T he

g eodetic eq uation for the lig ht ray in the Schw arz schild metric can in p rincip le b e integ rated

ex actly [4]. H ow ever, such an analy tical solution is g iven in terms of ellip tic integ rals and is

not very suitab le for massive calculations. B esides that, only the trajectory of the p hoton is

readily availab le from the literature, b ut not the p osition and velocity of a p hoton as functions

of time. F ortunately , in many cases of interest ap p rox imate solutions are suffi cient. T he

standard w ay to solve the g eodetic eq uation is the w ell-know n p ost- N ew tonian ap p rox imation

scheme. N ormally , in p ractical ap p lications of relativistic lig ht p rop ag ation, the fi rst p ost-

N ew tonian solution is used. P ost- p ost- N ew tonian effects have also b een sometimes considered

[9, 13], b ut in a w ay w hich cannot b e called self -consistent since no rig orous solution in the

p ost- p ost- N ew tonian ap p rox imation has b een used. Such a rig orous p ost- p ost- N ew tonian

analy tical solution for lig ht p rop ag ation in the Schw arz schild metric has b een derived in

[2, 3] in g eneral relativity in a class of g aug es. H ow ever, the p arametriz ation in [2, 3] does

8



Class. Quantum Grav. 27 (2010) 075015 S A Klioner and S Zschocke

not allow one to consider alternative theories of g ravity and therefore, a p ost- p ost- N ew tonian

solution for lig ht p rop ag ation w ithin the P P N formalism and its ex tension to the second p ost-

N ew tonian ap p rox imation is not know n. H ow ever, it is clearly necessary to have such a

solution. T herefore, our g oal is to g eneraliz e the p ost- p ost- N ew tonian solution of [2] and to

ex tend it for the b oundary p rob lem for lig ht p rop ag ation.

5.1. Differential equations of light propagation and their integral

T he fi rst p art of the p rob lem is to derive the differential eq uations of lig ht p rop ag ation w ith

P P N and p ost-linear p arameters.

5.1.1. Metric tensor in the parametrized post-post-Newtonian approximation. E x p anding

metric (2) in p ow ers of c−1, retaining only the terms relevant for the p ost- p ost- N ew tonian

solution for the lig ht p rop ag ation, and introducing the P P N p arameters β and γ [20] and the

p ost-linear p arameter ε one g ets

g00 = −1 + 2a − 2βa2 + O(c−6),

g0i = 0,

gij = δij + 2γ aδij + ε

(

δij +
xixj

x2

)

a2 + O(c−6),

(25)

a b eing ag ain defi ned b y (3). In g eneral relativity one has β = γ = ε = 1. T he p arameter ε

should b e considered as a formal w ay to trace, in the follow ing calculations, the terms coming

from the terms c−4 in gij. N o p hy sical meaning of ε is claimed here. H ow ever, this p arameter

is eq uivalent to the p arameter 3 of [14–16] and the p arameter ε of [6].

T he corresp onding contravariant comp onents of the metric tensor can b e deduced from

(25) and are g iven b y

g00
= −1 − 2a + 2(β − 2)a2 + O(c−6),

g0i
= 0,

gij
= δij − 2γ aδij +

(

(4γ 2
− ε)δij − ε

xixj

x2

)

a2 + O(c−6).

(26)

T he determinant of the metric tensor reads

g = −1 − 2(3γ − 1)a − 2(β + 2ε + 6γ (γ − 1))a2 + O(c−6), (27)
√

−g = 1 + (3γ − 1)a + (2β + 4ε − 1 + 3γ (γ − 2))a2 + O(c−6). (28 )

M etric (25) is ob viously harmonic for γ = β = ε = 1 since the harmonic conditions (1) take

the form

∂ (
√

−gg0α)

∂ xα
= 0,

∂ (
√

−ggiα)

∂ xα
= (1 − γ )

axi

x2
+ ((1 + γ )2

− 2β − 2ε)
a2xi

x2
+ O(c−6).

(29)

5.1.2 . C hristoffel sy mb ols. T he Christoffel sy mb ols of second kind defi ned b y (6) can b e

derived from metric (25)–(26):

00
00 = 0, (30)

9
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00
0i =

axi

x2
+ (1 − β)

2a2xi

x2
+ O(c−6), (3 1)

00
ik = 0, (3 2)

0i
00 =

axi

x2
− (β + γ )

2a2xi

x2
+ O(c−6), (3 3 )

0i
0k = 0, (3 4)

0i
kl = γ (xiδkl − xkδil − x lδik)

a

x2

+

(

2(ε − γ 2)xiδkl − (ε − 2γ 2)(xkδil + x lδik) − 2ε
xixkx l

x2

)

a2

x2
+ O(c−6).

(3 5)

5.1.3. Isotropic condition for the null geodetic. F rom now on, xα denote the coordinates of

a p hoton, xi denote the sp atial coordinates of the p hoton and x = |x| is the distance of the

p hoton from the g ravitating b ody that is situated at the orig in of the used reference sy stem. As

it w as discussed in section 2.3 , eq uation (9) allow s one to comp ute the ab solute value of the

coordinate velocity of lig ht if the p osition of the p hoton xi and the unit coordinate direction of

its p rop ag ation µi (µ · µ = 1) are g iven. U sing (25) for s = |ẋ|/ c one g ets

s = 1 − (1 + γ )a +
1

2

(

−1 + 2β − ε + γ (2 + 3 γ ) − ε
(

µ · x

x

)2
)

a2 + O(c−6). (3 6)

5.1.4 . D ifferentia l eq ua tions of light propa ga tion. Inserting the Christoffel sy mb ols (3 0)–

(3 5) into (12), one g ets the follow ing eq uations of lig ht p rop ag ation in the p ost- p ost- N ew tonian

ap p rox imation:

ẍ = −(c2 + γ ẋ · ẋ)
ax

x2
+ 2(1 + γ )

aẋ(ẋ · x)

x2

+ 2((β + γ )c2 + (γ 2 − ε)(ẋ · ẋ))
a2

x

x2
+ 2ε

a2
x(ẋ · x)2

x4

+ 2(2(1 − β) + ε − 2γ 2)
a2

ẋ(ẋ · x)

x2
+ O(c−4). (3 7)

H ere, for estimating the analy tical order of smallness of the terms w e take into account that

|ẋ| = O(c). U sing (3 6) and ẋ · ẋ = c2s2 one can simp lif y (3 7) to g et

ẍ = −(1 + γ )c2 ax

x2
+ 2(1 + γ )

aẋ(ẋ · x)

x2

+ 2c2(β − ε + 2γ (1 + γ ))
a2

x

x2
+ 2ε

a2
x(ẋ · x)2

x4

+ 2(2(1 − β) + ε − 2γ 2)
a2

ẋ(ẋ · x)

x2
+ O(c−4). (3 8 )

5.1.5. E q ua tions of light propa ga tion w ith the a dditiona l tra ce pa ra m eter α. F or our p urp oses

it is advantag eous to have one more p arameter that can b e used to trace terms in the follow ing

calculations w hich come from the p ost- p ost- N ew tonian terms in the eq uations of motion of a
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p hoton. W e denote this p arameter α and introduce it in the ab ove eq uation simp ly as a factor

for all the p ost- p ost- N ew tonian terms on the rig ht-hand side:

ẍ = −(1 + γ )c2 ax

x2
+ 2(1 + γ )

aẋ(ẋ · x)

x2

+ 2c2α(β − ε + 2γ (1 + γ ))
a2

x

x2
+ 2αε

a2
x(ẋ · x)2

x4

+ 2α(2(1 − β ) + ε − 2γ 2)
a2

ẋ(ẋ · x)

x2
+ O(c−4). (39 )

Setting α = 0 in the solution of (39 ) one can formally g et a second-order solution for the

p ost- N ew tonian eq uations of lig ht p rop ag ation. T he merit of this p arameter w ill b e clear

b elow .

5.2. Initial value problem

L et us now solve analy tically an initial value p rob lem for the derived eq uations. F or initial

conditions (23) using the same ap p roach as in [2, 3], one g ets

1

c
ẋN = σ, (40)

xN = x0 + c(t − t0)σ, (41)

1

c
ẋp N = σ + mA1(xN ), (42)

xp N = xN + m(B1(xN ) − B1(x0)), (43)

1

c
ẋp p N = σ + mA1(xp N ) + m2

A2(xN ), (44)

xp p N = xN + m(B1(xp N ) − B1(x0)) + m2(B2(xN ) − B2(x0)), (45)

w here

A1(x) = −(1 + γ )

(

σ × (x × σ)

x(x − σ · x)
+

σ

x

)

, (46 )

B1(x) = −(1 + γ )

(

σ × (x × σ)

x − σ · x
+ σ log (x + σ · x)

)

, (47)

A2(x) = −
1

2
αε

σ · x

x4
x + 2(1 + γ )2 σ × (x × σ)

x2(x − σ · x)
+ (1 + γ )2 σ × (x × σ)

x(x − σ · x)2

− (1 + γ )2 σ

x(x − σ · x)
+

(

2(1 − α + γ )(1 + γ ) + αβ −
1

2
αε

)

σ

x2

−
1

4
(8(1 + γ − αγ )(1 + γ ) − 4αβ + 3αε)(σ · x)

σ × (x × σ)

x2|σ × x|2

−
1

4
(8(1 + γ − αγ )(1 + γ ) − 4αβ + 3αε)

σ × (x × σ)

|σ × x|3
(π − δ (σ,x)),

(48)
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B2(x) = −(1 + γ )2 σ

x − σ · x
+ (1 + γ )2 σ × (x × σ)

(x − σ · x)2
+

1

4
α ε

x

x2

−
1

4
α (8(1 + γ ) − 4β + 3ε )

σ

|σ × x|

(π

2
− δ (σ,x)

)

−
1

4
(8(1 + γ − α γ )(1 + γ ) − 4α β + 3α ε )(σ · x)

σ × (x × σ)

|σ × x|3
(π − δ (σ,x)),

(49 )

or, alternatively , for B1 and B2

B1(x) = −(1 + γ )

(

σ × (x × σ)

x − σ · x
− σ log (x − σ · x)

)

, (50)

B2(x) = + (1 + γ )2 σ

x − σ · x
+ (1 + γ )2 σ × (x × σ)

(x − σ · x)2
+

1

4
α ε

x

x2

−
1

4
α (8(1 + γ ) − 4β + 3ε )

σ

|σ × x|

(π

2
− δ (σ,x)

)

−
1

4
(8(1 + γ − α γ )(1 + γ ) − 4α β + 3α ε )(σ · x)

σ × (x × σ)

|σ × x|3
(π − δ (σ,x)).

(51)

W ith these defi nitions the solution of (39 ) reads

x(t) = xp p N(t) + O(c−6),

1

c
ẋ(t) =

1

c
ẋp p N(t) + O(c−6).

(52)

It is easy to check that the solution for the coordinate velocity of lig ht ẋp p N satisfi es integ ral

(36). In order to demonstrate this fact, it is imp ortant to understand that the p osition x

in (36) lies on the trajectory of the p hoton and must b e therefore considered as xp N in the

p ost-New tonian terms and as xN in the p ost- p ost-New tonian terms of (44).

5.3. Vector n in the initial value problem

U sing (44) one g ets

n = σ + mC1(xp N) + m2
C2(xN) + O(c−6), (53)

w here

C1(x) = A1(x) − σ(σ · A1(x)) = −(1 + γ )
σ × (x × σ)

x(x − σ · x)
,

C2(x) = A2(x) − A1(x)(σ · A1(x)) −
1

2
σ(A1(x) · A1(x))

− σ(σ · A2(x)) +
3

2
σ(σ · A1(x))2

= −
1

2
α ε

σ · x

x4
σ × (x × σ) + (1 + γ )2 σ × (x × σ)

x2(x − σ · x)

+ (1 + γ )2 σ × (x × σ)

x(x − σ · x)2
−

1

2
(1 + γ )2 σ

x2

x + σ · x

x − σ · x

−
1

4
(8(1 + γ − α γ )(1 + γ ) − 4α β + 3α ε )(σ · x)

σ × (x × σ)

x2|σ × x|2

−
1

4
(8(1 + γ − α γ )(1 + γ ) − 4α β + 3α ε )

σ × (x × σ)

|σ × x|3
(π − δ (σ,x)). (54)
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5.4. Impact parameters

As w e have seen in sections 4.1 and 5.2 the usual analy tical solutions are ex p ressed throug h

one of the follow ing tw o imp act p arameters:

dσ = σ × (x0 × σ), (55)

d = k × (x0 × k) = k × (x1 × k), (56)

w here x0 is the initial p oint in b oth Cauchy and b oundary p rob lems g iven b y (23) and (15),

resp ectively , w hile x1 is the fi nal p osition in the b oundary p rob lem. B oth these imp act

p arameters naturally arise in p ractical calculations of lig ht p rop ag ation w hen p ositions of the

source and the ob server are g iven in some reference sy stem (e.g ., in the B CR S [10]). H ow ever,

these p arameters are clearly coordinate dep endent and have no p rofound p hy sical meaning .

O ne can ex p ect that formulae involving these imp act p arameters contain some sp urious, non-

p hy sical terms ob scuring the p hy sical meaning of the formulae. As w e w ill see b elow it is

indeed the case. N ow , w e introduce another imp act p arameter

d
′
= lim

t→−∞

1

c
ẋ(t) ×

(

x(t) ×
1

c
ẋ(t)

)

= lim
t→−∞

σ × (x(t) × σ). (57)

F or a similar imp act p arameter defi ned at t → +∞

d
′′ = lim

t→+∞

1

c
ẋ(t) ×

(

x(t) ×
1

c
ẋ(t)

)

= lim
t→+∞

ν × (x(t) × ν), (58 )

w here ν = limt→+∞
1
c
ẋ(t), one has |d′| = |d′′|. I t is also clear that the ang le b etw een d

′ and

d
′′ is eq ual to the full lig ht defl ection (see b elow ). Since b oth d

′ and d
′′ reside at time-like

infi nity and since the metric under study is asy mp totically fl at, these p arameters can b e called

coordinate indep endent.

O ne can show that d ′ = d ′′ coincides w ith the imp act p arameter D introduced, e.g ., b y

eq uation (215) of section 20 of [4] in terms of full energ y and the ang ular momentum of

the p hoton (see also [1] for a useful discussion). Indeed, in the p olar coordinates (x, ϕ)

Chandrasekhar’s imp act p arameter D = f (x)x2ϕ̇, w here limx→∞ f (x) = 1. Clearly ,

x2ϕ̇ = |ẋ(t) × x(t)| and it is ob vious that d ′ = d ′′ = D. Interesting ly , this discussion allow s

one to fi nd an ex act integ ral of the eq uations of motion for a p hoton in the Schw arz schild

fi eld. T he eq uations of lig ht p rop ag ation (13) in the Schw arz schild metric (2) in harmonic

coordinates have an integ ral

D =
(1 + a)3

1 − a

1

c
ẋ(t) × x(t) = const, (59 )

w hile for the p arametriz ed p ost- p ost- N ew tonian eq uations of motion g iven b y (39 ) one has

D = ex p (2(1 + γ )a + α (2(1 − β ) + ε − 2γ 2)a2)
1

c
ẋ(t) × x(t)

= (1 + 2(1 + γ )a + (2(1 + γ )2 + α (2(1 − β ) + ε − 2γ 2))a2)
1

c
ẋ(t) × x(t) + O(c−6)

= const. (60)

T he fi rst line of (60) rep resents an ex act integ ral of the (ap p rox imate) eq uations of motion

(39 ). In b oth cases Chandrasekhar’s D is the ab solute value of D as g iven ab ove.

L et us stress that the imp act p arameter d
′ is not convenient for p ractical calculations,

b ut w e w ill use it b elow to understand the p hy sical orig in of various terms in the formulae

describ ing lig ht p rop ag ation. T herefore, w e need to have a relation b etw een imp act p arameters
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(55)– (57). T he relation b etw een d
′ and dσ can b e derived using the p ost- N ew tonian solution

for lig ht p rop ag ation g iven ab ove:

d
′
= dσ

(

1 + (1 + γ )
m

d2
σ

(x0 + σ · x0)

)

+ O(c−4). (61)

T he relation of d
′ and d can b e derived using the formulae of section 4.1:

d
′
= d

(

1 + (1 + γ )
m

d2

x1 + x0

R

R2 − (x1 − x0)
2

2R

)

− (1 + γ )mk
x1 − x0 + R

R
+ O(c−4). (62)

N ow w e are ready to p roceed to the analy sis of the p ost- p ost- N ew tonian eq uations of lig ht

p rop ag ation.

5.5. Total light deflection

In order to derive the total lig ht defl ection, w e have to consider the limits of the coordinate

lig ht velocity ẋ for t → ± ∞. U sing formulae of section 5.2 one g ets

lim
t→−∞

1

c
ẋ(t) = σ, (63)

lim
t→+∞

1

c
ẋ(t) ≡ ν

= σ − 2(1 + γ )m
σ × (x0 × σ)

|x0 × σ|2
− 2(1 + γ )2m2 σ

|x0 × σ|2

−
1

4
π (8(1 + γ − αγ )(1 + γ ) − 4αβ + 3αε )m2 σ × (x0 × σ)

|x0 × σ|3

+ 2(1 + γ )2m2(x0 + σ · x0)
σ × (x0 × σ)

|x0 × σ|4
+ O(c−6). (64)

T herefore, the total lig ht defl ection reads

|σ × ν| = 2(1 + γ )m
1

|x0 × σ|
− 2(1 + γ )2m2(x0 + σ · x0)

1

|x0 × σ|3

+
1

4
(8(1 + γ − αγ )(1 + γ ) − 4αβ + 3αε )π m2 1

|x0 × σ|2
+ O(c−6). (65)

E q uation (65) defi nes the sine of the ang le of the total lig ht defl ection in the p ost- p ost-

N ew tonian ap p rox imation. T he fi rst term in (65) is the p ost- N ew tonian ex p ression of the

total lig ht defl ection. T he other tw o terms are the p ost- p ost- N ew tonian corrections. U sing d ′

defi ned b y (57) and related to dσ b y (61) one can rew rite (65) as

|σ × ν| = 2(1 + γ )
m

d ′
+

1

4
(8(1 + γ − αγ )(1 + γ ) − 4αβ + 3αε )π

m2

d ′2
+ O(c−6). (66)

T his result w ith α = 1 coincides w ith eq uation (4) of [6] and also ag rees w ith the results of

[2, 5, 14, 18] in the corresp onding limits. It is now clear that the second term on the rig ht-hand

side of (65) ‘corrects’ the main p ost- N ew tonian term converting it to 2(1 + γ )m/d ′. N ote that

the total lig ht defl ection |σ × ν| is a coordinate-indep endent q uantity and (66) ex p resses it

throug h coordinate-indep endent q uantities w hile (65) does not.

6 . P o s t - p o s t - N e w t o n ia n s o lu t io n o f t h e b o u n d a r y p r o b le m

F or p ractical modeling of ob servations it is not suffi cient to consider the initial value p rob lem

for lig ht p rop ag ation. T he tw o-p oint b oundary value p rob lem g iven b y (15) is imp ortant here.
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T his section is devoted to a derivation of the p ost- p ost-New tonian solution of this b oundary

p rob lem for (39 ).

6.1. Formal expressions

An iterative solution of (40)– (45) for the p rop ag ation time τ = t1 − t0 and unit direction σ

reads

cτ = R − mk · [B1(x1) − B1(x0)] − m2
k · [B2(x1) − B2(x0)]

+
m2

2R
|k × (B1(x1) − B1(x0))|

2 + O(c−6), (67)

σ = k + m
1

R
(k × [k × (B1(x1) − B1(x0))]) + m2 1

R
(k × [k × (B2(x1) − B2(x0))])

+ m2 1

R2
(B1(x1) − B1(x0)) × [k × (B1(x1) − B1(x0))]

−
3

2
m2 1

R2
k|k × (B1(x1) − B1(x0))|

2 + O(c−6). (68)

T hese ex p ressions are still imp licit since in order to achieve the p ost- p ost-New tonian accuracy

one should use the p ost-New tonian relation b etw een σ and k to rep resent σ in B1 ap p earing

in the p ost-New tonian terms. T hat relation can b e ag ain ob tained from (68) b y neg lecting all

terms of order O(c−4). In contrast, in the terms of the order of O(c−4) in (67) and (68) one

can use the New tonian relation σ = k.

6.2 . T h e propag ation time cτ

Sub stituting (47) and (49 ) into (67) one can derive an ex p licit formula for the time of lig ht

p rop ag ation as a function of the g iven b oundary conditions x0 and x1:

N

∣

∣

∣

∣

cτ = R

p N

∣

∣

∣

∣

+ (1 + γ )m log
x1 + x0 + R

x1 + x0 − R

1p N

∣

∣

∣

∣

+
1

2
(1 + γ )2m2 R

|x1 × x0|
2
((x1 − x0)

2 − R2)

p p N

∣

∣

∣

∣

+
1

8
αε

m2

R

(

x2
0 − x2

1 − R2

x2
1

+
x2

1 − x2
0 − R2

x2
0

)

p p N

∣

∣

∣

∣

+
1

4
α(8(1 + γ ) − 4β + 3ε)m2 R

|x1 × x0|
δ (x1,x0)

+O(c−6). (69 )

H ere, w e have used that δ (k,x0) − δ (k,x1) = δ (x1,x0). H ere and b elow w e classif y the

character of the individual terms b y the lab els N (New tonian), p N (p ost-New tonian), p p N

(p ost- p ost-New tonian) and 1p N (terms that are formally of the p ost- p ost-New tonian order

O(c−4), b ut may numerically b ecome sig nifi cantly larg er than other p ost- p ost-New tonian

terms; see b elow ). U sing |x1 × x0| = Rd , w here d is the imp act p arameter defi ned b y (56),

and assuming g eneral-relativistic values of all p arameters α = β = γ = ε = 1 one g ets the
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follow ing estimates of the sums of the terms lab eled b y ‘1p N’ and ‘p p N’, resp ectively (the

p roofs are g iven in [21, 22]):

|c δ τ1p N| 6 2
m2

d2
R

4x1x0

(x1 + x0)2
6 2

m2

d2
R, (70)

|c δ τ p p N| 6
15

4
π

m2

d
. (71)

T hese estimates and all estimates w e g ive b elow are reachab le for some values of p arameters

and, in this sense, cannot b e imp roved. F rom these estimates w e can conclude that among

the p ost- p ost-New tonian terms, c δ τ1p N can b ecome sig nifi cantly larg er comp ared to the other

p ost- p ost-New tonian terms. F or this reason w e w ill call such terms ‘enhanced’ p ost- p ost-

New tonian terms. T he p hy sical orig in and p rop erties of the ‘enhanced’ p ost- p ost-New tonian

terms w ill b e discussed in section 7.

T he effect of |c δ τ p p N| for the Sun is less than 3.7 cm for arb itrary b oundary conditions

and can b e neg lected for any current and p lanned ob servations. T herefore, the formula for

the time of lig ht p rop ag ation b etw een tw o g iven p oints can b e simp lifi ed b y taking only the

relevant terms:

c τ = R + (1 + γ )m log
x1 + x0 + R

x1 + x0 − R

−
1

2
(1 + γ )2m2 R

|x1 × x0|
2
(R2 − (x1 − x0)

2) + O

(

m2

d

)

+ O(m3). (72)

T his ex p ression can b e w ritten in an eleg ant form

c τ = R + (1 + γ )m log
x1 + x0 + R + (1 + γ )m

x1 + x0 − R + (1 + γ )m
+ O

(

m2

d

)

+ O(m3) (73)

that has b een already derived in [13] in an inconsistent w ay (see section 8.3.1.1 and

eq uation (8-54) of [13]). As a criterion if the additional p ost- p ost-New tonian term is req uired

for a g iven situation, one can use (70) g iving the up p er b oundary of the additional term.

6.3. Transformation from k to σ

Sub stituting (47) and (49 ) into (6 8) one g ets

N

∣

∣

∣

∣

σ = k

p N

∣

∣

∣

∣

+ (1 + γ )m
x1 − x0 + R

|x1 × x0|
2

k × (x0 × x1)

1p N

∣

∣

∣

∣

+
(1 + γ )2

2
m2

k × (x0 × x1)
(x1 + x0)(x1 − x0 − R)(x1 − x0 + R)2

|x1 × x0|
4

scaling

∣

∣

∣

∣

−
(1 + γ )2

2
m2 (x1 − x0 + R)2

|x1 × x0|
2

k

p p N

∣

∣

∣

∣

+ m2
k × (x0 × x1)

[

−
1

4
α ε

1

R2

(

1

x2
1

−
1

x2
0

)

p p N

∣

∣

∣

∣

+
1

8
(8(1 + γ − α γ )(1 + γ ) − 4α β + 3α ε )

1

|x1 × x0|
3
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p p N

∣

∣

∣

∣

× (2R2(π − δ(k,x)) +
(

x2
1 − x2

0 − R2
)

δ(x1,x0))

]

+O(c−6). (74)

T his formula allow s one to comp ute σ for the g iven b oundary conditions x0 and x1. L et

us estimate the mag nitude of the individual terms in (74) in the ang le δ(σ,k) b etw een σ

and k. T his ang le can b e comp uted from the vector p roduct ρ = k × σ, and, therefore, the

term in (74) p rop ortional to k and lab eled as ‘scaling ’ p lay s no role. H ere and b elow , terms

p rop ortional to k do not infl uence the directions in the considered ap p rox imation. T hese terms

are only necessary to keep the involved vectors to have unit leng th. N ow , w e rep resent the

vector p roduct ρ as the sum of three kinds of terms: ρ = ρp N + ρ1p N + ρp p N w here each term

is the vector p roduct of k and the sum of the corresp onding ly lab eled terms in (74). U sing

|k × [k × (x0 × x1)]| = |k × (x0 × x1)| = Rd, (75)

and g eneral-relativistic values of the p arameters α = β = γ = ε = 1 one g ets (the p roofs can

b e found in [21, 22])

|ρp N | 6
4m

d





1, x0 6 x1,

x1

x1 + x0

, x0 > x1

6
4m

d
, (76)

|ρ1p N | 6 16
m2

d3









4

27
(x1 + x0),

1

2
x1 6 x0 6 x1,

x2
1x0

(x1 + x0)
2
, x0 <

1

2
x1 or x0 > x1,

(77)

|ρp p N | 6
15

4
π

m2

d2
. (78 )

N ote that ρp N and ρ1p N themselves as w ell as their estimates are not continuous for x1 → x0

since in this limit an infi nitely small chang e of x1 leads to b ig chang es in k. D iscontinuity

of the same orig in ap p ears for many other terms. T he limit x1 → x0 and the corresp onding

discontinuity have, clearly , no p hy sical imp ortance.

W e see that among the terms of order O(m2) only |ρ1p N | cannot b e estimated as

const × m2/ d2. T he sum of the three other terms lab eled as ‘p p N ’ can b e estimated as

g iven b y (78 ). In most cases these terms can b e neg lected at the level of 1 µas. Indeed, it is

easy to see that |ρp p N | can ex ceed 1 µas only for ob servations w ithin ab out 3.3 ang ular radii

from the Sun. According ly , w e ob tain a simp lifi ed formula for the transformation from k to σ

keep ing only the p ost- N ew tonian and ‘enhanced’ p ost- p ost- N ew tonian terms lab eled as ‘p N ’

and ‘1p N ’ in (74):

σ = k + dS

(

1 − S
1

2
(x1 + x0)

(

1 +
x0 − x1

R

))

+ O

(

m2

d2

)

+ O(m3), (79 )

S = (1 + γ )
m

d2

(

1 −
x0 − x1

R

)

. (8 0)

E q uation (77) can b e used as a criterion if the p ost- p ost- N ew tonian term in (79 ) is necessary

for a g iven accuracy and confi g uration.

6.4. Transformation from σ to n

T he transformation b etw een n and σ is g iven b y (53) and (54). W e need, how ever, to ex p ress

the relativistic terms in (53) as the functions of k. T o this end w e note that xp N = x1 +O(c−4)
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and x1 = x0 + Rk, use (74) for σ in C1(xp N), and g et

N

∣

∣

∣

∣

n = σ

p N

∣

∣

∣

∣

− (1 + γ )mk × (x0 × x1)
R

|x1 × x0|
2

(

1 +
k · x1

x1

)

scaling

∣

∣

∣

∣

+
1

4
(1 + γ )2m2 k

|x1 × x0|
2

R

x1

(

1 +
k · x1

x1

)

(3x1 − x0 − R)(x1 − x0 + R)

1p N

∣

∣

∣

∣

+ m2k × (x0 × x1)

[

(1 + γ )2 x1 + x0

|x1 × x0|
2

(

1 +
k · x1

x1

)

R(R2 − (x1 − x0)
2)

2|x1 × x0|
2

p p N

∣

∣

∣

∣

+ (1 + γ )2 R

|x1 × x0|
2

(

1 +
k · x1

x1

)

1

x1

p p N

∣

∣

∣

∣

+
1

2
(1 + γ )2 R2

|x1 × x0|
4

(

1 +
k · x1

x1

)

(

1 −
x1 + x0

R

)

(R2 − (x1 − x0)
2)

p p N

∣

∣

∣

∣

−
1

2
αε

k · x1

Rx4
1

p p N

∣

∣

∣

∣

−
1

4
(8(1 + γ − αγ )(1 + γ ) − 4αβ + 3αε)

k · x1

x2
1

R

|x1 × x0|
2

p p N

∣

∣

∣

∣

−
1

4
(8(1 + γ − αγ )(1 + γ ) − 4αβ + 3αε)

R2

|x1 × x0|
3
(π − δ (k,x1))

]

+O(c−6). (81)

T his ex p ression allow s one to comp ute the difference b etw een the vectors n and σ starting

from the b oundary conditions x0 and x1. L et us estimate the mag nitude of the individual

terms in (81) in the ang le δ (σ,n) b etw een n and σ. T his ang le can b e comp uted from the

vector p roduct ϕ = σ × n. Ag ain the term in (81) p rop ortional to k and lab eled as ‘scaling ’

p lay s no role since σ × k = O(c−2). In order to estimate the effects of the other terms in

(81), w e sp lit ϕ = ϕp N + ϕ1p N + ϕp p N similarly as w e did w ith ρ ab ove, take into account that

|σ × (k × (x0 × x1))| = Rd + O(c−2), assume ag ain α = β = γ = ε = 1 and g et [21, 22]

|ϕp N| = 2m|σ × [k × (x0 × x1)]|
R

|x1 × x0|
2

(

1 +
k · x1

x1

)

6 4
m

d
, (82)

|ϕ1p N| = 4m2|σ × [k × (x0 × x1)]|

(

1 +
k · x1

x1

)

R(x1 + x0)

|x1 × x0|
4

R2 − (x1 − x0)
2

2

6 4
m2

d2

4x1x0

d(x1 + x0)
6 16

m2

d2

x1

d
, (83)

|ϕp p N| 6
15

4
π

m2

d2
. (84)

E q uation (84) show s that the ‘p p N’ terms can attain 1 µas only if one ob serves w ithin

ap p rox imately 3.3 ang ular radii from the Sun. In many cases these terms can b e neg lected.

According ly , w e ob tain a simp lifi ed formula for the transformation from σ to n keep ing only

the p ost-New tonian and ‘enhanced’ p ost- p ost-New tonian terms lab eled as ‘p N’ and ‘1p N’

in (81):
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n = σ + dT

(

1 + T x1

R + x0 − x1

R + x0 + x1

)

+ O

(

m2

d2

)

+ O(m3), (85)

T = −(1 + γ )
m

d2

(

1 +
k · x1

x1

)

. (86)

E q uation (83) can b e used as a criterion if the additional p ost- p ost-New tonian term in (85) is

necessary for a g iven accuracy and confi g uration.

6.5. Transformation from k to n

F inally , a direct relation b etw een the vectors k and n should b e derived. T o this end, w e

comb ine (74) and (81) to g et

N

∣

∣

∣

∣

n = k

p N

∣

∣

∣

∣

− (1 + γ )m
k × (x0 × x1)

x1(x1x0 + x1 · x0)

1p N

∣

∣

∣

∣

+ (1 + γ )2m2 k × (x0 × x1)

(x1x0 + x1 · x0)2

x1 + x0

x1

scaling

∣

∣

∣

∣

−
1

8
(1 + γ )2 m2

x2
1

k
((x1 − x0)

2 − R2)
2

|x1 × x0|
2

p p N

∣

∣

∣

∣

+ m2
k × (x0 × x1)

[

1

2
(1 + γ )2 R2 − (x1 − x0)

2

x2
1 |x1 × x0|

2

p p N

∣

∣

∣

∣

+
1

4
αε

1

R

(

1

Rx2
0

−
1

Rx2
1

− 2
k · x1

x4
1

)

p p N

∣

∣

∣

∣

−
1

4
(8(1 + γ − αγ )(1 + γ ) − 4αβ + 3αε)R

k · x1

x2
1 |x1 × x0|

2

p p N

∣

∣

∣

∣

+
1

8
(8(1 + γ − αγ )(1 + γ ) − 4αβ + 3αε)

x2
1 − x2

0 − R2

|x1 × x0|
3

δ (x1,x0)

]

+O(c−6). (87)

T his formula allow s one to comp ute the unit coordinate direction of lig ht p rop ag ation n at the

p oint of recep tion starting from the p ositions of the source x0 and the ob server x1.

As in other cases our g oal now is to estimate the effect of the individual terms in (87)

on the ang le δ (k,n) b etw een k and n. T his ang le can b e comp uted from the vector p roduct

ω = k × n. T he term in (87) p rop ortional to k and lab eled b y ‘scaling ’ ob viously p lay s no

role here and can b e ig nored. F or the other terms in ω = ωp N + ω1p N + ωp p N taking into

account (75) and considering the g eneral-relativistic values α = β = γ = ε = 1 one g ets

[21, 22]

|ωp N| = 2m
1

x1

|k × (x0 × x1)|

x1x0 + x1 · x0

6 4
m

d

x0

x1 + x0

6 4
m

d
, (88)

|ω1p N| = 4m2 x1 + x0

x1

|k × (x0 × x1)|

(x1x0 + x1 · x0)2

6 16
m2

d3

Rx1x
2
0

(x1 + x0)3
6 16

m2

d3

x1x
2
0

(x1 + x0)2
6 16

m2

d2

x1

d
, (89 )
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or, alternatively ,

|ω1p N | 6
6 4

27

m2

d2

R

d
. (9 0)

W e g ive four p ossib le estimates of |ω1p N |. T hese estimates can b e useful in different situations.

N ote that the last estimate in (8 9 ) and the estimate in (9 0) cannot b e related to each other and

refl ect different p rop erties of |ω1p N | as a function of multip le variab les.

T he effect of all the ‘p p N ’ terms in (8 7) can b e estimated as

|ωp p N | 6
15

4
π

m2

d2
. (9 1)

Ag ain these terms can attain 1 µas only for ob servations w ithin ab out 3.3 ang ular radii from the

Sun and can b e neg lected. According ly , w e ob tain a simp lifi ed formula for the transformation

from k to n keep ing only the p ost- N ew tonian and ‘enhanced’ p ost- p ost- N ew tonian terms

lab eled as ‘p N ’ and ‘1p N ’ in (8 7):

n = k + dP
(

1 + Px1

x0 + x1

R

)

+ O

(

m2

d2

)

+ O(m3), (9 2)

P = −(1 + γ )
m

d2

(

x0 − x1

R
+

k · x1

x1

)

. (9 3)

L et us also note that the p ost- p ost- N ew tonian term in (9 2) is max imal for sources at infi nity :

|ω1p N | 6 lim
x0→ ∞

|ω1p N | = lim
x0→ ∞

(1 + γ )2m2 x0 + x1

x1

k × (x0 × x1)|

(x1x0 + x1 · x0)2

= (1 + γ )2(1 − cos 8)2 m2

d2

x1

d
, (9 4)

w here 8 = δ (x0,x1) is the ang le b etw een the vectors x0 and x1. Several useful estimates of

this term are g iven b y (8 9 ) and (9 0). T hese estimates can b e used as a criterion w hich allow s

one to decide if the p ost- p ost- N ew tonian correction is imp ortant for a p articular situation.

6.6. Transformation from k to n for stars and quasars

In p rincip le, the formulae for the b oundary p rob lem g iven ab ove are also valid for stars and

q uasars. H ow ever, for suffi ciently larg e x0 the formulae could b e simp lifi ed. It is the p urp ose

of this section to derive the formulae for this case.

6.6.1. Transformation from k to σ. F irst, let us show that for stars and q uasars the

ap p rox imation

σ = k (9 5)

is valid for an accuracy of 1 µas. U sing estimates (76 ) and (77) for the tw o terms in (79 ) one

can see that for x0 À x1 the ang le δ (σ,k) can b e estimated as

δ (σ,k) 6 4
m

d

x1

x1 + x0

(

1 + 4
m

d

x1

d

x0

x1 + x0

)

. (9 6 )

Clearly , δ (σ,k) g oes to z ero for x0 → ∞ . T he numerical values of this up p er estimate are

g iven in tab le 2 for x0 eq ual to 1, 10 and 100 p c. T he ang le δ (σ,k) is smaller for stars at

larg er distances. H ow ever, for ob jects w ith x0 < 1 p c the difference b etw een σ and k must
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T a b le 2. Numerical values of estimate (9 6 ) in µas for the ang le b etw een σ and k due to the solar

sy stem b odies for various values of x0.

x0 (p c) Sun Sun at 45◦ J up iter Saturn U ranus Nep tune

1 8.506 0.056 0.473 0.309 0.212 0.382

10 0.851 0.006 0.047 0.031 0.021 0.038

100 0.085 0.001 0.004 0.003 0.002 0.004

b e ex p licitly taken into account. F rom the p oint of view of the relativistic model these ob jects

should b e treated in the same w ay as solar sy stem ob jects.

6.6.2. Transformation from σ to n. As soon as w e accep t the eq uality of σ and k for stars

the only relevant step is the transformation b etw een σ and n. T his transformation in the p ost-

p ost-New tonian ap p rox imation is g iven b y (53) and (54). In the framew ork of the relativistic

lig ht defl ection model, the distances to stars and q uasars are assumed to b e unknow n and so

larg e that they can b e considered infi nitely larg e. F or such sources it is natural to use the

ob server’s p osition x1 as initial p osition denoted in (23) as x0. T herefore, in (55) and (6 1)

one should formally rep lace x0 b y x1. F or ex amp le, the imp act p arameter dσ is defi ned as

dσ = σ × (x1 × σ). (9 7)

W e can rew rite (53) and (54) as

N

∣

∣

∣

∣

n = σ

p N

∣

∣

∣

∣

− (1 + γ )m
dσ

d2
σ

(

1 +
σ · x1

x1

)

1p N

∣

∣

∣

∣

+ (1 + γ )2m2 dσ

d3
σ

x1

dσ

(

1 +
σ · x1

x1

)2

scaling

∣

∣

∣

∣

−
1

2
m2(1 + γ )2 σ

d2
σ

(

1 +
σ · x1

x1

)2

p p N

∣

∣

∣

∣

−
1

2
m2α ε

σ · x1

x4
1

dσ

p p N

∣

∣

∣

∣

+ (1 + γ )2m2 dσ

d2
σ

1

x1

(

1 +
σ · x1

x1

)

p p N

∣

∣

∣

∣

−
1

4
(8(1 + γ − α γ )(1 + γ ) − 4α β + 3α ε )m2 dσ

d2
σ

σ · x1

x2
1

p p N

∣

∣

∣

∣

−
1

4
(8(1 + γ − α γ )(1 + γ ) − 4α β + 3α ε )m2 dσ

d3
σ

(π − δ (σ,x1))

+O(m3), (9 8)

w here dσ = |dσ | = |σ×x1|. Now w e need to estimate the effect of the individual terms in (9 8)

on the ang le δ (σ,n) b etw een σ and n. T his ang le can b e comp uted from the vector p roduct

ψ = σ × n. T he term in (9 8) p rop ortional to σ and lab eled as ‘scaling ’ ob viously p lay s no

role and can b e ig nored. F or the other terms in ψ = ψp N + ψ1p N + ψp p N taking into account
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T a b le 3 . N umerical values of the analy tical up p er estimates of the p ost- p ost- N ew tonian terms of

the order of O(m2/d) in (69 ) and O(m2/d2) in (74), (8 1), (8 7) and (9 8 ).

Sun Sun at 45◦ J up iter Saturn U ranus N ep tune

|c δ τ p p N | (10−6 m) 36 9 06.0 242.9 0.328 0.036 0.002 0.003

|ρp p N |, |ϕp p N |,
|ωp p N |, |ψp p N | (10−3 µas) 10 9 37.4 0.474 0.9 45 0.120 0.016 0.023

that |σ × dσ | = dσ and considering the g eneral-relativistic values α = β = γ = ε = 1 w e

g et [21, 22]

|ψp N | = 2m
|σ × dσ |

d2
σ

(

1 +
σ · x1

x1

)

6 4
m

dσ

, (9 9 )

|ψ1p N | = 4m2 |σ × dσ |
d3

σ

x1

dσ

(

1 +
σ · x1

x1

)2

6 16
m2

d2
σ

x1

dσ

, (100)

|ψp p N | 6
15

4
π

m2

d2
σ

. (101)

T he estimate show s that the ‘p p N ’ terms can b e neg lected at the level of 1 µas ex cep t for the

ob servations w ithin ab out 3.3 ang ular radii from the Sun. O mitting these terms one g ets an

ex p ression valid at the level of 1 µas in all other cases:

n = σ + dσQ(1 + Qx1) + O

(

m2

d2
σ

)

+ O(m3), (102)

Q = −(1 + γ )
m

d2
σ

(

1 +
σ · x1

x1

)

. (103)

T his coincides w ith (9 2) and (9 3) and w ith (8 5) and (8 6) for x0 → ∞ . T his formula tog ether

w ith σ = k can b e ap p lied for sources at distances larg er than 1 p c to attain the accuracy of

1 µas. Alternatively , eq uations (9 2) and (9 3) can b e used for the same p urp ose g iving slig htly

b etter accuracy for very close stars. H ow ever, distance information (p arallax ) is necessary to

use (9 2) and (9 3).

6.7. Numerical estimates and Monte-Carlo simulations

T ab le 3 contains numerical values of the ‘reg ular’ p ost- p ost- N ew tonian terms of orderO(m2/d)

in (69 ) and of order O(m2/d2) in (74), (8 1), (8 7) and (9 8 ). T he analy tical estimates are g iven

b y (71), (78 ), (8 4), (9 1) and (101), resp ectively . O ne can see that at the level of 10 cm in

distances and 1 µas in ang les these terms are irrelevant ex cep t for the ob servations w ithin 3.3

ang ular radii from the Sun.

A series of additional M onte-Carlo simulations using randomly chosen b oundary

conditions has b een p erformed to verif y the g iven estimates of the p ost- p ost- N ew tonian terms

numerically . T he results of these simulations fully confi rm all our estimates.

U sing estimate (9 4) and the p arameters of the solar sy stem b odies g iven in tab le 1, one can

comp ute the max imal values of the ‘enhanced’ p ost- p ost- N ew tonian term in the transformation

from k to n. F or g raz ing ray s one can ap p ly cos 8 ' −1, w hile for the Sun at 45◦ one can

ap p ly cos 8 ' −1/
√

2. T he results are show n in tab le 4. Comp aring these values w ith those

in the last line of tab le 1 one sees that the ‘enhanced’ p ost- p ost- N ew tonian terms match the

22



Class. Quantum Grav. 27 (2010) 075015 S A Klioner and S Zschocke

T a b le 4 . M ax imal numerical value (9 4) of the ‘enhanced’ p ost- p ost- N ew tonian term in (9 2) for

the solar sy stem b odies w ith the p arameters g iven in tab le 1.

Sun Sun at 45◦ J up iter Saturn U ranus N ep tune

max |ω1p N | (µas) 319 2.8 6 .6 3 × 10−4 16 .11 4.42 2.58 5.8 3

error of the standard p ost- N ew tonian formula. T he deviation for a g raz ing ray to the Sun is a

few µas and orig inates from the p ost- p ost- N ew tonian terms neg lected in (9 2).

T he vector n comp uted using (9 2) can b e denoted as n
′
p N . T he numerical validity of n

′
p N

can b e confi rmed b y the direct comp arisons of n
′
p N and vector n comp uted using numerical

integ rations of the g eodetic eq uations as discussed in section 4.2. F or ex amp le, the results for

J up iter show that the error of n
′
p N does not ex ceed 0.04 µas. T he orig in of this small deviation

is w ell understood and w ill b e discussed elsew here.

7. P h y s ic a l o r ig in o f t h e ‘ e n h a n c e d ’ p o s t - p o s t - N e w t o n ia n t e r m s

W e have found ab ove the estimates of various terms in the transformations b etw een the units

vectors σ, n, and k characteriz ing lig ht p rop ag ation. T hese estimates reveal that in each

transformation ‘enhanced’ p ost- p ost- N ew tonian terms ex ist that can b ecome much larg er than

other ‘reg ular’ p ost- p ost- N ew tonian terms. In each case the sum of the ‘reg ular’ p ost- p ost-

N ew tonian terms can b e estimated as 15
4
π m2

d2 . T he ‘enhanced’ terms can b e much larg er, b eing ,

how ever, of analy tical order m
2. In this section w e clarif y the p hy sical orig in of the ‘enhanced’

terms.

F irst, let us note that the ‘enhanced’ p ost- p ost- N ew tonian terms in (74), (8 1), (8 7) and

(9 8 ) contain only the p arameter γ . I t is clear that these terms come from the p ost- N ew tonian

terms in the metric and in the eq uations of motion (p arameter α does not ap p ear in these terms;

see section 5.1.5). T herefore, their orig in is the formal second-order (p ost- p ost- N ew tonian)

solution of the fi rst-order (p ost- N ew tonian) eq uations g iven b y the fi rst line of (39 ).

N ow let us demonstrate that the ‘enhanced’ terms result from an inadeq uate choice of

the imp act p arameter d or dσ in the standard p ost- N ew tonian formulae. Indeed, w e can

demonstrate that the ‘enhanced’ terms disap p ear if the lig ht defl ection formulae are ex p ressed

throug h the coordinate-indep endent imp act p arameter d
′ defi ned b y (57). E q uations (79 ),

(8 0), (8 5), (8 6 ), (9 2), (9 3), (102) and (103) can b e w ritten as

σ = k + d
′S ′ + O

(

m2

d2

)

+ O(m3), (104)

S ′ = (1 + γ )
m

d ′2

(

1 −
x0 − x1

R

)

, (105)

n = σ + d
′T ′ + O

(

m2

d2

)

+ O(m3), (106 )

T ′ = −(1 + γ )
m

d ′2

(

1 +
k · x

x

)

, (107)

n = k + d
′P ′ + O

(

m2

d2

)

+ O(m3), (108 )

P ′ = −(1 + γ )
m

d ′2

(

x0 − x

R
+

k · x

x

)

, (109 )

23



Class. Quantum Grav. 27 (2010) 075015 S A Klioner and S Zschocke

n = σ + d
′Q′ + O

(

m2

d2
σ

)

+ O(m3), (110)

Q′
= − (1 + γ )

m

d ′2

(

1 +
σ · x

x

)

, (111)

resp ectively . T herefore, in each case the ‘enhanced’ p ost- p ost- N ew tonian terms only correct

the p ost- N ew tonian terms that use inadeq uate imp act p arameter. L et us stress, how ever, that

for p ractical calculations (79 ), (8 0), (8 5), (8 6 ), (9 2), (9 3), (102) and (103) are more convenient.

8 . S u m m a r y a n d c o n c lu d in g r e m a r k s

In this p ap er the numerical accuracy of the p ost- N ew tonian and p ost- p ost- N ew tonian formulae

for lig ht p rop ag ation in the p arametriz ed Schw arz schild fi eld has b een investig ated. Analy tical

formulae have b een comp ared w ith hig h-accuracy numerical integ rations of the g eodetic

eq uations. In this w ay w e demonstrate that the standard p ost- N ew tonian formulae for the

b oundary p rob lem (lig ht p rop ag ation b etw een tw o g iven p oints) cannot b e used at the accuracy

level of 1 µas for ob servations p erformed b y an ob server situated w ithin the solar sy stem. T he

error of the standard formula may attain ∼16 µas. D etailed analy sis has show n that the error

is of p ost- p ost- N ew tonian order O(m2). O n the other hand, the p ost- p ost- N ew tonian terms

are often thoug ht to b e of order m2/ d2 and can b e estimated to b e much smaller than 1 µas in

this case. T o clarif y this contradiction w e have derived and investig ated the ex p licit analy tical

p ost- p ost- N ew tonian solution for lig ht p rop ag ation. F or each individual term in the relevant

formulae ex act analy tical up p er estimates have b een found. It turns out that in each case there

ex ist p ost- p ost- N ew tonian terms that can b ecome much larg er than the other ones and cannot

b e estimated as const × m2/ d2. W e call these terms ‘enhanced’ p ost- p ost- N ew tonian terms.

T hese terms dep end only on γ and come from the second-order solution of the p ost- N ew tonian

eq uations of lig ht p rop ag ation (eq uation (39 ) w ith α = 0). F or this reason one could arg ue that

the ‘enhanced’ p ost- p ost- N ew tonian terms should not b e called ‘p ost- p ost- N ew tonian’, b ut

b etter ‘m2- terms’ or similarly . T he p hy sical orig in of the ‘enhanced’ terms is discussed in the

p revious section. T he derived analy tical solution show s that no ‘reg ular’ p ost- p ost- N ew tonian

terms are relevant for the accuracy of 1 µas in the conditions of p lanned astrometric missions

(Gaia, SIM , etc). M ost of the ‘reg ular’ terms come from the p ost- p ost- N ew tonian terms in the

metric tensor. It is not the p ost- N ew tonian eq uation of lig ht p rop ag ation (eq uation (39 ) w ith

α = 0) itself , b ut the standard analy tical w ay to solve this eq uation that is resp onsib le for the

numerical error of 16 µas mentioned ab ove.

T he comp act formulae for lig ht p rop ag ation time and for the transformations b etw een the

directions σ, n and k have b een derived. T he formulae are g iven b y (73), (79 ), (8 0), (8 5), (8 6 ),

(9 2), (9 3), (102) and (103). T hese formulae contain only terms (b oth p ost- N ew tonian and

p ost- p ost- N ew tonian) that are numerically relevant at the level of 10 cm for the Shap iro delay

and 1 µas for the directions for any ob server situated in the solar sy stem and not ob serving

closer than 3.3 ang ular radii of the Sun.

L et us fi nally note that the p ost- p ost- N ew tonian term in (9 2) and (9 3) is closely related to

the g ravitational lens formula. H ere w e only note that all the formulae for the b oundary p rob lem

g iven in this p ap er are not valid for d = 0 (d alw ay s ap p ears in the denominators of these

formulae). O n the other hand, the standard p ost- N ew tonian lens eq uation successfully treats

this case know n as the E instein ring solution. T he relation b etw een the lens ap p rox imation

and the standard p ost- N ew tonian ex p ansion is a different top ic w hich w ill b e considered in a

sub seq uent p ap er.
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