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Abstract

High precision astrometry, space missions and certain tests of General Rela-

tivity, require the knowledge of the metric tensor of the solar system, or more

generally, of a gravitational system of N extended bodies. Presently, the metric

of arbitrarily shaped, rotating, oscillating and arbitrarily moving N bodies of

finite extension is only known for the case of slowly moving bodies in the

post-Newtonian approximation, while the post-Minkowskian metric for arbi-

trarily moving celestial objects is known only for pointlike bodies with mass-

monopoles and spin-dipoles. As one more step towards the aim of a global

metric for a system of N arbitrarily shaped and arbitrarily moving massive

bodies in post-Minkowskian approximation, two central issues are on the

scope of our investigation. (i) We first consider one extended body with full

multipole structure in uniform motion in some suitably chosen global refer-

ence system. For this problem a co-moving inertial system of coordinates can

be introduced where the metric, outside the body, admits an expansion in

terms of Damour–Iyer moments. A Poincaré transformation then yields the

corresponding metric tensor in the global system in post-Minkowskian

approximation. (ii) It will be argued why the global metric, exact to post-

Minkowskian order, can be obtained by means of an instantaneous Poincaré

transformation for the case of pointlike mass-monopoles and spin-dipoles in

arbitrary motion.

Keywords: metric, moving bodies, post-Minkowskian

Classical and Quantum Gravity

Class. Quantum Grav. 31 (2014) 175001 (17pp) doi:10.1088/0264-9381/31/17/175001

0264-9381/14/175001+17$33.00 © 2014 IOP Publishing Ltd Printed in the UK 1



1. Introduction

Since exact solutions of Einsteinʼs field equations are available only for highly idealized

systems usually one is forced to resort to approximation schemes. One of the most powerful

and most important approximation schemes is linearized gravity, where the field equations in

harmonic coordinates are simplified to an inhomogeneous wave equation [1, 2]. As it has

been shown in [3–5] in the post-Newtonian approximation (weak-field slow-motion

approximation) the metric outside the matter distribution can be expanded in terms of two

families of multipole moments: mass multipole moments ML and spin multipole moments SL.

Later, in post-Minkowskian approximation (weak-field approximation) such a set of multi-

pole moments has been introduced by Damour and Iyer [6].

For many purposes, for instance for high precision astrometry or fundamental tests of

relativity, the knowledge of the global metric of an N-body system in post-Minkowskian

approximation is of fundamental importance. Presently the post-Minkowskian metric for

arbitrarily moving celestial objects is known only for pointlike bodies with mass-monopoles

and spin-dipoles. The metric of arbitrarily shaped, rotating, oscillating and moving bodies is a

highly sophisticated and complex problem and is only known for the case of slowly moving

bodies in the post-Newtonian approximation [7]. One reason for this complexity is, that one

might want to define the multipole moments of a single body in its own rest-frame, with

origin close to the bodyʼs center of mass; however, if the acceleration of such a ‘local’ co-

moving system is taken into account corresponding multipole moments have been defined

only to post-Newtonian order [7, 8].

Thus, in order to study the global metric field in terms of locally defined multipoles of a

realistic N-body system such as the solar system, one has to apply further approximations.

Accordingly, this will be the strategy of this paper: we will first consider an arbitrarily shaped,

rotating and oscillating body first in uniform motion, and then we treat the problem of N

arbitrarily moving pointlike bodies with mass-monopoles and spin-dipoles.

The article is organized as follows: the metric for an extended body with arbitrary

Damour-Iyer moments, defined in a co-moving system, in uniform motion is derived in

section 2 in post-Minkowskian approximation. In section 3 we consider the post-Min-

kowskian metric for N arbitrarily moving pointlike bodies (mass-monopoles and spin-dipoles)

and show that our results agree with corresponding results from the literature. Throughout the

article we use fairly standard notation:

• G is the gravitational constant and c is the speed of light.

• Lower case Latin indices a b, ,... take values 1, 2, 3.

• Lower case Greek indices α β, ,... take values 0, 1, 2, 3.

• Repeated Greek indices mean Einstein summation from 0 to 3.

• δ δ δ= = = diaga
b

ab
ab (+1, +1, +1) is the three-dimensional Kronecker delta.

• δ δ δ= = =α
β

αβ
αβ diag(+1, +1, +1, +1) is the four-dimensional Kronecker delta.

• ϵabc is the Levi-Civita symbol.

• L is a Cartesian multi-index, that means =L a a... l1 .

• γ = −
−

( )v c1 /2 2 1/2
is the Lorentz factor.

• Parentheses surrounding a group of Roman indices mean symmetrization with respect to

these indices: = +( )A A Aab ab ba( ) 1

2
.

• η η= =
μν

μν diag(-1, +1, +1, +1) is the metric tensor of Minkowski space.
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2. A uniformly moving body: multipole expansion to post-Minkowskian order

2.1. Multipole expansion for a body at rest

Consider a single massive body in some inertial system of harmonic coordinates

=μ XX cT( , ). For weak gravitational fields the metric differs only slightly from flat space

metric, that means η= +μν μν μνG H , where ≪μνH 1; the metric signature is (−, +, +, +).

Weak gravitational fields are governed by the equations of linearized gravity, in harmonic

gauge given by [1] (from now on all relations will be valid to first order in G, even if this is

not indicated explicitly):

π
□ = −μν μνX XH T

G

c
T T( , )

16
( , ), (1)X 4

where η□ = μν ∂

∂ ∂μ νX X X

2

is the d’Alembert operator, the stress-energy tensor of matter is μνT ,

and μνH is the trace-reversed metric perturbation; definitions and relations are given in

appendix A.

Damour and Iyer [6] succeeded to show that outside the body the metric in (skeletonized)

harmonic gauge admits an expansion in terms of two families of multipole moments: mass-

moments ML and spin-moments SL. Their canonical form of the metric perturbation in the

exterior region of the matter field can be written as follows:
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0
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3 0 ( )

1

1

1 ret

3 0 ( )

1

1

1 ret

4
2

2

2 ret

4
2

2

( ) 2 ret

In equation (2), an overdot denotes the derivative with respect to Tret; e.g.
˙ =( )F T

( )F T

Tret

d

d

ret

ret
for any function F, and all multipole moments are taken at the retarded

instance of time,

= −XT T T
R

c
( , ) , (3)ret

with = XR . The multipole moments, ML and SL, are Cartesian symmetric and trace-free

tensors; = ∂ ∂ ∂ ∂ X X X/( ... )L
l a a al1 2 . Explicit expressions for the multipole moments, ML

and SL, in post-Minkowskian approximation are given by equations (5.33)–(5.35) in [6].

2.2. Multipole expansion for a uniformly moving body

Considering a single body in uniform motion we will now attach our inertial coordinates

=μ XX cT( , ) to the body, by choosing its origin near the bodyʼs center of mass. The spatial

coordinate =X 0CoM of center of mass can be defined by the vanishing of the corresponding
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Damour–Iyer mass–dipole moment =M 0a , but we consider the more general case with

≠M 0a and ≠X 0CoM . This coordinate system will be called co-moving in the following (or

‘local’ in case that the bodyʼs velocity is time dependent).

We now consider another inertial (global) system of coordinates =μ xx ct( , ) in which

our body moves with constant velocity v. The transformation from local coordinates

=μ XX cT( , ) to global coordinates =μ xx ct( , ) for a massive body in uniform motion is

given by a Poincaré transformation,

Λ= + α
μμ α μ α( )x X b X , (4)

with Λ γ=0
0 , Λ Λ γ= =i

i0
0 v

c

i , Λ δ γ= + −( 1)i
j

ij

v v

v

i j

2
, and =μ ( )bb b ,0 is a constant four-

vector, where b points from the origin " of global frame to the origin of the co-moving frame

at time T = 0. Transforming the events 0T( , ) into the global reference system xt( , ) yields

= + − = =x x vt t t t x t b ct b( ) ( ) ( ), ( ) , , (5)A
i

A A
i

0 0 0 0
0

where x t( )A points from the origin of the global system to the origin at the co-moving frame

at any time t, and the initial is t0. The distance R which appears in the co-moving metric (2),

can be written in Lorentz invariant form ρ as (cf equation (4.42) in [7], equation (10) in [9],

equation (B.4) in [10])

ρ
η

=
− ν

μν
μ ν( )u x x t

c

( )
, (6)

A ret

where γ=μ vu c( , ) are the contravariant components of four-velocity of ", and the retarded

time is defined by equation (8). The Lorentz invariant distance (6) can also be written as:

ρ γ γ= −
·

= +
·⎛

⎝
⎜

⎞

⎠
⎟

v r v r
r t

t

c
r t

t

c
( )

( )
( )

( ( ) )
, (7)ret

ret 2 2
2

2

where = −r x xt t( ) ( )Aret ret , = −r x xt t( ) ( )A , and x t( )A is given by equation (5); the

absolute values are = ∣ ∣rr t t( ) ( )ret ret and = ∣ ∣rr t t( ) ( ) . The latter form in (7) is sometimes

preferable and can be obtained by means of the relation Λ=X r t( )a
ii a ; for a very similar

consideration see [10]. The retarded time in global coordinates reads for arbitrary wordlines

= −
−

x
x x

t t t
t

c
( , )

( )
. (8)

A

ret

ret

Let us consider a series expansion of (8), which yields: = − − +· −" ( )t t c
v rr t

c

t t

c
ret

( ) ( ) ( ) 3
2

,

where = −r x xt t( ) ( )A , and x t( )A is arbitrarily, hence = ˙v xt t( ) ( )A is time-dependent. In

general, equation (8) is an implicit relation which cannot be resolved analytically for arbitrary

worldlines x t( )A of a massive body. However, for the case of a body in uniform motion one

can obtain an exact analytical solution:

γ= −
· + − ×

x
r v r v

t t t
t c r t t

c
( , )

( ) ( ) ( ( ) )
. (9)ret

2

2 2 2

2

Here, = −r x xt t( ) ( )A , and x t( )A is given by equation (5). Let us compare (9) with the post-

Newtonian approximation. A series expansion of (9) yields the following expression for the

retarded time: = − − +· −" ( )t t c
v rr t

c

t

c
ret

( ) ( ) 3
2

. This expression agrees with the series

expansion given above (for =v const) which has been obtained directly from the definition (8).

Now we consider a relation among the retarded time Tret in the co-moving system of the

body and the retarded time tret in the global system. The retarded time in the co-moving and

global system are defined by equations (3) and (8), respectively. In order to find a relation
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between Tret and tret, we note that the global coordinates of event ( )xt t, ( )Aret ret correspond to

the coordinates ( )0T ,ret of the same event in the co-moving frame. The Poincaré transfor-

mation of the coordinates of this event yields

γ= −−T t t( ). (10)ret
1

ret 0

Relation (10) can also be obtained directly from the definitions of Tret and tret.

To get the metric in the global system we will transform the spatial derivatives with

respect to the co-moving coordinates to derivatives with respect to global coordinates. One

obtains

Λ Λ
γ

ρ
= ∂
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μ μ

μ μ
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⎢
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⎥
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1
ret 0

ret
l
l

l1
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1

where F stands for any of the mass or spin multipoles in co-moving coordinates, and

∂ = ∂ ∂μ
μx/ . By means of the invariant form of the distance (6) and with the aid of the

derivative operation (11), we are in the position to obtain the global metric in terms of local

multipoles for a massive body in uniform motion. Using η= − +μν μν μν " ( )g h G2 ,

η= − +αβ αβ αβ " ( )G H G2 and relation Λ Λ η η=α
μ

β
ν αβ

μν
, we obtain from (4) the

transformation law of metric perturbation:

Λ Λ=μν
α
μ

β
ν αβx Xh t H T( , ) ( , ). (12)can can

Applying the general transformation law (12) to the local metric (2), using the invariant form

of the distance (6), the derivative operation (11), we obtain for the metric in global

coordinates xt( , ) the following expression:
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where Tret can be expressed in terms of global coordinates by means of (10), and an overdot

denotes the derivative with respect to Tret. The multipoles in (13) are the local multipoles

defined in the co-moving frame of the body under consideration, and they are functions of the

retarded time Tret. Expression (13) describes the metric of an arbitrarily shaped and arbitrarily

oscillating and rotating single massive body in uniform motion.

2.3. Monopole in uniform motion

Let us consider the simplest case of an extended body with monopole structure. According to

equation (13), the metric perturbation of a uniformely moving mass-monopole in global
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coordinates =μ xx ct( , ) is given by (l = 0 in equation (13)):

Λ Λ δ

ρ
=μν α

μ
β
ν

αβ
xh t

GM

c
( , )

2
, (14)M( ) 2

where M is the invariant rest mass of the body. For the invariant distance ρ we insert

expression (7), then we use the relation Λ Λ δ η= +α
μ

β
ν

αβ
μ ν μνc u u c22 2 , and obtain

γ
η=

−
+μν

μ ν
μν

·
⎜ ⎟
⎛

⎝

⎞

⎠( )
xh t

GM

c r t

u

c

u

c
( , )

4 1

( )

1

2
. (15)M( ) v r t

c

2

ret

( )ret

This expression coincides with the metric of a pointlike body of mass M, cf equation (15)

with equation (11) in [11] for the case of uniform motion, i.e. =v const.

2.4. Spin-dipole in uniform motion

Next we consider an extended massive body with mass monopole M and spin dipole Si.

According to equation (13), the metric perturbation of a uniformely moving mass-monopole

in global coordinates =μ xx ct( , ) consists of two contributions (l = 1 in equation (13)):

= +μν μνμν x x xh t h t h t( , ) ( , ) ( , ), (16)M S( ) ( )

where for simplicity we assume in this section that the co-moving system is located at the

center of mass of this body, so that Ma = 0. The monopole part μνh M( ) is given by equation (15),

and the spin part μνh S( ) , according to (13), is given by

Λ Λ ϵ Λ
ρ

= ∂μν μ ν λ
λxh t

G

c

S
( , )

4
, (17)S k i( ) 0

( )
ijk

j

3

where Sj is the spin in the local frame XcT( , ) of the body.

The massive bodies of an N-body system exert a torque on each other leading to a time

dependent spin of a body A in the local A-system. Here, we follow the arguments of [12, 13]

and will assume that such a local time-dependence is only caused by gravitational interactions

and, therefore, are proportional to " G( ). Accordingly, the spin of each individual body in its

own co-moving system is here assumed to be time independent. The metric of an arbitrarily

moving pointlike body with monopole structure and a time-independent spin has been given

by equation (16) in [11]. Here, we will compare our result with the results in [11] in case of a

body in uniform motion.

Because the spin is time-independent in the local frame, the derivative ∂λ in (17) does not

act on the spin vector, and we obtain

Λ
ρ

γ

ρ
∂ = −

+ − ·
α

α

v rS
S

r t t( ) ( 1) ( ( ) )
. (18)i

j

j

i v

v

3

i

2

In order to obtain (18), we have used the second expression in (7), the explicit form for

the Lorentz matrices, and = −∂

∂
r vt( )
t

. By inserting (18) into (17) we obtain

Λ Λ ϵ
γ

ρ
= −

+ − ·
μν μ νx

v r
h t

G

c
S

r t t
( , )

4 ( ) ( 1) ( ( ) )
. (19)S k( ) 0

( )
ijk j

i v

v

3 3

i

2
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Furthermore, we note the relation

= −r t r t r t
v

c
( ) ( ) ( ) , (20)i i

i

ret ret

which follows from = −r t x x t( ) ( )A
ii i , = −r t x x t( ) ( )A

ii i
ret ret , that means

= + −r t r t v t t( ) ( ) ( )i i i
ret ret , and then using relation (8). Thus, by means of (20), we can

rewrite (19) as follows:

Λ Λ ϵ
γ γ

ρ
= −

+ − · −
μν μ ν
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x

v r
h t

G

c
S

r t t r t
( , )

4 ( ) ( 1) ( ) ( )
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3
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3
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2

Let us briefly note, that from (21) one easily finds that = −" ( )h cS( )
00 4 , = −" ( )h cS

ij
( )

4 , while

ϵ= + −" ( )xh t
G

c
S

r t

r t
c( , )

2 ( )

( )
(22)S

i
( )
0

ijk j

k

3 3

5

gives rise to the famous Lense–Thirring effect. Now we will show the agreement of (21) with

equation (16) in [11], where some anti-symmetric spin tensor in global coordinates αβSglobal has

been employed. To this end we consider each component of the metric tensor (21) separately.

Accordingly, the strategy for the comparison is, first to perform a Lorentz transformation

of the spin-part of the metric from co-moving to global frame and second to rewrite the results

in terms of the global spin tensor μνSglobal, equations (B.4) and (B.5).

2.4.1. Calculation of h(S)
00 . For the components μ ν= = 0 we obtain from (21) the following

expression:

γ
ρ
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x
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c c

r t
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4 ( )
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2 ret

3

Now we use the following relation between the spin vector S in the co-moving system

and the anti-symmetric spin tensor αβSglobal in the global system, which is shown in appendix B:

γ × =⎜ ⎟
⎛
⎝

⎞
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v
S

c
S . (24)i
global
0

i

Inserting (24) into (23) yields

ρ
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α
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c
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4 ( )
, (25)S( )

00 global
0

3

ret
0

3

where the four-vector =α rr r( , ) has been introduced. In (25) we have formally extended the

summation = α
αr S r Si

global
0

global
0

i , because =S 0global
00 due to the anti-symmetry of the spin

tensor; note also γ = u c/0 and =α αS u S uglobal
0

global
(00 0).

2.4.2. Calculation of h(S)
0 a. Now let us consider the component μ = a and ν = 0 in (21),

which we separate into two terms as follows,

= +x x xh t h t h t( , ) ( , ) ( , ), (26)S
a a a
( )
0

1
0

2
0

Λ Λ ϵ
γ γ

ρ
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Λ Λ ϵ
γ γ

ρ
= −
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For the expression (27) we obtain

ρ
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2 ( )
, (29)a

1
0 global

0 a

4

ret

3

where we used (24) and again extended the summation = α
αr S r Si

global
0

global
0

i ; note also

γ=u va a. For the term (28) we obtain

ρ
=

α
α

xh t
G

c

r t S u
( , )

2 ( )
. (30)a

a

2
0 global

4

ret
0

3

The proof of relation (30) is a bit involved; it can be found in appendix C. According to (26)

we add both terms (29) and (30) together, and obtain by means of symmetrization notation:

ρ
=

α
α

xh t
G

c

r t S u
( , )

4 ( )
. (31)S

a

a

( )
0 global

(

4

ret
0)

3

We remark that =h hS
a

S
a

( )
0

( )
0 as it follows from (21).

2.4.3. Calculation of h(S)
ab . According to (21), we obtain the following components for the

spin part of metric tensor,

Λ Λ ϵ
γ γ

ρ
= −

+ − · −( )
x

v r
h t

G

c
S

r t t r t
( , )

4 ( ) ( 1) ( ) ( )
. (32)S

ab a
k
b

( ) 0
( )

ijk j

i v

v

v

c

3

ret ret ret

3

i i

2

If we compare expression (32) with expression (28), we recognize that:

= +x x xh t h t
v

c
h t

v

c
( , ) ( , ) ( , ) . (33)S

ab a b
( ) 2

0
2
0

b a

In view of relation (33) and by means of (30), we immediately conclude

ρ
=

α
α

xh t
G

c

r t S u
( , )

4 ( )
. (34)S

ab

a

( )

global
( b

4

ret
)

3

2.4.4. Collection of terms. Now we collect the results (25), (31) and (34) together and obtain

finally

γ

=
−

μν

α μ
α

ν

·( )
xh t

G

c

r t S u

r t
( , )

4 ( )

( )
, (35)S( )

global
(

v r t

c

4

ret
)

3
ret

( ) 3
ret

where we have used for the distance ρ the form given by relation (7). The metric (35) for the

spin part coincides with the metric given by equation (16) in [11] for the case of uniform

motion, besides an additional factor γ−1 which is missing in equation (16) of [11], as it has

been noted already in [14]. We note, that the use of a spin tensor or spin vector is more or less

a matter of taste and allows for a more compact notation, but from the physical point of view

it is not important at all. However, it is important that the metric (35) is given in terms of

global spin parameters, while our metric (17) for the spin is given in terms of local spin

parameters. Here, we have shown that both expressions are equivalent.
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3. Arbitrarily moving pointlike bodies to post-Minkowskian order

3.1. Instantaneous Poincaré transformation and classical electrodynamics

Let us consider the equations of classical electrodynamics in the Lorentz-gauge [19],

μ□ = −μ μx xA t j t( , ) ( , ), (36)x 0

where η□ = μν ∂

∂ ∂μ νx x x

2

is the d’Alembert operator, φ=μ AA c( / , ) is the four-potential with

scalar-potential φ and vector-potential A, and ρ=μ jj c( , ) is the four-current with electric

charge density ρ and electric current density j; the vacuum permeability μ0 and vacuum

permittivity ϵ0 are related via ϵ μ=−c 2
0 0

.

The equations of linearized gravity (1) and the equations of classical electrodynamics

(36) have the same mathematical structure. Thus we can use some arguments of classical

electrodynamics for our purposes. Especially, we will show that the problem of an arbitrarily

moving pointlike body in linearized gravity is similar to the problem of an arbitrarily moving

pointlike charge Q in electromagnetism.

Let us consider a pointlike charge Q which in the global inertial system =μ xx ct( , ) is

moving along an arbitrary timelike worldline parametrized by μx T( )Q . At each instant of time

we introduce an inertial system =μ XX cT( , ) along the worldline μx T( )Q which is comoving

with the pointlike charge with the instantaneous velocity of the charge. The transformation

from the global inertial coordinate system =μ xx ct( , ) to the inertial system =μ XX cT( , )

which is comoving with the charge is then given by an instantaneous Poincaré transformation,

e.g. [18]:

Λ= + α
μμ α μ α( )x X b t X( ) , (37)

with Λ γ=t t( ) ( )0
0 , Λ Λ γ= =t t t( ) ( ) ( )i

i0
0 v t

c

( )i , Λ δ γ= + −t t( ) ( ( ) 1)i
j

ij

v t v t

v t

( ) ( )

( )

i j

2
. Like in (4)

we take =μ ( )bb b ,0 , and b points from the origin of global frame to the origin of the inertial

frame at time =T 0.

We assume the point-charge Q to be located at the origin of the comoving inertial system

and then the four-potential in this coordinate system is given by

π ϵ
=μ

⎛

⎝
⎜

⎞

⎠
⎟X 0A T

Q

R
( , )

1

4
, , (38)

0

where = XR , and the four-velocity of the charge in the local system is =μ 0u c( , )Q .

Now we want to determine the four-potential in the global coordinate system. As is well-

known the Liénard–Wiechert potentials for a moving point-charge expressed in terms of

retarded time are independent of acceleration. Accordingly, it has been argued in [2, 20] that

one might introduce an instantaneous local rest-system as described above and with the point-

charge at its origin at retarded time = − −x xt t t c( ) /Qret ret , and where the four-potential is

given by (38). Then, an instananeous Poincaré transformation (37) at =t tret yields

π ϵ
=

−μ

μ

μ

μ μ

=
( )

xA t
Q u t

u t x x t
( , )

1

4

( )

( ) ( )
, (39)

Q

Q

Q
t t

0

ret

where γ=μ ( )vu t t c t( ) ( ) , ( )Q Q is the four-velocity of Q in the global system and all time-

dependent quantities on the right-hand side have to be taken at retarded time tret. Furthermore,

in (39) the local coordinate distance R has been replaced by the Lorentz-invariant distance, cf

equation (6):
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ρ γ=
−

= −
·μ

μ μ

=
=

⎛

⎝
⎜

⎞

⎠
⎟

( ) v ru t x x t

c
t r t

t t

c

( ) ( )
( ) ( )

( ) ( )
, (40)

Q
Q

t t

Q

Q Q

t t
ret

ret

where = −r x xt t( ) ( )Q Q and = rr t t( ) ( )Q Q . The solution (39) which has been obtained by

an instananeous Poincaré transformation is nothing else than the well-known Liénard–Wie-

chert potentials in classical electrodynamics.

3.2. Arbitrarily moving mass-monopoles

Now we are going to determine the metric of a pointlike body A moving arbitrarily along a

time-like trajectory μx T( )A in the global system with the aid of the same approach as described

in the previous section. According to (2), the metric of a pointlike body without spin and in its

local rest frame =μ XX cT( , ) is given by

δ=αβ
αβXH T

GM

c R
( , )

2
, (41)M( ) 2

where M is the mass monopole ML defined by equation (5.33) in [6] for the special case l = 0.

For the case of an arbitrarily moving pointlike charge we perform an instantaneous Poincaré

transformation (37) of the metric field (41) at the retarded instant of time defined by

equation (8), and obtain the global metric

Λ Λ δ

γ
=

−

μν α
μ

β
ν

αβ

·

=
( )

xh t
GM

c

t t

t r t
( , )

2 ( ) ( )

( ) ( )
, (42)M( ) v rt t

c
t t

2 ( ) ( )

ret

where = −r x xt t( ) ( )A and = rr t t( ) ( ) and for the distance R we have used the invariant

expression (40). Now we use the relation Λ Λ δ η= +α
μ

β
ν

αβ
μ ν μνc u u c22 2 , and obtain

γ

η
=

−
+μν

μ ν μν

·

=

⎜ ⎟
⎛

⎝

⎞

⎠( )
xh t

GM

c t r t

u t

c

u t

c
( , )

4 1

( ) ( )

( ) ( )

2
, (43)M( ) v rt t

c
t t

2 ( ) ( )

ret

where γ=μ vu t t c t( ) ( ) ( , ( ) ) is the four-velocity of the body and v t( ) being the three-velocity

of the body in the global system. The expression (43) is the contribution to the metric of one

arbitrarily moving pointlike body in post-Minkowskian approximation. The metric for the

case of N pointlike bodies is simply obtained by a summation over N individual contributions

(43), in agreement with equation (10) in [9] or equation (11) in [11].

For many situations, the slow-motion approximation ≪v c is of sufficient accuracy, e.g.

[15, 16]. Therefore, we will compare the metric (43) with previous results in the literature in

the slow-motion approximation. A corresponding series expansion of (43) yields

= +
·

+
·

+

+

=

−

⎛

⎝
⎜

⎞

⎠
⎟

" ( )

x
v r v r

h t
GM

c r t

t t

c r t

t t

c r t

v t

c

c

( , )
2 1

( )
1

( ) ( )

( )

( ( ) ( ) )

( )

3

2

( )

, (44)

M( )
00

t t

2

2

2 2

2

2

5

ret

= +
·

+
=

−
⎛

⎝
⎜

⎞

⎠
⎟ " ( )x

v r
h t

GM

c r t

v t

c

t t

c r t
c( , )

4 1

( )

( )
1

( ) ( )

( )
, (45)M

i
( )
0 i

t t

2

5

ret
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δ= +
·

+
·

−

+ +

=

=

−

⎛

⎝
⎜

⎞

⎠
⎟

" ( )

x
v r v r

h t
GM

c r t

t t

c r t

t t

c r t

v t

c

GM

c r t

v t v t

c
c

( , )
2 1

( )
1

( ) ( )

( )

( ( ) ( ) )

( )

1

2

( )

4 1

( )

( ) ( )
. (46)

M
ij
( ) ij

t t

i j

t t

2

2

2 2

2

2

2 2

5

ret

ret

The retarded time-argument in (44)–(46) has to be replaced by the global coordinate time

using the following relations:

= + +
·

+ +−" "( )r r
v v v r

t t
t

c
r t

t

c

t t

c
c G( ) ( )

( )
( )

( ) ( ) ( )
( ), (47)ret

3

= +
·

+ +
·

+ +−
⎛

⎝
⎜

⎞

⎠
⎟ " "( )

r v v r
r t r t

t t

c r t

v t

c

t t

c r t
c G( ) ( ) 1

( ) ( )

( )

1

2

( ) 1

2

( ( ) ( ) )

( )
( ), (48)ret

2

2

2

2 2

3

= + +−" "( )
v t

c

v t

c
c G

( ) ( )
( ), (49)

i iret 3

where we have taken into account that for a system of N pointlike masses the acceleration is

proportional to gravitational constant due to the equations of motion; see also text below

equation (23) in [15]. Then, to order G we obtain:

= −
·

+ + −
⎛

⎝
⎜

⎞

⎠
⎟ " ( )x

v r
h t

GM

c r t

t t

c r t

v t

c
c( , )

2 1

( )
1

1

2

( ( ) ( ) )

( )
2

( )
, (50)M( )

00

2

2

2 2

2

2

5

= + −" ( )xh t
GM

c r t

v t

c
c( , )

4 1

( )

( )
, (51)M

i
( )
0 i

2

5

δ δ= −
·

+ + −
⎛

⎝
⎜

⎞

⎠
⎟ " ( )x

v r
h t

GM

c r t

t t

c r t

v t v t

c
c( , )

2 1

( )

1

2

( ( ) ( ) )

( )
2

( ) ( )
, (52)M

ij
( ) ij ij

i j

2

2

2 2 2

5

which agrees with equations (21)–(23) in [15] or with equations (47)–(49) in [16] (for

β γ ϵ= = = 1 in [16]); recall = −h hi
i

0
0 , while =h h00

00 and =h hij
ij and all relations are

valid to first order in G.

3.3. Arbitrarily moving spin-dipoles

Now we proceed with the consideration of the metric of a pointlike body with spin.

According to (2), the metric of a massive body with monopole and spin is, in its local rest

frame =μ XX cT( , ), given by

= +αβ αβαβ X X XH T H T H T( , ) ( , ) ( , ), (53)M S( ) ( )

where the monopole part has been given by equation (41) and the spin part is given by

ϵ= −
∂

∂
XH T

G

c X

S

R
( , )

4
, (54)S

a
( )
0

abc b

c

3

while all other components of the spin part vanish: =H 0S( )
00 and =H 0S

ij
( ) . Again, for

simplicity we assume here that the co-moving system is located at the center of mass of this

body, and we neglect the time-dependence of the spin vector in the local system.

Now we perform an instantaneous Poincaré transformation of the local metric (54), and

obtain the spin part in global coordinates for an arbitrarily moving pointlike body with spin:
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Λ Λ ϵ Λ
ρ

=
∂

∂
αβ μ ν λ

λ
xh t

G

c
t t t S

x
( , )

4
( ) ( ) ( )

1
, (55)S a b( ) 0

( )
abc c3 ret ret ret

where for R we have used the invariant expression ρ given by (6) for the distance. By

performing the very same steps as described in some detail in section 2.4, we obtain for (55)

the following expression:

γ
=

−

μν α
α μ ν

·

=
( )

xh t
G

c

r t S u t

t r t
( , )

4 ( ) ( )

( ) ( )
. (56)S( )

v rt t

c
t t

4

global
( )

3 ( ) ( ) 3

ret

Equation (56) is the result for the spin part of the metric of one arbitrarily moving pointlike

massive body with spin, cf equation (16) in [11]. Recall, that (35) was valid for the case of an

extended body but in uniform motion. Like in the previous section, the metric of a system of

N arbitrarily moving pointlike spin-dipoles is simply obtained by a summation over the

contributions (56) of N individual pointlike spin-dipoles. In many situations, the metric for a

slowly-moving and spinning body ≪v c is sufficient, e.g. [17]. Hence, like for the case of

pointlike monopoles, we will compare (56) with results previously obtained in the literature in

the slow-motion approximation. By inserting (47)–(49) into (56) we obtain

ϵ= − + −" ( )xh t
G

c r t
r t S v t c( , )

4 1

( )
( ) ( ) , (57)S( )

00
a b abc c4 3

5

ϵ= − + −" ( )xh t
G

c r t
r t S c( , )

2 1

( )
( ) , (58)S

i
( )
0

a iab b3 3

5

ϵ= − −" ( )xh t
G

c r t
r t S t c( , )

4 1

( )
( ) ( ) , (59)S

ij
( ) a b ab i v4 3 ( )

5

j

in agreement with equations (C.17)–(C.19) in [17]. Recall that (58) generates the

Lense–Thirring effect, the spin in the local frame is time-independent and all relations are

valid to first order in G.

4. Conclusions

Extremely high precision astrometry, high precision space missions and certain tests of

General Relativity, require the knowledge of the metric tensor of the solar system, or more

generally, of a gravitational N-body system in post-Minkowskian approximation. So far, the

metric outside of massive and moving bodies in only known in post-Newtonian approx-

imation. In our study, we have considered the metric of massive bodies in motion in post-

Minkowskian approximation, that is valid to any order in velocity v c/ . Two different sce-

narios were on the scope of our investigation: (i) the case of one body with full mass and spin

multipole structure in uniform motion ( =v const) in post-Minkowskian approximation, and

(ii) the case of N arbitrarily moving pointlike bodies with time-dependent speed v t( ) in post-

Minkowskian approximation.

For the first problem, a co-moving inertial system of coordinates has been introduced and

the starting point is the local metric given in terms of Damour–Iyer moments. A Poincaré

transformation then yields the metric tensor in the global system (13) in post-Minkowskian

approximation. We have demonstrated that our results are in agreement with known results

for pointlike masses having monopole and spin structure and moving uniformly.

Class. Quantum Grav. 31 (2014) 175001 S Zschocke and M H Soffel

12



Then we have derived the global metric for pointlike massive bodies in arbitrary motion

having monopole structure (43) and spin structure (56). We have shown that our results are

exact to post-Minkowskian order for the problem of pointlike mass-monopoles and spin-

dipoles in arbitrary motion.

The problem to find a global metric for a system of N arbitrarily moving and arbitrarily

shaped bodies in post-Minkowskian approximation is highly complex and one encounters

many subtle difficulties. Especially (in contrast to the case of pointlike bodies), such a metric

cannot be obtained by a simple instantaneous Poincaré transformation of the metric (2) for

extended bodies. Moreover, it is obvious that for this problem a corresponding accelerated

local reference system has to be constructed. It is clear that such a local system can be defined

in many different ways (e.g., Fermi normal coordinates or special harmonic ones). As is well

known, however, that even in the case of vanishing gravitational fields, i.e., in Minkowski

space, such a construction is highly problematic; the reader is referred to [21–28]. At the

moment being, we consider our study as one more step towards the aim of a global metric for

a system of N arbitrarily shaped and arbitrarily moving massive bodies in post-Minkowskian

approximation.
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Appendix A. Notation for the metric tensors

All relations given here will be valid to first order in G, without explicit indication. For weak

gravitational fields the metric differs only slightly from flat space metric, that means

η η= + = −μν μν μν
μν μν μνG H G H, , (A.1)

where η η=
μν

μν is the metric of Minkowski space, and ≪μνH 1 and ≪μνH 1.

The equations of linearized gravity take a simple form in the gothic metric [2, 18, 29],

defined by

η η
−

= + − = −
μν

μν μν
μν μν μν

G

G
H G G H, , (A.2)

where = μν( )G Gdet is the determinant of metric tensor. The factor −G implies that the

gothic metric is not a tensor but a tensor density. Let us further note the following relations for

the trace-reversed metric perturbation:

η η= − = −μν μν μν

μν μν μνH H H H H H
1

2
,

1

2
, (A.3)

where η= αβ
αβH H . The inverse relation reads

η η= − = −μν μν μν
μν μν μνH H H H H H

1

2
,

1

2
, (A.4)

where η= αβ
αβH H . Finally we note = −H H , and we find

− = − − = +G H G H1
1

2
, 1

1

2
. (A.5)
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Appendix B. Some relations for the Spin

B.1. Lorentz transformation of Spin

In the local frame the spin four-vector is denoted by =μ SS (0, ), while in the global system

the spin four-vector is denoted by =μ ( )SS S ,global global
0

global . The Lorentz transformation for the

spin between the co-moving frame co-moving with the massive body and the global frame

reads

Λ γ= = + −
·

μ
μ

v S
S S S

v
v( 1) , (B.1)i i

global
i

i2

Λ γ= =
·

μ
μ ⎜ ⎟

⎛

⎝

⎞

⎠
v S

S S
c

. (B.2)global
0 0

Note, that the spin four-vector in any Lorentz frame has three independent components only.

The transformation (B.1) and (B.2) agree with equation (8) in [11]. The inverse

transformation can easily be deduced from equations (B.1) and (B.2) and is given by

γ

γ
= +

−
S S

v

c
S v

1
. (B.3)i

global global
0i

i2

Of course, relation (B.3) can also be obtained from the inverse Lorentz transformation.

B.2. Proof of relation (24)

In [11], some anti-symmetric spin tensor in global coordinates αβSglobal has been employed. Due

to the anti-symmetry of this tensor and because of the orthogonality relation =αβ
βS u 0global ,

this spin tensor has three independent degrees of freedom like the spin four-vector μSglobal, thus

both mathematical expressions are on an equal footing. Therefore, the anti-symmetric spin

tensor αβSglobal and the spin four-vector μS
global in global coordinates are related to each other by

the following relation, cf equation (5) in [11] and cf equation (3.9) in [14]:

η=αβ
δ

αβγδ
γ

S S
u

c
, (B.4)global

global

η=α
γδ

αβγδ

β

S
u

c
S

1

2
, (B.5)global

global

where (B.5) is the inverse of (B.4). Here, η ϵ= −αβγδ
αβγδ−g

1
and η ϵ= −

αβγδ αβγδg are the

contravariant and covariant components of the Levi-Civita tensor, respectively, and ϵαβγδ is the

Minkowskian Levi-Civita tensor with ϵ = 10123 . Let us note the following relations of this

tensor:

ϵ ϵ ϵ ϵ= = − = − . (B.6)ij k ijk
ijk ijk

0 0
0

In harmonic coordinates = − + "g G1 ( ), we obtain from equation (B.4), up to order " G( ),

ϵ ϵ= =δ
γδ

γ
S

u

c
S

u

c
S . (B.7)a
lglobal

0 global globala a kl k0 0

And by means of (B.6) we finally arrive at

ϵ γ γ= =
×

⎜ ⎟
⎛

⎝

⎞

⎠
v S

S
v

c
S

c
, (B.8)a

lglobal
0 global

akl

k
a

where in the last term we have used (B.1), i.e. × = ×v S v Sglobal . Equation (B.8) is nothing

but relation (24); cf equation (D1) in [11].
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Appendix C. Prof of relation (30)

In order to show (30), we insert into equation (28) the explicit form for the Lorentz matrix and

obtain

γ ϵ γ ϵ
ρ

= − + −⎜ ⎟
⎛
⎝

⎞
⎠

xh t
G

c
S

v v

v
S

X
( , )

2
( 1) , (C.1)B

a0
ija j

a k

ijk j

i

3 2 3

where we have used the abbreviation

γ γ= + − · −( )v rX r t
v

v
t r t

v

c
( ) ( 1) ( ) ( ) . (C.2)i i

i i

ret 2 ret ret

The metric (C.1) is still given in terms of the local spin =μ SS (0, ) comoving with the

massive body, and we have to transform it into the spin tensor in global coordinates. For the

first term in the parentheses of equation (C.1) we will use the following relation (a proof is

given below):

γ ϵ
γ

ϵ= +
−

·v SS S
v

v
1
( ) , (C.3)ai

globalija j aij j2

while for the second term in the parentheses of equation (C.1) we will use relation (24), and

then we obtain

γ

γ
ϵ

γ

ρ
= − +

−
+

−⎛

⎝
⎜

⎞

⎠
⎟xh t

G

c
S

v

c
S v

v
v c S

X
( , )

2 1 1
. (C.4)B

a ai i0
global global

0
global
0

aij j a

i

3 2 2 3

For the last term in (C.3) we have also used relation (B.2). The metric (C.4) is now given in

terms of global spin variables. But we still have to express the second term in (C.4) by the

global spin tensor. Therefore, we use the following relation, cf equation (B.5),

ϵ=S
u

c
S

1

2
. (C.5)lm

global
0

globalklm

k

Inserting (C.5) into (C.4) yields (recall the anti-symmetry of spin-tensor):

ρ

γ
γ

γ γ

= −

× +
−

+ −

+
−

+
−

⎜

⎟

⎛

⎝

⎞

⎠

xh t
G

c

X

S
v

v v S S

v
v v S

v
v c S

( , )
2

1
( 1)

1 1
, (C.6)

B
a

ai ib ai

ba i

0

global global global

global global
0

i

a b

i b a

3 3

2

2 2

where for the second term in the parentheses of equation (C.4) after inserting (C.5) we have

used

ϵ ϵ

δ δ δ

δ δ δ

δ δ δ

= .aij klm

ak al am

ik il im

jk jl jm

We recognize that the second and last term in the parentheses of equation (C.6) cancel each

other, as one can see by using the relation =v S c Sab a
global global

0
b due to =αβ

βS u 0global . For the

fourth term in the parentheses of equation (C.6) we use = −v S c Sba a
global global

0
b and obtain
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ρ
γ

γ
= − +

−
⎜ ⎟
⎛

⎝

⎞

⎠
xh t

G

c

X
S

v
v c S( , )

2 1
. (C.7)B

a ai a0
global global

0i i

3 3 2

Now we reinsert (C.2) and obtain, recall γ =c u0 and =v S c Si
ai a0,

ρ
=

γ
γ

xh t
G

c

r t S u
( , )

2 ( )
, (C.8)B

a

a

0 global

4

ret
0

3

where we have used the anti-symmetry of the spin-tensor; note = −γ ( )rr t r t t( ) ( ), ( )ret ret ret ,

and =γ ( )rr r t t( ), ( )ret ret . equation (C.8) is just relation (30).

Finally let us proof relation (C.3). We insert the Lorentz transformations (B.1) and (B.2)

into relation (B.4) and obtain up to order G,

ϵ

ϵ γ ϵ
γ

γ ϵ γ

=

= +
−

· −
·

δ
γδ

γ

⎜ ⎟
⎛

⎝

⎞

⎠
v S

v S

S S u

S
v

v
c

v

c

1
( ) , (C.9)

ij
global

globalij

ijk
k

ijk k ijk k

2

2

where we have also used γ= −u c0 , γ=u c0 and γ= =u u vk
k

k; note = −S S0
global

global
0 ,

ϵ ϵ=ijk
ijk, and ϵ ϵ= −ijk

ijk
0

0 . Then, by using the relation γ γ γ γ− − = −( 1) 1
v

c

2
2

2
, we obtain

from equation (C.9),

γ ϵ
γ

ϵ= +
−

·v SS S
v

v
1

( ) , (C.10)ij
global ijk k ijk k2

which is just relation (C.3); cf equation (D2) in [11].
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