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The linearized field equations of general relativity in harmonic coordinates are given by
an inhomogeneous wave equation. In the region exterior to the matter field, the retarded
solution of this wave equation can be expanded in terms of 10 Cartesian symmetric and
tracefree (STF) multipoles in post-Minkowskian approximation. For such a multipole
decomposition only three and rather weak assumptions are required:

(1) No-incoming-radiation condition.
(2) The matter source is spatially compact.
(3) A spherical expansion for the metric outside the matter source is possible.

During the last decades, the STF multipole expansion has been established as a powerful
tool in several fields of gravitational physics: celestial mechanics, theory of gravitational
waves and in the theory of light propagation and astrometry. But despite its formidable
importance, an explicit proof of the fundamental theorem of STF multipole expansion
has not been presented so far, while only some parts of it are distributed into several
publications. In a technical but more didactical form, an explicit and detailed mathemat-
ical proof of each individual step of this important theorem of STF multipole expansion
is represented.

Keywords: General relativity; linearized gravity; multipole expansion.

PACS Number(s): 04.20.−q, 04.30.−w, 04.25.−g

1. Introduction

The field equations of gravity,1,2 constitute a set of 10 coupled nonlinear partial
differential equations which relate the metric tensor gαβ of curved spacetime to
the stress-energy tensor of matter T αβ. Due to the inherited mathematical diffi-
culties of solving these field equations in closed form, exact and physically well
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interpretable solutions of general theory of relativity are on rare occasions.3 The
most well-known examples for the case of massive isolated sources are the metric
of a spherically symmetric massive body derived by Schwarzschild,4 the solution
for a spherically symmetric and electrically charged body found by Reissner5 and
Nordström,6 and the metric for rotating bodies obtained by Kerr.7 However, for
more realistic scenarios, like an accelerated body, an asymmetric body, or a N-
body system, exact solutions are far out of reach or even do not exist. Therefore,
approximative approaches of general relativity are essential for further progress in
the theory of gravity. One of the most important approximative approaches is the
theory of linearized gravity, where in harmonic gauge the coupled field equations of
Einstein’s theory are simplified to a set of decoupled inhomogeneous wave equations
for each of the 10 components of the metric tensor8:

�xh
αβ

(t, x) = −16πG

c4
T αβ(t, x), (1)

which is valid up to order O(G2) and G is the gravitational constant. In Eq. (1), �x

is the d’Alembert operator, h
αβ

= ηαβ −√−ggαβ is the metric perturbation (g =
determinant of gαβ , ηαβ = diag(−1, +1, +1, +1) is the metric of flat spacetime)
and c is the speed of light; the spacetime is assumed to be covered by harmonic
coordinates (ct, x).

The mathematical structure of linearized field equations (1) resembles the field
equations of classical electrodynamics in Lorentz gauge, �xAµ = − 4π

c jµ, with Aµ

being the four-potential and jµ being the four-current, but with the addition that
in classical electrodynamics the spacetime is Minkowskian, while the spacetime
in linearized gravity is in fact curved. Especially, the Green functions of both field
equations are formally the same, and the harmonic coordinates (ct, x) can be treated
as though they were Cartesian coordinates in the flat Minkowski space, cf. Ref. 9.
Hence, like in classical electrodynamics, a solution of (1) is given by8

h
αβ

(t, x) =
4G

c4

∫
V

d3x′T
αβ(tret, x′)
|x′ − x| , (2)

where the integral runs over some finite spatial volume V of the extended matter
field, tret = t − |x′−x|

c is the retarded time from a point inside the matter source
with spatial coordinate x′ to a field point with spatial coordinate x. The so-called
advanced solution, where tret in (2) is replaced by tadv = t + |x′−x|

c , is usually
be regarded unphysical because it violates the causality condition and will not be
considered here.

The multipole decomposition of (2) in terms of spherical harmonics is a highly
effective approach to further analyze this solution. That the tool of multipole expan-
sion has originally been applied a long time ago in classical electrodynamics10 and
later been transformed into the case of linearized gravity. In this respect, a bench
mark was the investigation of Campbell et al.11 who have worked out a multipole
decomposition of the scalar (gravitational potential), vectorial (electrodynamical
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four-potential) and tensorial (linearized gravity) field outside the matter source in
terms of spherical harmonics.

However, the use of so-called Cartesian symmetric and tracefree (STF) multi-
pole moments12–18 instead of spherical harmonics simplifies considerably the cal-
culations in gravitational physics19–22: the mathematical relations and expressions
in gravitational theory become simpler, the numerical algorithms can be performed
more efficiently and the whole approach of gravitational theory becomes more ele-
gant. By now, the STF multipole expansion, in post-Newtonian approximation
(“slow-motion approximation”, i.e. g00, gij exact to order O(c−2), g0i exact to order
O(c−3)) and post-Minkowskian approximation (“weak-field approximation”, i.e.
gαβ exact to order O(G)), has been established as an important tool in linearized
gravity and has found a wide range of applications: in celestial mechanics,22–24

in the theory of gravitational waves,25–27 and in the theory of light propagation
in curved spacetime28–31 which is a fundamental aspect of relativistic astrometry.
Meanwhile, the STF multipole expansion in linearized gravity has a remarkable
history and encompasses some decades of period of time. Let us mention some
important contributions which are considered as cornerstones in the theory of mul-
tipole expansion; further historical facts can be found, for instance, in box 1 in
Ref. 19, introductory sections in Refs. 20 and 32, and in Sec. 4.4 in Ref. 33.

First, the approach developed in Ref. 11 has been established in terms of STF
tensors in a pioneering work by Thorne19 in post-Newtonian approximation, where
some initial steps of earlier investigations12,13,34,35 have considerably been general-
ized. Especially, Thorne19 has shown that the metric outside the matter source can
be expanded in terms of 10 STF tensors as follows (Eqs. (8.4) in Ref. 19):

h
αβ

(t, x) =
4G

c4

∞∑
l=0

(−1)l

l!
∂L

[
F̂αβ

L (u)
r

]
, (3)

where ∂L = ∂l

∂xa1 ...∂xal
are l spatial derivatives, r = |x| is the spatial distance

between the origin of coordinate system and the field point with spatial coordinate
x, F̂αβ

L are 10 STF multipoles and u = ct−r. Moreover, Thorne19 has shown, using
energy–momentum conservation (Eqs. (8.6) and (8.7) in Ref. 19) and a sophisti-
cated gauge transformation (Eqs. (8.9) in Ref. 19) which preserves the harmonic
gauge, that outside the matter the metric can finally be expressed in terms of two
independent multipoles in post-Newtonian approximation: mass multipoles M̂L and
spin multipoles ŜL (Eqs. (8.13) in Ref. 19). However, the multipoles (Eqs. (5.32) in
Ref. 19) were still formally divergent at spatial infinity.

Consequently, Blanchet and Damour20 have further developed the approach
in Ref. 19 and have demonstrated that Thorne’s post-Newtonian multipoles are
physically meaningful if one makes a rigorous use of the compact-support source of
energy–momentum tensor. This important result has been achieved with the aid of
the theory of distributions by means of which Blanchet and Damour20 were able

1450003-3

In
t. 

J.
 M

od
. P

hy
s.

 D
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 D

r.
 S

ve
n 

Z
sc

ho
ck

e 
on

 1
0/

25
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

October 22, 2013 16:19 WSPC/S0218-2718 142-IJMPD 1450003

S. Zschocke

to extract the physically relevant and nondivergent part of Thorne’s multipoles in
post-Newtonian approximation.

Finally, Blanchet and Damour21 have established a powerful theorem in post-
Minkowskian approximation which states that outside of an isolated source the
metric can be expanded in terms of 10 Cartesian STF multipoles (3) (Eqs. (B.2)
and (B.3) in Ref. 21), defined by

F̂αβ
L (u) =

∫
V

d3x′x̂′
L

∫ +1

−1

dzδl(z)T αβ

(
u + zr′

c
, x′
)

, (4)

where x̂′
L = STF

a1,...,al

(x′
a1

, . . . , x′
al

), and r′ = |x′| is the distance between the origin of

coordinate system and a point inside of the source with spatial coordinate x′; the
coefficient functions in (4) are given by

δl(z) =
(2l + 1)!!

2l+1l!
(1 − z2)l, (5)

which are normalized:
∫ +1

−1 dzδl(z) = 1. As we will see, the expansion (3) is valid
in regions r > r0, where r0 is the radius of the smallest possible sphere which
encompasses completely the source of matter. The expansion (3) and (4) represents
the fundamental theorem of STF multipole expansion in linearized gravity, e.g.
Eqs. (B.2) and (B.3) in Ref. 21, Eqs. (5.3) and (5.4) in Ref. 36, Eqs. (56) and
(57) in Ref. 26, or Eq. (25) in Ref. 27, and stands for a solution of linearized field
equations (1) in post-Minkowskian approximation, hence it is even valid in case of
ultra-relativistic motion of matter inside the source.

After all, using energy–momentum conservation (Eqs. (5.14) and (5.18) in
Ref. 36) and applying a sophisticated gauge choice (Eq. (5.31) in Ref. 36) Damour
and Iyer36 have demonstrated, footing on the pioneering works of Thorne19 and
Blanchet and Damour,20,21 that also in post-Minkowskian approximation the fam-
ily of these 10 multipoles can be reduced to finally only two independent multipoles:
mass multipoles M̂L (Eq. (5.33) in Ref. 36) and spin multipoles ŜL (Eq. (5.35) in
Ref. 36):

h
αβ

= h
αβ

(M̂L, ŜL). (6)

The demonstration, that the metric in (3) which depends on 10 multipoles F̂αβ
L

can be reduced to the form in (6) where the metric depends only on two multipoles
(M̂L, ŜL), is a rather ambitious assignment of a task and makes extensive use of irre-
ducible Cartesian tensor techniques originally introduced in Refs. 16–18. Damour
and Iyer36 have also demonstrated that to order O(c−4) their post-Minkowskian
multipoles coincide with the post-Newtonian multipoles of Ref. 21 (Eqs. (5.38)
and (5.41) in Ref. 36). So, the investigation in Ref. 36 has been the final touch in
the approach of STF multipole expansion to order O(G). This elaborated work of
Damour and Iyer36 will, however, not be on the scope of the present investigation.
Instead, we will be focussed on Theorems 3 and 4, which is the heart and the core
part of STF multipole expansion. An explicit proof of this important theorem is not
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so straightforward as one might believe and has not been presented in detail thus
far; only some parts of it are published but scattered in several publications.11,19–21

Here, in view of its formidable relevance in the theory of linearized gravity, we will
outline a more detailed mathematical proof of each individual step of multipole
expansion (3) in post-Minkowskian approximation.

The paper is organized as follows: In Sec. 2, a compendium of the exact field
equations of gravity is provided. The linearized approximation of general relativity
is given in Sec. 3. Section 4 is devoted to the main part of our investigation, where
a detailed proof of the fundamental theorem 3 is represented and the required
assumptions for its validity are defined. A summary is finally given in Sec. 5.

We shall use fairly standard notations of the STF tensor approach13,19,20,22,36:

• Lower case Latin indices i, j, . . . , take values 1, 2, 3.
• Lower case Greek indices µ, ν, . . . , take values 0, 1, 2, 3.
• δij = δij = diag(+1, +1, +1) is Kronecker delta.
• n! = n(n − 1)(n − 2) · · · 2 · 1 is the faculty for positive integer; 0! = 1.
• n!! = n(n−2)(n−4) · · · (2 or 1) is the double faculty for positive integer; 0!! = 1.
• L = i1i2 . . . il and Q = i1i2 . . . iq are Cartesian multi-indices of a given tensor T ,

that means TL ≡ Ti1i2...il
and TQ ≡ Ti1i2...iq , respectively.

• two identical multi-indices imply summation: ALBL ≡∑i1...il
Ai1...il

Bi1...il
.

• The symmetric part of a Cartesian tensor TL is, cf. Eq. (2.1) in Ref. 19:

T(L) = T(i1...il) =
1
l!

∑
σ

Aiσ(1) ...iσ(l) , (7)

where σ is running over all permutations of (1, 2, . . . , l).
• The symmetric tracefree part of a Cartesian tensor TL (notation: T̂L ≡ STFLTL)

is, cf. Eq. (2.2) in Ref. 19:

T̂L =
[l/2]∑
k=0

alkδ(i1i2...δi2k−1i2k
Si2k+1...il

)a1a1...akak
, (8)

where [l/2] means the largest integer less than or equal to l/2, and SL ≡ T(L)

abbreviates the symmetric part of tensor TL. For instance, T αβ
L means STF with

respect to indices L but not with respect to indices α, β. The coefficient in (8) is
given by

alk = (−1)k l!
(l − 2k)!

(2l − 2k − 1)!!
(2l − 1)!!(2k)!!

. (9)

As instructive examples of (8) let us consider the cases l = 2 and l = 3:

T̂ij = T(ij) − 1
3
δijTss, (10)

T̂ijk = T(ijk) − 1
5
(δijT(kss) + δjkT(iss) + δkiT(jss)). (11)
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Further STF relations can be found in Refs. 19 and 20. We also will make use of
Einstein’s sum convention, that mans repeated indices are implicitly summed over.

2. Einstein’s Field Equations

The gravitation is described by 10 coupled nonlinear partial differential equations
for the metric tensor,1,2 which can be written in the form:

Rαβ − 1
2
gαβR =

8πG

c4
T αβ (12)

and which discover a fundamental relation between the metric of spacetime on the
left-hand side and the matter field on the right-hand side. Essentially, Eq. (12)
represents a relation among contravariant tensors, of which Rαβ is the Ricci cur-
vature tensor, gαβ is the metric tensor with signature (−, +, +, +) and T αβ is the
energy–momentum tensor of matter; R = Rα

α is the Ricci scalar of curvature. The
field equations (12) are valid in any coordinate system, that means the coordinates
are arbitrary. For an asymptotically flat spacetime, it is useful to decompose the
metric tensor as follows:

√−ggαβ = ηαβ − h
αβ

, (13)

where g is the determinant of metric tensor gαβ, h
αβ

is the metric perturbation
which describes the deviation of the metric tensor of curved spacetime from the
metric tensor of Minkowskian flat spacetime given by

ηαβ = ηαβ = diag(−1, +1, +1, +1). (14)

In harmonic gauge, also known as de Donder gauge

∂βh
αβ

= 0, (15)

Einstein’s field equations (12) read (Eq. (36.37) in Ref. 9 and Eq. (5.2b) in Ref. 19)

�xh
αβ

= −16πG

c4
(ταβ + tαβ), (16)

where �x = ηµν ∂
∂xµ

∂
∂xν is the d’Alembert operator. These both tensors in (16) are

given by (Eq. (5.3) in Ref. 19)

ταβ = (−g)T αβ, (17)

tαβ = (−g)tαβ
LL +

c4

16πG
(h

αµ

, ν h
βν

, µ − h
αβ

, µνh
µν

), (18)

where tαβ
LL is the Landau–Lifschitz pseudotensor of gravitational field, in explicit

form given by Eq. (20.22) in Ref. 9 or by Eqs. (96.8) and (96.9) in Ref. 37. The field
equations (16) are exact and the gravitational field is not necessarily weak, because
the only assumptions made so far are the decomposition (13) and the choice of a
harmonic coordinate system (15).
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3. Linearized Theory of Gravity and STF Multipole Expansion

The tensors (17) and (18) can be expanded in terms of the coupling constant, cf.
Eqs. (3.528) and (3.529) in Ref. 33:

ταβ = T αβ +
8πG

c4
ταβ
1 + O(G2), (19)

tαβ =
8πG

c4
tαβ
1 + O(G2). (20)

As it can be deduced from Eq. (16) and expansions (19) and (20), in harmonic gauge
and up to terms of the order O(G2), the Einstein’s field equations are simplified to
d’Alembert’s wave equation for each of the 10 components of the metric tensor8:

�xh
αβ

(t, x) = −16πG

c4
T αβ(t, x), (21)

which is called linearized gravity, a term which refers to the fact that the approxi-
mative field equations (21) are linear partial differential equations, to be contrary
to the nonlinear exact field equations of gravity (12); the harmonic coordinates are
(t, x).

Actually, there are formally infinitely many solutions of wave equation (21).
These solutions of (21) consist of a general solution of the homogeneous wave equa-
tion �xh

αβ

hom = 0 plus one particular solution of inhomogeneous wave equation (21):

h
αβ

= h
αβ

hom + h
αβ

inhom. For an unique solution of (21) one has to impose initial and
boundary conditions. In case of an infinite spacetime, there are no boundary condi-
tions, and a well-posed problem (i.e. existence of one and only one unique solution)
is given by the initial value problem at initial time t′′ (Cauchy problem):

h
αβ

hom(t′′, x′′),
∂

∂ct′′
h

αβ

hom(t′′, x′′). (22)

These initial conditions are valid in the entire three-dimensional space. According to
Kirchhoff’s rigorous integration of the wave equation,38 an unique solution of (21)
and (22) is given in terms of these initial conditions by an integral over an arbitrarily
shaped but sufficiently smooth surface which contains completely the field point x

and the spatially compact-matter field described by the energy–momentum tensor
T αβ; an explicit expression of Kirchhoff’s solution can be found, for instance, in
Eq. (13) in Ref. 39. Here, without loss of generality, the surrounding surface ∂S is
assumed to be the surface of a sphere S. Then, the unique solution of (21) and (22)
can be written as follows:

h
αβ

(t, x) = h
αβ

hom(t, x) + h
αβ

inhom(t, x), (23)

h
αβ

hom(t, x) =
1
4π

∫
∂S

dΩ′′
[

∂

∂r′′
(r′′h

αβ

hom(t′′, x′′)) +
∂

∂ct′′
(r′′h

αβ

hom(t′′, x′′))
]

, (24)
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Fig. 1. Graphical representation of Kirchhoff’s solution (23)–(25). The global reference frame
with harmonic coordinates (t, x) is denoted by Σ(t, x). The vector x points from the origin of
global coordinate system to the field point with spatial coordinate x. The matter field is described
by an energy–momentum tensor T αβ . The matter field and the field point are enclosed by a virtual
sphere S with surface ∂S. The center of the sphere is located at spatial coordinate x of the field
point, so that the spatial distance between the field point and a point inside the matter field is
given by |x′ − x|, and the spatial distance between the field point and the surface ∂S is given by
|x′′ − x|. The matter field is assumed to be isolated, that means: (1) outside the region of some
finite spatial volume V (gray colored) the matter field vanishes and (2) there is no gravitational

radiation from outside through the surface ∂S of sphere S. The metric field h
αβ

at field point
(t, x) and at surface point (t′′, x′′) has also been indicated.

h
αβ

inhom(t, x) =
4G

c4

∫ t

−∞
dt′
∫

V

d3x′T αβ(t′, x′)
δ

(
t′ − t +

|x′ − x|
c

)
|x′ − x| . (25)

Here, δ(x) is Dirac’s delta-distribution, normalized by
∫ +∞
−∞ dx δ(x) = 1. For a

graphical elucidation of Eqs. (23)–(25) see Fig. 1. According to (24), the solution of
homogeneous wave equation is given by a surface integral over a sphere, while (25)
is the particular solution of inhomogeneous wave equation which is called retarded
solution. In (24) we use r′′ = |x′′−x|, and for the retarded time between field point
x and any point x′′ on the surface of sphere we use t′′ = t− r′′

c . The homogeneous

solution (24) contains the initial conditions (22), that means h
αβ

hom(t, x) in the whole
spacetime is uniquely determined by its initial values (22) on surface ∂S; cf. Eq. (9)
in Ref. 26. The surface integral is given in terms of spherical coordinates (r′′, θ′′, φ′′)
and the origin of the spherical coordinate system is located at the center of the
sphere S, so that dΩ′′ = sin θ′′dθ′′dφ′′. The integration in (24) runs over the surface
with radius r′′.

Physically, Kirchhoff’s theorem38 states that the homogeneous solution (24) is
uniquely determined by source points which form a sphere with arbitrarily large
radius r′′. We will assume that the matter source T αβ in (21) is isolated, that
means the source is spatially compact and does not receive any radiation from other
sources far away; note, however, that the matter source itself can emit gravitational
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radiation. Accordingly, since the radius of sphere S can be arbitrarily large, we are
allowed to take the limit up to spatial infinity and can replace the initial conditions
(22) by the so-called no-incoming-radiation condition, cf. Eq. (10) in Ref. 26, and
cf. Eqs. (2.5) and (2.6) in Ref. 40:

lim
r′′→+∞

t′′+ r′′
c =const.

[
∂

∂r′′
(r′′h

αβ

hom(x′′, t′′)) +
∂

∂ct′′
(r′′h

αβ

hom(x′′, t′′))
]

= 0. (26)

If we impose the no-incoming-radiation condition (26), then the unique solution
of (21) is given by the retarded solution (25)8:

h
αβ

(t, x) =
4G

c4

∫ t

−∞
dt′
∫

V

d3x′T αβ(t′, x′)
δ

(
t′ − t +

|x′ − x|
c

)
|x′ − x| . (27)

According to the fundamental theorem of STF multipole expansion, outside the
matter field of an isolated source the retarded solution in (27) can be decomposed
in terms of 10 STF multipoles: Eqs. (3) and (4). In what follows, we will present a
detailed proof of key formulae of this STF multipole expansion.

4. Proof of STF Multipole Expansion

The inhomogeneous wave equation (21) is valid for any component of the tensors
h

αβ
and T αβ, so we consider the inhomogeneous wave equation just for one of the

field components:

�xh(t, x) = −4πT (t, x), (28)

so that h stands either for h
00

, h
0i

or h
ij

, while T stands either for 4G
c4 T 00, 4G

c4 T 0i

or 4G
c4 T ij, respectively. As it has been discussed above, if the source is isolated (i.e.

source is spatially compact and no-incoming radiation) then there exists one and
only one solution of (28), namely (cf. Eq. (27))

h(t, x) =
∫ t

−∞
dt′
∫

V

d3x′T (t′, x′)GR(t′ − t, x′ − x), (29)

where the spatial integration runs over the volume V of the source and the retarded
Green function is given by

GR(t′ − t, x′ − x) =
δ

(
t′ − t +

|x′ − x|
c

)
|x′ − x| . (30)

The assumption that the source in (29) is spatially compact is formulated as follows
(cf. text above Eq. (B1(a)) in Ref. 21, cf. text above Eq. (3.1) in Ref. 36 and cf.
text in Sec. II A in Ref. 41):

T (t′, x′) = 0, for |x′| > r0, (31)

where r0 is the radius of some sphere which contains completely the source.
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Consider the retarded Green function in (30), which can be expanded in a series
of Legendre polynomials Pq, cf. Eqs. (D.1) and (D.2(a)) in Ref. 20:

GR(t′ − t, x′ − x) =
Θ(t − t′)Θ(1 − |ν|)

2rr′

×
∞∑

q=0

(2q + 1)!!
q!

n̂Q(φ′, θ′)n̂Q(φ, θ)Pq(ν), (32)

where r = |x|, r′ = |x′| and

Θ(s) = 0, for s < 0,

Θ(s) = 1, for s ≥ 0,
(33)

is the Heaviside step function, and

ν =
r2 + r′2 − c2(t − t′)2

2rr′
, (34)

is the argument of the Legendre polynomial.

Proof 1. We will show the validity of Eq. (32). Some parts of this proof have been
presented in Ref. 11 in terms of spherical harmonics, while here we present a proof
in terms of STF tensors. The Legendre polynomials can be defined by (Rodrigues’
formula, Eq. (12.65) in Ref. 42)

Pl(z) =
1

2ll!
dl

dzl
(z2 − 1)l (35)

and the normalization is (Eq. (12.48) in Ref. 42)∫ +1

−1

dzPn(z)Pm(z) =
2

2n + 1
δnm. (36)

Consider two directions given by two normalized vectors n = x
r , n′ = x′

r′ ,
with r = |x| and r′ = |x′|, and γ is the angle between n(θ, φ) and n′(θ′, φ′),
that means cos γ = n · n′; this angle satisfies the trigonometric identity: cosγ =
cos θ cos θ′ +sin θ sin θ′ cos(φ−φ′) (Eq. (12.168) in Ref. 42). Then, let us consider a
function F (z, r, r′) which depends on z = cos γ. Further, we assume the function F

to be an element of Hilbert space V = L2 given by V := L2(z = [−1, +1];R), that
means the function F is square-integrable over the surface of the unit sphere. Then,
such a function F can be expanded in terms of Legendre polynomials (Eq. (12.49)
in Ref. 42):

F (z, r, r′) =
∞∑
l=0

Pl(z)Fl(r, r′), (37)

where the coefficients are given by (cf. Eq. (12.50) in Ref. 42; x = cos γ)

Fl(r, r′) =
2l + 1

2

∫ +1

−1

dxPl(x)F (x, r, r′). (38)
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The Legendre polynomial addition theorem states (Eq. (8.189) or Eq. (12.170) in
Ref. 42, for a detailed proof see Ref. 42 (Chapter 12.8)

Pl(z) =
4π

2l + 1

l∑
m=−l

Ylm(θ, φ)Y ∗
lm(θ′, φ′). (39)

By inserting (38) and (39) into (37), we obtain

F (z, r, r′) =
4π

2

∞∑
l=0

l∑
m=−l

Ylm(θ, φ)Y ∗
lm(θ′, φ′)

∫ +1

−1

dxPl(x)F (x, r, r′). (40)

Now we use a relation between spherical harmonicals and STF-tensors (Eq. (2.11)
in Ref. 19, or Eq. (2.19) in Ref. 22):

Ylm(θ, φ) = Ŷ lm
L n̂L(θ, φ), (41)

where

n̂L(θ, φ) = STF
i1,i2,...,il

xi1

r

xi2

r
· · · xil

r
(42)

and nx + iny = eiφ sin θ, nz = cos θ (Eq. (2.10) in Ref. 19). The coefficients Ŷ lm
L

(given by Eqs. (A.6(a))–(A.6(c)) in Ref. 20, or by Eq. (2.21) in Ref. 22) depend on
l, m and on L, but they are independent of (θ, φ). Using (41) we verify

F (z, r, r′) =
4π

2

∞∑
l=0

l∑
m=−l

Ŷ lm
L n̂L(θ, φ)Y ∗

lm(θ′, φ′)
∫ +1

−1

dxPl(x)F (x, r, r′). (43)

By implementing the inversion of Eq. (41) (see Eq. (2.23) in Ref. 22)
l∑

m=−l

Ŷ lm
L Y ∗

lm(θ′, φ′) =
(2l + 1)!!

4πl!
n̂L(θ′, φ′), (44)

we obtain

F (z, r, r′) =
1
2

∞∑
l=0

(2l + 1)!!
l!

n̂L(θ, φ)n̂L(θ′, φ′)
∫ +1

−1

dxF (x, r, r′)Pl(x). (45)

This expansion of a function of Hilbert space V = L2 into a series of Legendre
polynomials has been given by Eq. (A.26) in Ref. 20. According to Eq. (30), the
function F as part of the integrand in Eq. (45) is given by

F (x, r, r′) =

δ

(
t′ − t +

√
r2 + r′2 − 2rr′x

c

)
√

r2 + r′2 − 2rr′x
. (46)

Note, that the Green function (46) is automatically retarded since t ≥ t′. Using the
formula

δ(f(x)) =
n∑

i=1

δ(x − νi)
|f ′(νi)| , (47)
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where νi are the roots of f , i.e. f(νi) = 0 and f ′(νi) = ∂f(x)
∂x |x=νi , and taking into

account that the only root of f(x) = t′− t+
√

r2+r′2−2rr′x
c is given by (cf. Eq. (34))

ν =
r2 + r′2 − c2(t − t′)2

2rr′
, (48)

we can rewrite the function (46) as follows:

F (x, r, r′) = Θ(t − t′)Θ(1 − |ν|)cδ(x − ν)
rr′

. (49)

Here, by the Heaviside function Θ(t − t′) we have taken into account the fact
that the Green function (46) is retarded, i.e. t > t′. Moreover, since the root ν in
(48) can take arbitrarily large numerical values, we have to consider the fact that
−1 ≤ x ≤ +1, which is taken into account by the Heaviside function Θ(1 − |ν|) in
(49). By inserting relation (49) into Eq. (45) we can calculate the integral and get

F (n · n′, r, r′) =
c

2rr′
Θ(t − t′)Θ(1 − |ν|)

×
∞∑
l=0

(2l + 1)!!
l!

n̂L(θ, φ)n̂L(θ′, φ′)Pl(ν). (50)

This result is in agreement with Eq. (32).

Furthermore, the source T (t′, x′) in (29) is expanded in spherical harmonics (cf.
Eq. (B.4) in Ref. 21), which means in STF notation:

T (t′, x′) =
∞∑
l=0

n̂L(φ′, θ′)T̂L(t′, r′), (51)

where T̂L are some STF tensorial functions, but their explicit structure is not rele-
vant here because later the inversion of (51) will be used, see Eq. (126). Inserting
the expansions (32) and (51) into (29) yields (in spherical coordinates we have
d3x′ = dr′r′2 sin θ′dθ′dφ′ and r = |x|, r′ = |x′|)

h(t, x) =
c

2r

∫ t

−∞
dt′
∫

V

dr′r′
∞∑

l=0

T̂L(t′, r′)Θ(t − t′)Θ(1 − |ν|)

×
∞∑

q=0

(2q + 1)!!
q!

Pq(ν)n̂Q(φ, θ)
∫ 2π

0

dθ′ sin θ′

×
∫ π

0

dφ′n̂L(φ′, θ′)n̂Q(φ′, θ′). (52)

For the integration over the angles θ′ and φ′ we obtain (see Eq. (2.5) in Ref. 19)∫ 2π

0

dθ′ sin θ′
∫ π

0

dφ′n̂L(φ′, θ′)n̂Q(φ′, θ′) =
4πl!

(2l + 1)!!
δlq. (53)
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Thus, we arrive at (cf. Eq. (D.3) in Ref. 20)

h(t, x) =
4πc

2r

∞∑
l=0

n̂L(φ, θ)
∫ t

−∞
dt′

×
∫

V

dr′r′T̂L(t′, r′)Pl(ν)Θ(t − t′)Θ(1 − |ν|). (54)

Now we introduce the following four variables (cf. Eqs. (D.4(a)) and (D.4(b)) in
Ref. 20) which are independent of each other:

u = ct − r, u′ = ct′ − r′, (55)

v = ct + r, v′ = ct′ + r′. (56)

After coordinate transformation (55) and (56), the previous integration domain of
(54), D = {(t′, r′) : −∞ ≤ t′ ≤ t and 0 ≤ r′ < r0}, is given by (cf. comments above
Eq. (D.5) in Ref. 20)

D = {(u′, v′) : u ≤ v′ ≤ v and u′ ≤ u}. (57)

Proof 2. We will show that the integration domain D is given by (57). From the
definition of the new variables (55) and (56) follows:

ct =
u + v

2
, ct′ =

u′ + v′

2
, (58)

r =
v − u

2
, r′ =

v′ − u′

2
. (59)

Let us consider the Heaviside function Θ(1 − |ν|), i.e. the relation:∣∣∣∣∣r
2 + r′2 − c2(t − t′)2

2rr′

∣∣∣∣∣ ≤ 1. (60)

This relation can also be written as follows:

(r + r′)2 ≥ c2(t − t′)2, (61)

(r − r′)2 ≤ c2(t − t′)2. (62)

First, we consider condition (61). Due to Heaviside function Θ(t − t′), i.e. t ≥ t′,
we can rewrite (61) as follows:

r + r′ ≥ c(t − t′). (63)

By inserting (58) and (59) into (63) we find

v′ ≥ u. (64)

Now let us consider condition (62), which can also be written as

c(t′ − t) ≤ r − r′ ≤ c(t − t′). (65)

By inserting (58) and (59) into (63) we obtain from both conditions in (65):

v′ ≤ v and u′ ≤ u. (66)
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Finally, the conditions (64) and (66) can be summarized as follows:

D = {(u′, v′) : u ≤ v′ ≤ v and u′ ≤ u}, (67)

which is just the integration domain (57).

Then, the integral (54) in these new variables (55) and (56) is given by (cf.
Eq. (D.5) in Ref. 20)

h(t, x) =
4π

4(v − u)

∞∑
l=0

n̂L(φ, θ)
∫∫

D
du′dv′(v′ − u′)T̂L

(
u′ + v′

2c
,
v′ − u′

2

)

×Pl

(
1 − 2

(u − u′)(v − v′)
(v − u)(v′ − u′)

)
. (68)

Proof 3. We will show how to arrive at (68). First we note, by means of relations
(58) and (59), that

dt′dx′ =

∣∣∣∣∣∣∣∣∣
∂t′

∂u′
∂t′

∂v′

∂x′

∂u′
∂x′

∂v′

∣∣∣∣∣∣∣∣∣
du′dv′ =

1
2c

du′dv′.

Then, using 1
2r = 1

v−u and r′ = v′−u′
2 from (59), we obtain from (54) as intermediate

step:

h(t, x) =
4π

4(v − u)

∞∑
l=0

n̂L(φ, θ)
∫∫

D
du′dv′(v′ − u′)T̂L(t′, r′)Pl(ν), (69)

where we also have implemented the integration domain D in virtue of (57). Now,
for both arguments of the function T̂L we use t′ = v′+u′

2c according to (58) and
r′ = v′−u′

2 according to (59) and obtain a further intermediate step:

h(t, x) =
4π

4(v − u)

∞∑
l=0

n̂L(φ, θ)
∫∫

D
du′dv′(v′ − u′)T̂L

×
(

u′ + v′

2c
,
v′ − u′

2

)
Pl(ν). (70)

Finally, we have to reexpress the argument ν of Legendre polynomial Pl in terms
of the new variables u, v, u′, v′. First, from the definition of ν given by Eq. (34) and
the new variables given by Eqs. (58) and (59) we get

ν =

(
v − u

2

)2

+
(

v′ − u′

2

)2

−
(

u + v

2
− u′ + v′

2

)2

2
(

v − u

2

)(
v′ − u′

2

)

= 1 − 2
(u − u′)(v − v′)
(v − u)(v′ − u′)

, (71)

1450003-14

In
t. 

J.
 M

od
. P

hy
s.

 D
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 D

r.
 S

ve
n 

Z
sc

ho
ck

e 
on

 1
0/

25
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

October 22, 2013 16:19 WSPC/S0218-2718 142-IJMPD 1450003

A Detailed Proof of the Fundamental Theorem of STF Multipole

which can easily be checked. Thus, inserting (71) into (70) yields

h(t, x) =
4π

4(v − u)

∞∑
l=0

n̂L(φ, θ)
∫∫

D
du′dv′(v′ − u′)T̂L

(
u′ + v′

2c
,
v′ − u′

2

)

×Pl

(
1 − 2

(u − u′)(v − v′)
(v − u)(v′ − u′)

)
, (72)

which is just in coincidence with expression (68).

Then, we use the following relation for Legendre polynomial (cf. Eq. (D.6) in
Ref. 20):

Pl

(
1 − 2

(u − u′)(v − v′)
(v − u)(v′ − u′)

)
=

(−1)l

l!
(v − u)l+1

(v′ − u′)l

∂l

∂ul

[
(u − u′)l(u − v′)l

(v − u)l+1

]
. (73)

Proof 4. Blanchet and Damour20 have found an elegant way to show the validity
of (73) via Euler–Poisson–Darboux differential equation, see text below Eq. (D.6)
in Ref. 20. Here, we will demonstrate (73) straightaway. According to Eq. (73), the
Legendre polynomial under consideration is given by

Pl(ν) = Pl

(
1 − 2

(u − u′)(v − v′)
(v − u)(v′ − u′)

)
. (74)

Using Rodrigues’ formula (35) we verify

Pl(ν) =
1

2ll!
dl

dνl
(ν2 − 1)l =

2l

l!
dl

dνl

(
(u − u′)2(v − v′)2

(v − u)2(v′ − u′)2
− (u − u′)(v − v′)

(v − u)(v′ − u′)

)l

=
2l

l!
dl

dνl

(
(v − v′)(v − u′)

(v′ − u′)2
(u − u′)(u − v′)

(v − u)2

)l

. (75)

Now we use the relation
d

dν
=
(

du

dν

)
d

du
, (76)

while for any value of l we obtain

dl

dνl
=
[(

du

dν

)
∂

∂u

]
×
[(

du

dν

)
∂

∂u

]
× · · · ×

[(
du

dν

)
∂

∂u

]
︸ ︷︷ ︸

l

=
[(

du

dν

)
∂

∂u

]l

. (77)

Let us calculate the factor in (76). For that we have to reconvert

ν = 1 − 2
(u − u′)(v − v′)
(v − u)(v′ − u′)

, (78)

in terms of u, and get

u =
u′ +

1 − ν

2
v′ − u′

v − v′
v

1 +
1 − ν

2
v′ − u′

v − v′

. (79)
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With allowance for expression (79), we have(
du

dν

)
=

1
2

(v′ − u′)(v − u)2

(v′ − v)(v − u′)
. (80)

Inserting operator (77) into (75), using (80), yields

Pl(ν) =
(−1)l

l!
1

(v′ − u′)l

[
(v − u)2

∂

∂u

]l( (u − u′)(u − v′)
(u − v)2

)l

. (81)

Now we apply the following relation, which is proven in Appendix A:[
(v − u)2

∂

∂u

]l (u − u′)l(u − v′)l

(u − v)2l
= (v − u)l+1 ∂l

∂ul

(u − u′)l(u − v′)l

(v − u)l+1
. (82)

By inserting (82) into (81) we obtain

Pl(ν) =
(−1)l

l!
(v − u)l+1

(v′ − u′)l

∂l

∂ul

(u − u′)l(u − v′)l

(v − u)l+1
, (83)

which represents the asserted relation (73).

Now, by means of relation (73) and with the aid of (cf. Eq. (A.35(b)) in Ref. 20)

1
l!

n̂L(θ, φ)(v − u)l ∂2l

∂ul∂vl

(
F (u)
v − u

)
=

1
2
∂̂L

(
F (ct − r)

r

)
, (84)

Proof 5. We will show the validity of relation (84). The function F on the right-
hand side in Eq. (84) does not depend explicitly on three-vector x but only on
its absolute value r = |x|. Therefore, it is meaningful to rewrite the differential
operator ∂̂L in a form where the vectorial dependence is projected out of the differ-
ential process. This can be achieved with virtue of the following relation (see also
Eq. (A.30) in Ref. 20):

∂̂L

(
F (ct − r)

r

)
= n̂Lrl

(
1
r

∂

∂r

)l(
F (ct − r)

r

)
. (85)

For proofing (85) recall ∂f(r)
∂xa1 = xa1

r
∂f(r)

∂r and one verifies ∂Lf(r) = nLrl(1
r

∂
∂r )lf(r)

plus terms containing at least one Kronecker delta which, however, vanish after
STF operation; e.g. STFabδab = 0, STFabcδabx

c = 0, etc.
By using the variables u = ct − r, v = ct + r, see Eqs. (55) and (56), we can

rewrite (85) as follows:

∂̂L

(
F (ct − r)

r

)
= 2n̂L(v − u)l

(
1

v − u

(
∂

∂v
− ∂

∂u

))l(
F (u)
v − u

)
, (86)
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where we have used the chain rule: ∂
∂r = (∂v

∂r ) ∂
∂v + (∂u

∂r ) ∂
∂u = ∂

∂v − ∂
∂u . Now, we

apply the following identity which can easily be proven with the aid of mathematical
induction (i.e. show the validity of (87) for l = 1 and then prove that the validity of
(87) for any one natural number l implies the validity of (87) for the next natural
number l + 1): (

1
v − u

(
∂

∂v
− ∂

∂u

))l
F (u)
v − u

=
1
l!

∂2l

∂ul∂vl

F (u)
v − u

. (87)

By inserting (87) into (86) we obtain

1
2
∂̂L

(
F (ct − r)

r

)
= n̂L

(v − u)l

l!
∂2l

∂vl∂ul

(
F (u)
v − u

)
, (88)

which is just relation (84).

we can rewrite Eq. (68) using ∂̂L as follows (cf. Eq. (D.7) in Ref. 20):

h(t, x) =
∞∑
l=0

π

2
1
l!

∫∫
D

du′dv′

(v′ − u′)l−1
T̂L

(
u′ + v′

2c
,
v′ − u′

2

)
∂̂L

×
[
(ct − r − u′)l(ct − r − v′)l

r

]
. (89)

Proof 6. In order to obtain from Eq. (68) the expression in Eq. (89), the relation
(73) is used, which yields

h(t, x) =
4π

4(v − u)

∞∑
l=0

n̂L(φ, θ)
∫∫

D
du′dv′(v′ − u′)T̂L

(
u′ + v′

2c
,
v′ − u′

2

)

× (−1)l

l!
(v − u)l+1

(v′ − u′)l

∂l

∂ul

[
(u − u′)l(u − v′)l

(v − u)l+1

]
. (90)

For being able to apply relation (84), we have to rewrite the term

∂l

∂ul

[
(u − u′)l(u − v′)l

(v − u)l+1

]
. (91)

For doing that, we note the relation

∂l

∂vl

[
1

v − u

]
=

(−1)ll!
(v − u)l+1

. (92)

By means of this relation we find for the term (91) the following expression:

∂l

∂ul

[
(u − u′)l(u − v′)l

(v − u)l+1

]
=

(−1)l

l!
∂2l

∂ul∂vl

[
(u − u′)l(u − v′)l

v − u

]
. (93)
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Inserting relation (93) into Eq. (90) yields

h(t, x) =
4π

4(v − u)

∞∑
l=0

n̂L(φ, θ)
∫∫

D
du′dv′(v′ − u′)T̂L

(
u′ + v′

2c
,
v′ − u′

2

)

× 1
l!

(v − u)l+1

(v′ − u′)l

1
l!

∂2l

∂ul∂vl

[
(u − u′)l(u − v′)l

v − u

]
, (94)

where we have taken into account that (−1)l(−1)l = 1. Now we can apply relation
(84) and obtain

h(t, x) =
∞∑
l=0

π

2
1
l!

∫∫
D

du′dv′

(v′ − u′)l−1
T̂L

(
u′ + v′

2c
,
v′ − u′

2

)
∂̂L

×
[
(ct − r − u′)l(ct − r − v′)l

r

]
, (95)

which is just relation (89).

By means of the transformation

u′ = s, v′ = s + 2y, (96)

a straightforward calculation shows that (89) can be written as follows (cf. Eq. (D.9)
in Ref. 20):

h(t, x) =
∞∑

l=0

4π

2l+1l!

∫ ct−r

−∞
ds

∫ 1
2 (ct+r−s)

1
2 (ct−r−s)

dy

yl−1
T̂L

(
s + y

c
, y

)
∂̂L

×
[
(ct − r − s)l(ct − r − s − 2y)l

r

]
. (97)

Furthermore, this expression can be written in the following form (cf. Eq. (D.8) in
Ref. 20):

h(t, x) = −
∞∑

l=0

4π

2l+1l!

∫ ct−r

−∞
ds∂̂L

[∫ 1
2 (ct−r−s)

a

dy

yl−1
T̂L

×
(

s + y

c
, y

)
(ct − r − s)l(ct − r − s − 2y)l

r

−
∫ 1

2 (ct+r−s)

a

dy

yl−1
T̂L

(
s + y

c
, y

)
(ct + r − s)l(ct + r − s − 2y)l

r

]
. (98)

Here, we have commuted the operator ∂̂L with the integrals, because all differen-
tiations of the upper limits 1

2 (ct − εr − s) with ε = ±1 vanish, due to the factor
(ct − εr − s − 2y)l inside the integrals.
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Proof 7. We will show how to obtain (98) from (97). First, we separate the second
integral in (97) into two parts as follows:

h(t, x) = −
∞∑

l=0

4π

2l+1l!

∫ ct−r

−∞
ds

∫ 1
2 (ct−r−s)

a

dy

yl−1
T̂L

(
s + y

c
, y

)
∂̂L

×
[
(ct − r − s)l(ct − r − s − 2y)l

r

]

+
∞∑

l=0

4π

2l+1l!

∫ ct−r

−∞
ds

∫ 1
2 (ct+r−s)

a

dy

yl−1
T̂L

(
s + y

c
, y

)
∂̂L

×
[
(ct − r − s)l(ct − r − s − 2y)l

r

]
, (99)

where a is an arbitrarily chosen constant which separates the region of integration
variable y; in the first line in (99) the minus-sign in front of the integral takes into
account that we have interchanged the upper and lower limits of integration. Now,
let us recall the fundamental theorem of integral calculus:

d

dx

∫ x

a

dyf(y) = f(y)
∣∣∣∣
y=x

= f(x). (100)

The differential operator ∂̂L in (99) contains terms like ∂
∂xk = ( ∂r

∂xk ) ∂
∂r . Accordingly,

in the first line of (99) we can take the differential operator ∂̂L in front of the integral,
because the differentiation of the upper limit 1

2 (ct − r − s) would yield a term

(ct − r − s − 2y)l|y= 1
2 (ct−r−s) = 0, (101)

due to the term (ct− r−s−2y)l in the argument of the integral; the differentiation
of the lower limit a gives zero because a is a constant. Thus, instead of (99) we can
write

h(t, x) = −
∞∑

l=0

4π

2l+1l!

∫ ct−r

−∞
ds∂̂L

∫ 1
2 (ct−r−s)

a

dy

yl−1
T̂L

(
s + y

c
, y

)

×
[
(ct − r − s)l(ct − r − s − 2y)l

r

]

+
∞∑

l=0

4π

2l+1l!

∫ ct−r

−∞
ds

∫ 1
2 (ct+r−s)

a

dy

yl−1
T̂L

(
s + y

c
, y

)
∂̂L

×
[
(ct − r − s)l(ct − r − s − 2y)l

r

]
. (102)
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Now let us consider the second line in (102), especially the term:

∂̂L

[
(ct − r − s)l(ct − r − s − 2y)l

r

]

= ∂̂L

[
[(ct − r)2 − 2(s + y)(ct − r) + s(s + 2y)]l

r

]
. (103)

We apply the following relation (for a proof of relation (104) see Appendix B, see
also Eq. (A.36) in Ref. 20):

∂̂L

[
(ct − r)i

r

]
= ∂̂L

[
(ct + r)i

r

]
, if i = 0, 1, . . . , 2l, (104)

and obtain for (103) the expression

∂̂L

[
(ct − r − s)l(ct − r − s − 2y)l

r

]

= ∂̂L

[
[(ct + r)2 − 2(s + y)(ct + r) + s(s + 2y)]l

r

]

= ∂̂L

[
(ct + r − s)l(ct + r − s − 2y)l

r

]
. (105)

Inserting (105) into (102) yields

h(t, x) = −
∞∑
l=0

4π

2l+1l!

∫ ct−r

−∞
ds∂̂L

∫ 1
2 (ct−r−s)

a

dy

yl−1
T̂L

(
s + y

c
, y

)

×
[
(ct − r − s)l(ct − r − s − 2y)l

r

]

+
∞∑

l=0

4π

2l+1l!

∫ ct−r

−∞
ds

∫ 1
2 (ct+r−s)

a

dy

yl−1
T̂L

(
s + y

c
, y

)
∂̂L

×
[
(ct + r − s)l(ct + r − s − 2y)l

r

]
. (106)

Now, also for the second line of (106) we can take the differential operator ∂̂L in
front of the integral, because the differentiation of the upper limit yields terms like

(ct + r − s − 2y)l|y= 1
2 (ct+r−s) = 0. (107)
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Accordingly, (106) can be written as follows:

h(t, x) = −
∞∑

l=0

4π

2l+1l!

∫ ct−r

−∞
ds∂̂L

∫ 1
2 (ct−r−s)

a

dy

yl−1
T̂L

(
s + y

c
, y

)

×
[
(ct − r − s)l(ct − r − s − 2y)l

r

]

+
∞∑

l=0

4π

2l+1l!

∫ ct−r

−∞
ds∂̂L

∫ 1
2 (ct+r−s)

a

dy

yl−1
T̂L

(
s + y

c
, y

)

×
[
(ct + r − s)l(ct + r − s − 2y)l

r

]
, (108)

which is nothing else but related to (98).

It is readily seen that the expression (98) can also be written as (cf. Eq. (6.4) in
Ref. 20)

h(t, x) = −4π

∞∑
l=0

∫ ct−r

−∞
ds∂̂L

×

 Ra

(
1
2
(ct − r − s), s

)
− Ra

(
1
2
(ct + r − s), s

)
r


 , (109)

with the function (cf. Eq. (B.6) in Ref. 21)

Ra(r, s) = rl

∫ r

a

dy
(r − y)l

l!

(
2
y

)l−1

T̂L

(
s + y

c
, y

)
. (110)

Furthermore, by commuting the differential operator ∂̂L with the integral of the
first term in (109) (for the proof one can use the very same arguments as presented
in detail in Proof 7), the expression (109) can be written as follows (see Eq. (6.8)
in Ref. 20 or see Eq. (B.5) in Ref. 21):

h(t, x) = −
∞∑

l=0

∂̂L

[
4π

r

∫ ct−r

−∞
dsRa

(
ct − r − s

2
, s

)]

−
∞∑
l=0

∫ ct−r

−∞
ds∂̂L

[
4π

r
Ra

(
ct + r − s

2
, s

)]
. (111)

The solution (111) is independent of the choice of a. In case of a field point outside
the source r > r0, the first argument of the second term in (111) will satisfy
1
2 (ct + r − s) > r0. Hence, if we choose a = r0 it becomes evident from Eq. (110)
that the second term in (111) will vanish when r > r0, because the source is spatially
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compact (cf. Eq. (31); note that the sequence of transformations (55), (56) and (96)
yields y = |x′|):

T̂L

(
s + y

c
, y

)
= 0, for y > r0. (112)

This argumentation immediately yields (Eq. (B.7) in Ref. 21)

h(t, x) =
∞∑
l=0

(−1)l

l!
∂̂L

[
F̂L(u)

r

]
, (113)

with (cf. Eq. (B.8) in Ref. 21)

F̂L(u) = −4π(−1)l

∫ u

−∞
ds

(
u − s

2

)l ∫ (u−s)/2

r0

dy

×
(

u − s

2
− y

)l(2
y

)l−1

T̂L

(
s + y

c
, y

)
. (114)

By a change of variables s = u + (z − 1)y, the expression (114) can be transformed
into (cf. Eq. (B.9) in Ref. 21):

F̂L(u) =
4π

2l+1

∫ +1

−1

dz(1 − z2)l

∫ r0

0

dyyl+2T̂L

(
u + zy

c
, y

)
. (115)

Proof 8. We will show the validity of Eq. (115). Consider the expression given by
Eq. (114):

F̂L(u) = −4π(−1)l

∫ u

−∞
ds

(
u − s

2

)l ∫ (u−s)/2

r0

dy

×
(

u − s

2
− y

)l(2
y

)l−1

T̂L

(
s + y

c
, y

)
. (116)

The transformation reads

s = u + (z − 1)y (117)

and the differentials

dsdy =

∣∣∣∣∣∣∣∣
∂s

∂z

∂s

∂y

∂y

∂z

∂y

∂y

∣∣∣∣∣∣∣∣ dzdy = ydzdy.

Thus, one obtains

F̂L(u) = − 4π

2l+1

∫ u

−∞
dz(1 − z2)l

∫ (u−s)/2

r0

dyyl+2T̂L

(
u + zy

c
, y

)
. (118)
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Now we have to transform the integration limits. First, we take into account that
(cf. Eqs. (31) and (112))

T̂L

(
u + zy

c
, y

)
= 0, for y > r0. (119)

Consequently, we conclude

ymin =
u − s

2
, ymax = r0 (120)

and write (118) as follows:

F̂L(u) =
4π

2l+1

∫ zmax

zmin

dz(1 − z2)l

∫ r0

(u−s)/2

dyyl+2T̂L

(
u + zy

c
, y

)
. (121)

From (117) we conclude

zmin =
smin − u

ymax
+ 1, zmax =

smax − u

ymin
+ 1. (122)

From (120) and taking into account the upper limit in (118), i.e. s ≤ u, we imme-
diately get

smin = u − 2r0, smax = u. (123)

Then, by inserting (120) and (123) into (122), we obtain the limits:

zmin = −1, zmax = +1. (124)

Accordingly, the integral (121) reads

F̂L(u) =
4π

2l+1

∫ +1

−1

dz(1 − z2)l

∫ r0

0

dyyl+2T̂L

(
u + zy

c
, y

)
, (125)

which is just in coincidence with Eq. (115).

Finally, we use the inversion of Eq. (51) (see Eq. (A.9(b)) in Ref. 20 or Eq. (B.10)
in Ref. 21)

T̂L(t, y) =
(2l + 1)!!

4πl!

∫ 2π

0

sin θdθ

∫ π

0

dφn̂L(θ, φ)T (t, y, θ, φ). (126)

Inserting (126) into (115), yields for (113) the following expression (cf. Eq. (B.2) in
Ref. 21)

h(t, x) =
∞∑
l=0

(−1)l

l!
∂L

[
F̂L(u)

r

]
, (127)

where r = |x| is the spatial distance between the origin of coordinate system and
the field point. By a transformation from spherical coordinates y = (y, θ, φ) to
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Cartesian-like coordinates (cf. Eq. (1.1) in Ref. 19) x′ = (x′
1, x

′
2, x

′
3), the STF

multipole moments of the source are given by

F̂L(u) =
∫

V

d3x′x̂′
L

∫ +1

−1

dzδl(z)T
(

u + zr′

c
, x′
)

, (128)

where the spatial integral runs over the volume V of the source, r′ = |x′| is the
spatial distance between the origin of coordinate system and a point inside the
source with spatial coordinate x′, and u = ct − r, cf. Eq. (55). In order to derive
the form of Eq. (127), we also have used the relation ∂̂LF̂L(u) = ∂LF̂L(u) since F̂L

are STF multipoles, that means the trace over any pair of indices in F̂L vanishes:
e.g. for l = 2 we would have ∂̂i1i2 = ∂2

∂xi1∂xi2 − δi1i2
3

∂2

∂r2 and due to δi1i2 F̂i1i2 = 0,
we have ∂̂i1i2 F̂i1i2 = ∂i1i2 F̂i1i2 and so on.

The functions in (128) are given by

δl(z) =
(2l + 1)!!

2l+1l!
(1 − z2)l. (129)

In view that h in (127) stands either for h
00

, h
0i

or h
ij

, while T in (128) stands
either for 4G

c4 T 00, 4G
c4 T 0i or 4G

c4 T ij , respectively, we can rewrite Eqs. (127) and (128)
in terms of their explicit tensorial structure:

h
αβ

(t, x) =
4G

c4

∞∑
l=0

(−1)l

l!
∂L

[
F̂αβ

L (u)
r

]
, (130)

where the STF multipoles are given by

F̂αβ
L (u) =

∫
V

d3x′x̂′
L

∫ +1

−1

dzδl(z)T αβ

(
u + zr′

c
, x′
)

. (131)

The equations (130) and (131) represent the fundamental theorem of STF multi-
pole expansion in post-Minkowskian approximation, as previously emphasized by
Eqs. (3) and (4) in the introductory section. In virtue of Eq. (31) (compact sup-
port source) it is obvious that the multipole expansion (130) and (131) is valid for
regions r > r0, where r0 is the radius of the smallest possible sphere which encloses
completely the matter source. Finally, it should be noted that a straightforward
application of theorem (127) and (128) for the case of electrodynamics leads imme-
diately to the STF expansion given by Eqs. (4.2) and (4.3) in Ref. 36.

5. Summary

In linearized gravity, the Einstein’s field equations are given by an inhomogeneous
partial differential equation (1) for each of the 10 components of the metric tensor.
In the region exterior to the source, the retarded solution (2) can be expanded in
terms of 10 Cartesian STF multipoles in post-Minkowskian approximation: Eqs. (3)
and (4) (= Eqs. (130) and (131)). These 10 multipoles in (4) are not independent
of each other, because using energy–momentum conservation (four-relations) and
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gauge transformation (four-relations) they can be reduced to finally two indepen-
dent STF multipoles: mass multipoles and spin multipoles, M̂L and ŜL, respectively,
in post-Newtonian approximation demonstrated by Thorne19 and Blanchet and
Damour,20,21 while in post-Minkowskian approximation this fact has been estab-
lished by Damour and Iyer.36

Meanwhile, the STF multipole expansion has become an important tool in lin-
earized gravity and has demonstrated its efficiency for a wide spectrum of appli-
cations: in celestial mechanics,22–24 in the theory of gravitational waves,25–27 and
in high precision astrometry where a particularly important aspect thereof is the
theory of light propagation in curved spacetime.28–31

Theorems 3 and 4 is the fundamental and the heart part of STF multipole expan-
sion; see Eqs. (B.2) and (B.3) in Ref. 21, Eqs. (5.3) and (5.4) in Ref. 36, Eqs. (56)
and (57) in Ref. 26, or Eq. (25) in Ref. 27. But despite its formidable importance,
an explicit proof of Eqs. (3) and (4) has not been presented so far, while some parts
of the mathematical proof are distributed into several publications.11,19–21 In this
investigation, a detailed proof of the STF multipole decomposition has been rep-
resented in the form of a more didactical manuscript. Only three and rather weak
assumptions are required for the validity of the STF multipole expansion:

(1) No-incoming-radiation condition, Eq. (26).
(2) The source is spatially compact, Eq. (31).
(3) A spherical expansion of the metric outside the source is possible, Eq. (51).

We hope that our investigation elucidates fundamental aspects of the main the-
orem of STF multipole expansion (3), where the multipoles in post-Minkowskian
approximation are defined by (4).
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Appendix A. Proof of Eq. (82)

Relation (82) contains only derivatives with respect to variable u, and since u and
v are independent variables, here we can treat v as a constant. Accordingly, we
introduce a new variable x = u − v with ∂

∂x = ∂
∂u , and rewrite relation (82) as

follows: [
x2 ∂

∂x

]l (x + a)l(x + b)l

x2l
= xl+1 ∂l

∂xl

(x + a)l(x + b)l

xl+1
, (A.1)

where a = v − u′ and b = v − v′, and the independent variable u′ and v′ are also
considered as constant quantities. In order to show the validity of relation (A.1),
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we apply the binomial theorem:

(x + a)l =
l∑

p=0

(
l

p

)
xl−pap, (x + b)l =

l∑
q=0

(
l

q

)
xl−qbq, (A.2)

where the binomial coefficients are defined by

(
l

p

)
=

l!
(l − p)!p!

,

(
l

q

)
=

l!
(l − q)!q!

. (A.3)

Inserting (A.2) into (A.1) yields

l∑
p,q=0

(
l

p

)(
l

q

)
apbq

[
x2 ∂

∂x

]l
xl−pxl−q

x2l

=
l∑

p,q=0

(
l

p

)(
l

q

)
apbqxl+1 ∂l

∂xl

xl−pxl−q

xl+1
. (A.4)

Let us consider each individual term in (A.4). One can easily show the validity of
the following both relations by means of mathematical induction:

[
x2 ∂

∂x

]l
xl−pxl−q

x2l
= (−1)lx−(p+q−l)

l−1∏
k=0

(p + q − k), (A.5)

xl+1 ∂l

∂xl

xl−pxl−q

xl+1
= (−1)lx−(p+q−l)

l−1∏
k=0

(p + q − k). (A.6)

Accordingly, we can conclude the following identity for each individual term in
(A.4):

[
x2 ∂

∂x

]l
xl−pxl−q

x2l
= xl+1 ∂l

∂xl

xl−pxl−q

xl+1
. (A.7)

That means, each individual term on the left-hand side in (A.4) coincides with
the corresponding term on the right-hand side in (A.4). Thus, we have shown the
validity of relation (A.4) and, therefore, the validity of relation (A.1) and (82),
respectively.

Appendix B. Proof of Eq. (104)

Let us consider both expressions in (104), which we write as follows (for a proof of
relation (B.1) see Eqs. (85)–(88), while the proof of (B.2) is very similar, see also

1450003-26

In
t. 

J.
 M

od
. P

hy
s.

 D
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 D

r.
 S

ve
n 

Z
sc

ho
ck

e 
on

 1
0/

25
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

October 22, 2013 16:19 WSPC/S0218-2718 142-IJMPD 1450003

A Detailed Proof of the Fundamental Theorem of STF Multipole

relations (A.35(b)) and (A.36(c)) in Ref. 20):

∂̂L
(ct − r)n

r
=

2
l!

n̂L(v − u)l ∂2l

∂ul∂vl

un

v − u
, (B.1)

∂̂L
(ct + r)n

r
=

2
l!

n̂L(v − u)l ∂2l

∂ul∂vl

vn

v − u
, (B.2)

where u = ct − r and v = ct + r. By subtraction of (B.1) from (B.2) one obtains

∂̂L
(ct + r)n

r
− ∂̂L

(ct − r)n

r
=

2
l!

n̂L(v − u)l ∂2l

∂ul∂vl

vn − un

v − u
. (B.3)

Now we recall the generalized version of third binomial theorem

vn − un

v − u
=

n−1∑
j=0

vn−j−1uj . (B.4)

Due to 2l ≥ n, the (2l)th derivative of the polynomial in (B.4) yields zero:

∂2l

∂ul∂vl

vn − un

v − u
=

∂2l

∂ul∂vl

n−1∑
j=0

vn−j−1uj = 0. (B.5)

Thus, inserting (B.5) into (B.3) yields

∂̂L
(ct + r)n

r
− ∂̂L

(ct − r)n

r
= 0, (B.6)

which is just relation (104).
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